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Abstract 

Glioblastoma multiforme (GBM) is recognized as the prevailing malignant and aggressive primary brain tumor, char-
acterized by an exceedingly unfavorable prognosis. Cuproptosis, a recently identified form of programmed cell death, 
exhibits a strong association with cancer progression, therapeutic response, and prognostic outcomes. However, 
the specific impact of cuproptosis on GBM remains uncertain. To address this knowledge gap, we obtained tran-
scriptional and clinical data pertaining to GBM tissues and their corresponding normal samples from various data-
sets, including TCGA, CGGA, GEO, and GTEx. R software was utilized for the analysis of various statistical techniques, 
including survival analysis, cluster analysis, Cox regression, Lasso regression, gene enrichment analysis, drug sensitiv-
ity analysis, and immune microenvironment analysis. Multiple assays were conducted to investigate the expression 
of genes related to cuproptosis and their impact on the proliferation, invasion, and migration of glioblastoma mul-
tiforme (GBM) cells. The datasets were obtained and prognostic risk score models were constructed and validated 
using differentially expressed genes (DEGs) associated with cuproptosis. To enhance the practicality of these models, a 
nomogram was developed.Patients with glioblastoma multiforme (GBM) who were classified as high risk exhibited 
a more unfavorable prognosis and shorter overall survival compared to those in the low risk group. Additionally, 
we specifically chose FDX1 from the differentially expressed genes (DEGs) within the high risk group to assess its 
expression, prognostic value, biological functionality, drug responsiveness, and immune cell infiltration. The findings 
demonstrated that FDX1 was significantly upregulated and associated with a poorer prognosis in GBM. Furthermore, 
its elevated expression appeared to be linked to various metabolic processes and the susceptibility to chemotherapy 
drugs. Moreover, FDX1 was found to be involved in immune cell infiltration and exhibited correlations with multiple 
immunosuppressive genes, including TGFBR1 and PDCD1LG2. The aforementioned studies offer substantial assistance 
in informing the chemotherapy and immunotherapy approaches for GBM. In summary, these findings contribute 
to a deeper comprehension of cuproptosis and offer novel perspectives on the involvement of cuproptosis-related 
genes in GBM, thereby presenting a promising therapeutic strategy for GBM patients.
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Introduction
Glioblastoma multiforme (GBM) is a  highly aggres-
sive  brain cancer  characterized by rapid metasta-
sis and  a grim  prognosis,  resulting in  approximately 
200,000 annual deaths worldwide [1]. Despite the current 
standard treatment approach involving  surgical resec-
tion and chemoradiotherapy,  patients  with GBM face a 
significantly poor prognosis, with a 5-year survival rate 
below 6.9 [2, 3]. Consequently, there is an urgent need 
to develop a novel prognostic model to identify high-risk 
patients and  discover  biomarkers for GBM diagnosis. 
This will enable accurate treatment  selection  and effec-
tively enhance therapeutic outcomes and overall progno-
sis for individuals with GBM.

Tsvetkov et  al. proposed that cuprotosis is a  form 
of  cell death that  is dependent on copper and  differs 
from known mechanisms of cell death, relying on mito-
chondrial respiration. Through their studies, it was dis-
covered that copper binds to the lipoylated component 
of the tricarboxylic acid (TCA) cycle in the mitochon-
drial respiratory chain,  resulting in the aggregation 
of lipoylated proteins and loss of iron-sulfur cluster pro-
teins. These effects ultimately  lead  to cell death [4]. The 
researchers have identified several genes involved in reg-
ulating cell death induced by Cu2 + , such as FDX1, which 
has the ability to convert Cu2 + to the more harmful 
Cu1 + , as well as PDH complexes (DLAT, PDHA1, and 
PDHB) and LIPT1, LIAS, and DLD, which are responsi-
ble for the lipoic acid pathway [4]. An increasing number 
of researchers are currently investigating  the  associa-
tion between cuproptosis and human diseases, including 
cancers [5],  with the aim of identifying  potential thera-
peutic  strategies that can enhance patient survival and 
prognosis by  comprehending the  role of cuproptosis in 
the development of various diseases [6].

In recent  times, a significant number of scholars 
have contributed to the field of cancer research by 
developing prognostic models based on  cuproptosis-
related genes, specifically for  hepatocellular carci-
noma [7], head and neck squamous cell carcinoma [8], 
and prostate cancer [9]. These models  exhibit a high 
level of  accuracy in  predicting various aspects of  can-
cer patients’  prognosis,  including their response  to 
chemotherapy  and  potential for immunotherapy.  This 
study aims to systematically  construct  a  prognos-
tic model  for glioblastoma  (GBM) by incorporating 18 
cuproptosis-related genes. The accuracy of the model  is 
validated using  multiple datasets, and  a nomogram is 
devised to enhance the practicality and applicability 
of the model. It is understood  that cuproptosis is  con-
trolled by the lipid acylation of proteins mediated by 
mitochondrial ferredoxin 1 (FDX1), which serves as a 
crucial  regulator of Cu2 + transport  leading  to cellular 

demise. Consequently, we conducted a comprehensive 
examination of  the  impact of FDX1  on various aspects 
of glioblastoma multiforme’s (GBM) tumor micro-
environment (TME), metabolic pathways, immune 
micro-environment, and drug  responsiveness. To vali-
date the expression and biological role of FDX1 in 
GBM, we specifically chose the  LN229 and U251 cell 
lines for further investigation.

In summary, this study presents a promising prognostic 
prediction and precise therapeutic framework for indi-
viduals diagnosed with GBM, along with a potential tar-
get for therapeutic interventions.

Materials and methods
Data collection, preprocessing and normalization
The RNA sequencing (RNA-seq) data of 174 GBM 
patients and 1323 normal tissues were acquired from The 
Cancer Genome Atlas (TCGA), (https://​portal.​gdc.​can-
cer.​gov) [10] and Genotype-Tissue Expression (GTEx), 
(https://​www.​gtexp​ortal. org/ home/) [11] datasets. Then, 
we integrated the expression data from acquired data, 
and executed the normalization to remove batch effects. 
The downloaded data were log2-trans-formed and the 
“sva” package in R software (version 4.2.0) were employed 
to batch normalization the above data [12].

