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Abstract

The ability to track simulated cancer cells through the circulatory system, important for 

developing a mechanistic understanding of metastatic spread, pushes the limits of today’s 

supercomputers by requiring the simulation of large fluid volumes at cellular-scale resolution. 

To overcome this challenge, we introduce a new adaptive physics refinement (APR) method 

that captures cellular-scale interaction across large domains and leverages a hybrid CPU-GPU 

approach to maximize performance. Through algorithmic advances that integrate multi-physics 

and multi-resolution models, we establish a finely resolved window with explicitly modeled cells 

coupled to a coarsely resolved bulk fluid domain. In this work we present multiple validations of 

the APR framework by comparing against fully resolved fluid-structure interaction methods and 

employ techniques, such as latency hiding and maximizing memory bandwidth, to effectively 

utilize heterogeneous node architectures. Collectively, these computational developments and 

performance optimizations provide a robust and scalable framework to enable system-level 

simulations of cancer cell transport.
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I. Introduction

Cancer is the attributed cause of death in one in four cases in the United States [1] and 

metastasis, a complex multistep process leading to the spread of tumors, is responsible for 

more than 90% of these deaths [2]. While we know that circulating tumor cells arrest in 

non-random patterns and that biophysical properties influence their movement, the effect 

of different mechanical properties of the cell and microenvironment on preferential arrest 
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remain poorly understood. In silico models designed to model cellular transport in complex 

3D topologies provide a unique ability to isolate the influence of specific cell properties 

and extract a variety of metrics that cannot be directly measured through in vivo or in vitro 
methods. To properly simulate metastatic dissemination, computational methods need to 

capture arterial length scales orders of magnitude larger than the size of the cell. However, 

direct numerical simulation that relies on sub-micron resolution is intractable for all but the 

smallest systems.

To effectively model cancer cell transport, we have developed an adaptive physics 

refinement (APR) technique. The APR integrates multiphysics modeling by limiting the 

region in which cellular-scale dynamics are realized to the volume surrounding a cell 

of interest—termed the “window,” after initially exploring the concept in [3]. Resolving 

cell dynamics only in the window has the benefits of capturing fluid-structure interaction 

that could not be explained purely through hemodynamics, reducing the amount of 

computationally expensive high-resolution mesh, and limiting the locations in which fluid-

structure interaction is needed. The APR window is required to adaptively follow the cell 

of interest because the distances a cell can meaningfully travel are larger than the window 

itself. We tailored the APR algorithm to the problem of tracking cancer cells because 

the region requiring a more refined resolution is defined by a moving location and not 

by an error estimation (e.g., [4]) which informs refinement during the simulation itself. 

Additional benefits are afforded because the adaptive window can be defined at the start of 

the simulation. Therefore, the APR scheme is designed for modern heterogeneous systems 

whereby the window is distributed on all GPUs and the coarsely-resolved regions can use 

the remaining processor cores.

The limited scope of past modeling to small sub-regions or short time domains is due in 

part to the computational challenge associated with modeling large-scale cellular behavior 

using conventional modeling frameworks, which we refer to as explicit fluid-structure 

interaction models (eFSI). Current state-of-the-art eFSI (details of which can be found 

in [5]) are limited to sub-mm cubed domains when simulating the resolutions necessary 

to capture the cell’s viscoelastic properties, making it impossible to quantify the effects 

of individual cell mechanical properties on long-term cell fate and overall trajectory. To 

overcome this fundamental limitation, we introduce the APR technique to provide system 

scale modeling at cellular resolution within a localized region of interest. The state-of-the 

art eFSI model is built upon and could be considered a subset of the APR approach. The 

APR method, as shown in Figure 1, defines a high-resolution FSI window that follows an 

assigned cell as it flows through a target geometry. The window size and FSI algorithm are 

chosen to accurately capture the environment around the target cell, with the surrounding 

lower-resolution fluid used to enable accurate window motion. Compared with eFSI, the 

APR framework drastically reduces the overall computational cost, making it feasible to 

analyze cell transport over anatomically-relevant length scales (cm to m).

Building a coupled multiphysics capability to be broadly used for circulatory modeling 

requires addressing multiple algorithmic challenges due to 1) multi-resolution coupling: 

the sub-micron resolution fluid in the window must be accurately coupled to the coarser 

fluid in the bulk for the proposed moving window approach to be feasible; 2) adaptive 
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physics refinement: the posed problem requires not just coupling varied grid resolutions, but 

different physics-based models. Within the window, different explicit cell models may be 

used depending on the system and flow, whereas outside the window we only solve fluid 

dynamics equations; and 3) resource allocation: in addition to the challenges of efficiently 

distributing the 3D geometries across many compute elements, balancing both compute and 

memory requirements of the window and the bulk regions between CPU and GPU requires 

careful management.

We address these challenges by introducing a hybrid CPU-GPU, multiphysics technique 

innovating upon our previously established moving window paradigm [3] by 1) introducing 

a multi-block scheme to couple the coarse and fine lattices, 2) creating a framework for 

splitting scales between a tightly coupled CPU-based bulk model and a GPU-based window 

model, 3) developing algorithms to move the window, and 4) efficiently distributing work 

between the host and device on a heterogeneous accelerator-based machine such as the 

Summit supercomputer while maximizing overlap of communication and computation. As 

demonstrated in our results, the APR method we present radically increases the potential 

domain sizes for multiphysics modeling to enable new classes of problems to be tackled 

with in silico methods.

II. Methods and Algorithmic Developments

After decades of innovation [4], [6]–[8], there are now many numerical approaches one can 

use to design a multiphysics code with varying degrees of sophistication. The APR method 

presented in this paper represents one such approach that is tailored to the specific needs 

of circulatory modeling. A key feature is the use of a single, moving region of interest 

in which the numerical accuracy required remains constant throughout the simulation. 

Such specialization has several advantages. For example, this numerical decomposition 

creates two well-contained domains (see Fig. 1) with a sharp interface, thereby creating 

a natural decomposition of computationally-intense window tasks mapped onto GPUs and 

lower-resolution fluid tasks mapped onto CPUs with manageable communication across the 

fully-coupled interface. High GPU utilization can be maintained throughout the simulation 

thanks to the fixed window size. As the simulation evolves, the cell of interest can 

accurately traverse a large branching geometry without a priori assumptions about its 

ultimate destination.

