
High Performance Adaptive Physics Refinement to Enable
Large-Scale Tracking of Cancer Cell Trajectory

Daniel F. Puleri*, Sayan Roychowdhury*, Peter Balogh†, John Gounley‡, Erik W. Draeger§,
Jeff Ames*, Adebayo Adebiyi*, Simbarashe Chidyagwai*, Benjamín Hernández‡, Seyong
Lee‡, Shirley V. Moore¶, Jeffrey S. Vetter‡, Amanda Randles*

*Department of Biomedical Engineering, Duke University, Durham, NC, USA

†Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, USA

‡{Computational Sciences and Engineering, National Center for Computational Sciences,
Computer Science and Mathematics}, Oak Ridge National Laboratory, Oak Ridge, TN, USA

§Scientific Computing Group, Lawrence Livermore National Laboratory, Livermore, CA, USA

¶Department of Computer Science, University of Texas at El Paso, El Paso, TX, USA

Abstract

The ability to track simulated cancer cells through the circulatory system, important for

developing a mechanistic understanding of metastatic spread, pushes the limits of today’s

supercomputers by requiring the simulation of large fluid volumes at cellular-scale resolution.

To overcome this challenge, we introduce a new adaptive physics refinement (APR) method

that captures cellular-scale interaction across large domains and leverages a hybrid CPU-GPU

approach to maximize performance. Through algorithmic advances that integrate multi-physics

and multi-resolution models, we establish a finely resolved window with explicitly modeled cells

coupled to a coarsely resolved bulk fluid domain. In this work we present multiple validations of

the APR framework by comparing against fully resolved fluid-structure interaction methods and

employ techniques, such as latency hiding and maximizing memory bandwidth, to effectively

utilize heterogeneous node architectures. Collectively, these computational developments and

performance optimizations provide a robust and scalable framework to enable system-level

simulations of cancer cell transport.

Keywords

multiphysics; deformable cells; cancer metastasis; immersed boundary; heterogeneous
architectures

I. Introduction

Cancer is the attributed cause of death in one in four cases in the United States [1] and

metastasis, a complex multistep process leading to the spread of tumors, is responsible for

more than 90% of these deaths [2]. While we know that circulating tumor cells arrest in

non-random patterns and that biophysical properties influence their movement, the effect

of different mechanical properties of the cell and microenvironment on preferential arrest

HHS Public Access
Author manuscript
Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December
20.

Published in final edited form as:
Proc IEEE Int Conf Clust Comput. 2022 September ; 2022: 230–242. doi:10.1109/
cluster51413.2022.00036.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

remain poorly understood. In silico models designed to model cellular transport in complex

3D topologies provide a unique ability to isolate the influence of specific cell properties

and extract a variety of metrics that cannot be directly measured through in vivo or in vitro
methods. To properly simulate metastatic dissemination, computational methods need to

capture arterial length scales orders of magnitude larger than the size of the cell. However,

direct numerical simulation that relies on sub-micron resolution is intractable for all but the

smallest systems.

To effectively model cancer cell transport, we have developed an adaptive physics

refinement (APR) technique. The APR integrates multiphysics modeling by limiting the

region in which cellular-scale dynamics are realized to the volume surrounding a cell

of interest—termed the “window,” after initially exploring the concept in [3]. Resolving

cell dynamics only in the window has the benefits of capturing fluid-structure interaction

that could not be explained purely through hemodynamics, reducing the amount of

computationally expensive high-resolution mesh, and limiting the locations in which fluid-

structure interaction is needed. The APR window is required to adaptively follow the cell

of interest because the distances a cell can meaningfully travel are larger than the window

itself. We tailored the APR algorithm to the problem of tracking cancer cells because

the region requiring a more refined resolution is defined by a moving location and not

by an error estimation (e.g., [4]) which informs refinement during the simulation itself.

Additional benefits are afforded because the adaptive window can be defined at the start of

the simulation. Therefore, the APR scheme is designed for modern heterogeneous systems

whereby the window is distributed on all GPUs and the coarsely-resolved regions can use

the remaining processor cores.

The limited scope of past modeling to small sub-regions or short time domains is due in

part to the computational challenge associated with modeling large-scale cellular behavior

using conventional modeling frameworks, which we refer to as explicit fluid-structure

interaction models (eFSI). Current state-of-the-art eFSI (details of which can be found

in [5]) are limited to sub-mm cubed domains when simulating the resolutions necessary

to capture the cell’s viscoelastic properties, making it impossible to quantify the effects

of individual cell mechanical properties on long-term cell fate and overall trajectory. To

overcome this fundamental limitation, we introduce the APR technique to provide system

scale modeling at cellular resolution within a localized region of interest. The state-of-the

art eFSI model is built upon and could be considered a subset of the APR approach. The

APR method, as shown in Figure 1, defines a high-resolution FSI window that follows an

assigned cell as it flows through a target geometry. The window size and FSI algorithm are

chosen to accurately capture the environment around the target cell, with the surrounding

lower-resolution fluid used to enable accurate window motion. Compared with eFSI, the

APR framework drastically reduces the overall computational cost, making it feasible to

analyze cell transport over anatomically-relevant length scales (cm to m).

Building a coupled multiphysics capability to be broadly used for circulatory modeling

requires addressing multiple algorithmic challenges due to 1) multi-resolution coupling:

the sub-micron resolution fluid in the window must be accurately coupled to the coarser

fluid in the bulk for the proposed moving window approach to be feasible; 2) adaptive

Puleri et al. Page 2

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

physics refinement: the posed problem requires not just coupling varied grid resolutions, but

different physics-based models. Within the window, different explicit cell models may be

used depending on the system and flow, whereas outside the window we only solve fluid

dynamics equations; and 3) resource allocation: in addition to the challenges of efficiently

distributing the 3D geometries across many compute elements, balancing both compute and

memory requirements of the window and the bulk regions between CPU and GPU requires

careful management.

We address these challenges by introducing a hybrid CPU-GPU, multiphysics technique

innovating upon our previously established moving window paradigm [3] by 1) introducing

a multi-block scheme to couple the coarse and fine lattices, 2) creating a framework for

splitting scales between a tightly coupled CPU-based bulk model and a GPU-based window

model, 3) developing algorithms to move the window, and 4) efficiently distributing work

between the host and device on a heterogeneous accelerator-based machine such as the

Summit supercomputer while maximizing overlap of communication and computation. As

demonstrated in our results, the APR method we present radically increases the potential

domain sizes for multiphysics modeling to enable new classes of problems to be tackled

with in silico methods.

II. Methods and Algorithmic Developments

After decades of innovation [4], [6]–[8], there are now many numerical approaches one can

use to design a multiphysics code with varying degrees of sophistication. The APR method

presented in this paper represents one such approach that is tailored to the specific needs

of circulatory modeling. A key feature is the use of a single, moving region of interest

in which the numerical accuracy required remains constant throughout the simulation.

Such specialization has several advantages. For example, this numerical decomposition

creates two well-contained domains (see Fig. 1) with a sharp interface, thereby creating

a natural decomposition of computationally-intense window tasks mapped onto GPUs and

lower-resolution fluid tasks mapped onto CPUs with manageable communication across the

fully-coupled interface. High GPU utilization can be maintained throughout the simulation

thanks to the fixed window size. As the simulation evolves, the cell of interest can

accurately traverse a large branching geometry without a priori assumptions about its

ultimate destination.