Differentially expressed cuproptosis‑related genes 
identification and analysis
Differentially expressed genes (DEGs)  were 
obtained  from 174 GBM tissues and 1323 normal 
samples  using the "DESeq2" package,  with screening 
conditions of adjusted P < 0.05  and  fold change > 1.2. 
The volcano  plot  and heatmap of DEGs were  gener-
ated  using Xiantao Academic tools (https://​www.​xiant​
aozi.​com/) and OmicStudio tools (https://​www.​omics​
tudio.​cn/​tool), respectively. Protein–protein interac-
tions (PPI) of these DEGs were  investigated using the 
string (https://​string-​db.​org/) website [13].

GSCALite database
Single Nucleotide Variation (SNV) module of GSCALite 
database(http://​bioin​fo.​life.​hust.​edu.​cn/​web/​GSCAL​ite/) 
[14] presents the SNV frequency and variant types of the 
gene set in selected cancer types. They collected SNV 
data from  NCI Genomic Data Commons (https://​gdc.​
cancer.​gov/) [15], SNV percentage of each gene’s cod-
ing region was calculate by: Num of Mutated Sample/
Num of Cancer Sample. The SNV summary, oncoplot 
and survival were all based on this data. On Copy Num-
ber Variation module, the statistics of hetero-zygous and 
homozygous CNV of each cancer type are dis-played 
as pie chat for gene set, and Pearson correlation is per-
formed between gene expression and CNV of each gene 
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in each cancer to help to analyze the gene expression sig-
nifi-cantly affected by CNV.

Gene enrichment analysis of these DEGs
R packages, including “ggplot2”, “org.Hs.eg.db”, “enrich-
plot”, “GOplot” and “clusterProfiler” were employed to 
study the gene enrichment of 18 DEGs with GO and 
KEGG. KEGG database focuses on the analysis of meta-
bolic pathways in living organisms.

Identification of prognostic genes
Data was acquired from the TCGA and GTEx data-
sets, followed by the implementation of  univariate Cox 
regression analysis  using  the "survival" R package.  Sub-
sequently,  LASSO-Cox regression  was employed to 
mitigate gene collinearity and  decrease the number of 
DEGx. Finally,  multivariate Cox regression analysis  was 
conducted.

Establishment and validation of a risk score model 
on account of DEGs
The risk score was assessed on account of standardized 
GBM mRNA expression data in the training set. The 
formula: Risk score = ∑(Coefi × Exp). Coefi indicates the 
coefficient of DEGs in LASSO-Cox regression analysis, 
Exp indicates DEGs expression. Subsequently, the GBM 
patient samples  were categorized  into high and low-
risk groups  using  the median risk score, and  the over-
all survival rate (OS) of these  two groups  was analyzed 
using Kaplan Meier survival analysis.. Finally, the receiver 
operating characteristic (ROC) curves were built to eval-
uate the prognostic performance of this model. Further-
more, we used the GEO cohort to verify the above model.

Establishment of the DEGs nomogram system
We utilized various R packages, namely "RMS," 
"Survival,"  and  "Regplot,"  to  construct a  nomo-
gram.  Each  GBM patient’s  age, gender, 1p/19q code-
letion, IDH status, WHO grade,  and primary therapy 
outcome were  assigned corresponding  points, and 
the cumulative points for each GBM patient were calcu-
lated. Subsequently, we estimated the 1-year, 3-year, and 
5-year survival rates  based on the cumulative  points. 
The obtained  results were graphically represented using 
calibration curves.

Gene expression, localization and survival prognosis 
analysis
UALCAN website (https://​ualcan.​path.​uab.​edu/) [16] 
was utilized to analyze the mRNA expression of FDX1 
based on TCGA database. Meanwhile, Gene Expression 
Omnibus (GEO) (https://​www.​ncbi.​nlm.​nih.​gov/​gds) 
dataset [17] was employed to prove FDX1 expression. 

And cBioPortal (http://​www.​cbiop​ortal.​org/) website 
[18] was employed to analyze the co-located of FDX1 in 
glioma cell line. RNA-seq expression profiles for glioma 
were downloaded from the TCGA. Log-rank test was 
employed to contrast differences in survival between 
these groups. ROC analysis was utilized to compare the 
predictive accuracy of FDX1, while  log-rank tests and 
univariate  Cox proportional hazards regression  were 
employed to determine  P values,  hazard ratio (HR), 
and 95% confidence intervals (CI) for the Kaplan–Meier 
curves.

Metabolic pathway analysis of FDX1 in GBM
The  GBM RNAseq data was  obtained from The Can-
cer Genome Atlas (TCGA), and the genes  associ-
ated with  the  respective  pathway were  collected and 
utilized through the employment of the Gene Set 
Variation Analysis (GSVA)  package. Spearman  cor-
relation was employed to investigate the relationship 
between the genes and pathway scores.

Relationship between FDX1 and tumor immune cell 
infiltration and immunoregulation‑associated genes
The GBM RNAseq data were gained from TCGA, Chi-
nese Glioma Genome Atlas (CGGA) (http://​www.​
cgga.​org.​cn/) [19] and GEO datasets. In order to 
ensure a robust assessment of immune scores, we uti-
lized the  immunedeconv package, which incorporates 
six  state-of-the-art algorithms,  namely  TIMER, xCell, 
MCPcounter, CIBERSORT, EPIC, and quanTIseq.

The TISDB (http://​cis.​hku.​hk/​TISIDB/) [20] and GDC 
(https://​gdc.​cancer.​gov/) [21] datasets were employed 
to obtain the TCGA, CGGA and GEO databases on 
GBM. The potential of FDX1  in the  immunotherapy of 
GBM was assessed through an examination of the cor-
relation between FDX1 and  genes related to  anti-gene 
presentation, immune inhibition, immune stimulation, 
chemokine production, and chemokine receptor expres-
sion. The coordinate axis represents various datasets and 
genes, while the colors  indicate the strength of the rela-
tionship between FDX1 and the respective genes.

Drug sensitivity analysis
The sensitive score of each molecular compound was 
assessed using R package “pRRophetic”, and PubChem 
(https:// pubchem.ncbi.nlm.nih.gov/) website [22] was 
used to visualize the 3D structure of different drugs.

