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Abstract 

Background  Cystinuria is an autosomal recessive disorder characterized by a cystine transport deficiency in the renal 
tubules due to mutations in two genes: SLC3A1 and SLC7A9. Cystinuria can be classified into three forms based 
on the genotype: type A, due to mutations in the SLC3A1 gene; type B, due to mutations in the SLC7A9 gene; and type 
AB, due to mutations in both genes.

Methods  We report a 12-year-old boy from central China with cystine stones. He was from a non-consanguineous 
family that had no known history of genetic disease. A physical examination showed normal development and neu-
rological behaviors. Whole-exome and Sanger sequencing were used to identify and verify the suspected pathogenic 
variants.

Results  The compound heterozygous variants c.898_905del (p.Arg301AlafsTer6) is located in exon5 
and c.1898_1899insAT (p.Asp634LeufsTer46) is located in exon10 of SLC3A1 (NM_000341.4) were deemed responsi-
ble for type A cystinuria family. The variant c.898_905del was reported in a Japanese patient in 2000, and the variant 
c.1898_1899insAT is novel.

Conclusion  A novel pathogenic heterozygous variant pair of the SLC3A1 gene was identified in a Chinese boy 
with type A cystinuria, enriching the mutational spectrum of the SLC3A1 gene. We attempted to find a pattern 
for the association between the genotype of SLC3A1 variants and the manifestations of cystinuria in patients with dif-
ferent onset ages. Our findings have important implications for genetic counseling and the early clinical diagnosis 
of cystinuria.
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Introduction
Cystinuria (OMIM 220100) is a congenital amino acid 
metabolic disorder that can lead to defective luminal 
transport of dibasic amino acids (cystine, ornithine, 
lysine, and arginine), and the defective reabsorption of 
cystine can lead to dramatically increased cysteine stone 
formation in the kidneys and other organs [8, 23, 27]. 
Cystine is a sulfur-containing homodimeric amino acid, 
which is composed of two cysteine molecules connected 
by disulfide bonds. Under physiological conditions, cys-
tine is filtered freely by the glomerulus and reabsorbed by 
the proximal renal tubules, and its transport mechanism 
is not completely clear [5]. The transport proteins rBAT 
(encoded by SLC3A1) and b0, + AT (encoded by SLC7A9) 
participate in high-affinity transport of cystine and diba-
sic amino acids in kidney and intestine by forming a het-
erodimeric transport network connected by a covalent 
disulfide bond [3,  4, 10, 19, 21, 31]. Defects in transport 
protein cause impaired reabsorption of cysteine, which 
results in hyperexcretion of cystine in the urine [26], 
due to the low solubility of cystine in normal urine pH, 
patients tend to form cystine stones.

Cystinuria can be caused by mutations in the SLC3A1 
and/or SLC7A9 gene [8, 14]. The SLC3A1 gene is located 
on chromosome 2p16.3–21, and the SLC7A9 gene is 
located on chromosome 19q13.11. In 2002, the Inter-
national Cystinuria Consortium classified cystinu-
ria based on mutations in different genes into type A 
(SLC3A1 mutations), type B (SLC7A9 mutations) and 
type AB (both the SLC3A1 and SLC7A9 mutations) [  8, 
13,  18,  27,  28]. A classification based on urinary amino 
acid excretion identified type 1 (normal cysteine excre-
tion), type non-1 (moderate and high cysteine excre-
tion), mixed, and unidentified cystinuria [14]. However, 
the correlation between the genotype and phenotype of 
cystinuria remains unclear. Cystinuria caused by SLC3A1 
mutations is usually an autosomal recessive disease and 
SLC3A1 heterozygotes have no apparent phenotype, but 
cystinuria caused by SLC7A9 mutations is usually auto-
some dominant inheritance with 86% of SLC7A9 het-
erozygotes having abnormal urinary dibasic amino acid 
levels and some of them will develop into Cystine stones 
[28]. There is no difference between patients with the 
type A (biallelic SLC3A1 mutations) and type B (biallelic 
SLC7A9 mutations) in a variety of clinical parameters. 
However, carriers with a single heterozygous mutation 
also have different disease severity levels and cannot 
be distinguished from patients with biallelic SLC3A1/
SLC7A9 mutations [7, 12, 23]. The complex genetic pat-
tern and incidence of clinical forms of cystinuria differ 
across populations. The complex genetic pattern and 
incidence of clinical forms of cystinuria differ across 
populations. The frequency of cystinuria is approximately 

as 0.000143 in neonates, 0.0004 among Libyan Jews, 
0.0000667 in Americans, and 0.000001 in Swedes [30]; in 
Chinese nephrolithiasis patients, the frequency of cystine 
stones is 0.00005 [27, 32]. However, the exact frequency 
of cystinuria carriers in different populations remains 
unclear because there are limited records of the preva-
lence of this disease in different populations [8].