We have previously established the window paradigm in Herschlag et al., whereby the

modeling of cell-resolved flow is restricted to a small region around the cell [3]. The focus

on that work was on maintaining the requisite hematocrit (red blood cell volume fraction)

for biological blood flow and partitioning the simulation domain into regions where different

physics are resolved so as to reduce the total number of cells explicitly modeled. In this

manuscript, we significantly advance the adaptive window method by developing a multi-

resolution scheme which adapts to the motion of the tracked cancer cell. Our scheme uses

the nature of the problem itself, tracking deformable cells of interest, to drive the adaptive

resolution as the level of detail is not driven by the fluid itself, but by the cells within

the fluid. This new expression of the problem brings with it challenges, which we have

overcome, regarding the distribution of work between the finely-resolved window domain,

Puleri et al. Page 3

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the two-way coupling of physics, and the methods required to move the window as the cell’s

trajectory evolves. An additional computational difference is which domain is accelerated on

GPUs.

Within the following subsections we outline the components of the APR method. A diagram

providing a depiction of the overall algorithm is shown in Fig. 2. The coupled multiphysics

model is developed within a lattice Boltzmann method (LBM)-based massively parallel

computational fluid dynamics solver [5], [9]–[11]. The existing GPU-accelerated FSI model

was further optimized for Summit, a 200 petaFLOPS heterogeneous supercomputer at the

Oak Ridge Leadership Computing Facility [12]. We additionally augmented the adaptive

multiphysics algorithm pioneered in [3] with the layer of the multi-block/multi-resolution

interface between the cell-resolved domain and the bulk flow domain. To integrate the fine-

window simulation with the coarse-bulk, we implemented and extended a multi-resolution

algorithm previously developed in the literature [13]–[16]. In those previous multi-block

approaches, the finely-resolved domain was primarily static and here we show a novel way

of changing the domain as the transient system simulated advances. The details of these

components, as well as new algorithmic developments, optimizations, and our process for

validating the implementation are described in the subsections below.

A. Lattice Boltzmann Method

The LBM is a mesoscopic approach for numerically solving the Navier-Stokes equations,

in which the fluid is represented as set of particles moving between lattice nodes in

discrete time steps [17]. The lattice Boltzmann equation governs the evolution of a particle

distribution function fi(x,t), which gives the probability of particles residing at lattice point

x and time t with a discrete velocity ci. Using the Bhatna-gar–Gross–Krook (BGK) collision

operator, this equation in the presence of an external force field is:

fi x+ci, t + 1 = 1 − 1
τ fi(x, t) + 1

τ fi
eq(x, t) + F i(x, t) (1)

for an external force distribution Fi, equilibrium distribution fi
eq, and relaxation time τ.

This equation encapsulates the two core components of the LBM time step – collision and

streaming – which are implemented as a single unified kernel in code. We employ the

D3Q19 velocity discretization model, as well as the method of Guo et al. [18] to incorporate

the external force field into the distribution. No-slip conditions on rigid walls are enforced

using the halfway bounce-back boundary conditions at the vessel walls.

B. Cell Finite Element Model

Cancer cells are represented as fluid-filled membranes discretized by a Lagrangian

surface mesh of triangular elements. The membrane model includes both elasticity and

bending stiffness [19]. The shear and dilational elastic responses of the membrane are

governed by the Skalak constitutive law, where the elastic energy Ws is computed as:

W s = Gs
4 I1

2 + 2I1 − 2I2 + CI2
2 for strain invariants I1, I2, shear elastic modulus Gs, and area

preservation constant C [20]. Loop subdivision [21] provides the basis for the finite element

method (FEM) membrane force calculations, which determine elemental strains based on 12

Puleri et al. Page 4

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

surrounding elements. Details on the finite element method used can be found in previous

works, such as [22] and [23]. The Helfrich formulation [24] is used to model resistance

to bending based on membrane curvature following: W b = Eb
2 ∫S 2κ − c0

2, where Eb is the

bending modulus, κ and c0 are the mean and spontaneous curvatures, respectively, and S
is the entire surface area of the cell. The resultant membrane forces are calculated every

timestep in the same simulation code and used for the spreading routine in the immersed

boundary coupling. Overall, this method has been shown to accurately resolve complex

non-linear 3D deformations of biological cells [25] and was recently accelerated on GPUs

[5].

C. Immersed Boundary Method

The immersed boundary method (IBM) [26] is used to couple the FEM-calculated forces

in cell membranes to the background fluid with which they flow and has been previously

demonstrated to capture cancer cell trajectory (e.g., [27]). First, a cell vertex’s velocity V is

interpolated from the velocities v of surrounding fluid points x using:

V(X, t) = ∑
x

v(x, t)δ(x − X(t)) (2)

We use a cosine-approximated 3D discrete delta function (δ) with four-point support in each

dimension, as described in [11]. Using these velocities, the positions of the cell vertices are

updated using Euler integration,

X(t + 1) = X(t) + V(t)Δt (3)

a process referred to in the subsequent sections as advection. The elemental deformation

associated with these position changes are determined with the FEM as above, and the

resulting forces G at each cell vertex X are spread back to the surrounding fluid points x as:

g(x, t) = ∑
X

G(X, t)δ(x − X(t)) (4)

In the subsequent sections, the algorithms and operations associated with equations 2 and 4

are respectively referred to as interpolation and spreading.

D. Innovations and Implementation of APR Algorithm

When modeling biological cells in the circulatory system, one of the main computational

expenses comes from the fluid resolution needed to accurately recapitulate the flows

of deformable cells within the circulatory system. As the required resolution drives

computational cost, there is a motivation to limit it to targeted regions of interest. Moreover,

the relationship between the resolution and time step in the LBM (further detailed in Sec. II-

D1) leads to a greater computational burden and inherent complexity as multiple time steps

are needed within the window for every bulk fluid time step. Therefore, it was paramount

that the bulk and window domains of the simulation be concurrently advancing and that

the window be accelerated by the high bandwidth and computational power available on

GPUs in modern heterogeneous systems (see Sec. II-E). Our solution to address these

Puleri et al. Page 5

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

challenges is the APR method. The originality of the overall concept presented herein is a

moving, finely-resolved domain centered on the cell of interest which is fully coupled to the

surrounding lower-resolution environment. The combination of the multiresolution scheme

presented in Sec. II-D1 coupled with an enhanced version of the window tracking algorithm

(Sec. II-D2) provides a tailored multi-physics adaptive model to track cells across a range of

vessel sizes.

1) Multi-Resolution Lattice Boltzmann: To simultaneously model both macro- and

micro-scale blood flows present in the body, we implemented a multi-block LBM (multi-

resolution) scheme for efficient computation. Specifically, we extended a scheme developed

in 2D [13], [14] and adapt it to 3D similar to Yu et al. and others [15], [16]. However, one of

the main differences between our implementation of the ‘traditional’ multi-resolution LBM

algorithms and previous literature is that we maintain the underlying physics of the static

multi-block methods previously described and significantly expand this approach to derive

an adaptive algorithm through the coupling with the adaptive multi-physics moving window

algorithm so that the model adapts over time given the transient nature of the problem being

studied.

Following Peng et al. [14], we consider a multi-block scheme which couples a coarse lattice

to a fine lattice. Given the continuity in density and momentum between the coarse and fine

grids, the equilibrium distribution functions of each lattice are equal [13]:

fi
eq,c = fi

eq,f = fi
eq . (5)

For the non-equilibrium part of the distribution functions fi
neq = fi − fi

eq , the stress continuity

is maintained across the interface by the relation:

fi
neq,c = nτc

τf
fi

neq,f
(6)

where the subscripts c and f refer to the coarse and fine lattices, respectively, and n gives the

ratio of coarse to fine lattice spacing. Following this, the relaxation times of the coarse and

fine lattices are related by:

τf = 1
2 + n τc − 1

2 (7)

In contrast to the relationship between the fine and coarse grid used by [28] and [14],

which scales the post-collision distribution functions, we use the method developed by

[29] which scales the “incoming” LBM distribution functions. Combining Eqs. 5 and 6,

we are able to express a direct relationship between the coarse and fine lattice LBM

distributions. Specifically, the coarse-to-fine and fine-to-coarse transfers at coincident lattice

points between the two resolutions can be written as:

Puleri et al. Page 6

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

fi
c = fi

eq + nτc

τf
fi

neq,f

fi
f = fi

eq + τf

nτc
fi

neq,c .
(8)

For points on the fine lattice that are not coincident with the coarse lattice, a spatial

interpolation is required; we use a Catmull-Rom spline to maintain C1 continuity [30]:

fi(x) = aj + bjx + cjx2 + djx3 (9)

with coefficients determined based on derivative continuity. Similarly, a bicubic spline

interpolation is used where a fine lattice point is not aligned with two dimensions of the

coarse lattice—an illustration of which is shown on the right-hand side of Fig. 1.

