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Abstract

Simulations of cancer cell transport require accurately modeling mm-scale and longer trajectories 

through a circulatory system containing trillions of deformable red blood cells, whose intercellular 

interactions require submicron fidelity. Using a hybrid CPU-GPU approach, we extend the 

advanced physics refinement (APR) method to couple a finely-resolved region of explicitly-

modeled red blood cells to a coarsely-resolved bulk fluid domain. We further develop algorithms 

that: capture the dynamics at the interface of differing viscosities, maintain hematocrit within 

the cell-filled volume, and move the finely-resolved region and encapsulated cells while tracking 

an individual cancer cell. Comparison to a fully-resolved fluid-structure interaction model is 

presented for verification. Finally, we use the advanced APR method to simulate cancer cell 

transport over a mm-scale distance while maintaining a local region of RBCs, using a fraction of 

the computational power required to run a fully-resolved model.
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1 INTRODUCTION

Metastasis, a multifaceted process that drives the spread of cancer, is the underlying cause 

of over 90% of cancer-related mortalities [1]. Despite extensive research efforts, predicting 

the precise location of secondary tumor sites remains challenging due to the transport 

process’s complexity and wide-ranging scales. Gaining a better understanding of the factors 

that govern the movement of circulating tumor cells (CTCs) through the bloodstream could 

potentially facilitate early detection of secondary tumors and targeted treatment of CTCs in 

the bloodstream [2]. Given that tracking cancer cells in vivo on a patient-specific basis is not 

feasible, computational models that account for intercellular interactions and the movement 

of cells over systemic length scales are needed. Human blood is approximately 55% plasma 

and 45% blood cells (RBCs) by volume [3]. Plasma is the liquid component of blood, 

mainly containing water, and is used to transport cells and other microparticles, while RBCs 

are used to transport oxygen. Because of their high concentration in the blood, interactions 

with surrounding RBCs must be included to accurately model a CTC’s movement through 

the bloodstream. Direct simulation of large portions of the circulatory system at submicron 

resolution is fundamentally intractable due to the large number of fluid points and blood 

cells required since the average human body contains 5 liters of blood and 25 trillion RBCs. 

Instead, new methods must be developed.

To model cellular transport phenomena, we build upon a previously published adaptive 

physics refinement (APR) method [4]. This technique utilizes a multiphysics modeling 

scheme by coupling a submicron resolution fluid-structure interaction region where cellular 

interactions are explicitly modeled to a coarsely resolved fluid. We refer to the high-

resolution region in which cellular-scale dynamics are modeled explicitly as the “window”, 

chosen to encompass a cell or region of interest [5]. By resolving cell dynamics only within 

the window, the technique can capture fluid-structure interactions where they are needed to 

minimize overall computational cost. The work described in Ref. [4] introduces methods 

for coupling two volumes at differing lattice resolutions, distributing the computational 

workload effectively between GPU and CPU, and developing a method to move the window 

while simulating a single cell inside the window.

The final and most crucial step is filling the window containing the cancer cell with red 

blood cells and allowing it to move with the cancer cell through the bloodstream. This brings 

multiple new algorithmic challenges: (I) Adaptive physics refinement: the problem requires 

not just coupling two varying grid resolutions, but also different physics-based models. 

Within the window, cells are explicitly modeled within a fluid whose viscosity is that of 

blood plasma whereas outside the window, a higher-viscosity uniform fluid approximates 

whole blood. Typical adaptive mesh refinement methods couple regions of the same fluid 

at different resolutions [6, 7], but in this case, a convergent and robust coupling method 
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between two fluids of different viscosity is required. (II) Solving a time-evolving density 

problem: although the window is centered around a CTC, as it moves through the system the 

volume fraction, or hematocrit (Ht), of RBCs within the window must be maintained without 

restricting their movement or biasing the trajectory of the cancer cell. Unlike traditional 

systems of particle flow that can rely on boundary conditions or simplified geometries, flow 

through a human arterial geometry requires unique algorithms to maintain cell density. In 

addition, the method must not only maintain a target cell density, but the cells must all 

be equilibrated with the flow surrounding the CTC to mimic in vivo conditions. Simply 

dropping in undeformed cells near the CTC would almost certainly have an unphysical 

effect on the intercellular interactions. (III) Moving the window: shifting the finely resolved 

region as it moves through complex vasculatures while retaining the dynamics of the CTC 

and neighboring RBCs in order to maintain the structure of nearby equilibrated cells so that 

any non-physical effects due to the window shift or insertion of new cells are neutralized.

In this paper, we present the first implementation of an adaptive physics circulatory 

modeling code capable of dynamically tracking a circulating tumor cell through a realistic 

human arterial geometry while maintaining a realistic environment of deformable red blood 

cells around it throughout the simulation. We describe an addition to the previous APR 

framework that allows for different viscosity fluids in the window and bulk regions. We 

propose and demonstrate a new method for maintaining a target density of red blood cells 

within the window, allowing cells to move freely in and out of the window from any 

direction. Our approach ensures any new cells entering the window are fully equilibrated 

before have a chance to interact with the CTC. Algorithms to preserve the general structure 

of deformed RBCs surrounding the CTC, optimally re-use deformed RBC shapes, and limit 

re-initialization as the window moves are presented as well.

To demonstrate the capabilities of our extended model, we present verification studies of the 

variable viscosity component against analytical results. We demonstrate that three different 

target hematocrits can be maintained using our new cell repopulation and equilibration 

algorithms. We compare the radial motion of CTCs using explicit fluid-structure (eFSI) and 

APR methods and show that the latter gives nearly identical results while using significantly 

fewer computational resources. We perform a feasibility demonstration using the full upper 

body vasculature in Figure 1 on 256 nodes of the Summit supercomputer. Finally, we present 

results from a previously-impossible study of brain cancer metastasis, where a CTC at 

full submicron cellular resolution surrounded by an explicit, deformable RBC environment 

moves thousands of microns through a complete cerebral geometry using just hundreds of 

node-hours on a single-node AWS cloud instance.