We have previously established the window paradigm in Herschlag et al., whereby the 

modeling of cell-resolved flow is restricted to a small region around the cell [3]. The focus 

on that work was on maintaining the requisite hematocrit (red blood cell volume fraction) 

for biological blood flow and partitioning the simulation domain into regions where different 

physics are resolved so as to reduce the total number of cells explicitly modeled. In this 

manuscript, we significantly advance the adaptive window method by developing a multi-

resolution scheme which adapts to the motion of the tracked cancer cell. Our scheme uses 

the nature of the problem itself, tracking deformable cells of interest, to drive the adaptive 

resolution as the level of detail is not driven by the fluid itself, but by the cells within 

the fluid. This new expression of the problem brings with it challenges, which we have 

overcome, regarding the distribution of work between the finely-resolved window domain, 
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the two-way coupling of physics, and the methods required to move the window as the cell’s 

trajectory evolves. An additional computational difference is which domain is accelerated on 

GPUs.

Within the following subsections we outline the components of the APR method. A diagram 

providing a depiction of the overall algorithm is shown in Fig. 2. The coupled multiphysics 

model is developed within a lattice Boltzmann method (LBM)-based massively parallel 

computational fluid dynamics solver [5], [9]–[11]. The existing GPU-accelerated FSI model 

was further optimized for Summit, a 200 petaFLOPS heterogeneous supercomputer at the 

Oak Ridge Leadership Computing Facility [12]. We additionally augmented the adaptive 

multiphysics algorithm pioneered in [3] with the layer of the multi-block/multi-resolution 

interface between the cell-resolved domain and the bulk flow domain. To integrate the fine-

window simulation with the coarse-bulk, we implemented and extended a multi-resolution 

algorithm previously developed in the literature [13]–[16]. In those previous multi-block 

approaches, the finely-resolved domain was primarily static and here we show a novel way 

of changing the domain as the transient system simulated advances. The details of these 

components, as well as new algorithmic developments, optimizations, and our process for 

validating the implementation are described in the subsections below.

A. Lattice Boltzmann Method

The LBM is a mesoscopic approach for numerically solving the Navier-Stokes equations, 

in which the fluid is represented as set of particles moving between lattice nodes in 

discrete time steps [17]. The lattice Boltzmann equation governs the evolution of a particle 

distribution function fi(x,t), which gives the probability of particles residing at lattice point 

x and time t with a discrete velocity ci. Using the Bhatna-gar–Gross–Krook (BGK) collision 

operator, this equation in the presence of an external force field is:

fi x+ci, t + 1 = 1 − 1
τ fi(x, t) + 1

τ fi
eq(x, t) + F i(x, t) (1)

for an external force distribution Fi, equilibrium distribution fi
eq, and relaxation time τ. 

This equation encapsulates the two core components of the LBM time step – collision and 

streaming – which are implemented as a single unified kernel in code. We employ the 

D3Q19 velocity discretization model, as well as the method of Guo et al. [18] to incorporate 

the external force field into the distribution. No-slip conditions on rigid walls are enforced 

using the halfway bounce-back boundary conditions at the vessel walls.

B. Cell Finite Element Model

Cancer cells are represented as fluid-filled membranes discretized by a Lagrangian 

surface mesh of triangular elements. The membrane model includes both elasticity and 

bending stiffness [19]. The shear and dilational elastic responses of the membrane are 

governed by the Skalak constitutive law, where the elastic energy Ws is computed as: 

W s = Gs
4 I1

2 + 2I1 − 2I2 + CI2
2  for strain invariants I1, I2, shear elastic modulus Gs, and area 

preservation constant C [20]. Loop subdivision [21] provides the basis for the finite element 

method (FEM) membrane force calculations, which determine elemental strains based on 12 
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surrounding elements. Details on the finite element method used can be found in previous 

works, such as [22] and [23]. The Helfrich formulation [24] is used to model resistance 

to bending based on membrane curvature following: W b = Eb
2 ∫S 2κ − c0

2, where Eb is the 

bending modulus, κ and c0 are the mean and spontaneous curvatures, respectively, and S 
is the entire surface area of the cell. The resultant membrane forces are calculated every 

timestep in the same simulation code and used for the spreading routine in the immersed 

boundary coupling. Overall, this method has been shown to accurately resolve complex 

non-linear 3D deformations of biological cells [25] and was recently accelerated on GPUs 

[5].

C. Immersed Boundary Method

The immersed boundary method (IBM) [26] is used to couple the FEM-calculated forces 

in cell membranes to the background fluid with which they flow and has been previously 

demonstrated to capture cancer cell trajectory (e.g., [27]). First, a cell vertex’s velocity V is 

interpolated from the velocities v of surrounding fluid points x using:

V(X, t) = ∑
x

v(x, t)δ(x − X(t)) (2)

We use a cosine-approximated 3D discrete delta function (δ) with four-point support in each 

dimension, as described in [11]. Using these velocities, the positions of the cell vertices are 

updated using Euler integration,

X(t + 1) = X(t) + V(t)Δt (3)

a process referred to in the subsequent sections as advection. The elemental deformation 

associated with these position changes are determined with the FEM as above, and the 

resulting forces G at each cell vertex X are spread back to the surrounding fluid points x as:

g(x, t) = ∑
X

G(X, t)δ(x − X(t)) (4)

In the subsequent sections, the algorithms and operations associated with equations 2 and 4 

are respectively referred to as interpolation and spreading.