Cell culture and transfection
The  U251 and LN229  human GBM cell lines  were 
acquired from Shanghai Zhong Qiao Xin Zhou Bio-
technology Co., Ltd and maintained in DMEM medium 
(Biosharp)  supplemented  with 10% fetal bovine serum 
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(ExCell Bio) at  a temperature of 37℃ and a CO2 con-
centration of 5%. The small interfering RNAs (siRNAs) 
was purchased from RiboBio, and it included three dif-
ferent FDX1 siRNA sequences (FDX1-1: GGA​CAA​TAT​
GAC​TGT​TCG​A, FDX1-2: GTC​ACC​TCA​TCT​TTG​AAG​
A, FDX1-3: GGT​GAA​ACA​TTA​ACA​ACC​A). The lipo-
fectamine® 3000 was purchased from Thermo Fisher 
Scientific.

Western blot
The cells were detached  using  cell scrapers and subse-
quently incubated on ice for a duration of thirty minutes. 
Following this, the cell lysates were subjected to boiling 
at a temperature of 100℃ for a period of 5–10 min. The 
total protein content was then separated by electropho-
resis using SDS-PAGE and subsequently transferred onto 
PVDF membranes. The blots were cut prior to hybridi-
sation with antibodies during blotting. Afterwards, it 
was incubated overnight at 4℃ with primary antibod-
ies against FDX1 (Cat. no. #ab108257; 1:1000; abcam), 
β-tubulin (Cat. no. #M20005, 1:5000; abmart), Vimentin 
(Cat. no. T55134, 1:1000; abmart), E-cadherin (Cat. no. 
TA0131, 1:1000; abmart), N-cadherin (Cat. no. T55015; 
1:1000; abmart). The PVDF membrane was washed 
3times, each time 10 min with TBST-Tween 20, and then 
incubated for 1–2 h with goat anti-rabbit lgG secondary 
antibody and goat anti-mouse lgG secondary antibody 
(Affinity HRP; 1:5000). Finally, washed the PVDF mem-
brane and visualized with chemiluminescence (Cat. no. 
34577; Thermo Scientific™).

Colony formation assay
LN229 and U251 cells were digested with trypsin 24 h 
after transfection, and 500 cells were added into the new 
six-well plate, respectively. After a duration of 14  days, 
paraformaldehyde was employed for cell fixation, and 
crystal violet was utilized for cell staining. Subse-
quently,  the six-well plates were gently rinsed with PBS, 
and the cells were enumerated.

Wound healing assay
24–48 h after transfection of cells in six-well plates, 
scratches were produced in the middle of each six-
well plate using a 200μl pipette tip, cleaned with PBS, 
observed and photographed with an inverted micro-
scope. It was then placed in the incubator for nor-
mal cultivation and taken out again 48 h later on the 
inverted microscope for photography. Migration dis-
tance = Scratch width observed at (0h – 48h).

Transwell assay
With regard to migration assay, 20,000 cells were blended 
into serum-free medium and put into the upper layer 

of the well, and medium including 10%FBS was put 
into the lower layer of the well. Subsequently,  the  cells 
were incubated for a duration of 48 h. In the case of the 
invasion assay, following the aforementioned procedures, 
matrigel was applied to the upper chamber prior to pro-
ceeding with the subsequent steps. Following a 48-h 
incubation period, the cells were fixed, stained, and sub-
sequently photographed for analytical purposes.

Statistical analysis
GraphPad Prism 9, SPSS 26.0 and R software (version 
4.2.0) were employed to data analysis and visualiza-
tion. Normally distributed data were expressed as the 
mean ± standard deviation (SD). Kaplan–Meier analy-
sis was employed to assess the GBM patients’ survival 
time. Student’s t test was employed for comparing FDX1 
expression between two groups. P < 0.05 was viewed 
as statistically significant. *: P < 0.05, **: P < 0.01, ***: 
P < 0.001.

Results
Identification of differentially expressed 
cuproptosis‑related genes between the tumor and normal 
tissues
The flow chart designed in this paper is revealed in 
Fig.  1. The RNA-seq data of 174 GBM patients were 
acquired from TCGA and 1323 normal samples were 
obtained GTEx database. A total of  18 differentially 
expressed  genes (DEGs) related to cuproptosis  were 
identified  based  on  the cutoff criteria of |log2 (fold 
change) |> 1.2 and false discovery rate < 0.05 using  the 
"DESeq2" package [4, 23–25]. In GBM patients, we found 
that 12 cuproptosis-related genes were high expressed, 
while 6 cuproptosis-related genes were downregu-
lated from the heatmap (Fig.  2A). Further examination 
through the use of a volcano plot (Fig.  2B) and boxplot 
(Fig.  2C)  demonstrated that CDKN2A, FDX1, LIPT1, 
SLC31A1, DLST, NFE2L2,  and ATP7A  displayed  sig-
nificant  upregulation, whereas GLS, PDHA1,  and 
ATP7B exhibited marked downregulation in GBM.

The protein–protein interaction network in Fig.  2D 
shows the interaction of these cuproptosis-related 
genes. A summary analysis of simple nucleotide vari-
ations (SNV) in 28 GBM patients using GSCALite 
database showed that 26 (92.86%) patients had muta-
tions in DEGs. Among these  DEGs,  NLRP3, ATP7B, 
MTF1, ATP7A, CDKN2A, GLS, and PDHA1 displayed 
a mutation frequency  exceeding 10%, while  DLAT, 
DLST, and DLD exhibited a mutation frequency below 
10% (as shown in Fig.  2E). Subsequently, an examina-
tion  of copy number variations (CNV)  yielded a com-
prehensive analysis indicating widespread CNV loss 
in  CDKN2A, ATP7B, DLST, PDHA1, ATP7A, DLAT, 
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FDX1, GCSH, and LIAS, with CDKN2A exhibiting the 
most pronounced loss. reveals the interaction of these 
cuproptosis-related genes.Conversely,  DLD, NLRP3, 
MTF1, DBT, SLC31A1,  and PDHB  displayed broad 
amplification,  particularly DLD (Fig. S1).  Neverthe-
less, the observed  CNV alterations  do  not  align  con-
sistently with the mRNA expression patterns observed 
in GBM and normal samples. This suggests that not 
only CNVs  impacting  the  expression  of differentially 
expressed genes (DEGs), but also  other factors  such 
as  single nucleotide variations (SNV)  and DNA 

methylation,  may  exert  influence  on  the expression of 
DEGs.