2 METHODS AND ALGORITHMS

The coupled multiphysics model is developed within HARVEY, a lattice Boltzmann method 

(LBM)-based massively parallel computational fluid dynamics solver [8–11]. The bulk 

blood flow simulation performed on the CPUs uses the LBM, while the cell-resolved 

window calculations reside on the GPUs, where the LBM is augmented by an efficient fluid-

structure interaction (FSI) algorithm to account for deformable cells. The details behind 
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each of these components, as well as new algorithmic developments and optimizations, are 

described in the subsections below.

2.1 Lattice Boltzmann Method

LBM is a deterministic, mesoscopic approach that numerically solves the Navier-Stokes 

equations by modeling fluid with a particle distribution function. A fixed Cartesian lattice is 

used to discretize space and velocity, where the probability function fi x, t  determines the 

probability of finding a particle at lattice point x and time t with a discrete velocity ci [12]. 

The evolution of the particles with an external force field is governed by:

fi x + ci, t + 1 = fi x, t − Ω fi x, t − fi
eq ρ, v − F i x, t (1)

where, fi
eq x, t  is the Maxwell-Boltzmann equilibrium distribution and F i is the external 

force field at unit lattice spacing and time step. We employ a D3Q19 velocity discretization 

model with the BGK collision operator, Ω = 1/τ, where τ is the relaxation time which 

determines the relaxation of fi towards the equilibrium distribution function fi
eq. The 

kinematic viscosity, v is linked to τ by v = cs
2 τ − 1/2  with a lattice speed of sound cs = 1/ 3, 

at unit spatial and temporal steps. At the walls, no-slip condition is enforced using the 

halfway bounce-back boundary conditions is applied.

2.2 Cell Finite Element Model

Each cell is modeled as a fluid-filled membrane represented by a Lagrangian surface mesh 

composed of triangular elements. The membrane model includes both elasticity and bending 

stiffness [13]. The shear and dilational elastic responses of the membrane are governed by 

the Skalak constitutive law, where the elastic energy W s is computed as:

W s = Gs

4 I1
2 + 2I1 − 2I2 + CI2

2
(2)

for strain invariants I1, I2, shear elastic modulus Gs, and area preservation constant C [14]. 

For the FEM membrane force calculations, Loop subdivison approach is applied [15]. 

The membrane’s resistance to bending is implemented using Helfrich formulation [16] 

following:

W b = Eb

2 S
2κ − c0

2dS (3)

where Eb is the bending modulus, κ and c0 are the mean and spontaneous curvatures, 

respectively, and S is the entire surface area of the cell. A surface force density G is 

calculated at each element by computing the surface gradient of the sum of these stresses 

and applied on to the vertices. Overall, this method has been shown to accurately resolve 

complex non-linear 3D deformations of biological cells [17, 18].

2.3 Immersed Boundary Method

To account the interaction of the cell with the ambient fluid, the Lagrangian grid of the 

FEM cell model is coupled to the Eulerian grid of LBM by applying the immersed boundary 

Roychowdhury et al. Page 4

Int Conf High Perform Comput Netw Storage Anal. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method [19]. Three components of immersed boundary method are implemented here with 

the following sequence: interpolation, updating, and spreading. At first, to determine the cell 

membrane deformation, Lagrangian membrane velocity V is interpolated from the Eulerian 

velocity v with a three-dimensional Dirac delta function δ considering while unit spacing as 

follows:

V X, t =
X

v x, t δ x − X t (4)

where X is the vertex location of the Lagrangian grid and x is the fluid lattice location in 

the Eulerian grid. A cosine function is used to approximate δ for unit spacial steps of the 

Eulerian grid with a four point support [19].

Next, we update the position of the cell vertex with a no-slip condition assuming unit 

timesteps:

X t + 1 = X t + V t Δt (5)

Lastly, the forces calculated at each Lagrangian vertex G are spread on to the surrounding 

Eulerian grid using the same delta function:

g x, t =
X

G X, t δ x − X t (6)

2.4 Algorithmic Advances to Capture Cell-Laden Flow with APR

In this section, we describe the main components of the APR algorithm and its extension 

to include RBCs: (I) multi-resolution/multi-viscosity bulk-fine coupling, (II) maintaining 

cellular hematocrit for physiologically deformed RBCs, and (III) moving the window and 

all the cells inside, as well as CPU-GPU optimizations. The underlying principle of the 

approach involves maintaining a stationary window while the CTC travels through it. 

To achieve this, a multi-resolution/multi-viscosity algorithm links the bulk and window 

simulations and regulates the cell density on the window. When the CTC reaches a 

predetermined distance from the window’s edge, the window undergoes a displacement 

to a new location centered on the CTC’s position. The process is repeated until the CTC 

reaches the end of its trajectory.

2.4.1 Multi-resolution Lattice Boltzmann with Variable Viscosity.—In the 

previous work regarding the APR algorithm, Puleri et. al. developed a multi-resolution 

approach that efficiently coupled a fine window region having sub-micron resolution with 

a coarser bulk fluid along with coupling the different physics-based models corresponding 

to each of the regions. Details about this multi-resolution coupling for maintaining stress 

continuity can be found in [4]. Since the earlier work did not model RBCs within the 

window region, it allowed the fine and the coarse lattices to have a consistent viscosity 

throughout corresponding to the viscosity of whole blood. For the previous APR algorithm, 

it was enough to consider the coupling related to multi-resolution and did not require a 

Roychowdhury et al. Page 5

Int Conf High Perform Comput Netw Storage Anal. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



multi-viscosity approach. However, once RBCs are introduced within the window region the 

viscosities between fine and coarse lattices change. Now only the coarse bulk will represent 

the whole blood whereas for the window the fluid will have a viscosity identical to that 

of plasma due to the presence of RBCs. Thus, building upon the previous APR algorithm, 

for modeling RBCs explicitly within the window region we consider a discontinuity in the 

physical kinematic viscosity v such that, vf = λvc, where c and f respectively correspond to 

the coarse and fine lattices. The variable λ represents the ratio in viscosities between the 

fine lattice and the coarse lattice, determined based on v values reported in the literature. 