A consequence of the different spatial resolutions is a discrepancy in the physical time

step size, related by Δtc = nΔtf. Therefore, the window and bulk parts of the simulation

must synchronize every bulk time step, which corresponds to n window time steps (see

Fig. 2 for an overview). The data transferred at the synchronization from the coarse grid is

then advanced via temporal interpolation to the same fractional time step (from the coarse

perspective) upon which the fine grid operates. To achieve the temporal interpolation at the

interface points, we employ a Lagrange interpolating polynomial [14]:

fi(x) = ∑
j = 1

3
∏

k = 1

3 x−xk

xj − xk
j ≠ k

(10)

The multi-resolution interface coupling the bulk domain to the window domain with cells

is shown in Fig. 1 along with a representative interpolation stencil. To enable the parallel

implementation of this algorithm, when an unaligned lattice point on the edge of the fine

grid attempts to interpolate from the coarse grid, an overlap of one point into the coarse grid

must be available to the MPI rank for a given part of the fine lattice. The interface between

the fine and coarse lattice is spread across MPI ranks with multiple fine MPI ranks being

neighbors of coarse tasks and multiple coarse MPI ranks being neighbors with fine MPI

ranks.

2) Moving the Window: As the cell traverses the window and reaches a prescribed

distance from the boundary, the window is moved to a new location centered on the cell.

For the present work, we trigger a window move when the cell centroid crosses into a

designated region near the edge of the window domain which can be controlled by the user.

The objective is to move the window prior to the cell experiencing any possible edge-effects

as it nears the boundaries between domains. The communication scheme between fine and

coarse lattice tasks must be re-initialized every time the window moves as the fine lattice

points will then border new coarse lattice points.

When the window moves, the Eulerian data within the window must be updated to represent

the fluid dynamics of the new window location. This window shifting and reconnection

to the bulk-simulation requires a combination of two newly devised steps which have not

Puleri et al. Page 7

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

previously been developed in literature. Indeed, the work of [3] did not need to consider

the differences in momentum between the window and bulk domains. First, lattice data

at the intersection between both the pre- and post-move window bounding boxes must be

translated, highlighted in white in Fig. 3. The lattice or fluid data referenced includes not

only the latice Boltzmann distribution values, but also the body force values present at each

location in the domain. Fluid data in this white-shaded volume only need to be moved

to their new relative location in the window and therefore are communicated via MPI to

tasks which manage the respective section of the finely-resolved domain. Next, we need

to account for new fluid points in the non-overlapping portion of the post-move window

that did not exist in the pre-move window, highlighted in red in Fig. 3. We generate these

fine grid fluid points by interpolating from the coarsely resolved bulk domain using tricubic

interpolation. This new interpolation step is required as the lattice distribution functions in

the bulk domain at a coarser resolution are essentially in a different unit space from the

fine domain. Therefore, the Eulerian data must first be transformed using Eq. 8 and then

interpolated onto all of the new lattice points on the finely resolved grid.

E. Computational Design for Heterogeneous Architectures

To maximize use of heterogeneous CPU-GPU supercomputing architectures, we assigned

the bulk fluid computation to the CPU and the window computation to the GPU,

synchronizing the execution between the two, as necessary. The bulk fluid computation has

characteristics such as a comparatively smaller workload when compared to the window and

irregular control flow that make it a good fit for the CPU. The window computation, where

the 3D deformation and dynamics of the tracked cell are fully resolved, has characteristics

such as fine-grained parallelism, regular control flow, and limited data dependency between

kernel launches that match well with the GPU. Additionally, as the window maintains

its size during each move, the data arrays allocated on the GPU at the beginning of the

simulation can be maintained throughout with only arrays representing the multi-resolution

interface needing to be updated during each move. By partitioning the computation in this

way, we also reduce the cost of data reorganization and data transfers among the CPUs and

GPUs. More details can be found in Sec. II-E3.

Here, we divided the workload such that the the window computations were distributed

among all GPUs while the bulk fluid used the remaining CPU resources. This is in contrast

to previous work, where in [3] there was a uniform resolution between the bulk and window

domains and, naturally, it followed to put the larger fraction of the computational load

on GPUs. However, as one of the major advances in our work is the multi-block aspect

which allows for a resolution difference between the bulk and the window, a similarly sized

window would have n3 more fluid points, making the GPU more effective for window

computations. Moreover, given the time scaling outlined in Sec. II-D1 (Δtf = nΔtc), there

is more work given the additional timesteps needed in the window when compared to the

bulk—even if the number of simulated points in both domains were the same. The window

also has the added burden of calculating the IBM and FEM updates for the cell(s) in the

window. In this work we focused on a single cell in the window in order to emphasize the

multiscale physics and balance the computational workload.

Puleri et al. Page 8

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Simulations for performance analysis were performed on the Summit supercomputer at Oak

Ridge National Laboratory, the second fastest supercomputer on the TOP500 list (as of

November 2021), and implementation details provided in the subsequent sections (II-E1,

II-E2). Other development simulations were performed on the Lassen supercomputer at

Lawrence Livermore National Laboratory. Both systems utilize a heterogeneous architecture

with powerful nodes accelerated by dual CPU sockets and four to six GPUs. The same CPU

and GPU architectures are used on both systems.

1) GPU Acceleration Within Window: All compute-intensive operations of the

window simulation (i.e., LBM, IBM, and FEM) are executed on the GPUs, which for

simulations performed on the Summit supercomputer use all six NVIDIA V100s per node.

Device code was implemented in CUDA. Work related to inter-node communication and

the multi-resolution coupling such as the coarse to fine spatial interpolation, fine to coarse

communication, and temporal interpolation (see Sec. II-D1) is performed on the host as the

data is received from neighboring MPI ranks.

For the fluid component of the cell-resolved simulation, kernels are launched with each

thread acting upon a single LBM point. The thread computes the collision update for the

given LBM point and then writes the streamed particle distributions to its neighboring LBM

points. The collide and stream operations are performed in a fused kernel so as to decrease

reads and writes to main memory [31].

For the deformable cell component of the simulation, kernels are launched on either cell

vertices or elements. The immersed boundary interpolation, spreading, and advection kernels

are launched with each thread working on a particular vertex residing on the current MPI

task. The finite element force calculation kernel is launched on all elements ‘owned’ by

an MPI rank with the updated force being written to the constitutive vertices of a given

element. To optimize performance on the GPU, all buffers relating to the fluid and the

deformable cells have been arranged in the structure of arrays (SoA) format. This memory

layout enables overlapped memory accesses of data buffers such as the LBM distribution

data, fluid body forces, cell positions, cell velocities, and cell forces. As the amount of

memory available on GPUs is significantly less than CPUs, we aimed to store the minimum

amount of data needed to perform updates. At a minimum, each fluid point requires 408

bytes to store two copies of the 19 discrete velocities, a force vector, the indirect streaming

stencil consisting of 19 ints, and its indirect array location. IBM cells are discretized by

642 vertices comprising 1, 280 elements per cell. Therefore, each cell requires a minimum

of 51 kilobytes to store vectors of forces, velocities, positions, and other supporting data.