Functional enrichment analysis
Functional enrichment analysis was performed to better 
comprehend the biology functions of DEGs in GBM. The 
consequences of GO enrichment displayed that these 
DEGs were markedly correlated with the adjustment of 
mitochondrial matrix, cellular copper ion homeosta-
sis and transition metal ion transmembrane transporter 
activity (Fig. S2A). Furthermore, the KEGG analysis 

Fig. 1  Workflow of the present study
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Fig. 2  DEGs between GBM and normal samples. A Heatmap of DEGs. B Volcano plot showed cuproptosis-related genes.  A and B: Red: high 
expression, blue: low expression) C Boxplots of DEGs. Red: GBM samples, blue: normal samples. D The PPI network revealed the interaction of DEGs. 
E Mutation of DEGs in GBM patients.*: P < 0.05, **: P < 0.01, ***: P < 0.001
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revealed a strong correlation between the differentially 
expressed genes (DEGs) and  the regulation of platinum 
drug resistance, central carbon metabolism in tumors, 
citrate cycle (TCA cycle), mineral absorption, and carbon 
metabolism (Fig. S2B). This observation implies a signifi-
cant association between these DEGs and the regulation 
of cellular metabolism, biological functions, tumor regu-
lation, and therapy.

Establishment and validation of a prognostic model 
on account of DEGs between the sample subgroups
The study utilized univariate Cox regression analysis  to 
identify nine cuproptosis-related genes that exhibited sta-
tistical significance. Among these genes, six were identi-
fied as  potential risk  factors (FDX1, LIPT1, SLC31A1, 
DLST, NFE2L2, and ATP7A), while three were identified 
as  potential protective  factors (CDKN2A, PDHA1,  and 
ATP7B)  (Fig.  3A).  Subsequently,  LASSO regression  was 
employed to further refine the selection of predictive 
genes, leading to the development of a prognostic model 
for cuproptosis  (Fig. 3B-C). Finally, we employed multi-
variate Cox regression analysis to identify four genes cor-
related with cuproptosis, including 3 potential risk genes 

(FDX1, LIPT1 and SLC31A1) and 1 potential protective 
gene (ATP7B) (Fig. 3D).

A prognostic risk model was established using LASSO 
Cox regression analysis  to identify  high  and low risk 
genes, namely  FDX1, SLC31A1,  LIPT1, and ATP7B. 
The risk score formula  was derived as follows: risk 
score = 0.374273 × FDX1 expression + 0.211523 × LIPT1 
expression + 0.671719 × SLC31A1 expression + (- 
0.768527) × ATP7B expression.  To investigate the pre-
dictive ability of  this cuproptosis-related model  in 
GBM patients,  a total of  652 patients  were selected 
based  on  the  median risk score  threshold  and 
divided  into high risk (n = 241) and low risk (n = 411) 
groups. According to the results (Fig.  4A),  the low-
risk group had  a  lower mortality rate  and  lived 
longer. FDX1, SLC31A1 and LIPT1 were significantly 
highly  expressed in  the  high risk group, while ATP7B 
expression was  reversed (Fig.  4B).  A  Kaplan Meier 
curve  revealed that  patients  at  low risk had a better 
prognosis, while  those at  high risk  had a worse prog-
nosis  (Fig.  4C). Subsequently, we performed a time-
dependent ROC analysis, which revealed that the 
prognostic accuracy of OS was 0.840, 0.837 and 0.799 

Fig. 3  Establishment of a risk prognostic model on account of DEGs. A Univariate Cox regression analysis based on DEGs. B LASSO regression 
of the OS-related genes. C Cross-validation of adjustment parameter selection in LASSO regression. D Multivariate Cox regression analysis
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at 1- year, 3- year and 5- year (Fig.  4D). These find-
ings suggest that the cuproptosis-related model we 
developed has the potential to serve as a valuable tool 
for  predicting  the prognosis of  patients  with glioblas-
toma multiforme (GBM), exhibiting a commendable 
level of accuracy.

In order to validate the reliability of our prog-
nostic model for cuproptosis, we obtained glioma 
patient  data  from the GSE149921 database and  utilized 
the  aforementioned formula to evaluate the risk score. 
Based on the median risk score, glioma patients were cat-
egorized into high-risk and low-risk groups. The findings 
of our analysis were consistent with the results, as FDX1, 
SLC31A1, and LIPT1  exhibited elevated expression lev-
els  in the high-risk group, whereas  ATP7B  displayed a 
reversed pattern. Furthermore,  patients in the low-risk 
group  demonstrated prolonged  survival  duration. Time 
dependent ROC analysis revealed that the prognostic 
accuracy of OS was 0.811, 0.805 and 0.776 at 1- year, 3- 
year and 5- year (Fig. S3). The above results show that 
the model has high accuracy in predicting GBM patients’ 
prognosis.

Establishment of nomogram and calibration curves 
to predict survival
For purpose of increasing the clinical applicability of the 
model, we produced a nomogram including age, sex, pri-
mary treatment outcome, 1p/19q co-deletion, and WHO 
grade (Fig. 5A). These predictors were conducted to pre-
dict the 1-, 3- and 5-year survival rate of GBM patients. 
For example, a male GBM patient would receive 32 
points for being male, 75 points for being over 60 years 
old, 45 points for having a stable disease (SD) as the pri-
mary therapy outcome, 13 points for not having a 1p/19q 
co-deletion, 35  points  for having an IDH status of wild 
type (WT), and 88 points for having a WHO grade of 
G4. The cumulative score of 288 indicates that the 1-year 
survival rate  for GBM patients  is 65%, while the 3- and 
5-year survival rates are  below 20%. Furthermore, the 
findings reveal that the primary therapy outcome has the 
greatest impact on both the overall score and the survival 
of patients  in the multiple regression models. Addition-
ally, the calibration curves we developed provide further 
evidence that the nomogram accurately aligns with  the 
survival rate of GBM patients  (Fig.  5B-D).  Moreover, 

Fig. 4  Establishment of risk model in TCGA dateset. A Patients were evenly divided into two groups on account of a threshold for the median risk 
score. Red: high-risk groups, yellow: low-risk groups. B Heatmap revealed four DEGs expression. Purple: low-risk groups, green: high-risk groups. 
C The Kaplan–Meier curve reveals the OS of patients in the high and low risk groups. D The ROC curve reveals the predictive efficiency of the risk 
score
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our model  exhibits a higher AUC value (AUC = 0.837) 
(Fig.  5E).  Overall, the nomogram we  have  con-
structed demonstrates accurate prediction of the overall 
survival of GBM patients.