Again since in LBM the kinematic viscosity v is tied with the relaxation time τ, we relate the 

relaxation times of the fine and the coarse lattices by:

τf = 1
2 + nλ τc − 1

2 (7)

where n is the ratio of coarse to fine lattice spacing.

2.4.2 Ensuring Physiologically Deformed Cells and Maintaining Cell Density.
—For capturing the proper interaction of RBCs and CTC within the window it is crucial that 

we allow the CTC to interact with deformed RBCs depicting a more physiologically relevant 

scenerio as RBCs tend to deform in the blood flow. Next, it is important that we maintain a 

desired hematocrit within the moving window throughout the simulation. Addressing both of 

these concerns we partition the window into three regions: insertion, on-ramp, and window 

proper as shown in Figure 3A.

The insertion region, located at the outermost layer of the window, is used to maintain 

a desired density by adding undeformed RBCs to the simulation. To place cells and 

monitor their density in the insertion region, the domain is divided into cubic subregions. A 

procedure is developed to randomly place a cube of the same size as a free subregion, with a 

randomly selected centroid and orientation from a pre-defined tile of RBCs with a specified 

density. Overlapping cells are removed using an efficient algorithm that detects overlaps 

by identifying nearby cells at each vertex of the tested cell, using a background uniform 

subgrid. The algorithm can run on multiple MPI tasks, and maintain consistency across 

task counts by preferentially removing overlapping cells based on global IDs. Throughout 

the simulation, the density of cells in each injection subregion is monitored by tracking 

the number of RBCs in that subregion based on their centroid. If the number of cells falls 

below a predefined threshold, new undeformed RBCs are added to the injection subregion 

to maintain the desired density. Re-populating an injection subregion is similar to the initial 

placement of cells, except that no new cells are added if they overlap with existing cells in 

the simulation.

The on-ramp region acts as a transition layer, allowing cells to equilibrate with the 

background flow before entering the window proper region. The outer two regions also 

provide ample time for the RBCs to deform in the flow before entering into the window 

proper region where it interacts with the CTC making the interaction more physiologically 

relevant. In the window proper region the RBCs further deform and interacts with the CTC. 

Cells that leave the window are removed once they cross the outer boundary. It is worth 
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noting that the primary flow direction may vary, and some parts of the insertion region can 

also serve as cell exit points.

2.4.3 Moving the Region with Explicitly Resolved Cells.—Previously for tracking 

the trajectory of a single CTC in large geometries with APR, the CTC was allowed to move 

through the window simulation domain until it reached a specific distance from the window 

boundary. Once the CTC reached that distance the window was moved to a new position and 

the communication between the fine and coarse lattices was re-established, details of which 

can be found in Ref. [4].

We use a similar approach to the one described earlier to move the window in a simulation 

of a cell-laden fluid. However, before moving the window, we first sort the RBCs in the 

simulation into the capture and fill regions. The capture region surrounds the CTC, and the 

RBCs in this region are kept in place as the window moves. To ensure that the CTC will 

be centered in the window at the end of the move and that the capture region boundary will 

align with the insertion region boundary, we carefully select the dimensions of the capture 

region. The fill region, on the other hand, occupies the remaining volume in the window 

up to the boundary of the insertion region and complements the capture region at the new 

window position.

To illustrate this new technique, the left-most image in Figure 3B first depicts a CTC 

position near the boundary, triggering a window move. Next, the capture region for this 

example is shown in this figure, and RBCs within each are identified. Next, RBCs in 

both the capture and fill regions are deep copied, with the copy placed into the fill region 

group. The fill region RBCs are then shifted to their new location, effectively filling the 

remainder of the window to the insertion region boundary. Finally, the insertion regions are 

re-populated, marking the window move’s end.

2.4.4 Hybrid CPU-GPU Implementation.—Following the initial implementation of 

the APR approach, the simulation workload is partitioned such that the bulk fluid is assigned 

to the CPU while the fluid and cells in the finely resolved region are allocated to the GPU. 

This method maximizes the use of the heterogeneous architecture available on the Summit 

supercomputer. The code was developed in C++ and compiled using the IBM XL compiler 

(v16.1.1), Spectrum MPI (v10.4.0.3), and CUDA 11. For the simulations presented in this 

study, all 42 cores across the dual sockets of POWER9 CPUs on Summit were used, with 

42 tasks per node, 36 assigned to the bulk fluid and 6 to the window region. Further details 

about the computational design for CPU-GPU architectures are available in Ref. [4].

2.4.5 Cell-related Optimizations.

Cell Memory Management.: During the window simulation, deformable cells leave the 

simulated domain and are added as needed to maintain the desired cell density (as described 

in Section 2.4.2). Additionally, cells continuously enter and exit neighboring computational 

tasks. However, a straightforward approach to managing cell migration between tasks would 

require frequent memory allocation and de-allocation during the simulation, which could 

have a negative impact on performance. To address this issue, we allocated all the necessary 

memory for cells, with additional space for other cells, at the beginning of the simulation. 
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Additionally, the buffers related to the memory of a single cell were shifted to accommodate 

cell addition or deletion from a task, which helped to optimize the memory pooling process.

Reducing Cell Communication.: For proper parallelization of the immersed boundary 

spreading operation, each MPI task requires updated cell forces for all cells within its 

domain. These forces can be computed on owned cells and then communicated to other 

tasks with these cells in their halos, or a task can compute updated cell forces for all owned 

and halo cells within its domain. To reduce the amount of communication and improve 

performance, this study utilizes the latter approach, in which each task computes updated 

cell forces for all cells within its domain, even those in its halos. This approach requires the 

recomputation of forces on the GPU, but it ultimately reduces the communication needed.

Vertex Re-ordering for FEM Calculations.: With FEM computations, the spatial locality 

of the mesh vertex ordering is an important consideration. Each element accesses data from 

twelve surrounding vertices when calculating the element stress. Thus improved efficiency 

concerning memory accesses can be achieved via the vertex ordering in the connectivity 

arrays. The reverse Cuthill-McKee (RCM) ordering algorithm [20] has been shown to 

improve locality in a manner well suited for FEM applications, and we use RCM in the 

present work to optimally order our deformable cell mesh connectivity arrays.