D. Innovations and Implementation of APR Algorithm

When modeling biological cells in the circulatory system, one of the main computational 

expenses comes from the fluid resolution needed to accurately recapitulate the flows 

of deformable cells within the circulatory system. As the required resolution drives 

computational cost, there is a motivation to limit it to targeted regions of interest. Moreover, 

the relationship between the resolution and time step in the LBM (further detailed in Sec. II-

D1) leads to a greater computational burden and inherent complexity as multiple time steps 

are needed within the window for every bulk fluid time step. Therefore, it was paramount 

that the bulk and window domains of the simulation be concurrently advancing and that 

the window be accelerated by the high bandwidth and computational power available on 

GPUs in modern heterogeneous systems (see Sec. II-E). Our solution to address these 
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challenges is the APR method. The originality of the overall concept presented herein is a 

moving, finely-resolved domain centered on the cell of interest which is fully coupled to the 

surrounding lower-resolution environment. The combination of the multiresolution scheme 

presented in Sec. II-D1 coupled with an enhanced version of the window tracking algorithm 

(Sec. II-D2) provides a tailored multi-physics adaptive model to track cells across a range of 

vessel sizes.

1) Multi-Resolution Lattice Boltzmann: To simultaneously model both macro- and 

micro-scale blood flows present in the body, we implemented a multi-block LBM (multi-

resolution) scheme for efficient computation. Specifically, we extended a scheme developed 

in 2D [13], [14] and adapt it to 3D similar to Yu et al. and others [15], [16]. However, one of 

the main differences between our implementation of the ‘traditional’ multi-resolution LBM 

algorithms and previous literature is that we maintain the underlying physics of the static 

multi-block methods previously described and significantly expand this approach to derive 

an adaptive algorithm through the coupling with the adaptive multi-physics moving window 

algorithm so that the model adapts over time given the transient nature of the problem being 

studied.

Following Peng et al. [14], we consider a multi-block scheme which couples a coarse lattice 

to a fine lattice. Given the continuity in density and momentum between the coarse and fine 

grids, the equilibrium distribution functions of each lattice are equal [13]:

fi
eq,c = fi

eq,f = fi
eq  . (5)

For the non-equilibrium part of the distribution functions fi
neq  = fi − fi

eq , the stress continuity 

is maintained across the interface by the relation:

fi
neq,c = nτc

τf
fi

neq,f
(6)

where the subscripts c and f refer to the coarse and fine lattices, respectively, and n gives the 

ratio of coarse to fine lattice spacing. Following this, the relaxation times of the coarse and 

fine lattices are related by:

τf = 1
2 + n τc − 1

2 (7)

In contrast to the relationship between the fine and coarse grid used by [28] and [14], 

which scales the post-collision distribution functions, we use the method developed by 

[29] which scales the “incoming” LBM distribution functions. Combining Eqs. 5 and 6, 

we are able to express a direct relationship between the coarse and fine lattice LBM 

distributions. Specifically, the coarse-to-fine and fine-to-coarse transfers at coincident lattice 

points between the two resolutions can be written as:
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fi
c = fi

eq + nτc

τf
fi

neq,f

fi
f = fi

eq  + τf

nτc
fi

neq,c .
(8)

For points on the fine lattice that are not coincident with the coarse lattice, a spatial 

interpolation is required; we use a Catmull-Rom spline to maintain C1 continuity [30]:

fi(x) = aj + bjx + cjx2 + djx3 (9)

with coefficients determined based on derivative continuity. Similarly, a bicubic spline 

interpolation is used where a fine lattice point is not aligned with two dimensions of the 

coarse lattice—an illustration of which is shown on the right-hand side of Fig. 1.

A consequence of the different spatial resolutions is a discrepancy in the physical time 

step size, related by Δtc = nΔtf. Therefore, the window and bulk parts of the simulation 

must synchronize every bulk time step, which corresponds to n window time steps (see 

Fig. 2 for an overview). The data transferred at the synchronization from the coarse grid is 

then advanced via temporal interpolation to the same fractional time step (from the coarse 

perspective) upon which the fine grid operates. To achieve the temporal interpolation at the 

interface points, we employ a Lagrange interpolating polynomial [14]:

fi(x) = ∑
j = 1

3
∏

k = 1

3 x−xk

xj − xk
j ≠ k

(10)

The multi-resolution interface coupling the bulk domain to the window domain with cells 

is shown in Fig. 1 along with a representative interpolation stencil. To enable the parallel 

implementation of this algorithm, when an unaligned lattice point on the edge of the fine 

grid attempts to interpolate from the coarse grid, an overlap of one point into the coarse grid 

must be available to the MPI rank for a given part of the fine lattice. The interface between 

the fine and coarse lattice is spread across MPI ranks with multiple fine MPI ranks being 

neighbors of coarse tasks and multiple coarse MPI ranks being neighbors with fine MPI 

ranks.

2) Moving the Window: As the cell traverses the window and reaches a prescribed 

distance from the boundary, the window is moved to a new location centered on the cell. 

For the present work, we trigger a window move when the cell centroid crosses into a 

designated region near the edge of the window domain which can be controlled by the user. 

The objective is to move the window prior to the cell experiencing any possible edge-effects 

as it nears the boundaries between domains. The communication scheme between fine and 

coarse lattice tasks must be re-initialized every time the window moves as the fine lattice 

points will then border new coarse lattice points.

When the window moves, the Eulerian data within the window must be updated to represent 

the fluid dynamics of the new window location. This window shifting and reconnection 

to the bulk-simulation requires a combination of two newly devised steps which have not 

Puleri et al. Page 7

Proc IEEE Int Conf Clust Comput. Author manuscript; available in PMC 2023 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



previously been developed in literature. Indeed, the work of [3] did not need to consider 

the differences in momentum between the window and bulk domains. First, lattice data 

at the intersection between both the pre- and post-move window bounding boxes must be 

translated, highlighted in white in Fig. 3. The lattice or fluid data referenced includes not 

only the latice Boltzmann distribution values, but also the body force values present at each 

location in the domain. Fluid data in this white-shaded volume only need to be moved 

to their new relative location in the window and therefore are communicated via MPI to 

tasks which manage the respective section of the finely-resolved domain. Next, we need 

to account for new fluid points in the non-overlapping portion of the post-move window 

that did not exist in the pre-move window, highlighted in red in Fig. 3. We generate these 

fine grid fluid points by interpolating from the coarsely resolved bulk domain using tricubic 

interpolation. This new interpolation step is required as the lattice distribution functions in 

the bulk domain at a coarser resolution are essentially in a different unit space from the 

fine domain. Therefore, the Eulerian data must first be transformed using Eq. 8 and then 

interpolated onto all of the new lattice points on the finely resolved grid.