Ferredoxin 1 expression, localization and prognostic 
significance in GBM
To further analyze the function and role of potentially 
risk genes in GBM, we selected FDX1 as the research 
object. TCGA database was used to compare FDX1 
expression between GBM patients and normal samples. 
The result displayed that FDX1 expression was upregu-
lated in GBM samples (Fig. 6A). For the purpose of prov-
ing the above results, we selected the E_MTAB_3892, 
GSE108474, GSE15824 and GSE16011 datasets for fur-
ther analysis, and the consequences displayed that FDX1 
was highly expressed in GBM (Fig.  6B-E). Additionally, 
a western blot analysis was conducted on five glioblas-
toma multiforme (GBM) cell lines (LN229, T98G, U118, 

U251, and U87) and one normal astrocyte (HA1800). The 
findings demonstrated a significant elevation in  FDX1 
protein expression  within the five  GBM cell lines  com-
pared  to  the normal control group (Fig.  6F). In  con-
clusion, the results indicate an upregulation of  FDX1 
expression in GBM.

Subsequently, we employed the "Cell Atlas" segment of 
The Human Protein Atlas website to evaluate the locali-
zation of FDX1 in  the  GBM cell line (U251)  via  immu-
nofluorescence analysis. The  findings revealed that 
FDX1  exhibited  co-localization  with microtubules and 
endoplasmic reticulum (ER) markers in U251, with no 
discernible presence in the nucleus (Fig.  6G-M). These 
outcomes suggest a potential association between FDX1 
and various cellular processes such as cell division, orga-
nelle transport, as well as carbohydrate and lipid synthe-
sis and metabolism in GBM cells [26, 27].

Following this, we conducted a  survival analy-
sis of FDX1 in glioma.  Utilizing  TCGA data, 

Fig. 5  Nomogram to predict survival probability of GBM patients. A Nomogram combining risk score with WHO grade, IDH status, 1p/19q 
codeletion, gender, age and primary therapy outcome. B-D Calibration plots for predicting 1-, 3-, and 5-year OS of GBM patients. E The combining 
of 1-, 3-, and 5-year OS of GBM patients. F The ROC curves reveal the survival using the risk score
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we  investigated the association  between FDX1 expres-
sion and both survival time and survival status. The find-
ings indicated that glioma patients with  elevated  FDX1 
expression  exhibited a higher mortality rate, while 
those  with lower  FDX1 expression  demonstrated a 

higher survival  rate  (Fig. 6N). Additionally, Fig. 6O pre-
sented the Kaplan–Meier  survival curve  for  FDX1 
in TCGA,  revealing a significantly lower over-
all survival  rate  in  the high expression group  com-
pared  to  the  low expression group..Finally, ROC curve 

Fig. 6  Expression, localization and prognostic value of FDX1 in GBM. A FDX1 expression in GBM on account of TCGA database. B-E FDX1 expression 
in GBM based on GEO and E_MTAB databases. F The protein expression of FDX1 in different GBM cell lines. G-M The localization of FDX1 in U251 cell 
line. N Survival time of GBM patients in high and low FDX1 expression groups. O The KM survival curve shows the OS of different groups. P The ROC 
curve was used to show the AUC scores of FDX1 at 1-, 3-, and 5-years
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was used, and find that the AUC values of FDX1 at 1- year, 
3- year and 5- year are 0.721, 0.756 and 0.746. It is worth 
noting that a higher AUC value indicates a stronger pre-
dictive capacity  of FDX1 (Fig.  6P).  Consequently, FDX1 
exhibits a significant potential for prognostic prediction 
in glioma patients, with higher expressionlevels correlat-
ing with poorer patient outcomes.

GO, KEGG analysis and GSEA of FDX1 gene co‑expression 
network in GBM
Go and KEGG pathways co-expression analysis of FDX1-
related genes in GBM RNA-seq data with 2277 samples 
from 22 datasets were performed using the enrichment 
analysis module of “BEST” (https://​rooki​eutop​ia.​com/​
app_​direct/​BEST/). The top 500 related genes were 
analyzed, q-value cutoff: 0.05, GO-plot width: 0.4, 
KEGG-plot width: 0.4. The consequences of GO analy-
sis displayed that these DEGs were relevant to various 
metabolism pathways, environmental information pro-
cessing and genetic information processing (Fig.  7A). 
The  KEGG analysis  revealed that DEGs  were  associ-
ated with various molecular functions, including protein 
binding and catalytic activity. Additionally, these DEGs 
were found to be related to specific cellular components, 
such as membrane-bounded organelles, intracellular ana-
tomical structures, and intracellular membrane-bounded 
organelles (Fig. 7B).

In order to conduct a more comprehensive examina-
tion of the potential roles of FDX1, gene set enrichment 
analysis (GSEA) was conducted on the DEGs. The results 
revealed significant associations between FDX1 and 
various  immune-related pathways as well as  meta-
bolic  responses  in GBM, such as interferon gamma 
response, interferon alpha response, allograft rejec-
tion, and oxidative phosphorylation. Furthermore, FDX1 
was found to play a role in the regulation of several bio-
logical functions, including epithelial mesenchymal 
transition, apoptosis, G2M checkpoint, and DNA repair 
(Fig. 7C).

Metabolic pathway analysis of FDX1 in GBM
Based  on  the aforementioned  enrichment analysis,  it 
was observed that FDX1 exhibited significant  rele-
vance to numerous metabolic pathways. To establish the 
association between FDX1 and these pathways, we com-
piled the set of FDX1-related genes  present in  metab-
olism-related pathways  and  evaluated the enrichment 
score of each sample  using the ssGSEA algorithm. The 
results displayed that FDX1 expression was positively 
correlation with multiple metabolic pathways, such as 
amino sugar and nucleotide sugar metabolism, pro-
panoate metabolism, lipoic acid metabolism, riboflavin 
metabolism, nicotinate and nicotinamide metabolism 

and phenylalanine metabolism, while negatively associ-
ated with inositol phosphate metabolism and taurine 
and hypotaurine metabolism (Fig.  8). Of course, high 
FDX1 expression is also involved in many other meta-
bolic and biosynthetic processes, such as biosynthesis of 
unsaturated fatty acids and cellular response to hypoxia 
(Figure S4). These findings strongly indicate that height-
ened  FDX1 expression in  GBM exerts regulatory influ-
ence on tumor progression through modulation of 
diverse  metabolic processes. Consequently,  this implies 
the potential for future therapeutic interventions in GBM 
by targeting metabolic pathways.