3 RESULTS & DISCUSSION

We ensure the accuracy of our algorithm by performing three different verification tests. 

In Section 3.1, we first consider fluid-only simulations to focus on variable viscosity 

components and compare them against analytical solutions for the velocity field within 

given geometries. Using these components, in Section 3.2, we then consider cell-resolved 

window simulations and validate both the ability to maintain a desired hematocrit as well 

as the general multiphysics capability through comparison with experiment. Next, in Section 

3.3 we use the moving window to track a CTC interacting with RBCs and compare it with 

that of eFSI. In Section 3.4 we analyze the performance of the APR approach on Summit. 

Finally, in Sections 3.5 and 3.6 we show the application of this method in simulating large 

vasculatures with cellular resolution.

3.1 Linking Regions of Varying Viscosity Using Multi-fluid Shear Simulations

We verified the variable viscosity component of the method by considering a shear flow with 

three fluid layers, as depicted in Figure 4. This configuration facilitates comparison with an 

analytical solution for the velocity field and thus provides a direct means of focusing on 

the variable viscosity component of the method. For the simulation setup, we considered 

an overall cubic domain with an edge length L = 90μm. Within the overall domain, each 

fluid layer, denoted as Regions 1–3 in Figure 4A, has a height of 30μm along the y-axis, 

with Regions 1 and 3 having the same viscosity which is greater than that of Region 2. 

A finely resolved rectangular window is placed around the boundaries of Region 2. This 

viscosity contrast is quantified by λ = μ2/μ1, where the subscripts refer to the Region number. 

Shear flow is imposed by applying a zero-velocity boundary condition at the y = 0 plane 

as defined in Figure 4B, and a velocity U0 in the +x direction at the y = L plane Velocity 
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boundary conditions are applied at the remaining faces in accordance with the profile for 

given μ values. The window is placed such that the ±y boundaries are aligned with the 

region boundaries, rendering the viscosity contrast between the window and bulk domains 

equal to λ.

For the LBM parameters, we considered a τc of approximately 1, with the corresponding τf

determined from Equation 7. We note that for variable viscosity simulations, the τf will be 

reduced relative to single-viscosity simulations since λ < 1, as is evident from Equation 7. 

This permits using a relatively more significant τc value, or relatively larger n values than 

would be acceptable for a single-viscosity simulation.

Simulations are performed for λ = 1
2 , 1

3 , 1
4 , chosen to span values representative of the 

viscosity contrast between blood modeled as a bulk fluid and plasma [21, 22]. For each 

λ value we considered the same resolution ratios of 2, 5, and 10 to determine the accuracy 

over multiple scenarios. Simulation results for the velocity profile as a function of y position 

passing through the window domain are compared against the analytical solution for the 

velocity profile through Region j, which can be derived as:

uj = αjy + βj

μj
(8)

with α and β given by:

α1 = μ2U
ℎ2 − ℎ1 + λ ℎ1 − ℎ2 + ℎ3

β2 = ℎ1A2 λ − 1

β3 = μ1U − ℎ3A3

along with α1 = α2 = α3, and β1 = 0. In Figure 4C we plot the simulation velocity profile as a 

function of y position for each λ. Specifically shown are results for the n = 10 cases, along 

with the analytical profile given by Equation 8. The velocity linearly increases with a slope 

proportional to the viscosity of each region. Table 1 displays all of the bulk and window 

errors for each resolution and viscosity combination. Strong agreement between the two 

is evident for each λ value, ranging from 1–4%, thus demonstrating the accuracy of the 

coupling of varying viscosities between bulk and window using this method.

3.2 Verification of Cell Repopulation Algorithms and Effective Viscosity for APR Window

The presence of red blood cells (RBCs) in blood flow increases the fluid viscosity 

compared to the plasma in which they are suspended. The accuracy of viscosity prediction 

in simulation methods is crucial for determining critical hemodynamic factors, such as 

wall shear stress, pressure differentials, flow distribution, and fluid velocity gradients, all 

affecting individual cell dynamics and interactions. In this section, we present a verification 

of the multiphysics capability of our method by examining flow through a straight tube 
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with a cell-resolved window positioned at the center (Figure 5A). In addition, we compared 

the predicted viscosity of the simulation across a range of physiological hematocrit values 

with an experimental correlation [21]. These comparisons provide a comprehensive means 

of validating the accuracy of the relevant physics captured by the method, as well as the 

method’s ability to maintain desired hematocrit over time.

A well-known experimental correlation established by Pries et al. [21] demonstrates the 

dependence of blood viscosity on vessel diameter and hematocrit.

μrel = 1 + μ45 − 1 1 − Htd
C − 1

1 − 0.45 C − 1
(9)

with:

μ45  = 220e−1.3D + 3.2 − 2.44e−0.06D0.645

C  = 0.8 + e−0.075D −1 + 1
1 + 10−11D12 + 1

1 + 10−11D12
(10)

where μrel is the relative apparent viscosity for blood in a vessel of diameter D in μm. Htd

is the discharge hematocrit, which is related to the tube hematocrit Htt  via the Fahraeus 

effect, fitted by [23]:

Htt

Htd
= Htd + 1 − Htd 1 + 1.7e−0.35D − 0.6e0.01D (11)

To capture realistic red blood cell counts, we performed simulations with hematocrit values 

of 10%, 20%, and 30% with the configuration depicted in Figure 5A. We considered a tube 

of diameter 200μm, a cell-resolved window with side length 100μm, and a flow rate of 5.7 

ml/hr corresponding to an effective shear rate of 250 s−1. Fluid outside the window is taken 

to be blood modeled as a bulk fluid, with viscosity determined from Eq. 9 for the associated 

hematocrit maintained in the window. Fluid inside the window represents plasma with a 

viscosity of 1.2 cP [22] and a shear elastic modulus Gs  for the RBCs to be 5 × 10−6Nm−1

[24], which corresponds to a healthy stiffness value. We considered the lattice spacing in the 

flow domain to have a resolution of 5μm in the bulk region and 0.5μm in the window region, 

leading to a resolution ratio of n = 10.