Details on optimizations made such as buffer packing to enable contiguous memory

transfers and partial updates to overlap communication and computation are in Sec. II-F.

2) Per-Node Resource Allocation: The bulk fluid is where inter-task communication,

the systemic-scale bulk LBM simulation, and the window-to-bulk coupling are

implemented. For all performance results reported, the code makes use of all 42 cores across

the dual sockets of POWER9 CPUs on Summit. Specifically, 42 MPI ranks per node were

used, with 36 tasks assigned to the bulk fluid region and 6 MPI ranks to the window region.

Puleri et al. Page 9

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Code was implemented in C++ and compiled on Summit using the IBM XL compiler

(v16.1.1), Spectrum MPI (v10.4.0.3), and CUDA 11.

3) MPI Rank Decomposition of APR Method: When developing the paradigm for

allocation of resources, the main parallelization choice was whether to have the window

and bulk threads be within a parent MPI rank or whether MPI ranks would be decomposed

into window and bulk MPI ranks. There would be very little shared information between a

window and bulk process residing on the same socket or node due to the fact that the smaller

real dimensions of the window and the movement of the window mean that processes of

the window that are spatially adjacent to a bulk process would be spread across the entirety

of the simulation. Therefore, in practice, depending on the problem size, a relatively small

portion of the bulk simulation will be required to communicate with the window simulation

tasks. Here, we implement the latter design choice of using MPI subcommunicators to

decompose the window and bulk tasks. This MPI-based decomposition allows for more

flexibility when allocating computational resources on a fractional basis between the

window and bulk versus an on-node parallelization that decomposes the two simulations

among threads within a given process. To determine the division of resources, the user must

specify the fraction of MPI ranks to devote to the window.

The bulk fluid part of the simulation is set up by first voxelizing its domain given an input

triangular mesh describing the surface of the geometry to be modeled. The window part

of the simulation is set up by defining a high resolution rectangular box, corresponding to

a desired window size, within the bulk domain. Since the window part of the simulation

is always shaped as a rectangular prism, we use a simple geometrical algorithm to break

down the window evenly into equally sized subproblems based on the proportion of total

MPI ranks devoted to the window in the simulation. The window is initially divided into

three pieces and then subsequently divided in half on the longest dimensions so that the

window is as close to ideally balanced as possible to the three GPUs available per socket on

Summit. It is assumed that work is evenly spatially distributed across all window MPI ranks.

This assumption is justified for the simulation due to the uniform resolution of the Cartesian

LBM grid. The bulk part of the simulation is separately load balanced on its respective MPI

subcommunicator using a recursive bisection algorithm described in [32].

To determine which tasks communicate across the boundary between the coarsely-resolved

bulk and the finely-resolved window MPI ranks we communicate the bounds of the window

at the start of the simulation and every time the window moves. Checks for window

moves are done at a user-controlled frequency to amortize collective operations. Once the

window and bulk tasks have determined neighbor relations, tasks that are adjacent to the

multi-resolution boundary update their communication partners and the window MPI ranks

re-use the same initially allocated CPU and GPU buffers to execute the multi-resolution

operations. Synchronization between bulk and window MPI ranks spatially adjacent to each

other occurs during the coarse to fine and fine to coarse multi-resolution coupling operations

as illustrated in Fig. 2.

Puleri et al. Page 10

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

F. Concurrency and Buffer Packing for Optimal Performance

1) Overlap Between Bulk and Window time steps: A diagrammatic depiction of

the overall algorithm for our method over one bulk time step is provided in Fig. 2. Due

to the nature of LBM and the relationship between physical time step size and physical

spacing between lattice points, n = Δtc/Δtf window time steps correspond to one bulk time

step. Thus, care must be taken in designing this overall algorithm to optimally balance the

window/bulk components. We therefore optimized our algorithm to best overlap compute-

intensive simulation time steps on the GPU/window with the CPU/bulk.

As shown in Fig. 2, we first execute the LBM in the region encapsulating the border between

window and bulk. Essentially, this setup splits part of the time step so that the streaming

discrete velocities from the bulk to the window are transmitted at the beginning of the bulk

time step. By partially updating the domain, the rest of the fluid in the bulk domain can be

updated simultaneously while the window completes its operations to finally compute the

requisite discrete velocities in the other direction to complete the two-way coupling between

the window and bulk domains. The communication from coarse to fine prior to updating the

majority of the bulk domain aligns the barrier between window and bulk so that they only

need to synchronize every time step for the bulk and every n time steps for the window,

thereby facilitating overlapping window/bulk computations. Without the partial update of

points that the window task depends upon, the overall time for a time step would be the

sum of the bulk and window, rather than the maximum. The bulk and window calculations

subsequently proceed in parallel, at the end of which distribution functions are transferred

from the fine window grid to inform the bulk simulation at the end of the time step.

2) Optimizing Communication Through Buffer Packing: Communication between

MPI ranks requires first moving data between the host and device. Inefficient device-

host transfers are significant potential bottlenecks as even modern interconnects such as

NVLink have low bandwidth relative to HBM2 and DDR. In our case, communicated

data is not coalesced and is laid out differently on the host and device. The host uses an

array of structures (AoS) layout for ease of development while utilizing the sophisticated

caching and lower latency on cache misses available on CPUs. The device uses an SoA

format described above as it facilitates adjacent threads operating on contiguous data. Our

communication routines transfer a high volume of data on the order of hundreds of MB

per node and thus achieving high bandwidth is crucial to application performance. A naïve

solution of making many small transfers results in low transfer bandwidth and high latency.

Asynchronous small data transfers launched in parallel are also costly because they cannot

be overlapped easily with computation, they stall dependent intranode communication, and

they compete for DDR bandwidth with the memory bound CPU bulk simulation.

To optimize transfer performance, we pack data into contiguous buffers before copying

between the device and host—an approach shown to dramatically reduce data movement

in GPU accelerated MPI applications [33]. Custom GPU kernels pack data to enable large,

contiguous high bandwidth copies to page-locked CPU memory. Similarly, data received

from MPI communication is packed before a host-device copy and unpacked with a GPU

kernel. One trade-off of this approach is the additional memory on the device-side required

Puleri et al. Page 11

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

for the packed buffer, though the buffer size is small in comparison to other data structures

as communicated data is proportional to surface area while owned data is proportional to

volume. Another trade-off is the overhead associated with packing and unpacking; however,

this overhead is far outweighed by improved achieved transfer bandwidths that cut overall

application run time in half.

The data vectors that are on device were allocated using CUDA’s unified memory

which aided in the ease of development and in reducing the complexity of initialization

routines. However, we found that manually triggering host-device transfers prior to inter-

node communication using cudaMemcpy resulted in faster performance for computational

routines. We hypothesize that this performance improvement is due to the manual memory

transfers obviating the need for any latency in computational kernels while waiting for

hardware to migrate the required data.

III. Results and Discussion

We systematically establish the accuracy of our method by validating the individual

components of the algorithm. Then, we present scaling results for the APR model on the

Summit supercomputer. Finally, we choose a realistic microvessel network as an example

and provide a memory cost breakdown, focusing on the bandwidth saving due to the APR

algorithm.

A. Validation of Multi-Resolution and Multi-Physics

To validate the APR algorithm, we first focused on a fluid-only simulation and compare

against an analytical solution for the velocity field within a complex geometry to isolate

and validate the multi-resolution component. We then demonstrate that the mapped out

trajectories of a circulating tumor cell (CTC) through an expanding microchannel using both

APR and eFSI are consistent. These experiments confirm the ability of the APR method to

accurately capture both the fluid profile and the path of a single cell without requiring the

resources of a fully cell-resolved simulation, thereby enabling simulations that would not be

tractable without our APR approach.