Exploration of tumor microenvironment, immune cell 
infiltration and immunoregulation‑related genes
Since immune cell infiltration are significantly relevant 
to the occurrence and development of tumors, the pro-
portion of immune cells and stromal cells in the TME 
has a significant effect on the prognosis, and is of great 
value for the diagnosis and prognosis assessment of the 
tumor. Based on TCGA, CGGA and 15 GEO datasets, 
we used multiple immune infiltration score algorithms 
to assess the immune score and matrix score, which 
mainly included three scores, including stromal, immune 
and estimate scores. The difference analysis showed that 
the distribution of immune cell infiltration between two 
groups. CIBERSORT algorithms displayed that FDX1 
expression was observably relevant to Dendritic cells 
activated, T cells CD4 memory activated, Neutrophils, 
Macrophages M1 and Macrophages M2, while negatively 
correlation with B cells memory, T cells CD4 naive and 
Mast cells activated. In addition, quanTIseq algorithms 
significantly revealed that FDX1 expression was relevant 
to Macrophages cells, Tgd cells, Monocytes, CD4 + mem-
ory T cells and Smooth muscle, while negatively related 
to Neurons, Eosinophils, CD4 + Tcm, Tregs, NKT, Plate-
lets, Megakaryocytes, Basophils and CD8 + naïve T cells. 
Other algorithms like EPIC, ESTIMATE, MCPcoun-
ter, TIMER and xCELL were also employed to compare 
the relationship between FDX1 expression and immune 
cells (Fig.  9A). The aforementioned studies provide evi-
dence supporting the notion that the expression of FDX1 
can exert an influence on the immune activity within the 
tumor microenvironment (TME) in GBM.

The correlations between immune checkpoint 
genes,  anti-gene presentation related genes, immune 
inhibited genes, immune stimulated genes, chemokine 
and chemokine receptor genes were  evaluated in light 
of their significance for tumor immunotherapy. The 
findings revealed a positive association between FDX1 
expression in GBM and various  immune stimulated 
genes,  including  CD48, CXCR4, TNFSF4, TNFRSF14, 
TNFSF13B,  and MICB. Conversely, FDX1 expression 

https://rookieutopia.com/app_direct/BEST/
https://rookieutopia.com/app_direct/BEST/
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showed a  negativecorrelation with  LTA, TNFRSF13B, 
TMIGD2, KLRC1, TNFSF25, CD40LG,  among oth-
ers. As for immune inhibited genes, FDX1 expres-
sion was positively relevant to TGFBR1, PDCD1LG2, 
IDO1 and IL10RB, while negatively with KIR2DL1, 
KIR2DL3, PDCD1 and ADORA2A. For chemokine and 
chemokine receptor genes, FDX1 expression was posi-
tively related to CCR2, CCR5, CCR10, CXCL10, CCL2, 
CXCL9, CXCL11, CCL8 and CXCL6, while negatively 
related to CXCR1, CXCR3, CCR3, CCR6, CCL21, 

CXCL17, CCL28 and CCL14. Finally, we explored the 
relevance between FDX1 expression and anti-gene 
presentation related genes, the results revealed that 
almost all of the genes were positively associated with 
FDX1 expression (Fig.  9B). Consequently, our find-
ings suggest that FDX1 may serve as a cancer immune 
checkpoint in glioblastoma. Moreover, these results 
provide a foundation for further research  on  the anti-
tumor activity and immune checkpoint effects of FDX1 
in GBM.

Fig. 7  Go and KEGG pathways co-expression analysis and GSEA. A Go and B KEGG pathways co-expression of 500 FDX1-related genes in GBM 
RNA-seq data were analyzed in 2277 samples from 22 datasets. C GSEA analysis is used to further analyze the potential capabilities of FDX1
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Exploring the therapeutic response in the high and low risk 
groups
In order to  predict  the impact  of FDX1 expression on 
chemotherapy, we  utilized the pRRophetic algorithm 
to  evaluate the response to  chemotherapy  based  on  the 
half-maximal inhibitory concentration (IC50) 
for patients with glioblastoma multiforme (GBM) in the 
GDSC database. Our analysis revealed that there were 
15 drugs that exhibited a  sensitive  response  to high 
FDX1 expression and 15 drugs that demonstrated resist-
ance  to high FDX1 expression  (Fig.  10A).  Subsequently, 
we identified four drugs from the CGGA database that 
exhibited  the highest correlation  within each of  these 
two groups, based  on a  comprehensive analysis of the 
TCGA, CGGA, and GEO databases.High risk group was 
most resistant to ACY-1215 (P = 3.7e-07, Fig. 10B), Pan-
obinostat (P = 7.2e-09, Fig.  10C), SB505124 (P = 5.6e-07, 
Fig. 10D), Trichostatin A (P = 1.6e-07, Fig. 10E). but was 
most sensitive to Temozolomide (P = 2.1e-04, Fig.  10F), 
PLX-4720 (P = 3.1e-08, Fig.  10G), Dactolisib (P < 0e -10, 
Fig. 10H) and Cisplatin (P < 0e -10, Fig. 10I). Finally, the 

above molecular compounds were visualized through 
PubChem website. Given these findings, we found that 
some drugs, such as temozolomide [28], are already first-
line drugs for GBM patients, while some are still in clini-
cal trials, so our analysis provides potential molecular 
chemotherapy agents for GBM patients.

FDX1 participate in regulating GBM cell proliferation, 
migration and invasion
In order to investigate the role of FDX1 in GBM, we 
opted to conduct additional experiments using the 
LN229 and U251 cell lines. Initially, transfection 
with  siRNA-FDX1 was  performed, followed  by the uti-
lization of western blot analysis to assess the efficacy of 
knockdown (Fig. 11A-B). Since FDX1 is involved in reg-
ulating cell proliferation in many other tumors [29], we 
knocked down the FDX1 expression of LN229 and U251 
cells, and then placed the cells in 6-well plates for colony 
formation experiment, and observed the cell prolifera-
tion in different groups 14 days later. The findings dem-
onstrated a significant decrease in cell proliferation in 

Fig. 8  Metabolic pathway analysis of FDX1 in GBM. By collecting FDX1-related genes in metabolism-related pathways and calculating 
the enrichment score of each sample on each pathway on account of ssGSEA algorithm, the correlation between FDX1 and these pathways 
was obtained. A-J Metabolic pathways that are positively correlated with FDX1. K-L Metabolic pathways that are negatively correlated with FDX1
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Fig. 9  The relationship between FDX1 expression and immune cell infiltration and immunoregulation-associated genes. A The relationship of FDX1 
and immune cell infiltration levels based on 7 different algorithms. B The correlation between FDX1 expression and immune-activating genes, 
immunosuppression-associated genes, chemokine receptors and chemokines based on TCGA, CGGA and GEO datasets

Fig. 10  The screened drugs for GBM treatment. A The top 15 drugs that high FDX1 expression indicates sensitivity and resistance. B-E IC 50 value 
of 4 representative drugs that indicate resistance. F-I IC 50 value of 4 representative drugs that indicate sensitivity
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the FDX1 knockdown group, as evidenced by the results 
presented in Fig.  11C-D.  Moreover, the wound healing 
and Transwell assays revealed a notable reduction in the 
migration and invasion  capabilities of LN229 and U251 
cells upon FDX1 knockdown, as depicted in Fig. 11D-J.