Results are presented in Figures 5B, C for each of the cases considered, corresponding 

to the aforementioned hematocrit values. In Figure 5B the window hematocrit is plotted 

versus time for each of the values considered. Each simulation is started from an initial 

zero-velocity condition, and the effect of the initial transient associated with the flow 

equilibrating can be seen in each of the curves. Each domain is initially packed with a 

Ht higher than desired, but quickly equilibrates as cells pass through the window. Small 

fluctuations can also be seen here as a result of the repopulation of window injection 

method to maintain the desired hematocrit. This repopulation occurs when the hematocrit in 

a particular injection subregion drops below a prescribed threshold in order to minimize the 

injection frequency.
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For each simulation case we determined the effective viscosity using the predicted 

simulation pressure drop ΔP  in conjunction with Poiseuille’s law:

μeff
sim = ΔPπR4

8QL (12)

where Q is the volumetric flow rate, R is the tube radius, and L is the length. For each 

of the three hematocrit values, in Figure 5C we plotted the effective viscosity predicted by 

the simulation alongside the experimental correlation from Eq. 9. For each case we observe 

strong agreement between the two, which importantly demonstrates the accuracy of the 

method in resolving the primary effects of RBCs on the hemodynamic characteristics. Thus, 

the observed agreement demonstrates the ability of the method to accurately capture the flow 

physics.

3.3 Comparison of APR and eFSI Cancer Cell Trajectory in an Expanding Channel

In order to assess the performance of the APR technique in recovering CTC trajectory, we 

conducted eFSI and APR simulations in an expanding microfluidic channel. This type of 

channel is commonly used to investigate cellular motion towards vessel walls and offers 

valuable insights into the effects of hemodynamics on cell margination [25]. Unlike a 

straight-line vessel, an expanding channel results in a change in radial distance from the 

centerline of the channel due to the underlying fluid profile. This study provides a means 

to validate the accuracy of the APR method in capturing cell motion and and provides a 

method of comparison to its eFSI counterpart.

The expanding microchannel is depicted in Figure 6, with the eFSI and APR initializations 

shown in A and B, respectively. The channel expands from 200 μm to 400 μm at z = 400μm
and has a length of 2000 μm. For the CTC, we use a shear elastic modulus of 1 × 10−4N/m, 

which is representative of the known increased stiffness relative to RBCs [26]. The CTC is 

initially placed with a radial offset of 25 μm at z = 150μm, and an inlet velocity of 0.1 m/s is 

used to drive the flow. It has been numerically shown that a submicron resolution is required 

to accurately capture the deformation of cells [27], thus we choose a lattice grid spacing 

for the window and the bulk flow component as Δxf = 0.5μm and Δxc = 2.5μm, respectively, 

leading to a lattice resolution ratio of n = 5. The bulk is treated as whole blood while the 

window contains plasma, with kinematic viscosities of 4 cP and 1.2 cP, respectively. The 

window is initialized with a 120 μm edge length: 20 μm injection, 20 μm on-ramp, and 

40 μm window proper side lengths. Both sets of simulations are generated at the same 

hematocrit.

We note that the positions and orientation of neighboring RBCs can influence the motion of 

the CTC, leading to changes in trajectory even at the same hematocrit, shown in previous 

simulation work [28]. Thus to capture general behavior, we set up 8 eFSI and APR 

simulations with varying RBC positions. The distribution of eFSI trajectories is presented in 

Figure 6C.

Figure 6D illustrates the motion of the CTC as it moves along the z axis, showing that the 

APR model is able to capture the similar trajectories as eFSI. The eFSI value marginates 
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slightly earlier, but both reach a similar radial location as the cell progresses past the 

expansion. Due to the influence of varying RBC locations, we expect that the two lines 

will not match up exactly, similar to how two sets of RBCs are unlikely to return identical 

results; however, we are able to show that the APR model captures the general behavior.

Finally, we compared the computational savings of utilizing the APR model over the eFSI 

method. Both sets of simulations were performed on the Summit supercomputer. The APR 

simulations were run on 6 nodes with approximately 5.3 × 103 RBCs over 36 hours, utilizing 

36 GPUs and 252 CPUs. The eFSI versions ran on 22 nodes with approximately 4.5 × 105 

RBCs over 120 hours of wall time for the CTCs to reach the equivalent distance as in the 

APR model. With these configurations, the APR method saved over 10x compute time in 

terms of node-hours.

3.4 Scaling Performance on Summit Supercomputer

In Figure 7 we assessed strong scaling using a cube with side length 10.5 mm. A window 

of side length 0.65 mm (injection: 0.05 mm, on-off: 0.02 mm, proper: 0.51 mm) is placed in 

the center of the geometry with a resolution ratio of 10, leading to approximately 1M RBCs 

placed inside. We utilized 32 to 256 nodes on the Summit Supercomputer with a breakdown 

of 42 tasks per node: 36 on CPUs and 6 on GPUs. We observe good strong scaling with 

more resources where moving from 32 nodes to 512 nodes showed a speedup of over 6x. We 

theorize that the speedup starts the breakdown at higher node counts because of the increase 

in halo data needed to be transferred between neighboring tasks. The volume that each task 

owns and performs computations within scales down, but performing operation related to 

the immersed boundary method requires several lattice points in each direction from each 

neighboring tasks. We expect the halo operations to dominate run time when the task count 

is significantly increased for this problem size. Thus it is important to choose a proper task 

count for further simulations that leaves each task’s domain with local computations such 

that the majority of run time is not spent on neighbor/halo data.

For the weak scaling in Figure 8, we performed simulations using 1 to 256 nodes on 

Summit where the number of nodes are increased proportionately with the problem size. 

This is accomplished by growing the cube and the window while maintaining the volume 

ratio between the two, asserting that the amount of work on each task is approximately 

the same. To account for run-to-run variance arising from the interference of other jobs’ 

communication traffic each case was repeated 10 times where in each simulation roughly 17 

× 106 fluid points were maintained per node with 9.1 × 106 bulk fluid points per node and 

8.0 × 106 window fluid points per node. A grid spacing of 10 μm in the bulk region and 0.5 

μm in the window region was maintained. Around 2400 cells were placed in the simulations 

with 1 node, linearly scaling up to 6 × 105 cells in the 256-node simulations.

