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SUMMARY Atmospheric chemosynthesis is a recently proposed form of chemoautotro­
phic microbial primary production. The proposed process relies on the oxidation of trace 
concentrations of hydrogen (≤530 ppbv), carbon monoxide (≤90 ppbv), and methane 
(≤1,870 ppbv) gases using high-affinity enzymes. Atmospheric hydrogen and carbon 
monoxide oxidation have been primarily linked to microbial growth in desert surface 
soils scarce in liquid water and organic nutrients, and low in photosynthetic commun­
ities. It is well established that the oxidation of trace hydrogen and carbon monox­
ide gases widely supports the persistence of microbial communities in a diminished 
metabolic state, with the former potentially providing a reliable source of metabolic 
water. Microbial atmospheric methane oxidation also occurs in oligotrophic desert soils 
and is widespread throughout copiotrophic environments, with established links to 
microbial growth. Despite these findings, the direct link between trace gas oxidation and 
carbon fixation remains disputable. Here, we review the supporting evidence, outlining 
major gaps in our understanding of this phenomenon, and propose approaches to 
validate atmospheric chemosynthesis as a primary production process. We also explore 
the implications of this minimalistic survival strategy in terms of nutrient cycling, climate 
change, aerobiology, and astrobiology.

KEYWORDS atmospheric chemosynthesis, microbial ecology, astrobiology, nutrient 
cycling, climate change, aerobiology, trace gases, hydrogenase, primary production, 
foundational science

THE PROPOSED NICHE FOR BACTERIA THAT LIVE ON TRACE GASES

I n desert soils, water and inorganic electron donors are often scarce (1–5), limiting 
photoautotrophs (6–10) and the chemoautotrophs that use inorganic electron donors 
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present within the soil from non-atmospheric sources (11–13) to low abundances and 
activities. This restricts carbon and energy inputs from these well-established primary 
production strategies. Despite the harsh conditions, microbial communities in these 
arid environments are frequently abundant and diverse. In these ecosystems, alternative 
energy acquisition strategies supplement carbon and energy inputs and aid microbial 
persistence. These strategies include trace gas oxidation (14–16) and heterotrophic 
activities fueled by nutrient inputs from aeolian deposition (17). Until recently, an 
understanding of what processes support primary production in such communities was 
largely unknown.

Hydrogen (H2), carbon monoxide (CO), and methane (CH4) concentrations fluctuate 
within the atmosphere due to extensive biological and chemical cycling, with average 
global mixing ratios of 531 (18, 19), 90 (20–23), and 1,857 (24) ppbv, respectively. These 
gases are ubiquitously present at the interface of air and soil, diffuse readily into the soil 
and microbial cells, and produce electron yields upon oxidation for input into diverse 
biochemical reactions, including the electron transport chain (25–29). As a result, the 
oxidation of these gases represents the use of a highly reliable energy source, particularly 
for microbial communities that are starved of alternative energy sources, such as those 
inhabiting dry and oligotrophic desert soils.

Within terrestrial microbiomes, the activity of high-affinity hydrogenases, carbon 
monoxide dehydrogenases, and methane monoxygenases, capable of oxidizing trace 
gases, has been predominantly linked to microbial survival strategies rather than cellular 
growth (15, 30–33). In cultivated taxa, the link between trace gas oxidation and microbial 
survival has been supported by the upregulation of these enzymes during nutrient 
starvation, particularly in late-stage exponential and stationary growth phases (26, 30, 
34–36). However, given the low abundance of well-characterized primary producers 
in extreme environments, particularly oligotrophic soil niches, and the prevalence of 
diverse microbiomes that include trace gas oxidizing bacteria, it has been hypothesized 
that the energy liberated from trace gas oxidation also supports microbial primary 
production in these environments through a process coined “atmospheric chemosynthe­
sis” (14, 15, 31, 37).