E. Computational Design for Heterogeneous Architectures

To maximize use of heterogeneous CPU-GPU supercomputing architectures, we assigned 

the bulk fluid computation to the CPU and the window computation to the GPU, 

synchronizing the execution between the two, as necessary. The bulk fluid computation has 

characteristics such as a comparatively smaller workload when compared to the window and 

irregular control flow that make it a good fit for the CPU. The window computation, where 

the 3D deformation and dynamics of the tracked cell are fully resolved, has characteristics 

such as fine-grained parallelism, regular control flow, and limited data dependency between 

kernel launches that match well with the GPU. Additionally, as the window maintains 

its size during each move, the data arrays allocated on the GPU at the beginning of the 

simulation can be maintained throughout with only arrays representing the multi-resolution 

interface needing to be updated during each move. By partitioning the computation in this 

way, we also reduce the cost of data reorganization and data transfers among the CPUs and 

GPUs. More details can be found in Sec. II-E3.

Here, we divided the workload such that the the window computations were distributed 

among all GPUs while the bulk fluid used the remaining CPU resources. This is in contrast 

to previous work, where in [3] there was a uniform resolution between the bulk and window 

domains and, naturally, it followed to put the larger fraction of the computational load 

on GPUs. However, as one of the major advances in our work is the multi-block aspect 

which allows for a resolution difference between the bulk and the window, a similarly sized 

window would have n3 more fluid points, making the GPU more effective for window 

computations. Moreover, given the time scaling outlined in Sec. II-D1 (Δtf = nΔtc), there 

is more work given the additional timesteps needed in the window when compared to the 

bulk—even if the number of simulated points in both domains were the same. The window 

also has the added burden of calculating the IBM and FEM updates for the cell(s) in the 

window. In this work we focused on a single cell in the window in order to emphasize the 

multiscale physics and balance the computational workload.
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Simulations for performance analysis were performed on the Summit supercomputer at Oak 

Ridge National Laboratory, the second fastest supercomputer on the TOP500 list (as of 

November 2021), and implementation details provided in the subsequent sections (II-E1, 

II-E2). Other development simulations were performed on the Lassen supercomputer at 

Lawrence Livermore National Laboratory. Both systems utilize a heterogeneous architecture 

with powerful nodes accelerated by dual CPU sockets and four to six GPUs. The same CPU 

and GPU architectures are used on both systems.

1) GPU Acceleration Within Window: All compute-intensive operations of the 

window simulation (i.e., LBM, IBM, and FEM) are executed on the GPUs, which for 

simulations performed on the Summit supercomputer use all six NVIDIA V100s per node. 

Device code was implemented in CUDA. Work related to inter-node communication and 

the multi-resolution coupling such as the coarse to fine spatial interpolation, fine to coarse 

communication, and temporal interpolation (see Sec. II-D1) is performed on the host as the 

data is received from neighboring MPI ranks.

For the fluid component of the cell-resolved simulation, kernels are launched with each 

thread acting upon a single LBM point. The thread computes the collision update for the 

given LBM point and then writes the streamed particle distributions to its neighboring LBM 

points. The collide and stream operations are performed in a fused kernel so as to decrease 

reads and writes to main memory [31].

For the deformable cell component of the simulation, kernels are launched on either cell 

vertices or elements. The immersed boundary interpolation, spreading, and advection kernels 

are launched with each thread working on a particular vertex residing on the current MPI 

task. The finite element force calculation kernel is launched on all elements ‘owned’ by 

an MPI rank with the updated force being written to the constitutive vertices of a given 

element. To optimize performance on the GPU, all buffers relating to the fluid and the 

deformable cells have been arranged in the structure of arrays (SoA) format. This memory 

layout enables overlapped memory accesses of data buffers such as the LBM distribution 

data, fluid body forces, cell positions, cell velocities, and cell forces. As the amount of 

memory available on GPUs is significantly less than CPUs, we aimed to store the minimum 

amount of data needed to perform updates. At a minimum, each fluid point requires 408 

bytes to store two copies of the 19 discrete velocities, a force vector, the indirect streaming 

stencil consisting of 19 ints, and its indirect array location. IBM cells are discretized by 

642 vertices comprising 1, 280 elements per cell. Therefore, each cell requires a minimum 

of 51 kilobytes to store vectors of forces, velocities, positions, and other supporting data.

Details on optimizations made such as buffer packing to enable contiguous memory 

transfers and partial updates to overlap communication and computation are in Sec. II-F.

2) Per-Node Resource Allocation: The bulk fluid is where inter-task communication, 

the systemic-scale bulk LBM simulation, and the window-to-bulk coupling are 

implemented. For all performance results reported, the code makes use of all 42 cores across 

the dual sockets of POWER9 CPUs on Summit. Specifically, 42 MPI ranks per node were 

used, with 36 tasks assigned to the bulk fluid region and 6 MPI ranks to the window region. 
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Code was implemented in C++ and compiled on Summit using the IBM XL compiler 

(v16.1.1), Spectrum MPI (v10.4.0.3), and CUDA 11.

3) MPI Rank Decomposition of APR Method: When developing the paradigm for 

allocation of resources, the main parallelization choice was whether to have the window 

and bulk threads be within a parent MPI rank or whether MPI ranks would be decomposed 

into window and bulk MPI ranks. There would be very little shared information between a 

window and bulk process residing on the same socket or node due to the fact that the smaller 

real dimensions of the window and the movement of the window mean that processes of 

the window that are spatially adjacent to a bulk process would be spread across the entirety 

of the simulation. Therefore, in practice, depending on the problem size, a relatively small 

portion of the bulk simulation will be required to communicate with the window simulation 

tasks. Here, we implement the latter design choice of using MPI subcommunicators to 

decompose the window and bulk tasks. This MPI-based decomposition allows for more 

flexibility when allocating computational resources on a fractional basis between the 

window and bulk versus an on-node parallelization that decomposes the two simulations 

among threads within a given process. To determine the division of resources, the user must 

specify the fraction of MPI ranks to devote to the window.