Based on  previous research  findings indicating a sig-
nificant correlation between FDX1 expression and epi-
thelial-mesenchymal transition (EMT), as well as the 
ability of FDX1 to promote invasion and migration of 
GBM cells,  this study employed  western blot experi-
ments  to investigate the impact of FDX1 knockdown 
on  the expressions of E-cadherin, N-cadherin,  and 
Vimentin. The obtained results demonstrated an increase 
in E-cadherin expression, while N-cadherin and Vimen-
tin  expressions  decreased (Fig.  11K-L). In conclusion,  it 
can be inferred that FDX1 has the capability to induce 
the proliferation, migration,  and invasion of GBM cell 

lines. Moreover, it is plausible that  FDX1 may  facilitate 
the invasion and migration of GBM cells by activating the 
EMT pathway.

Discussion
Glioblastoma, a primary brain tumor charac-
terized by  high  malignancy, presents a dismal 
prognosis despite surgical intervention and chemo-radi-
otherapy,  with limited prospects for  survival [30]. The 
growing body of research on programmed cell death has 
revealed that prognostic models focused on cell death 
can effectively anticipate the onset and progression of 
cancer. Additionally, numerous genes associated with 
cell death have been identified as influential in  the reg-
ulation of tumor  advancement [31, 32]. In March 2022, 
Todd R Golub’s team first discovered that the regulatory 
mechanism of copper accumulation can contribute to 

Fig. 11  The biological function of FDX1 in GBM cell line was explored in vitro. A-B Western blot reveals the knockdown efficiency of two GBM cell 
lines (LN229 and U251). C-D Colony formation assay was performed to explore whether FDX1 can promote cell proliferation. E–F Wound healing 
assay was performed to explore whether FDX1 can promote cell migration. G-J Transwell assays were used to explore whether FDX1 can promote 
cell migration and invasion. K-L Western blot was used to explore whether FDX1 can promote epithelial mesenchymal transformation of GBM 
cells. As for western blot, to hybridize each marker separately, blots were cut based on the molecular weight of the proteins prior to hybridization 
with primary antibodies
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cell death, and they named it “Cuproptosis” [4]. Cuprop-
tosis and cuproptosis-related genes play vital roles in the 
progression of tumors [5]. For instance, High expres-
sion of SLC31A1 is correlated with poor prognosis and 
dysregulated immune cell infiltration in breast cancer 
[33]. Cuproptosis-related FDX1 expression and modi-
fication levels vary in renal carcinoma, which is associ-
ated with tumor cells’ function, immune regulation and 
prognosis [34]. Cuproptosis-related LIPT1 may facilitate 
the proliferation and invasion of hepatocellular carci-
noma cells, and may be a novel biomarker for hepatocel-
lular carcinoma treatment [25]. Many researchers have 
also built prognostic models on account of cuproptosis-
related genes to predict the survival and prognosis of 
patients with tumors, for instance, colorectal cancer [35], 
breast  cancer [36] and melanoma [37]. Numerous stud-
ies have consistently documented the significant regu-
latory functions of  cuproptosis-related genes  in  GBM. 
For example, aberrantly elevated expression of SLC31A1 
in GBM have been observed, wherein  its heightened 
levels have been found to facilitate the proliferation and 
migration of GBM cells while impeding  their apoptosis. 
[38, 39]. Hence, the objective of this study is to develop a 
prognostic model  encompassing  cuproptosis-related 
genes  to facilitate the  diagnosis  and prediction of  sur-
vival and prognosis  in patients with GBM. Additionally, 
we have specifically chosen the FDX1 gene, known for its 
significant prognostic impact in GBM, for further inves-
tigation. This includes  an  examination of  FDX1 expres-
sion,  its  biological functions, alterations in  the  tumor 
immune microenvironment, and its correlation with drug 
sensitivity in GBM.

We established a prognostic risk model for GBM 
using 18 (PDHA1, GLS, ATP7B, PDHB, LIAS, GCSH, 
SLC31A1, FDX1, ATP7A, NLRP3, DBT, MTF1, DLAT, 
DLD, DLST, NFE2L2, LIPT1 and CDKN2A) cupropto-
sis-related genes by Cox and Lasso regression analysis. 
As mentioned above, FDX1 can mediate lipid acylation 
of proteins to regulate cuproptosis [4], researches have 
discovered that FDX1 is also relevant to the regula-
tion of multiple tumors, such as FDX1 can promote the 
cell viability of bladder cancer and prostate cancer [40]. 
The genes  LIPT1, PDHA1,  and PDHB  are responsible 
for  encoding  the lipoic acid pathway, which  has been 
found to have significant implications in tumor progres-
sion. Notably, heightened expression of LIPT1 in hepa-
tocellular carcinoma cells has been observed to promote 
tumor cell  proliferation, invasion,  and migration, thus 
highlighting its potential as a viable  therapeutic target 
[25]. Thioctyl has the ability to target DLAT, PDHA1, and 
PDHB, which in turn can modulate tumor progression by 
influencing diverse metabolic pathways. Notably, PDHA1 
serves as a constituent of the pyruvate dehydrogenase 