In 1994, pathogenic variants of the SLC3A1 gene 
were identified as leading to cystinuria [3]. Currently, 
the Human Gene Mutation Database (HGMD® Profes-
sional 2022, http://​www.​hgmd.​cf.​ac.​uk/​ac/​index.​php, 
accessed December 4, 2022) contains nearly 260 patho-
genic variants of SLC3A1 reported from different popu-
lations. Almost 95% of biallelic SLC3A1 mutations lead 
to cystine stone formation at some age, and the recur-
rence rate of stones and related metabolic diseases is as 
high as 60% [13]. Therefore, it is challenging to predict 
the phenotypes of individual cystinuria patients from 
different countries due to population-based variability 
[23, 25, 29, 30].

This study identified compound heterozygous variants 
of the SLC3A1 gene (c.898_905del (p.Arg301AlafsTer6) 
and c.1898_1899insAT (p.Asp634LeufsTer46)) in a 
12-year-old Chinese boy with kidney stones. We also 
recorded the patient’s clinical characteristics and treat-
ments to enhance our understanding of the link between 
the SLC3A1 genotype and the manifestations of cystinu-
ria in the Chinese population.

Materials and methods
Study subjects
A 12-year-old Chinese boy was admitted for paroxys-
mal pain in the left lumbar region with no apparent 
cause. He was born in Pingdingshan, Henan, China, to 
a non-consanguineous family with no family history 
of genetic disease. He underwent a physical examina-
tion, liver and kidney function tests, and plain abdom-
inal X-ray imaging of the kidney, ureter, and bladder 
(KUB). A physical examination showed a boy with 
normal development and neurological behaviors; his 
weight was 55  kg, height 155  cm, body temperature 
36.4℃, and blood pressure 99/54 mmHg. A plain KUB 
x-ray showed stones and hydronephrosis in his left 
kidney (Fig. 1); most stones were relatively small, with 
two bigger ones measuring 0.3 × 0.2 cm and 1 × 0.9 cm 
(Fig.  1). The patient underwent extracorporeal shock 
wave lithotripsy and the smaller stones were passed 
successfully. Infrared spectroscopy indicated that the 
stones were made of cystine (Supplementary Fig.  s1). 
We prescribed potassium citrate and tried to maintain 
the patient’s urinary pH > 7.5, but failed. Six months 
later, residual fragments were found in his left kid-
ney and the stone had grown (Fig.  1E). Therefore, 
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retrograde intrarenal surgery was used to remove the 
stones. In addition to potassium citrate, the patient 
was given tiopronin and sodium bicarbonate, which 
maintained a urinary pH > 7.5. The patient recovered 
and no additional kidney stones were detected. In this 
family, the proband was the only one with cystinuria-
induced nephrolithiasis. His parents and brother were 
healthy, without any kidney abnormalities. After the 
patients’ parents signed the informed consent form, 
peripheral blood was drawn from the proband and his 
parents for genetic testing. His brother refused to be 
involved in the study.

Whole‑exome Sequencing (WES)
Genomic DNA was extracted from peripheral blood with 
a GenMagBio Genomic DNA Purification Kit (Chang-
zhou, China) and fragmented using a Bioruptor® Pico 
(Diagenode, Ougrée, Belgium). We checked its quality 
with an Agilent 2100 Bioanalyzer and 4200 TapeStation 
System (Agilent Technologies, Inc., Santa Clara, CA, 
USA) and recorded the total DNA concentration with a 
NanoDrop™ One Spectrophotometer (Thermo Fisher 
Scientific, Waltham, MA, USA). A VAHTS™ Univer-
sal DNA Library Prep Kit for Illumina V3 (Vazyme Bio-
tech, Nanjing, China) was used to build a DNA library. 

Fig. 1  Radiographic findings in the patient. R: The right side of the body, P: The front of the body. A KUB film. B The red arrow indicates the stones 
in the left kidney (arrow 1); the average CT value of the arrow is 199.63 HU. C The red arrow indicates the stones in the left ureter (arrow 2). 
D Hydronephrosis was seen in the left kidney. E Six months later, residual fragments were found in his left kidney. The average CT value of the arrow 
is 752.25 HU. (The reference CT value for cystine stones is between 200 ~ 1100HU)
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Capture and amplification were conducted with Sure-
Select Human All Exon V7 (Agilent Technologies, Inc.). 
Finally, the HiSeq 4000 system (Illumina, Inc., San Diego, 
CA, USA) was used to sequence the whole exome.