The bulk fluid part of the simulation is set up by first voxelizing its domain given an input 

triangular mesh describing the surface of the geometry to be modeled. The window part 

of the simulation is set up by defining a high resolution rectangular box, corresponding to 

a desired window size, within the bulk domain. Since the window part of the simulation 

is always shaped as a rectangular prism, we use a simple geometrical algorithm to break 

down the window evenly into equally sized subproblems based on the proportion of total 

MPI ranks devoted to the window in the simulation. The window is initially divided into 

three pieces and then subsequently divided in half on the longest dimensions so that the 

window is as close to ideally balanced as possible to the three GPUs available per socket on 

Summit. It is assumed that work is evenly spatially distributed across all window MPI ranks. 

This assumption is justified for the simulation due to the uniform resolution of the Cartesian 

LBM grid. The bulk part of the simulation is separately load balanced on its respective MPI 

subcommunicator using a recursive bisection algorithm described in [32].

To determine which tasks communicate across the boundary between the coarsely-resolved 

bulk and the finely-resolved window MPI ranks we communicate the bounds of the window 

at the start of the simulation and every time the window moves. Checks for window 

moves are done at a user-controlled frequency to amortize collective operations. Once the 

window and bulk tasks have determined neighbor relations, tasks that are adjacent to the 

multi-resolution boundary update their communication partners and the window MPI ranks 

re-use the same initially allocated CPU and GPU buffers to execute the multi-resolution 

operations. Synchronization between bulk and window MPI ranks spatially adjacent to each 

other occurs during the coarse to fine and fine to coarse multi-resolution coupling operations 

as illustrated in Fig. 2.
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F. Concurrency and Buffer Packing for Optimal Performance

1) Overlap Between Bulk and Window time steps: A diagrammatic depiction of 

the overall algorithm for our method over one bulk time step is provided in Fig. 2. Due 

to the nature of LBM and the relationship between physical time step size and physical 

spacing between lattice points, n = Δtc/Δtf window time steps correspond to one bulk time 

step. Thus, care must be taken in designing this overall algorithm to optimally balance the 

window/bulk components. We therefore optimized our algorithm to best overlap compute-

intensive simulation time steps on the GPU/window with the CPU/bulk.

As shown in Fig. 2, we first execute the LBM in the region encapsulating the border between 

window and bulk. Essentially, this setup splits part of the time step so that the streaming 

discrete velocities from the bulk to the window are transmitted at the beginning of the bulk 

time step. By partially updating the domain, the rest of the fluid in the bulk domain can be 

updated simultaneously while the window completes its operations to finally compute the 

requisite discrete velocities in the other direction to complete the two-way coupling between 

the window and bulk domains. The communication from coarse to fine prior to updating the 

majority of the bulk domain aligns the barrier between window and bulk so that they only 

need to synchronize every time step for the bulk and every n time steps for the window, 

thereby facilitating overlapping window/bulk computations. Without the partial update of 

points that the window task depends upon, the overall time for a time step would be the 

sum of the bulk and window, rather than the maximum. The bulk and window calculations 

subsequently proceed in parallel, at the end of which distribution functions are transferred 

from the fine window grid to inform the bulk simulation at the end of the time step.

2) Optimizing Communication Through Buffer Packing: Communication between 

MPI ranks requires first moving data between the host and device. Inefficient device-

host transfers are significant potential bottlenecks as even modern interconnects such as 

NVLink have low bandwidth relative to HBM2 and DDR. In our case, communicated 

data is not coalesced and is laid out differently on the host and device. The host uses an 

array of structures (AoS) layout for ease of development while utilizing the sophisticated 

caching and lower latency on cache misses available on CPUs. The device uses an SoA 

format described above as it facilitates adjacent threads operating on contiguous data. Our 

communication routines transfer a high volume of data on the order of hundreds of MB 

per node and thus achieving high bandwidth is crucial to application performance. A naïve 

solution of making many small transfers results in low transfer bandwidth and high latency. 

Asynchronous small data transfers launched in parallel are also costly because they cannot 

be overlapped easily with computation, they stall dependent intranode communication, and 

they compete for DDR bandwidth with the memory bound CPU bulk simulation.

To optimize transfer performance, we pack data into contiguous buffers before copying 

between the device and host—an approach shown to dramatically reduce data movement 

in GPU accelerated MPI applications [33]. Custom GPU kernels pack data to enable large, 

contiguous high bandwidth copies to page-locked CPU memory. Similarly, data received 

from MPI communication is packed before a host-device copy and unpacked with a GPU 

kernel. One trade-off of this approach is the additional memory on the device-side required 
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for the packed buffer, though the buffer size is small in comparison to other data structures 

as communicated data is proportional to surface area while owned data is proportional to 

volume. Another trade-off is the overhead associated with packing and unpacking; however, 

this overhead is far outweighed by improved achieved transfer bandwidths that cut overall 

application run time in half.

The data vectors that are on device were allocated using CUDA’s unified memory 

which aided in the ease of development and in reducing the complexity of initialization 

routines. However, we found that manually triggering host-device transfers prior to inter-

node communication using cudaMemcpy resulted in faster performance for computational 

routines. We hypothesize that this performance improvement is due to the manual memory 

transfers obviating the need for any latency in computational kernels while waiting for 

hardware to migrate the required data.

III. Results and Discussion

We systematically establish the accuracy of our method by validating the individual 

components of the algorithm. Then, we present scaling results for the APR model on the 

Summit supercomputer. Finally, we choose a realistic microvessel network as an example 

and provide a memory cost breakdown, focusing on the bandwidth saving due to the APR 

algorithm.

A. Validation of Multi-Resolution and Multi-Physics

To validate the APR algorithm, we first focused on a fluid-only simulation and compare 

against an analytical solution for the velocity field within a complex geometry to isolate 

and validate the multi-resolution component. We then demonstrate that the mapped out 

trajectories of a circulating tumor cell (CTC) through an expanding microchannel using both 

APR and eFSI are consistent. These experiments confirm the ability of the APR method to 

accurately capture both the fluid profile and the path of a single cell without requiring the 

resources of a fully cell-resolved simulation, thereby enabling simulations that would not be 

tractable without our APR approach.