complex and plays a pivotal role in pyruvate metabolism. 
Suppression of PDHA1 expression leads to a reduction in 
pyruvate dehydrogenase complex activity, consequently 
facilitating tumor glycolysis and promoting gastric can-
cer growth. Conversely, overexpression of  PDHA1 and 
MPC1,  along with  PG-α,  can  counteract  the Warburg 
effect and stimulate the proliferation of bile duct cancer 
cells [41]. Protein fatty acylation, a well-preserved post-
translational modification of lysine, has been observed on 
four enzymes,  namely  DBT, GCSH, DLST, and DLAT. 
Additionally, it has been discovered that the suppression 
of  FDX1 or the aforementioned  four genes can  confer 
cellular protection against copper toxicity. These signifi-
cant findings have  further stimulated investigations into 
the regulatory role of FDX1 in  protein fatty acylation 
[4]. Copper homeostasis  is primarily regulated by  three 
copper transporters:  SLC31A1, ATP7A,  and ATP7B. 
SLC31A1  facilitates copper intake, while ATP7A and 
ATP7B are responsible for  copper  transfer. Disruption 
of copper homeostasis can result in cellular demise [4]. 
Notably, increased expression of SLC31A1 in GBM has 
been associated with reduced patient survival, whereas 
downregulation of SLC31A1 can  impede the prolifera-
tion, migration, and invasion of GBM cells, thereby pro-
moting a  tumor-suppressive microenvironment [38]. 
Given the significant involvement of FDX1 in cupropto-
sis, we have subsequently chosen to conduct a more com-
prehensive investigation on FDX1.

Previous  research has demonstrated a significant 
correlation between cuproptosis and  metabolic path-
ways in  various types of  cancer. For  instance, Zhang Z 
et  al. conducted  a  non-targeted metabolomics analy-
sis  on  WT-FDX1 lung adenocarcinoma cells and KD-
FDX1 lung adenocarcinoma cells. The findings revealed 
that the knockdown of the FDX1 gene resulted in a signif-
icant increase in fructose 6-phosphate, a key component 
of glucose metabolism. Additionally, there was a nota-
ble  increase  in  acylcarnitine and L-palmitoyl carnitine, 
both of which are associated with fatty acid metabolism. 
Furthermore, changes were observed in  L-cysteine and 
L-glutamine metabolites, which are  involved in amino 
acid metabolism [42]. In addition, Ding L et al. discovered 
that the high FDX1 expression in hepatocellular carci-
noma patients is markedly relevant to metabolic, glyco-
lysis and TCA cycle pathways [43]. In this  study, it was 
observed that elevated FDX1 expression in GBM exhib-
ited a  positive  correlation  with  various metabolic path-
ways including  amino sugar and nucleotide sugar 
metabolism, propanoate metabolism, lipoic acid metabo-
lism, riboflavin metabolism, nicotinate and nicotinamide 
metabolism,  and phenylalanine metabolism. Conversely, 
a negative association was found between FDX1 expres-
sion and inositol phosphate metabolism as well as taurine 
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and hypo-taurine metabolism.  These findings suggest 
that FDX1 plays a significant role in glucose metabolism, 
fatty acid oxidation,  and amino acid metabolism  within 
tumor cells, aligning with previous research conclusions.

Due to the profoundly immunosuppressive  milieu  of 
glioblastoma and  the presence of diverse  therapeutic 
resistance mechanisms,  including pronounced  tumor 
heterogeneity, low mutation burden,  and local-
ized  immune dysfunction,  patients  with glioblastoma 
(GBM) experience restricted efficacy  from immune 
checkpoint inhibitors and vaccine therapy [44]. Con-
sequently, ongoing investigations are exploring com-
bination therapies and novel  therapeutic  approaches 
alongside immune checkpoint therapy and vaccine ther-
apy. More and more studies have found that tumor-asso-
ciated macrophages (TAM) can promote tumor immune 
escape [45, 46], and patients with low T cell infiltration 
are more likely to deteriorate [47]. Our investigation 
has revealed a positive correlation between elevated 
FDX1 expression in glioblastoma multiforme (GBM) 
patients, increased levels  of tumor-associated mac-
rophages, and reduced expression of CD4 + and CD8 + T 
cells, aligning with previous findings.

Moreover, we conducted a screening of numer-
ous  small molecule compounds  exhibiting  high FDX1 
expression, which demonstrated varying levels of  sen-
sitivity  and resistance among glioblastoma multiforme 
(GBM) patients. Notably, GBM patients classified within 
the high-risk group  exhibited pronounced  resistance  to 
ACY-1215, Panobinostat, SB505124, and Trichostatin A, 
while displaying heightened sensitivity to Temozolomide, 
PLX-4720, Dactolisib,  and Cisplatin. Temozolomide, 
being the most commonly employed chemotherapy drug 
for GBM patients, unfortunately encounters drug resist-
ance in over half of the patient population. Consequently, 
there is a growing trend towards combining  temozolo-
mide with immunotherapy or targeted therapy to  inves-
tigate the prognosis of GBM patients [28]. For instance, 
PDIA3P1 promoted the proneural-to-mesenchymal tran-
sition by inhibiting C/EBP-β degradation, thus increased 
the resistance of GBM to temozolomide [48]. High NRF2 
expression makes temozolomide-resistant GBM cells 
sensitive to ferroptosis by up-regulating ABCC1/MRP1 
[49]. These  outcomes suggest  that the  potential drugs 
under consideration may provide novel perspectives for 
the management of GBM patients, particularly those 
exhibiting  high FDX1 expression. Their  combination 
with small molecule drugs could enhance patient survival 
and prognosis, in addition to primary therapy.

Simultaneously, our study has revealed that ele-
vated FDX1 expression in GBM cells exerts a stimu-
latory influence on  cell proliferation, invasion,  and 

migration,  while  GBM cells  facilitate invasion  via  the 
epithelial mesenchymal transition pathway. In  subse-
quent investigations, we intend to delve deeper into 
the underlying mechanism through which FDX1 pro-
motes cancer  in GBM,  as well as explore potential 
therapeutic avenues.

Conclusions
In this study, we constructed and validated a prognos-
tic model and nomogram system based on cuproptosis-
related genes. These genes  have the potential to serve 
as  biomarkers for predicting survival and prognosis 
in  patients  with glioblastoma (GBM). Additionally, we 
focused on investigating  FDX1 as the  primary  subject 
of  our investigation, examining its  expression, prog-
nosis, tumor immune microenvironment, substance 
metabolism pathway, immune cell infiltration, immu-
notherapy and chemotherapy drug sensitivity in GBM. 
Furthermore, we conducted in  vitro experiments 
to confirm its biological function.This study  has the 
potential to generate novel  prognostic prediction  con-
cepts and propose potential therapeutic avenues.
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