ATMOSPHERIC CHEMOSYNTHESIS: THE PROPOSED PATHWAYS

During atmospheric chemosynthesis, high-affinity [NiFe]-hydrogenases (forms 1h, 1l, 1m, 
and 2a) and carbon monoxide dehydrogenases are proposed to oxidize trace H2 and CO, 
respectively (Fig. 1). These [NiFe]-hyrogenases have a substantially higher affinity for H2 
[Michaelis constant (Km) = 30–200 nM], compared to other forms (Km > 500 nM) which 
are unable to conduct hydrogen oxidation at trace atmospheric levels (38). Similarly, 
a large group of microbial carbon monoxide dehydrogenases have a low affinity for 
CO (Km > 400 nM), making them unable to oxidize CO at atmospheric levels (39). 
Comparatively, higher affinity carbon monoxide dehydrogenases (Km < 400 nM) are 
required for this to proceed (30). The high activity of these enzymes liberates electrons 
for input into the electron transport chain, resulting in the production of ATP (40–42). It 
is hypothesized that, due to the rapid activity of the hydrogenases and carbon monoxide 
dehydrogenases observed during activity studies, sufficient ATP is produced to surpass 
cellular maintenance energy requirements, and is directed into carbon fixation pathways, 
allowing inorganic carbon to be fixed into microbial biomass (Fig. 1) (14, 37, 43).

The Calvin-Benson-Bassham (CBB) cycle is the microbial carbon fixation pathway 
most associated with atmospheric chemosynthesis. This is due to the widespread and 
abundant detection of CBB cycle enzyme markers alongside trace gas oxidation genes 
within soils (44), and derived metagenome-assembled genomes (MAGs) (31, 37, 45, 
46). In particular, these genetic markers co-occur in numerous soils that rapidly oxidize 
trace gases and have shown significant increases in carbon fixation upon trace gas 
stimulation (14, 43, 47). For example, in Robinson Ridge, East Antarctica, soils oxidized 
H2 at 3.49 nmol/h/g and CO at 0.42 nmol/h/g, with 1h [NiFe]-hydrogenase (hhyL), 
carbon monoxide dehydrogenase (coxL), and RuBisCO form IE (rbcL1E) gene expression 
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confirmed. Furthermore, in this study, these genetic markers were detected in 43%, 13%, 
and 30% of the MAGs examined, respectively (14). In contrast, genetic indicators of 
alternative microbial carbon fixation pathways are frequently far less abundant.

Despite the dominance of CBB cycle genes widely associated with atmospheric 
chemosynthesis in oligotrophic desert soils, trace hydrogen oxidation has been more 
recently linked to microbial carbon fixation through the reverse tricarboxylic acid (rTCA) 
cycle (48). In this case, the metabolically flexible genus Nitrospira supplements nitrite-
dependent growth using electrons derived from atmospheric H2 oxidation by high-affin-
ity group 2a [NiFe]-hydrogenase (48). In contrast to oligotrophic cold desert soils, where 
2a [NiFe]-hydrogenase has a low relative prevalence (43, 47), this enzyme is widely 
detected in marine surface waters, with its expression linked to mixotrophic growth in 
the marine bacteria Sphingopyxis alaskensis RB2256 (49). Mixotrophy is the simultaneous 
usage of heterotrophic and autotrophic processes, thereby involving multiple different 
inorganic and organic carbon and energy sources (50).

Links between the microbial oxidation of atmospheric methane and carbon fixation 
offer another alternative atmospheric chemosynthetic pathway. In this case, oxygen-
dependent particulate methane monooxygenase oxidizes methane to methanol, which 
is then oxidized to formaldehyde by periplasmic methanol dehydrogenase (51, 52). After 
being transported into the cell, the formaldehyde is oxidized to formate, which is then 

FIG 1 The proposed pathway for trace gas-driven carbon fixation. Representative protein structures used were obtained from the Research Collaboratory for 

Structural Bioinformatics (RCSB) Protein Data Bank (PDB); 1h [NiFe]-hydrogenase from Cupriavidus necator H16 (PDB ID = 5AA5), carbon monoxide dehydrogen­

ase from Oligotropha carboxidovorans (PDB ID = 1N5W), RuBisCO from C. necator (PDB ID = 1BXN), phosphoribulokinase from Cereibacter sphaeroides (PDB ID 

= 1A7J), NADH dehydrogenase from Thermus thermophilus (PDB ID = 6I1P), succinate dehydrogenase with ubiquinone bound from Escherichia coli (PDB ID = 

1NEK), cytochrome bc1 complex from Paracoccus denitrificans PD1222 (PDB ID = 2YIU), cytochrome c oxidase from Rhodobacter sphaeroides (PDB ID = 1M56), 

and ATP synthase from Paracoccus denitrificans (PDB ID = 5DN6). During atmospheric chemosynthesis, trace gases are oxidized by high-affinity hydrogenases 

and carbon monoxide dehydrogenases. Electrons liberated drive oxidative phosphorylation, which produces ATP, which is subsequently input into the RuBisCO 

form IE-driven Calvin-Benson-Bassham (CBB) cycle. The orientation and size of proteins are not to scale, and the CBB cycle displayed is simplified. C. necator was 

selected as the model organism for 1h [NiFe]-hydrogenase as although lower affinity, higher affinity variations of this enzyme have yet to be structurally modeled 

through pure enzyme studies. Inspired by references (14, 40).
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oxidized to CO2 or incorporated into microbial biomass through the reductive glycine 
pathway and the serine cycle (51, 52).