1) Validating Fluid dynamics Component of APR Simulation: To first validate

the coupling of different resolution grids, we considered flow through a helical tube

of circular cross-section within which a finely resolved window is placed. The helix

geometry facilitates comparison with an analytical solution and, importantly, one in which

all three velocity components are non-zero—thus providing a sufficiently robust validation.

Furthermore, such a circuitous vessel is representative of the vascular geometric complexity

which occurs in physiology. We have also conducted comparisons of the APR algorithm

with analytical solutions for Poiseuille flow and Womersley flow, representing both steady

state and oscillatory flow states common in the vasculature. In contrast to [3], fluid

dynamics validation is required as the APR method uses multiple resolutions. Previous

multi-block methods have typically used resolution ratios of n = 2 or 4 at the sharp interface

between grids (e.g., [13], [14], [35]), while we tested up to n = 20 across the interface in the

following section.

Puleri et al. Page 12

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4a provides a general schematic of the helix geometry. A helix with geometric

parameters ϵ = γ = 0.05 and an axial length traversing one turn was used, where ϵ is the

dimensionless curvature and γ is the dimensionless torsion. The flow was characterized by

Re = U0a/ν = 50, and the helix cross-section is set to have radius a = 50 μm. We imposed an

inlet flow rate corresponding to a Poiseuille flow with U0 = 2 m/s and a kinematic viscosity

of 2.0×106 m/s2. These parameters were chosen to result in a cross-sectional secondary flow

field with non-negligible asymmetry to amplify the 3D nature of the flow. For the finely

resolved window, we used resolution ratios n = 2, 5, 10, and 20 for a fixed bulk resolution.

The window has a side length of 30 μm, and was placed on the helix centerline midway

across the axial distance spanned by the geometry. For the LBM simulation parameters, we

used a coarse grid relaxation time (τc) of 0.525 and a corresponding fine-grid relaxation time

(τf) determined from Eq. 7 for each of the resolution ratios. This τc value was chosen such

that τf ≤ 1, maintaining LBM’s accuracy [36].

Simulation results are provided in Fig. 4 and Table I for each of the cases. The inset

in Fig. 4a provides streamlines through the geometry and illustrates the placement of the

window within the helix and the general flow configuration. Fig. 4c depicts the secondary

flow field at a cross-section which intersects the window for a representative case, with

streamlines shown within both the bulk and window regions to illustrate the recirculation

patterns predicted by the simulation. Both the contours of the axial velocity component in

this plane and the streamlines are in good qualitative agreement with the analytical result

shown in Fig. 4a.

We quantified the simulation accuracy for each case by computing the L2 norms based on

comparison to published analytical solutions for helical flow [34]. We defined our L2 norm

in Eq. 11, with the error e across points i in the slice. Where us(i) is the simulated velocity

vector at location i, and ua(i) is the analytical velocity vector at location i, and Ω represents

the domain of a slice. All vector squares were taken as dot products (e.g., u2 = u · u).

e = ∑i ∈ Ω us(i) − ua(i) 2

∑i ∈ Ω ua
2

1/2
(11)

These values are provided in Table I, broken out in terms of the bulk and window regions,

with good overall agreement demonstrated by values ranging from approximately 1–3%.

As bulk resolution is fixed and the accuracy within the window domain is gated by the

accuracy of the bulk simulation, convergence with increasing n is not expected. Rather, these

error values remaining consistent indicates that the multi-block coupling scheme remains

both accurate and stable even for large resolution ratios between the window and bulk. This

accuracy and stability persists despite large n. Overall, we demonstrated that the APR model

falls within 3% of the analytical solution for multiple resolution ratios, which validates

accurate fluid dynamics modeling in complex geometries using the APR algorithm.

2) CTC Tracking Using APR Predicts the Same Trajectory as a Fully
Resolved Simulation: Next, we utilized the APR method to track the trajectory of a

CTC through an expanding channel and compare it with that of a fully resolved simulation.

Puleri et al. Page 13

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Expanding microfluidic channels have been used to study the motion of cells towards the

channel walls [37], aiding in understanding the role of hemodynamics on the likelihood of

cell margination. The underlying fluid profile in an expansion leads to a change in radial

distance away from the center line of the channel, rather than letting the cell travel in a

straight line down a simple vessel. This validation was used to confirm whether the APR

model can accurately capture the motion of the cell compared to its eFSI counterpart.

Fig. 5a shows a general schematic of the expanding microchannel. The channel has a length

of 2000 μm with a width that expands from 200 μm to 400 μm at the z = 400 μm mark.

For boundary conditions, we input an inlet velocity of 0.1m/s. We generated a window with

side length 120 μm with the underlying fluid modeled as blood plasma with a viscosity of

1.2×10−6m2/s. The window utilized a lattice grid spacing of Δxf =0.5 μm and the CPU-based

bulk flow component used a lattice grid spacing of Δxc =2.5 μm, leading to a lattice

resolution ratio of n = 5. This window resolution is an order of magnitude smaller than the

length scale of an individual cell, which is important to most accurately capture the fluid

flow field which conveys the CTC and in turn accurately resolve the complex deformation of

the cell.

A visualization of the CTC moving over time and the corresponding window updating its

position are shown at several timepoints in Fig. 5a. Quantitative results in terms of CTC

deformation and radial displacement from the centerline of the channel are presented in Fig.

5a and Fig. 5b for the APR and eFSI models. For reference, the gold line indicates the

location of the sudden expansion in width. The trajectories from both eFSI and the APR

model showed strong agreement as they overlap for most of the simulation and difference in

the asymptotic trajectories of less than 1%, validating the APR model’s ability to accurately

capture the motion of a single cell through a geometry.

To determine the comparative computational costs of a large eFSI model, we measured the

time to solution for simulating CTC traversal in an expansion channel. We found that the

APR and eFSI CTC tracking simulations used 22.7 and 287.9 nodehours using six GPUs

per node on Summit, respectively. Both simulations were run on 22 nodes and used GPU

acceleration with different configurations specific to the models used. We extracted times

spent calculating the fluid-structure interaction of the deformable CTC with the surrounding

fluid over the course of the parallel simulation. These results emphasize how the APR model

can significantly decrease the computational expense of large-scale cell-tracking studies and

open new simulation paradigms for longer length- and time-scale runs.

B. Scaling the APR Model to 512 Nodes (3,072 V100 GPUs)

We completed strong and weak scaling tests on the Summit supercomputer to assess the

APR performance. A high-resolution (0.5 μm) cubic window containing a single circulating

tumor cell centered within a coarse (10 μm) cubic domain was used. This simplified

geometry allowed for straightforward scaling and analysis of the APR implementation free

of load imbalance across a range of system sizes.

For both the strong and weak scaling results, resource allocation divided each Summit node

on a per-CPU and per-GPU basis. Specifically, we assign one MPI rank per CPU core, using

Puleri et al. Page 14

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

all cores rather than just one per GPU. For Summit, with 42 CPU cores across two sockets,

this corresponds to 36 cores per node allocated to the bulk (coarse) fluid and 6 cores along

with all 6 V100 GPUs per node allocated to the high-resolution window. Additionally, we

repeated each strong and weak scaling run ten times to capture variability we observed in

system performance.

The strong scaling results are shown in Figure 6. Two system sizes were run, starting

from inputs designed to maximize memory usage for 1 and 16 Summit nodes. The smaller

system contained 418M fluid points in the bulk and 141M fluid points in the window,

while the larger system contained 6.7B fluid points in the bulk and 2.3B fluid points in

the window. The largest run consisted of 10, 752 MPI ranks and used 1, 536 GPUs on

256 nodes of Summit. Both systems showed reasonable strong scaling performance with a

relative speedup between six and seven times given a 16-fold increase in resources. This is

consistent with previous observations of memory-bound code on GPUs [38], [39], which are

less sensitive to GPU occupancy than compute-bound applications. The timing variability

increased with job size, but overall were smaller than seen in the weak scaling results.