Bioinformatics analysis
Trimmomatic-0.39 [2] was used to remove the sequenc-
ing adaptors and low-quality reads. The Burrow Wheeler 
Aligner (ver. 0.7.17-r1188) was used to align the cleaned 
reads to the human reference genome GRCh37 [16]. 
Genome Analysis Toolkit ver. 4 (GATK4) Haplotype-
Caller was used to call single-nucleotide variants and 
small indels [6]. The variants were annotated by Vcfanno 
[20] based on the 1000 Genomes Project [11], Exome 
Aggregation Consortium (ExAC) [15], and gnomAD 
(v2.1) [17] annotation databases. We prioritized variants 
that occurred in known cystinuria-related genes SLC3A1 
and SLC7A9 depending on the clinical diagnosis and phe-
notype information.

Sanger sequencing
Sanger sequencing of SLC3A1 (NM_000341.4) was 
performed on participating family members to deter-
mine whether the candidate variant co-segregated with 
the phenotype in the family. Two pairs of primers for 
c.898_905del and c.1898_1899insAT (Supplementary 
Table  s3) were designed using NCBI Primer-BLAST 
and synthesized by ShangYa Bio Technology (Shang-
hai, China). The PCR products were purified using PCR 
purification kits (LifeSciences, Hangzhou, China) and 
sequenced on a SeqStudio Genetic Analyzer System 
sequencer (Applied Biosystems, Waltham, MA, USA).

Results
Laboratory findings
The patient’s initial renal and liver functions were normal, 
except for an elevated blood urea nitrogen (BUN) of 7.81 
(normal 3.9–7.1) mmol/L and uric acid (UA) concentra-
tion of 512 (normal 150–440) μmol/L. Due to nephro-
lithiasis, the urine red blood cell count was 201 per μL 
and a bacterial infection was detected (Supplementary 
Table s1). After the lithotripsy and second operation, his 
BUN normalized and the UA concentration decreased 
gradually from 471 to 413 μmol/L (Table 1).

WES revealed two pathogenic variants of the SLC3A1 gene
WES generated 14.66G of original data with a Phred 
quality score of 30 (Q30) of 93.5%, and a mapping rate of 
reads to the human reference genome > 99.9%. The aver-
age sequencing depth was 100 × , with > 98% of the target 
sequence reaching 20 × .

We identified a novel compound heterozygous vari-
ant (c.[898_905del];[1898_1899insAT]) in the SLC3A1 

gene of this Chinese patient (Supplementary Table  s2). 
Both mutations were frameshift variants: one was a 
deletion variant and the other an insertion variant. 
The deletion variant (NM_000341.4, c.898_905del, 
p.Arg301AlafsTer6) came from the mother and results in 
the formation of alanine instead of arginine, generating a 
stop codon after six amino acids. According to the stand-
ards and guidelines for interpreting sequence variants by 
the American College of Medical Genetics and Genomics 
(ACMG) [24], the variant is a frameshift variant leading 
to a null function. The null variant of the SLC3A1 gene 
with an established loss of function is a known disease 
mechanism (PVS1 evidence); this variant has not been 
detected in the healthy population in the 1000 Genomes 
Project, ExAC, and gnomAD databases (PM2_supporting 
evidence). The patient’s phenotype was highly specific for 
the disease caused by SLC3A1 (PP4 evidence). Therefore, 
we classified this variant as pathogenic.

The other mutation (NM_000341.4, c.1898_1899insAT, 
p.Asp634LeufsTer46) was inherited from the father and 
is a two-nucleotide insertion (AT) that generates leucine 
instead of aspartic acid and a stop codon after 46 amino 
acids. This variant is also a frameshift mutation leading 
to a loss of function (PVS1 evidence). The genotype fre-
quency in the 1000 Genomes Project, ExAC, and gno-
mAD databases was 0.000 (PM2_supporting evidence). 
The patient’s phenotype is highly specific for the disease 
caused by SLC3A1 (PP4 evidence). According to the 
ACMG guidelines, this variant (c.1898_1899insAT) was 
classified as pathogenic. Both variants were validated 
by Sanger sequencing of the proband and his parents 
(Fig. 2).

Genotype and phenotype association
Some studies have found no obvious pattern between 
phenotype and genotype in cystinuria, which involves 
at least two genes [9, 18,  23]. Cystinuria caused by 
mutations in SLC3A1 is classified as type A cystinu-
ria, while mutations in SLC7A9 cause type B. Most 
patients with cystinuria carry two mutations (AA, 
BB, or AB) [8]. Mutational analyses revealed biallelic 
SLC3A1 mutations (AA genotype) in our proband. We 
observed that an older age of onset age in patients with 

Table 1  Biochemical features of the patient before and after two 
treatments

Blood tests BUN (mmol/L) Cre (µmol/L) UA (µmol/L)

First time 7.81 80 512

Second time 4.95 47 471

Third time 4.22 49 413

Normal range 3.9–7.1 44–115 90–350
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the AA genotype. The proband in this study was first 
diagnosed with cystine stones at the age of 12  years, 
which is significantly older than the mean reported age 
of 5.59  years for cystinuria urolithiasis onset [1, 29]. 
The two variants carried by the proband were trun-
cating mutations, which usually lead to a more severe 
phenotype. In our study, the BUN (mmol/L), creatinine 
(Cre; μmol/L), and UA (μmol/L) concentrations of the 
proband were all higher than the average values found 
in other study (Table 2) [27].