1) Validating Fluid dynamics Component of APR Simulation: To first validate 

the coupling of different resolution grids, we considered flow through a helical tube 

of circular cross-section within which a finely resolved window is placed. The helix 

geometry facilitates comparison with an analytical solution and, importantly, one in which 

all three velocity components are non-zero—thus providing a sufficiently robust validation. 

Furthermore, such a circuitous vessel is representative of the vascular geometric complexity 

which occurs in physiology. We have also conducted comparisons of the APR algorithm 

with analytical solutions for Poiseuille flow and Womersley flow, representing both steady 

state and oscillatory flow states common in the vasculature. In contrast to [3], fluid 

dynamics validation is required as the APR method uses multiple resolutions. Previous 

multi-block methods have typically used resolution ratios of n = 2 or 4 at the sharp interface 

between grids (e.g., [13], [14], [35]), while we tested up to n = 20 across the interface in the 

following section.
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Fig. 4a provides a general schematic of the helix geometry. A helix with geometric 

parameters ϵ = γ = 0.05 and an axial length traversing one turn was used, where ϵ is the 

dimensionless curvature and γ is the dimensionless torsion. The flow was characterized by 

Re = U0a/ν = 50, and the helix cross-section is set to have radius a = 50 μm. We imposed an 

inlet flow rate corresponding to a Poiseuille flow with U0 = 2 m/s and a kinematic viscosity 

of 2.0×106 m/s2. These parameters were chosen to result in a cross-sectional secondary flow 

field with non-negligible asymmetry to amplify the 3D nature of the flow. For the finely 

resolved window, we used resolution ratios n = 2, 5, 10, and 20 for a fixed bulk resolution. 

The window has a side length of 30 μm, and was placed on the helix centerline midway 

across the axial distance spanned by the geometry. For the LBM simulation parameters, we 

used a coarse grid relaxation time (τc) of 0.525 and a corresponding fine-grid relaxation time 

(τf) determined from Eq. 7 for each of the resolution ratios. This τc value was chosen such 

that τf ≤ 1, maintaining LBM’s accuracy [36].

Simulation results are provided in Fig. 4 and Table I for each of the cases. The inset 

in Fig. 4a provides streamlines through the geometry and illustrates the placement of the 

window within the helix and the general flow configuration. Fig. 4c depicts the secondary 

flow field at a cross-section which intersects the window for a representative case, with 

streamlines shown within both the bulk and window regions to illustrate the recirculation 

patterns predicted by the simulation. Both the contours of the axial velocity component in 

this plane and the streamlines are in good qualitative agreement with the analytical result 

shown in Fig. 4a.

We quantified the simulation accuracy for each case by computing the L2 norms based on 

comparison to published analytical solutions for helical flow [34]. We defined our L2 norm 

in Eq. 11, with the error e across points i in the slice. Where us(i) is the simulated velocity 

vector at location i, and ua(i) is the analytical velocity vector at location i, and Ω represents 

the domain of a slice. All vector squares were taken as dot products (e.g., u2 = u · u).

e = ∑i ∈ Ω us(i) − ua(i) 2

∑i ∈ Ω ua
2

1/2
(11)

These values are provided in Table I, broken out in terms of the bulk and window regions, 

with good overall agreement demonstrated by values ranging from approximately 1–3%. 

As bulk resolution is fixed and the accuracy within the window domain is gated by the 

accuracy of the bulk simulation, convergence with increasing n is not expected. Rather, these 

error values remaining consistent indicates that the multi-block coupling scheme remains 

both accurate and stable even for large resolution ratios between the window and bulk. This 

accuracy and stability persists despite large n. Overall, we demonstrated that the APR model 

falls within 3% of the analytical solution for multiple resolution ratios, which validates 

accurate fluid dynamics modeling in complex geometries using the APR algorithm.

2) CTC Tracking Using APR Predicts the Same Trajectory as a Fully 
Resolved Simulation: Next, we utilized the APR method to track the trajectory of a 

CTC through an expanding channel and compare it with that of a fully resolved simulation. 
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Expanding microfluidic channels have been used to study the motion of cells towards the 

channel walls [37], aiding in understanding the role of hemodynamics on the likelihood of 

cell margination. The underlying fluid profile in an expansion leads to a change in radial 

distance away from the center line of the channel, rather than letting the cell travel in a 

straight line down a simple vessel. This validation was used to confirm whether the APR 

model can accurately capture the motion of the cell compared to its eFSI counterpart.

Fig. 5a shows a general schematic of the expanding microchannel. The channel has a length 

of 2000 μm with a width that expands from 200 μm to 400 μm at the z = 400 μm mark. 

For boundary conditions, we input an inlet velocity of 0.1m/s. We generated a window with 

side length 120 μm with the underlying fluid modeled as blood plasma with a viscosity of 

1.2×10−6m2/s. The window utilized a lattice grid spacing of Δxf =0.5 μm and the CPU-based 

bulk flow component used a lattice grid spacing of Δxc =2.5 μm, leading to a lattice 

resolution ratio of n = 5. This window resolution is an order of magnitude smaller than the 

length scale of an individual cell, which is important to most accurately capture the fluid 

flow field which conveys the CTC and in turn accurately resolve the complex deformation of 

the cell.

A visualization of the CTC moving over time and the corresponding window updating its 

position are shown at several timepoints in Fig. 5a. Quantitative results in terms of CTC 

deformation and radial displacement from the centerline of the channel are presented in Fig. 

5a and Fig. 5b for the APR and eFSI models. For reference, the gold line indicates the 

location of the sudden expansion in width. The trajectories from both eFSI and the APR 

model showed strong agreement as they overlap for most of the simulation and difference in 

the asymptotic trajectories of less than 1%, validating the APR model’s ability to accurately 

capture the motion of a single cell through a geometry.