Weak scaling results are shown in Figure 7, run with 5.6 × 108 fluid points per node (4.2

× 108 bulk, 1.4 × 108 window), from 1 to 512 Summit nodes. We observed weak scaling

efficiency over 75% out to 64 nodes and above 60% at 256 and 512 nodes. We also saw

significant run-to-run performance variability emerge, ranging from a coefficient of variation

(standard deviation normalized by the mean) of 0.5% to up to 19%. Variability was under

12% for runs smaller than 32 nodes and was bigger at nodecounts above 16 nodes. We

attributed this to interference from other jobs’ communication traffic, as the increased time

is observed almost entirely in communication routines. To minimize the impact of this

contention on our ability to accurately assess the scalability of our implementation, we

executed multiple runs at different times and present the average results over ten repetitions

in Figure 7. Our approach reflects the reality of running on a shared resource.

C. Memory Savings Due to Application of APR

To quantify the increase in fluid volume that can be captured at cellular resolution on a fixed

resource provided by APR over state of the art eFSI models, we compared the maximum

volume that could be captured on a range of node counts, as shown in Fig. 8. Using 256

nodes of Summit—corresponding to 24.5TB of GPU memory, the APR method achieves

a simulated domain size of > 100 mL, whereas eFSI is limited to approximately 10−2 mL

simulated volume.

Therefore, by using APR we were able to expand the available volume that can be traversed

by the cell of interest by four orders of magnitude. Through these advancements, we bring

the vessel sizes that can be simulated with cell-resolved flow from vessels on the order of

fractions of microns to vessels on the order of centimeters.

To further explore the impact of the APR memory savings, we investigated its use for

creating “digital twins” of microfluidic and bioprinted devices. Using an example bioprinted

vascular bed from literature [40], we demonstrated that the eFSI approach would require 235

nodes on Summit (over 22 TB), while the APR model would require only 1 node (250 GB of

Puleri et al. Page 15

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

memory). The vessel dimensions are approximately 18mm from end-to-end with a volume

of 6.9mm3. Dimensions for the finely-resolved grid are 0.45mm by 0.45mm by 0.05mm,

accounting for 0.1% of the total volume.

Comparisons of the theoretical memory and resource usage for the APR and eFSI models

for the bioprinted vascular bed are shown in Table II. Resources are presented in terms of

DRAM and HBM found on each compute node on the Summit supercomputer. The number

of fluid points were calculated for the APR window and bulk components at resolutions Δxf

= 0.5 μm and Δxc = 2.5 μm, while the eFSI model assumed a cell-resolved grid spacing

of 0.5 μm throughout the entire domain. A lower bound of 408 bytes per fluid point was

utilized for these memory and resource calculations, based on the breakdown described in

Sec. II-E1.

Continuing with the aforementioned asymmetric bioprinted vessel, we additionally

simulated a window within the geometry on 32 nodes of Lassen with a speed of 0.19

seconds per coarse time step. Fig. 9 shows the fluid streamlines and starting cell state after

the fluid had equilibrated. These results highlight the length scales within one simulation

from a cell of 12 μm in diameter to a vessel on the order of 18mm.

IV. Conclusion and Discussion

Current eFSI models are computationally limited to modeling small sub-regions and brief

time domains. The presented APR method provided an order of magnitude reduction in

compute costs to provide a three-fold benefit: 1) cellular resolution at previously intractable

volumes, which will facilitate new research in the areas of cancer biology and microfluidic

device design, among others; 2) extension of the time domain that can be modeled by

moving the requirement from full leadership-scale cluster runs to single node resources that

can be more readily dedicated for long simulation durations; and 3) empowering searches of

a very large number of cell types or properties to quantify their impact on cell transport.

In this work, we introduced the APR method and demonstrated its accuracy at capturing

both the fluid and cellular components. By specifically designing the method to take

advantage of heterogeneous architectures, communication times were minimized and data

movement optimized. To achieve these goals, we addressed several algorithmic challenges.

We coupled the sub-micron cell-resolved window to the coarser bulk domain to bridge the

disparity in relevant length scales. The multi-resolution capability was transformed to an

adaptive model which conforms to the problem by tracking, moving, and updating the fine

resolution domain over the course of simulation. The problem of resource allocation was

ameliorated by balancing the compute and memory requirements of the fully-coupled APR

model with careful splitting of simulation resources based on the problem sizes encountered.

Designs for next generation microfluidic devices as well as questions regarding cellular

interaction and the role of clusters in cancer metastasis would benefit from the APR

approach which is designed from the ground up to improve time-to-solution, volume

modeled, resolution captured, and per-node throughput for fluid-structure interaction

models. In order to establish the validity of the framework, we focused this work on

Puleri et al. Page 16

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the introduction of the adaptive physics refinement itself and systematically tested the

multi-resolution coupling, the heterogeneous parallelization scheme, and algorithms to

efficiently move the window without introducing erroneous forces or momentum under the

representative use case of a single CTC moving in a large complex geometry. We expect

this crucial work to set the stage for future studies leveraging APR to capture multiple cell

interactions at the centimeter or even meter scale.

Acknowledgment

We would like to thank Cyrus Tanade, Samreen T. Mahmud, Gregory Herschlag, and Marianna Pepona for their
thoughtful feedback throughout the design and writing stages of this project.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the
U.S. Department of Energy. This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will
provide public access to these results of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan). Research reported in this publication was supported by
the National Science Foundation under Award Number 1943036 and National Institutes of Health under Award
Number U01-CA253511. Computing support for this work came from the DOE INCITE program and the Lawrence
Livermore National Laboratory (LLNL) Institutional Computing Grand Challenge program.

References

[1]. Siegel R, Ward E, Brawley O, and Jemal A, “Cancer statistics, 2011,” CA: A Cancer Journal for
Clinicians, vol. 61, no. 4, pp. 212–236, 2011. [PubMed: 21685461]

[2]. Wirtz D, Konstantopoulos K, and Searson PC, “The physics of cancer: the role of physical
interactions and mechanical forces in metastasis,” Nature Reviews Cancer, vol. 11, no. 7, pp.
512–522, 2011. [PubMed: 21701513]

[3]. Herschlag G, Gounley J, Roychowdhury S, Draeger EW, and Randles A, “Multi-physics
simulations of particle tracking in arterial geometries with a scalable moving window algorithm,”
in 2019 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2019, pp.
1–11.

[4]. Berger MJ and Oliger J, “Adaptive mesh refinement for hyperbolic partial differential equations,”
Journal of Computational Physics, vol. 53, no. 3, pp. 484–512, Mar. 1984.

[5]. Ames J, Puleri DF, Balogh P, Gounley J, Draeger EW, and Randles A, “Multi-GPU immersed
boundary method hemodynamics simulations,” Journal of Computational Science, p. 101153,
2020. [PubMed: 32754287]

[6]. Dubey A, Almgren AS, Bell JB, Berzins M, Brandt SR, Bryan GL, Colella P, Graves DT,
Lijewski M, Löffler F, O’Shea B, Schnetter E, van Straalen B, and Weide K, “A survey of high
level frameworks in block-structured adaptive mesh refinement packages,” J. Parallel Distributed
Comput, vol. 74, pp. 3217–3227, 2014.

[7]. Keyes DE, McInnes LC, Woodward C, Gropp W, Myra E, Pernice M, Bell J, Brown J, Clo A,
Connors J, Constantinescu E, Estep D, Evans K, Farhat C, Hakim A, Hammond G, Hansen G,
Hill J, Isaac T, Jiao X, Jordan K, Kaushik D, Kaxiras E, Koniges A, Lee K, Lott A, Lu Q,
Magerlein J, Maxwell R, McCourt M, Mehl M, Pawlowski R, Randles AP, Reynolds D, Rivière
B, Rüde U, Scheibe T, Shadid J, Sheehan B, Shephard M, Siegel A, Smith B, Tang X, Wilson
C, and Wohlmuth B, “Multiphysics simulations: Challenges and opportunities,” The International
Journal of High Performance Computing Applications, vol. 27, no. 1, pp. 4–83, Feb. 2013.