Atmospheric chemosynthesis is predicted to complement heterotrophic energy and 
carbon acquisition pathways. For example, bacteria within the phylum Eremiobacterota 
encode glycoside hydrolase, complete glycolysis and pentose phosphate pathways, and 
a complete tricarboxylic acid (TCA) cycle, while MAGs from six candidate Eremiobac­
terota genera are putatively atmospheric chemosynthetic, co-encoding a high-affinity 
[NiFe]-hydrogenase, RuBisCO form IE and a complete CBB cycle (53). This indicates 
a mixotrophic lifestyle, with the genetic potential for atmospheric chemosynthesis 
alongside heterotrophy (53). Indeed, the first Eremiobacterota isolate, Vulcanimicrobium 
alpinus, recently obtained from a dark, oligotrophic, volcanic cave ecosystem rich in CO2, 
is a highly metabolically flexible aerobic anoxygenic photoheterotrophic bacterium. This 
strain appears to require elevated CO2 concentrations (>5%) for growth, even when 
cultivated under heterotrophic conditions (54). Despite this finding, V. alpinus was able to 
grow when incubated under the light in organic carbon-rich 6 cm stab cultures, despite 
being sealed to surrounding air and receiving no headspace amendments throughout 
the 30-day incubation (54). Further characterization studies are essential to clarify the 
underlying growth strategies of this novel taxa, including its capacity for atmospheric 
chemosynthesis alongside heterotrophic and photosynthetic mechanisms, and under 
what environmental conditions each is activated. Moreover, the isolation and charac­
terization of additional Eremiobacterota cultures are vital for fully understanding this 
metabolically flexible phylum, including the potential for atmospheric chemosynthesis.

GAPS IN OUR FOUNDATIONAL UNDERSTANDING OF ATMOSPHERIC CHEMO­
SYNTHESIS

Trace gas oxidation can now be viewed as an almost ubiquitous process in terrestrial 
microbiomes, with rates quantified in numerous and diverse soils (55–58), including 
deserts (14, 15, 30, 31, 43, 46, 47), forests (59, 60), and volcanic soils (61–63). However, 
trace gas oxidation is generally slower in soils from temperate desert regions compared 
to their colder counterparts, often requiring wetting that mimics rare rainfall events for 
rapid oxidation to be observed (31, 46, 47). For example, in unwetted Negev Desert 
soils, H2 oxidation rates have been reported as 0.009–0.035 nmol/h/g, and in Australian 
dryland soil, H2 and CO oxidation rates have been reported as 0.00064 nmol/h/g and 
0.0061 nmol/h/g, respectively (31). Comparatively, 6.3–623.9 H2 nmol/mol/h/g and 388 
0–2.6 CO nmol/mol/h/g have reported in unwetted soils from the Antarctic, high Arctic, 
and Tibetan Plateau (43). Furthermore, few studies directly link rapid trace gas oxidation 
rates with significant increases in microbial carbon fixation (p < 0.05); such observations 
are restricted to cold deserts throughout the Antarctic, including the Vestfold Hills (43), 
the Windmill Islands (14), the McMurdo Dry Valleys (43), and high Arctic soils (43), with 
temperate deserts limited to Israel (47). Therefore, while trace gas oxidation has been 
established as a widespread mechanism for sustaining microbial survival, it remains 
unclear how pervasive atmospheric chemosynthesis is as a growth strategy in terrestrial 
ecosystems.

It is also unclear whether trace gas oxidation supports atmospheric chemosynthetic 
growth in other, more diverse environments. The recent identification of trace gas 
oxidizing microorganisms in marine ecosystems (63) demonstrates the potentially 
under-investigated ecological significance of these microorganisms in aquatic environ­
ments. There is a definite need to extend studies of the diversity and function of trace 
gas chemosynthetic microorganisms into diverse environmental reservoirs, including 
aquatic habitats (oceans, rivers, lakes, and wetlands), endolithic environments (inside 
rocks), lithic niches (the deep subterranean biosphere), and the aerosphere.