Discussion
Cystinuria is a genetic disorder with high population 
heterogeneity globally. In a study of 13 Chinese cystinu-
ria patients, Shen et  al. [27] reported an average age at 

the first confirmed stone of 6.8 (range 0.8–16) years. 
Our study updates the clinical and genetic spectrum of 
cystinuria, and we have comprehensively studied the 
genetic mutations in SLC3A1 that occurred in a Chi-
nese family in which only a 12-year-old boy with thpe 
A cystinuria. We identified two heterozygous muta-
tions (c.898_905del and c.1898_1899insAT) in SLC3A1; 
one of which has not been described in other cystinuria 
patients.

As of 2010, 133 mutations have been identified in 
SLC3A1 [4] and the number is continuing to increase, 
but most identified to date are missense mutations [13, 
27]. The deletion we found was in exon 5 and the AT 
insertion was in exon 10. Both variants alter the amino 
acids, leading to premature termination of protein 

Fig. 2  Pedigree and pathogenic variants in a Chinese family with cystinuria. A The family pedigree. The proband was the oldest boy in this family; 
his younger brother was not involved in the study. B Sanger sequencing revealed the SLC3A1 gene mutations c.898_905del, and c.1898_1899insAT
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translation(c.898_905del generating a stop codon after 
6 amino acids and c.1898_1899insAT generating a stop 
codon after 46 amino acids) and disruption of gene func-
tion, and could be important in the rBAT coding protein 
functions, which is thought to be crucial in dibasic amino 
acid transepithelial transporters. The insertion variant 
c.1898_1899insAT identified in our case was reported in 
a Japanese patient in 2000 [9], the same study described 
four other mutations: three missense mutations (L346P, 
I445T, and C673R) and one deletion (1820delT). In a 
cohort of Japanese cystinuria patients, mutations in 
SLC3A1 were found in around 10%, most of which 
were missense mutations [29]. In a study of 13 pediat-
ric patients with cystine stones, Shen et  al. [27] found 
17 missense mutations in SLC3A1 and SLC7A9; more 
than 90% (17/18) of these were missense mutations. It is 
uncommon to find two frameshift mutations in SLC3A1 
in Chinese cystinuria patients, and the deletion and 
insertion mutations in our study both caused frameshifts, 
but not a stop codon in the open reading frame. Our 
findings suggest that the genetic pattern of cystinuria is 
heterogeneous not only among different groups of peo-
ple, but even within a local population.

Several researchers have examined the correla-
tion between the clinical and genetic characteristics of 
cystinuria [13, 23,  27]. In our cystinuria patient, the BUN 
(mmol/L), creatinine (Cre; μmol/L), and UA (μmol/L) 
levels were all higher than the average values found 
in other studies (Table  2), we suspect that this may be 
related to the variant type of SLC3A1 gene in the patient, 
as frameshift variants lead to more severe phenotypes 
than missense ones; after traditional treatments, includ-
ing extracorporeal shock wave lithotripsy, alkalize urine 
and Oral medication treatment, these serum values nor-
malized. Besides kidney stones and hydronephrosis, no 
other metabolic disorders were found in our patient, 
while in a study of 13 Chinese cystinuria patients, Shen 
et  al. [27] found hyperoxaluria in 61.5%, hypercalciuria 
in 46.2%, hypocitraturia in 30.8%, and hyperuricosuria 
in 7.7%. Due to the limited number of cystinuria cases 
reported and analyzed in China, the correlation between 
SLC3A1 mutation pattern and clinical presentation 
remains unclear. Rhodes et al. [23] found no association 
between the genotype and clinical course in cystinu-
ria patients in the United Kingdom. Since cystinuria 

is caused by mutations in multiple genes, this makes 
it difficult to define the genetic pattern and etiology of 
cystinuria. Besides SLC3A1 and SLC7A9, other genes 
can lead to similar presentations with cystine stones, 
such as SLC7A13 and PBX1 [18, 22]. Due to the complex 
genetic pattern of cystinuria, it is difficult to define a uni-
versal correlation between the phenotype and genotype. 
This study updates the clinical and mutational spectrum 
of cystinuria, especially in Chinese cystinuria patients.
Therefore, broadening the spectrum of clinical and 
genetic variants could be crucial for the diagnosis and 
therapy of cystinuria in the long-term.
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