[8]. Palacios F, Colonno MR, Aranake AC, Campos A, Copeland SR, Economon TD, Lonkar AK,
Lukaczyk TW, Taylor TW, and Alonso JJ, “Stanford University Unstructured (SU2): An open-
source integrated computational environment for multi-physics simulation and design,” AIAA
paper, vol. 287, p. 2013, 2013.

Puleri et al. Page 17

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://energy.gov/downloads/doe-public-access-plan

[9]. Randles AP, Kale V, Hammond J, Gropp W, and Kaxiras E, “Performance analysis of the lattice
Boltzmann model beyond Navier-Stokes,” in Parallel & Distributed Processing (IPDPS), 2013
IEEE 27th International Symposium on. IEEE, 2013, pp. 1063–1074.

[10]. Randles A, Draeger EW, and Bailey PE, “Massively parallel simulations of hemodynamics in the
primary large arteries of the human vasculature,” J Comp Sci, vol. 9, pp. 70–75, 2015.

[11]. Gounley J, Draeger EW, and Randles A, “Immersed Boundary Method Halo Exchange in
a Hemodynamics Application,” LNCS, vol. 11536, pp. 441–455, 2019. [Online]. Available:
10.1007/978-3-030-22734-0{_}32

[12]. Vazhkudai SS, de Supinski BR, Bland AS, Geist A, Sexton J, Kahle J, Zimmer CJ, Atchley S,
Oral S, Maxwell DE et al. , “The design, deployment, and evaluation of the coral pre-exascale
systems,” in Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis. IEEE Press, 2018, p. 52.

[13]. Yu D, Mei R, and Shyy W, “A multi-block lattice Boltzmann method for viscous fluid flows,”
International journal for numerical methods in fluids, vol. 39, no. 2, pp. 99–120, 2002.

[14]. Peng Y, Shu C, Chew Y-T, Niu X, and Lu X-Y, “Application of multi-block approach in the
immersed boundary–lattice Boltzmann method for viscous fluid flows,” Journal of computational
physics, vol. 218, no. 2, pp. 460–478, 2006.

[15]. Yu D and Girimaji SS, “Multi-block lattice Boltzmann method: extension to 3D and validation in
turbulence,” Physica A: Statistical Mechanics and its Applications, vol. 362, no. 1, pp. 118–124,
2006.

[16]. Sui Y, Chew Y, Roy P, and Low H, “A hybrid method to study flow-induced deformation of
three-dimensional capsules,” Journal of Computational Physics, vol. 227, no. 12, pp. 6351–6371,
2008.

[17]. Chen S and Doolen GD, “Lattice Boltzmann method for fluid flows,” Ann Rev Fluid Mech, vol.
30, no. 1, pp. 329–364, 1998.

[18]. Guo Z, Zheng C, and Shi B, “Discrete lattice effects on the forcing term in the lattice Boltzmann
method,” Phys Rev E, vol. 65, no. 4, p. 046308, 2002.

[19]. Gounley J, Draeger EW, and Randles A, “Numerical simulation of a compound capsule in
a constricted microchannel,” Procedia Comput Sci, vol. 108, pp. 175–184, 2017. [PubMed:
28831291]

[20]. Walter J, Salsac A-V, Barthès-Biesel D, and Le Tallec P, “Coupling of finite element and
boundary integral methods for a capsule in a Stokes flow,” International Journal for Numerical
Methods in Engineering, pp. n/a–n/a, 2010. [Online]. Available: http://doi.wiley.com/10.1002/
nme.2859

[21]. Cirak F, Ortiz M, and Schroder P, “Subdivision surfaces: a new paradigm for thin-shell finite-
element analysis,” Int J Numer Methods Eng, vol. 47, no. 12, pp. 2039–2072, 2000.

[22]. Shrivastava S and Tang J, “Large deformation finite element analysis of non-linear viscoelastic
membranes with reference to thermoforming,” The Journal of Strain Analysis for Engineering
Design, vol. 28, no. 1, pp. 31–51, 1993.

[23]. Yazdani A and Bagchi P, “Influence of membrane viscosity on capsule dynamics in shear flow,”
Journal of Fluid Mechanics, vol. 718, p. 569, 2013.

[24]. Zhong-Can O-Y and Helfrich W, “Bending energy of vesicle membranes: General expressions
for the first, second, and third variation of the shape energy and applications to spheres and
cylinders,” Physical Review A, vol. 39, no. 10, p. 5280, 1989.

[25]. Balogh P and Bagchi P, “A computational approach to modeling cellular-scale blood flow in
complex geometry,” J Comp Phys, vol. 334, pp. 280–307, 2017.

[26]. Peskin CS, “The immersed boundary method,” Acta Numerica, vol. 11, pp. 479–517, 2002.

[27]. Balogh P, Gounley J, Roychowdhury S, and Randles A, “A data-driven approach to modeling
cancer cell mechanics during microcirculatory transport,” Scientific reports, vol. 11, no. 1, pp.
1–18, 2021. [PubMed: 33414495]

[28]. Filippova O and Hanel D, “Grid Refinement for Lattice-bgk models,” Journal of computational
Physics, vol. 147, no. 1, pp. 219–228, 1998.

[29]. Dupuis A and Chopard B, “Theory and applications of an alternative lattice boltzmann grid
refinement algorithm,” Physical Review E, vol. 67, no. 6, p. 066707, 2003.

Puleri et al. Page 18

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://doi.wiley.com/10.1002/nme.2859
http://doi.wiley.com/10.1002/nme.2859

[30]. Catmull EE and Rom R, “A class of local interpolating splines,” Computer Aided Geometric
Design, pp. 317–326, 1974.

[31]. Wittmann M, Zeiser T, Hager G, and Wellein G, “Comparison of different propagation steps for
lattice Boltzmann methods,” Computers & Mathematics with Applications, vol. 65, no. 6, pp.
924–935, 2013.

[32]. Randles A, Draeger EW, Oppelstrup T, Krauss L, and Gunnels JA, “Massively parallel models
of the human circulatory system,” in High Performance Computing, Networking, Storage and
Analysis, 2015 SC-International Conference for. IEEE, 2015, pp. 1–11.

[33]. Jenkins J, Dinan J, Balaji P, Peterka T, Samatova NF, and Thakur R, “Processing MPI derived
datatypes on noncontiguous GPU-resident data,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 10, pp. 2627–2637, 2014.

[34]. Tuttle E, “Laminar flow in twisted pipes,” Journal of Fluid Mechanics, vol. 219, pp. 545–570,
1990.

[35]. Lagrava D, Malaspinas O, Latt J, and Chopard B, “Advances in multi-domain lattice boltzmann
grid refinement,” Journal of Computational Physics, vol. 231, no. 14, pp. 4808–4822, 2012.

[36]. Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, and Viggen EM, “The lattice
Boltzmann method,” Springer International Publishing, vol. 10, no. 978–3, pp. 4–15, 2017.

[37]. Jain A and Munn LL, “Determinants of leukocyte margination in rectangular microchannels,”
PloS one, vol. 4, no. 9, p. e7104, 2009. [PubMed: 19768109]

[38]. Langguth J, Cai X, and Sourouri M, “Memory bandwidth contention: communication vs
computation tradeoffs in supercomputers with multicore architectures,” in 2018 IEEE 24th
International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2018, pp. 497–
506.