To determine the comparative computational costs of a large eFSI model, we measured the 

time to solution for simulating CTC traversal in an expansion channel. We found that the 

APR and eFSI CTC tracking simulations used 22.7 and 287.9 nodehours using six GPUs 

per node on Summit, respectively. Both simulations were run on 22 nodes and used GPU 

acceleration with different configurations specific to the models used. We extracted times 

spent calculating the fluid-structure interaction of the deformable CTC with the surrounding 

fluid over the course of the parallel simulation. These results emphasize how the APR model 

can significantly decrease the computational expense of large-scale cell-tracking studies and 

open new simulation paradigms for longer length- and time-scale runs.

B. Scaling the APR Model to 512 Nodes (3,072 V100 GPUs)

We completed strong and weak scaling tests on the Summit supercomputer to assess the 

APR performance. A high-resolution (0.5 μm) cubic window containing a single circulating 

tumor cell centered within a coarse (10 μm) cubic domain was used. This simplified 

geometry allowed for straightforward scaling and analysis of the APR implementation free 

of load imbalance across a range of system sizes.

For both the strong and weak scaling results, resource allocation divided each Summit node 

on a per-CPU and per-GPU basis. Specifically, we assign one MPI rank per CPU core, using 
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all cores rather than just one per GPU. For Summit, with 42 CPU cores across two sockets, 

this corresponds to 36 cores per node allocated to the bulk (coarse) fluid and 6 cores along 

with all 6 V100 GPUs per node allocated to the high-resolution window. Additionally, we 

repeated each strong and weak scaling run ten times to capture variability we observed in 

system performance.

The strong scaling results are shown in Figure 6. Two system sizes were run, starting 

from inputs designed to maximize memory usage for 1 and 16 Summit nodes. The smaller 

system contained 418M fluid points in the bulk and 141M fluid points in the window, 

while the larger system contained 6.7B fluid points in the bulk and 2.3B fluid points in 

the window. The largest run consisted of 10, 752 MPI ranks and used 1, 536 GPUs on 

256 nodes of Summit. Both systems showed reasonable strong scaling performance with a 

relative speedup between six and seven times given a 16-fold increase in resources. This is 

consistent with previous observations of memory-bound code on GPUs [38], [39], which are 

less sensitive to GPU occupancy than compute-bound applications. The timing variability 

increased with job size, but overall were smaller than seen in the weak scaling results.

Weak scaling results are shown in Figure 7, run with 5.6 × 108 fluid points per node (4.2 

× 108 bulk, 1.4 × 108 window), from 1 to 512 Summit nodes. We observed weak scaling 

efficiency over 75% out to 64 nodes and above 60% at 256 and 512 nodes. We also saw 

significant run-to-run performance variability emerge, ranging from a coefficient of variation 

(standard deviation normalized by the mean) of 0.5% to up to 19%. Variability was under 

12% for runs smaller than 32 nodes and was bigger at nodecounts above 16 nodes. We 

attributed this to interference from other jobs’ communication traffic, as the increased time 

is observed almost entirely in communication routines. To minimize the impact of this 

contention on our ability to accurately assess the scalability of our implementation, we 

executed multiple runs at different times and present the average results over ten repetitions 

in Figure 7. Our approach reflects the reality of running on a shared resource.

C. Memory Savings Due to Application of APR

To quantify the increase in fluid volume that can be captured at cellular resolution on a fixed 

resource provided by APR over state of the art eFSI models, we compared the maximum 

volume that could be captured on a range of node counts, as shown in Fig. 8. Using 256 

nodes of Summit—corresponding to 24.5TB of GPU memory, the APR method achieves 

a simulated domain size of > 100 mL, whereas eFSI is limited to approximately 10−2 mL 

simulated volume.

Therefore, by using APR we were able to expand the available volume that can be traversed 

by the cell of interest by four orders of magnitude. Through these advancements, we bring 

the vessel sizes that can be simulated with cell-resolved flow from vessels on the order of 

fractions of microns to vessels on the order of centimeters.

To further explore the impact of the APR memory savings, we investigated its use for 

creating “digital twins” of microfluidic and bioprinted devices. Using an example bioprinted 

vascular bed from literature [40], we demonstrated that the eFSI approach would require 235 

nodes on Summit (over 22 TB), while the APR model would require only 1 node (250 GB of 
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memory). The vessel dimensions are approximately 18mm from end-to-end with a volume 

of 6.9mm3. Dimensions for the finely-resolved grid are 0.45mm by 0.45mm by 0.05mm, 

accounting for 0.1% of the total volume.

Comparisons of the theoretical memory and resource usage for the APR and eFSI models 

for the bioprinted vascular bed are shown in Table II. Resources are presented in terms of 

DRAM and HBM found on each compute node on the Summit supercomputer. The number 

of fluid points were calculated for the APR window and bulk components at resolutions Δxf 

= 0.5 μm and Δxc = 2.5 μm, while the eFSI model assumed a cell-resolved grid spacing 

of 0.5 μm throughout the entire domain. A lower bound of 408 bytes per fluid point was 

utilized for these memory and resource calculations, based on the breakdown described in 

Sec. II-E1.

Continuing with the aforementioned asymmetric bioprinted vessel, we additionally 

simulated a window within the geometry on 32 nodes of Lassen with a speed of 0.19 

seconds per coarse time step. Fig. 9 shows the fluid streamlines and starting cell state after 

the fluid had equilibrated. These results highlight the length scales within one simulation 

from a cell of 12 μm in diameter to a vessel on the order of 18mm.

IV. Conclusion and Discussion

Current eFSI models are computationally limited to modeling small sub-regions and brief 

time domains. The presented APR method provided an order of magnitude reduction in 

compute costs to provide a three-fold benefit: 1) cellular resolution at previously intractable 

volumes, which will facilitate new research in the areas of cancer biology and microfluidic 

device design, among others; 2) extension of the time domain that can be modeled by 

moving the requirement from full leadership-scale cluster runs to single node resources that 

can be more readily dedicated for long simulation durations; and 3) empowering searches of 

a very large number of cell types or properties to quantify their impact on cell transport.