Rapid improvements in sequencing technologies over the past 5 years have 
expanded our understanding of atmospheric chemosynthesis. Genetic markers for 
trace gas oxidation, including those encoding RuBisCOs, high-affinity hydrogenases, 
and carbon monoxide dehydrogenases, are ubiquitous in soils globally, including 
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throughout the Antarctic (14, 37, 44), Arctic (44), Tibetan Plateau (44), Israel (47), 
Namibia (46), the Americas (55, 64–66), and Australasia (31, 32, 46). In soils, the 
expression of RuBisCO form IE has been detected alongside key markers for trace gas 
oxidation; group 1h [NiFe]-hydrogenase and aerobic carbon monoxide dehydrogenase 
(14). Through extensive MAG analysis, numerous bacterial phyla have been shown to 
have the genetic capacity for atmospheric chemosynthesis. Relevant marker genes, 
in particular rbcL1E (encoding RuBisCO Form IE), coxL (encoding the large subunit of 
carbon monoxide dehydrogenase), and hhySL (encoding small and large subunits of 
high-affinity hydrogenase) co-occur in Actinobacteriota, Ca. Dormibacterota, Eremiobac­
terota, Chloroflexota, Firmicutes, Deinococcota, and Verrucomicrobiota (14, 43).

The taxonomic diversity of microorganisms performing atmospheric chemosynthe­
sis may extend beyond seven phyla, particularly if additional unidentified enzymes 
and pathways are involved. For example, RuBisCO form IE and the CBB cycle are 
typically linked with atmospheric chemosynthesis, as they frequently co-occur and are 
co-expressed alongside trace gas oxidation markers in microbiomes that demonstrate 
significant increases in microbial carbon fixation activity with H2 supplementation at 
atmospherically relevant levels (14, 37, 43, 47). However, other yet to be identified forms 
of RuBisCO may also be involved in the process. RuBisCO forms IC and ID are of particular 
interest due to their close phylogenetic relationship with form IE, their association 
with light-independent primary production and their co-detection with 1h and/or 1l 
[NiFe]-hydrogenases within trace gas oxidizing microbiomes (67) and associated MAGs, 
including the uncultivated Chloroflexota class Ellin6529 (37). Furthermore, novel forms of 
high-affinity hydrogenases continue to be uncovered in diverse taxa and environments 
(37, 38, 43, 49, 68), suggesting that their distribution and ecological significance require 
further elucidation. To fully understand the atmospheric chemosynthetic pathway, 
RuBisCO form IE and associated trace gas oxidative proteins must be purified and 
structurally and enzymatically characterized so that any distinguishing features and 
activities can be determined. Only then can genetic marker detection be implemented to 
accurately assess the taxonomic distribution of microorganisms capable of atmospheric 
chemosynthesis.

Critically, while whole microbiome activity assays indicate the occurrence of 
atmospheric chemosynthesis, there is currently no unequivocal evidence linking the 
processes of trace gas oxidation and carbon fixation in individual microorganisms. 
Although MAG analysis has revealed microbial taxa that exhibit the genetic capacity 
for atmospheric chemosynthesis within these whole microbiomes, further studies are 
required to confirm that these microorganisms perform atmospheric chemosynthesis 
in pure culture. Furthermore, a selection of MAGs with atmospheric chemosynthetic 
potential have cultured representatives, which are heterotrophic or chemoautotrophic, 
having been isolated under conditions rich in organic carbon or inorganic electron 
donors (43). It is vital that these isolated microorganisms are studied under conditions 
conducive to atmospheric chemosynthesis, namely trace H2 and CO exposure under 
dark incubation, to confirm that they conduct this growth mechanism upon nutrient 
starvation.