[39]. Ayala A, Tomov S, Luo X, Shaeik H, Haidar A, Bosilca G, and Dongarra J, “Impacts of
multi-GPU MPI collective communications on large FFT computation,” in 2019 IEEE/ACM
Workshop on Exascale MPI (ExaMPI). IEEE, 2019, pp. 12–18.

[40]. Hynes WF, Pepona M, Robertson C, Alvarado J, Dubbin K, Triplett M, Adorno JJ, Randles
A, and Moya ML, “Examining metastatic behavior within 3D bioprinted vasculature for the
validation of a 3D computational flow model,” Science Advances, vol. 6, no. 35, p. eabb3308,
2020. [PubMed: 32923637]

Puleri et al. Page 19

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Left: APR model overview depicting the coupling between the the finely resolved fluid-

structure interaction within the window (orange) to a coarsely-resolved bulk fluid domain

(red). Middle: a closer view of the multi-resolution interface between the fine and coarse

regions. Right: an orthogonal perspective of the interface between the fine and coarse

lattices, with an example interpolation to the blue square from the support of the yellow

squares. Lattice points for each domain are located at the centroids of the grid made by the

black lines, where Δxc and Δxf refer to the lattice resolution of the coarse and fine grids,

respectively. The resolution ratio, n = Δxc/Δxf, between the bulk and the window has been

reduced for display purposes.

Puleri et al. Page 20

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Diagrammatic depiction of the overall algorithm for one bulk time step. Operations have

been batched into a single category for simplicity. The shown structure reflects optimizations

to best overlap compute-intensive simulation time steps on the GPU/window with the CPU/

bulk. The only synchronization points between the window and bulk parts of the APR

model are the bulk-to-window, window-to-bulk communication routines, and checking/re-

initialization if the window moves.

Puleri et al. Page 21

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Depiction of the parts of the window to be updated with the red and green bounding boxes

showing the pre- and post-move bounding boxes. The shaded white area shows points which

exist in both window locations, while the shaded pink area shows the non pre-existing points

which are interpolated from the bulk domain. The arrow indicates the direction of window

movement.

Puleri et al. Page 22

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Demonstration of multi-resolution validation using flow through a helix of circular cross-

section. (a) General schematic of the helix geometry with an inset of simulation results

for depicting fluid streamlines through the bulk region and the finely resolved window. (b)

Analytical solution [34] for the secondary flow field. (c) Simulation streamlines for the

secondary flow field, through both the bulk and window regions, with contours giving the

axial velocity component in this plane. The yellow box depicts the region of the window

with a 10:1 resolution ratio and a 2 μm bulk resolution. (d) A zoomed-in version of subfigure

(c) showing the smooth secondary flow field between the window in the yellow box and the

bulk outside of the box. The differences in resolution are visible through the node size in the

bulk domain.

Puleri et al. Page 23

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
(a) Visualization consisting of time series where the cell in the window is moving across the

expansion channel. The background pseudocolor represents an instantaneous velocity profile

in the center of the geometry as computed by the coarsely resolved bulk domain part of the

simulation. (b) A comparison of the deformation measured in the CTC as computed by the

APR and eFSI models. The Taylor deformation parameter calculated as a the following ratio

D = (A − B)/(A + B), where A and B are the major and minor axis lengths, respectively. (c)

A comparison of CTC trajectory in an expansion geometry using the APR vs eFSI models.

The radial displacement of the cell with respect to the centerline using the APR model is

within 1% of the displacement using the eFSI model. The vertical yellow line in both (b) and

(c) represents the axial location of the expansion in the channel.

Puleri et al. Page 24

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Strong scaling of the coupled window and bulk simulation on Summit, using simplified

geometries. The left curve is for a system with a cubic bulk domain side length of 7.5 mm

and a cubic window domain side length of 0.26 mm—corresponding to 4.2×108 and 1.4×108

fluid points in the bulk and window, respectively. The right curve is for a larger system with

a cubic bulk domain side length of 18.9 mm and a cubic window domain side length of 0.66

mm—corresponding to 6.7 × 109 and 2.3 × 109 fluid points in the the bulk and window,

respectively. The dashed line represents ideal scaling and the shaded area represents the 95%

confidence interval of ten repeated runs.

Puleri et al. Page 25

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Weak scaling of the coupled window and bulk simulation on Summit, using simplified

geometries. The bulk region had 4.2 × 108 fluid points per node, the window region had 1.4

× 108 fluid points and one CTC. The dashed line represents ideal scaling and the shaded

area represents the 95% confidence interval of ten repeated runs.

Puleri et al. Page 26

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
Effective simulation volumes enabled through APR technique presented in this work,

compared with state of the art (SOTA). Numbers are derived from successful weak scaling

experimental setups.

Puleri et al. Page 27

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.
Simulation of a large, asymmetric bioprinted vascular bed (via [40]) using the APR

algorithm. Streamlines in the window at 4.0 × 105 fine time steps, corresponding to 8.0

× 104 coarse time steps in the bulk are visualized. The cell is also presented at the same

time—which is when it was inserted into the simulation. The two insets progressively zoom

to the simulated cell. The top-right inset shows the simulated cell with a cut-away from the

nearby streamlines.

Puleri et al. Page 28

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Puleri et al. Page 29

TABLE I

Simulation L2 error norms e for flow through a helix based on comparison to analytical solutions.

Resolution ratio (n) e bulk e wind

2 0.0288 0.01013

5 0.0288 0.00993

10 0.0288 0.00997

20 0.0288 0.00995

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Puleri et al. Page 30

TA
B

L
E

 II

E
st

im
at

ed
 m

em
or

y
us

ag
e

an
d

re
so

ur
ce

s
al

lo
ca

te
d

fo
r

th
e

do
ub

le
 b

ra
nc

hi
ng

 m
ic

ro
ve

ss
el

 s
ho

w
s

th
at

 u
si

ng
 th

e
A

PR
 m

od
el

 s
hr

in
ks

 th
e

pr
ob

le
m

 s
iz

e
fr

om

23
5

no
de

s
to

 o
ne

 n
od

e
on

 S
um

m
it.

M
od

el
F

lu
id

 R
es

ol
ut

io
n

N
um

 F
lu

id
 P

ts
M

em
or

y
R

es
ou

rc
es

A
PR

 (
w

in
do

w
)

0.
5

μm
8.

1
×

 1
07

33
.0

 G
B

3
N

V
ID

IA
 V

10
0

G
PU

s
(f

its
 o

n
1

no
de

)

A
PR

 (
bu

lk
)

2.
5

μm
4.

4
×

 1
08

18
3.

0
G

B
2

IB
M

 P
ow

er
9

C
PU

s
(f

its
 o

n
1

no
de

)

eF
SI

0.
5

μm
5.

5
×

 1
010

22
.5

 T
B

14
06

 N
V

ID
IA

 V
10

0
G

PU
s

(f
its

 o
n

23
5

no
de

s)

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

	Abstract
	Introduction
	Methods and Algorithmic Developments
	Lattice Boltzmann Method
	Cell Finite Element Model
	Immersed Boundary Method
	Innovations and Implementation of APR Algorithm
	Multi-Resolution Lattice Boltzmann:
	Moving the Window:

	Computational Design for Heterogeneous Architectures
	GPU Acceleration Within Window:
	Per-Node Resource Allocation:
	MPI Rank Decomposition of APR Method:

	Concurrency and Buffer Packing for Optimal Performance
	Overlap Between Bulk and Window time steps:
	Optimizing Communication Through Buffer Packing:

	Results and Discussion
	Validation of Multi-Resolution and Multi-Physics
	Validating Fluid dynamics Component of APR Simulation:
	CTC Tracking Using APR Predicts the Same Trajectory as a Fully Resolved Simulation:

	Scaling the APR Model to 512 Nodes (3,072 V100 GPUs)
	Memory Savings Due to Application of APR

	Conclusion and Discussion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	TABLE I
	TABLE II