We note that the lower node count simulations at 1 to 4 exhibited faster run times, leading 

to comparatively lower efficiency at the higher node counts. We hypothesize that the 

communication overhead was not fully realized at the lower node counts from 1 to 4 as 

each rank did not hit the expected threshold number of neighbors, which resulted in a lower 

simulation time. At 8 nodes and above, full communication volume was reached, and we 

observed that the communication per task leveled off which resulted in a more consistent 
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runtime and efficiency at 8+ nodes showed in Figure 8. The efficiency was observed to be 

90% for all the cases above 8 nodes which indicated good parallel performance in weak 

scaling. A breakdown of CPU, GPU timings along with the communication between them 

showed that for all the cases, most of the total time was spent on the GPUs solving the 

cellular dynamics within the window and the run-to-run variation arose mainly from the 

GPUs.

3.5 APR Feasibility Demonstration in Upper Body Vascular Model

To demonstrate the APR model’s large-scale simulation capabilities, we performed a 

simulation with the upper body vasculature, as visualized in Figure 1. The window domain 

is set up as a cube with a side length of 1.7 mm (window proper: 1.5 mm, on-ramp: 0.05 

mm, injection: 0.05 mm). The domain is filled at 40% Ht, reaching over 20M RBCs. The 

window fluid domain is treated as a plasma with viscosity of 1.2 cP and a submicron grid 

spacing of 0.75 μm, and is coupled to the bulk domain which is modeled as whole blood 

at a 15 μm lattice resolution and viscosity of 4 cP. The simulation is run on 256 nodes on 

the Summit supercomputer using 1536 v100 GPUs and 10752 Power9 CPUs, with a 6:1 

ratio of bulk to window tasks. We find that using this method, we are able to simulate a 

full volume of 41.0 mL. By comparison, a fully-resolved model at the same fine resolution 

would only fit 4.98 × 10−3 mL of fluid filled with RBCs using the same compute resources. 

These fluid volume APR and the eFSI models can simulate are compiled into Table 2.The 

fully resolved FSI model has a length scale in millimeters, whereas the APR technique can 

span meters, thus making the APR model a viable method for tracking CTC trajectory over 

large length scales in the human body while resolving submicron 3D cellular deformations 

and interactions.

3.6 Investigating Cancer Dynamics in Full Cerebral Geometry on Cloud Resources

Section 3.5 shows the memory efficiency of the APR algorithm in dealing with cellular 

resolution. Utilizing this memory efficiency, we aim to target a previously intractable 

real-world application where we track a cancer cell through a patient-derived cerebral 

vasculature. Considering a lower bound of 408 bytes of data per fluid point and 51 kilobytes 

per RBC (using 3 subdivision steps of an initially icosahedral mesh, leading to 1280 

elements and 642 vertices), if we wanted to address this problem with a traditional eFSI 

approach, we would require a total of 9.2 PB of memory. Table 3 summarizes a breakdown 

of the memory usage for both the eFSI and the APR approaches which shows that APR can 

handle this problem by using under 100 GB of memory instead of 9.2 PB.

Exploiting this memory efficiency, we used a single node of virtual machines on AWS with 

eight NVIDIA Tesla V100 GPUs and 48 Intel Xeon Platinum 8175M CPUs for simulating 

a cancer cell in the cerebral geometry with a cell-resolved window as depicted in Figure 8. 

The upper left inset shows a fluid-only simulation for capturing the bulk blood flow at a 

100 μm resolution. The main panel showcases the APR approach where we model a window 

of side length 200 μm and approximately 30,000 RBCs, corresponding to roughly 35% 

RBC volume fraction, which is representative of physiological hematocrit levels observed 

in such vasculatures. The APR allows us to have a CPU-based bulk blood flow component 

at lattice spacing of 15 μm, while for the GPU-based window, a sub-micron lattice spacing 
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of 0.75 μm is utilized. This window resolution is an order of magnitude smaller than the 

length scale of an individual RBC, which is important to accurately capture the fluid flow 

field that conveys the cells and in turn, accurately resolves the complex deformation of the 

individual cells. The image in the lower right shows the deformed CTC and surrounding 

RBCs, with contours on the RBC surfaces giving forces determined by the FEM in response 

to deformation.

The solid yellow line depicts the trajectory of the CTC tracked by the moving window, 

traversing 1.5 mm per day over the course of 96 node-hours. The dotted yellow line 

represents the predicted motion of the cell if the simulation were to run for 500 node-

hours. Thus, using the APR method enables CTC traversal thousands of times its diameter, 

allowing body-scale simulations using only a fraction of the node-hours a traditional eFSI 

would utilize, making these large length scale simulations computationally tractable.

4 CONCLUSION

In this study, we have made significant strides in simulating cancer cell transport by 

incorporating explicit red blood cells in the hybrid CPU-GPU APR framework. This method 

can capture cellular trajectory at much larger distances than previously possible, enabling 

accurate tracking of cancer cells through large portions of the human vasculature.

We demonstrate that the new model can couple regions of varying viscosity, representing 

whole blood in the bulk and plasma in the window, while effectively maintaining a target 

volume fraction of red blood cells and effective viscosity within the window over time. 

Moreover, we demonstrate the efficacy of the APR model in recovering the average radial 

trajectory of CTCs with significantly lower computational cost than the conventional eFSI 

method. The scalability of our approach is also proven, with good strong and weak scaling 

behaviors observed on the Summit supercomputer. To further illustrate the capability 

of our approach, we conduct a capability demonstration using APR within an upper 

body geometry, which makes previously-intractable systems accessible with modest HPC 

resources. Finally, we show ongoing results on a brain cancer metastasis study, where we 

track a CTC over mm-scale lengths within a cerebral vasculature using a single AWS 

compute node.