In this work, we introduced the APR method and demonstrated its accuracy at capturing 

both the fluid and cellular components. By specifically designing the method to take 

advantage of heterogeneous architectures, communication times were minimized and data 

movement optimized. To achieve these goals, we addressed several algorithmic challenges. 

We coupled the sub-micron cell-resolved window to the coarser bulk domain to bridge the 

disparity in relevant length scales. The multi-resolution capability was transformed to an 

adaptive model which conforms to the problem by tracking, moving, and updating the fine 

resolution domain over the course of simulation. The problem of resource allocation was 

ameliorated by balancing the compute and memory requirements of the fully-coupled APR 

model with careful splitting of simulation resources based on the problem sizes encountered.

Designs for next generation microfluidic devices as well as questions regarding cellular 

interaction and the role of clusters in cancer metastasis would benefit from the APR 

approach which is designed from the ground up to improve time-to-solution, volume 

modeled, resolution captured, and per-node throughput for fluid-structure interaction 

models. In order to establish the validity of the framework, we focused this work on 
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the introduction of the adaptive physics refinement itself and systematically tested the 

multi-resolution coupling, the heterogeneous parallelization scheme, and algorithms to 

efficiently move the window without introducing erroneous forces or momentum under the 

representative use case of a single CTC moving in a large complex geometry. We expect 

this crucial work to set the stage for future studies leveraging APR to capture multiple cell 

interactions at the centimeter or even meter scale.
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Fig. 1. 
Left: APR model overview depicting the coupling between the the finely resolved fluid-

structure interaction within the window (orange) to a coarsely-resolved bulk fluid domain 

(red). Middle: a closer view of the multi-resolution interface between the fine and coarse 

regions. Right: an orthogonal perspective of the interface between the fine and coarse 

lattices, with an example interpolation to the blue square from the support of the yellow 

squares. Lattice points for each domain are located at the centroids of the grid made by the 

black lines, where Δxc and Δxf refer to the lattice resolution of the coarse and fine grids, 

respectively. The resolution ratio, n = Δxc/Δxf, between the bulk and the window has been 

reduced for display purposes.
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Fig. 2. 
Diagrammatic depiction of the overall algorithm for one bulk time step. Operations have 

been batched into a single category for simplicity. The shown structure reflects optimizations 

to best overlap compute-intensive simulation time steps on the GPU/window with the CPU/

bulk. The only synchronization points between the window and bulk parts of the APR 

model are the bulk-to-window, window-to-bulk communication routines, and checking/re-

initialization if the window moves.
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Fig. 3. 
Depiction of the parts of the window to be updated with the red and green bounding boxes 

showing the pre- and post-move bounding boxes. The shaded white area shows points which 

exist in both window locations, while the shaded pink area shows the non pre-existing points 

which are interpolated from the bulk domain. The arrow indicates the direction of window 

movement.
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Fig. 4. 
Demonstration of multi-resolution validation using flow through a helix of circular cross-

section. (a) General schematic of the helix geometry with an inset of simulation results 

for depicting fluid streamlines through the bulk region and the finely resolved window. (b) 

Analytical solution [34] for the secondary flow field. (c) Simulation streamlines for the 

secondary flow field, through both the bulk and window regions, with contours giving the 

axial velocity component in this plane. The yellow box depicts the region of the window 

with a 10:1 resolution ratio and a 2 μm bulk resolution. (d) A zoomed-in version of subfigure 

(c) showing the smooth secondary flow field between the window in the yellow box and the 

bulk outside of the box. The differences in resolution are visible through the node size in the 

bulk domain.
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Fig. 5. 
(a) Visualization consisting of time series where the cell in the window is moving across the 

expansion channel. The background pseudocolor represents an instantaneous velocity profile 

in the center of the geometry as computed by the coarsely resolved bulk domain part of the 

simulation. (b) A comparison of the deformation measured in the CTC as computed by the 

APR and eFSI models. The Taylor deformation parameter calculated as a the following ratio 

D = (A − B)/(A + B), where A and B are the major and minor axis lengths, respectively. (c) 

A comparison of CTC trajectory in an expansion geometry using the APR vs eFSI models. 

The radial displacement of the cell with respect to the centerline using the APR model is 

within 1% of the displacement using the eFSI model. The vertical yellow line in both (b) and 

(c) represents the axial location of the expansion in the channel.
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Fig. 6. 
Strong scaling of the coupled window and bulk simulation on Summit, using simplified 

geometries. The left curve is for a system with a cubic bulk domain side length of 7.5 mm 

and a cubic window domain side length of 0.26 mm—corresponding to 4.2×108 and 1.4×108 

fluid points in the bulk and window, respectively. The right curve is for a larger system with 

a cubic bulk domain side length of 18.9 mm and a cubic window domain side length of 0.66 

mm—corresponding to 6.7 × 109 and 2.3 × 109 fluid points in the the bulk and window, 

respectively. The dashed line represents ideal scaling and the shaded area represents the 95% 

confidence interval of ten repeated runs.
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Fig. 7. 
Weak scaling of the coupled window and bulk simulation on Summit, using simplified 

geometries. The bulk region had 4.2 × 108 fluid points per node, the window region had 1.4 

× 108 fluid points and one CTC. The dashed line represents ideal scaling and the shaded 

area represents the 95% confidence interval of ten repeated runs.
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Fig. 8. 
Effective simulation volumes enabled through APR technique presented in this work, 

compared with state of the art (SOTA). Numbers are derived from successful weak scaling 

experimental setups.
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Fig. 9. 
Simulation of a large, asymmetric bioprinted vascular bed (via [40]) using the APR 

algorithm. Streamlines in the window at 4.0 × 105 fine time steps, corresponding to 8.0 

× 104 coarse time steps in the bulk are visualized. The cell is also presented at the same 

time—which is when it was inserted into the simulation. The two insets progressively zoom 

to the simulated cell. The top-right inset shows the simulated cell with a cut-away from the 

nearby streamlines.
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TABLE I

Simulation L2 error norms e for flow through a helix based on comparison to analytical solutions.

Resolution ratio (n) e bulk e wind

2 0.0288 0.01013

5 0.0288 0.00993

10 0.0288 0.00997

20 0.0288 0.00995
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