By incorporating RBCs at realistic hematocrit with the APR method, we move towards 

the digital realization of increasing physiologically accurate systems. We show how this 

approach overcomes the challenges of integrating a submicron-scale resolution required 

to resolve cellular interactions with a system-level model of the whole body. By making 

large-scale transport simulations computationally viable, this approach opens up new 

opportunities for understanding cellular-scale biophysical mechanisms in hemodynamics 

and cancer metastasis, allowing for more accurate predictions about how the disease spreads 

and further insight towards treatment.
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Appendix: Artifact Description/Artifact Evaluation

ARTIFACT IDENTIFICATION

This study presents a novel extension to an advanced physics refinement model. The 

extension incorporates red blood cells to enable accurate tracking of cell dynamics during 

the movement of cancer cells in the bloodstream. We used HARVEY, a massively parallel 

fluid dynamics solver, to obtain the simulation results presented in this study. HARVEY is 

generally available under a proprietary research license from Duke University. This license 

has a provision for a free license for academic use. For access, contact the Duke Office of 

Licensing and Ventures.

Computing platforms:

1. Most simulations utilize the Summit supercomputer at Oak Ridge National 

Laboratory, where each node contains 2 22-core POWER9 CPUs and 6 NVIDIA 

V100 GPUs connected via NVLink, capable of a 25GB/s transfer rate.

2. The final simulation with the cerebral geometry (results shown in Figure 8) is 

run using an Amazon Web Services EC2 instance with 8 NVIDIA Tesla V100 

GPUs and 48 Intel Xeon Platinum 8175M CPUs connected via NVLink. These 

contain 256 GB of GPU memory and 768 GB of CPU memory, with a network 

bandwidth of 100 Gbps.

All artifacts can be found here: http://doi.org/10.7924/r42233d04

REPRODUCIBILITY OF EXPERIMENTS

Experimental workflow, general summary: Each set of simulations are performed using 

HARVEY. The simulation domain is specified using a geometry in the form of an OFF 

file. Input parameters, including fluid velocity, hematocrit, viscosity ratio between finely-

resolved window and bulk fluid, and others, are all specified in the text for each specific 

figure. The software outputs several metrics, including the fluid profile in both regions, the 

trajectory of the cancer cell, current hematocrit, and the calculated pressure drop.

1. Upper body simulations. Figure 1 Two sets of simulations are performed in 

the upper body vasculature. First, an eFSI branch of the HARVEY codebase is 

used to run a small subsection of the upper body geometry on 24.5k GPUS on 

Summit, shown on the left side of the Figure. The relevant inputs and output 

cell data are in the upperbody_efsi folder. Next, a simulation is performed within 

a high-resolution domain, referred to as the APR window, to demonstrate the 
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length scale it enables; this is done on 1.5k GPUS and 10.8k CPUs on Summit. 

Cell data and upper body geometry are located in upperbody_apr folder.

2. Shear flow validation. Figure 4 Simulations are performed in a rectangular 

prism with shear flow. Three viscosity contrasts (1/2, 1/3, 1/4) are used with 

three resolution ratios (n = 2, 5, 10). Each simulation is run on one node with 

32 tasks evenly split among the APR window and bulk fluid. Fluid results 

and input geometry are placed in the folder shearflow. The fluid profile in 

each region is output into a CSV file with the velocity at each fluid node. 

An analytical solution is calculated using equation (8). A python script is used 

to extract fluid velocities along a slice in the x-z plane, located at shearflow/
analysis_script/shearflowErrorTest2.py. We plot the analytical versus simulation 

results and generate the error difference between the analytical versus the bulk 

and finely-resolved regions in the spreadsheet shear_figures.xlsx.

3. Hematocrit maintenance and effective viscosity. Figure 5 Three simulations at 

varying hematocrit (10%, 20%, 30%) are performed using a tube of diameter 200 

μm and a cell-resolved window with side length 100 μm, each run on 2 nodes 

with 84 tasks evenly distributed among the APR window and bulk fluid. Plots are 

generated from the simulation outputs of hematocrit versus time. The simulation 

effective viscosity is calculated using equation (12) with the pressure drop output 

while the experimental correlation is calculated using equation (9). Results and 

the geometry are placed in the folder hctvisctests.

4. Cancer cell trajectory. Figure 6 Comparison of CTC motion in a fully-resolved 

model with red blood cells in the entire domain versus the proposed APR method 

with only a small window containing red blood cells. The CTC is tracked in each 

simulation and the xyz coordinates are extracted for the visualization. The eFSI 

simulations are performed on 64 nodes using 384 GPUs while the APR runs are 

performed on 8 nodes with 48 GPUs and 336 CPUs, both on Summit. Radial 

displacement is calculated by distance to the channel’s centerline. Cell trajectory 

results and the expansion channel geometry are placed in the folder ctctrajectory.

5. Scaling results. Figure 7 Strong and weak scaling problems are considered. For 

strong scaling, we use a cube with side length 10.5 mm and a window of side 

length 0.65 mm in the center of the geometry with a resolution ratio of 10. Node 

count is varied from 64 to 256. Simulations are run for 100 timesteps and an 

average wall time per step is calculated. Speedup is presented as a ratio of run 

time compared to the base 64 node case. For weak scaling runs, we scale the 

cube volume by the number of nodes in order to maintain the fluid volume per 

node as constant from 1 to 256 nodes. Efficiency is calculated in comparison to 

the baseline 8 node count, as explained in the text. Timing data can be found in 

the folder scaling.

6. Cerebral CTC tracking simulation. Figure 8 Simulation of a CTC in a window 

in the cerebral geometry is performed on a single AWS cloud node with 56 

tasks distributed in a 6:1 ratio among the CPUs and GPUs, respectively. Memory 
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footprints are calculated using the estimated values specified in the text. CTC 

trajectory and the vascular geometry can be found in the folder cerebral.

ARTIFACT DEPENDENCIES REQUIREMENTS

N/A

ARTIFACT INSTALLATION DEPLOYMENT PROCESS

N/A
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Figure 1: 
Use of the Adaptive Physics Refinement (APR) model within an upper body vasculature 

enables up to 4 orders of magnitude increase in total simulated fluid volume accessible to 

cellular resolution. Using 256 nodes on Summit (1.5k GPUs and 10.8k CPUs), the APR 

simulation, shown on the right, has the ability to track a cancer cell through the upper 

body geometry, a volume of 41.0 mL, using a local finely resolved window. This window 

can travel through the vessel, depicted by the red boxes moving along the dashed black 

line in the direction of the green arrows, opening up the entire volume to a submicron, 

cell-resolved mesh. By comparison, the left image displays the theoretical volume simulated 

using a fully-resolved fluid structure interaction, which can only capture a stationary region 

at submicron resolution totaling a volume of 4.91 × 10−3 mL using the same compute 

resources. While the length scale of the fully resolved FSI model is in millimeters, the APR 

technique extends into meters, making it the first computational method that can track an 

individual cancer cell across system-scale distances while resolving submicron 3D cellular 

interactions.
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Figure 2: 
The APR model accounts for both varying resolutions and viscosities at the interface, 

illustrated here. The gray region depicts the coarsely resolved bulk domain as whole blood 

while the blue region represents the finely resolved window domain as a suspension of 

RBCs in plasma. The inset shows an orthogonal perspective of the interface between the 

fine and coarse lattices, with an example interpolation of the orange square from the yellow 

square support.
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Figure 3: 
Overview of window components associated with maintaining cell density. (A) Window 

anatomy delineating insertion, on-ramp, and window proper regions. New RBCs are added 

into the insertion region once the hematocrit drops below a threshold. These cells travel 

through the on-ramp region to equilibrate with the flow before reaching the window proper 

region. Dashed lines depict subregion cubes used for initial placement and monitoring cell 

density in the insertion region. Also shown is a pre-defined RBC tile used to populate 

each of the subregion cubes. (B) Depiction of the algorithm to move the window using a 

representative example. The left-most figure depicts the CTC position near the boundary 

which triggers a window move. The capture region is marked in translucent blue, labeling 

the section of cells that are maintained when the window is moved, minimizing the 

re-instantiation of new undeformed RBCs each time. The right-most figure depicts the 

configuration at the the end of the window move, with the yellow arrow giving the general 

flow direction.
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Figure 4: 
Verification of the variable viscosity capability of our method. (A) Simulation schematic 

depicting the variable viscosity shear flow configuration, with the bottom stationary y = 0
plane, the top plane moving with velocity U0 in the direction shown, and three regions 

as labeled. (B) Contours give the fluid velocity corresponding to a representative profile. 

Regions 1 and 3 have the same viscosity μ1 which is greater than that of Region 2 μ2 , and 

the viscosity contrast is λ = μ2/μ1. A finely resolved window (red) is placed the center of 

the domain with top/bottom boundaries aligned with the region boundaries as shown. (C) 

Velocity profiles as a function of y position and passing through the window. Results are 

shown for n = 10 and λ = 1
2 , 1

3 . The dashed black line gives the solution per Eq. 8, the solid 

blue line gives the velocity profile through the bulk domain, and the solid red line gives the 

profile through the window domain.
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Figure 5: 
Cell resolved window simulation and comparison with experiment. (A) Schematic depicting 

the simulation setup, with the cell-resolved window placed a the center of a tube of diameter 

200μm. Outside the window the fluid represents bulk blood flowing in the direction of the 

black arrow. (B) Hematocrit versus time for the 10% – 30% cases, demonstrating the ability 

of the method to maintain the desired value. (C) Effective viscosity predicted by the window 

simulation as a function of hematocrit, compared against the experimental correlation[21] 

given by Eq. 9.
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Figure 6: 
Comparison of APR vs eFSI in the expanding channel domains. Visualizations of (A) fully 

resolved eFSI simulation where the entire domain is at a 0.5 μ grid spacing filled with RBCs 

compared to (B) an APR window centered on the CTC where the window domain has a 

lattice spacing of 0.5 μ connected to bulk whole blood. (C) Distribution of eFSI results for 

CTC motion, showing that differing initial RBC positions can affect CTC trajectory. (D) 

Comparison between eFSI and APR showing similar CTC trajectories.
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Figure 7: 
Strong scaling of the coupled window and bulk simulation on Summit using a simplified 

cubic geometry. A 6x speedup is observed from 32 to 512 nodes.
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Figure 8: 
Weak scaling of the coupled window and bulk simulation on Summit. Excellent performance 

scaling is observed at 8 nodes and above, where full communication volume is reached 

compared to the 1 to 4 node cases.
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Figure 9: 
The APR method makes submicron fidelity simulations of CTC trajectory over mm-length 

scales tractable. We perform an APR simulation of cancer cell transport through a cerebral 

vasculature on AWS, using one node of VMs with eight NVIDIA Tesla V100 GPUs and 

48 Intel Xeon Platinum 8175M CPUs. The upper-left panel provides streamlines through 

a patient-derived cerebral vasculature. The main panel provides a zoomed-in view of the 

window the location encompassed by the red dashed box in the upper-left panel. The solid 

yellow line traces the cancer cell trajectory as it is transported at a rate of 1.5 mm per 

simulation day, with the dashed yellow line predicting 500 node-hours to travel the entire 

length of the zoomed-in vessel. The lower-right panel shows the deformed CTC in yellow 

and its surrounding RBCs.
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Table 1:

Simulation L2 error norms for variable viscosity shear flow, based on comparison with Equation 8. Results are 

given for each viscosity ratio λ  and resolution ratio n  considered, and are broken out in terms of that in the 

bulk and window regions.

n λ = 1/2 λ = 1/3 λ = 1/4

bulk window bulk window bulk window

2 0.0099 0.0178 0.0099 0.0306 0.0101 0.0385

5 0.0097 0.0179 0.0096 0.0308 0.0097 0.0389

10 0.0096 0.0183 0.0095 0.0310 0.0098 0.0387
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Table 2:

Approximate fluid volume simulated versus resources used for upper body vascular geometry using APR vs 

small chunk using eFSI. Using the same resources, APR allows the CTC to access significantly larger fluid 

volumes within a simulation, and thus can capture longer trajectories.

Model Δx (μm) Resource Count Fluid Volume

APR (window) 0.5 1536 GPUs 4.91 × 10−3 mL

APR (bulk) 15 10752 CPUs 41.0 mL

eFSI 0.5 256 nodes 4.98 × 10−3 mL
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