Numerous approaches to validate this process rely upon the isolation of putatively 
atmospheric chemosynthesis microorganisms. Alternatively, atmospheric chemosynthe­
sis could be validated and characterized in environmental microbiomes or enrichment 
cultures through the application of more sophisticated techniques, including DNA stable 
isotope probing (SIP), metatranscriptomic or metaproteomic analysis. In the case of DNA 
SIP, soils or enrichments would be incubated under conditions that inhibit photoauto­
trophs and stimulate atmospheric chemosynthetic activity, through the inclusion of 
trace gases alongside 13CO2. Following incubation, labeled and unlabeled DNA fractions 
would each be characterized using community profiling and metagenomic approaches. 
This approach would require substantial optimization, particularly regarding incuba­
tion time and soil or enrichment selection. However, if effectively implemented with 
appropriate controls and replication, this technique could prove invaluable for validating 
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atmospheric chemosynthesis, and identifying taxa that undertake this process even 
within difficult-to-culture “microbial dark matter”. Perhaps more simply, metatranscrip­
tomics or proteomics approaches could be applied under similar incubation conditions 
without radio isotopically labeling the headspace CO2. Conducting this experiment 
under varying conditions (e.g., different combinations of atmospheric gases at differ-
ent concentrations) and multiple timepoints could effectively identify the atmospheric 
chemosynthesis pathway and characterize the conditions in which this survival strategy 
is activated. Furthermore, with a binning approach, omics techniques could continue to 
identify atmospheric chemosynthetic taxa within complex microbiomes.

Applying expression-based omics strategies to soil microbiomes has traditionally 
been technically challenging (69) due to RNA instability (70, 71), the co-extraction of 
complex organics (72) which impair molecular analysis (69), and considerable commun­
ity complexity (73, 74). In the case of oligotrophic desert soils, the application of RNA 
and protein extraction methods is additionally challenging, due to low biomass and 
activities yielding lower concentrations of mRNA. However, improvements in sequenc­
ing technologies and methodological approaches have improved outlooks in this area. 
These improvements include the snap-freezing of samples or the use of RNA preserva­
tion solutions (75–77), incorporation of humic and fulvic acid separation and mRNA 
enrichment steps (69), and analysis against custom reference databases obtained using 
metagenomic analysis of identical or highly similar samples alongside public databases 
(78, 79). Recent transcriptomic studies have been successfully conducted on hyper-arid 
soils from the Namib Desert (80, 81). Furthermore, a recent preliminary metaproteo­
mics study conducted on low-biomass and low-activity soil from Casey station in East 
Antarctica identified significant expression of 295 proteins, including RuBisCO form IE 
and group 1h [NiFe]-hydrogenase (82). These successes encourage further application 
of omics techniques to hyper-arid deserts. In addition, pure culture expression-based 
studies are vital for directly linking trace gas oxidation and microbial carbon fixation 
processes in individual taxa, potentially allowing atmospheric chemosynthesis to be 
validated and quantified under a range of environmental conditions.

THE MULTIDISCIPLINARY IMPLICATIONS OF ATMOSPHERIC CHEMOSYNTHE­
SIS

The survival and growth strategies of microbiomes in extreme environments could have 
broad-reaching implications upon nutrient cycling, the minimum requirements for life, 
aerobiology and aeolian dispersal, and informing microbial cultivation for biodiscovery. 
Therefore, it is vital that our understanding of these mechanisms is further developed.

Uncovering roles in global nutrient cycling

Microbiomes have a fundamental role in nutrient cycling (83–85). On a global scale, 
microbial cycling of gaseous compounds, such as carbon dioxide, hydrogen, carbon 
monoxide, and nitrogen is a critical element of biogeochemical cycling (86–88). It is 
becoming clear that bacteria performing atmospheric chemosynthesis may function 
as a prominent carbon sink within desert ecosystems, and there is a need to assess 
and quantify this metabolic functionality in more diverse and under-investigated global 
ecosystems.

Within desert ecosystems, atmospheric chemosynthesis is thought to provide organic 
carbon to higher order, heterotrophic assemblages through the trophic web (15, 16, 
31). Soil heterotrophs oxidize organic carbon as a source of energy through cellular 
respiration, with a proportion of the resulting simpler organic compounds incorporated 
into new microbial biomass through biosynthesis (89). Greater proportions of organic 
carbon assimilated into biomass equates to a higher carbon use efficiency (CUE) (90). 
A study of 23 taxonomically diverse heterotrophic bacterial isolates from temperate 
forest soils found that 26%–81% of consumed carbon was used for growth, averag­
ing ~60% across the conditions studied (91). This suggests that in organic carbon-rich 
soils, heterotrophs assimilate and release CO2 at comparable rates (91). Comparatively, 
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mixotrophs that supplement their energy input through atmospheric gas oxidation 
theoretically require less organic carbon for energy. This allows soil mixotrophs to 
more efficiently allocate carbon derived from consumed organic carbon matter into 
new microbial biomass, as opposed to being terminally respired and released into 
the atmosphere (92). A mixotrophic lifestyle potentially makes them a more effective 
carbon sink than their heterotrophic counterparts, particularly in organic carbon-limited 
environments. To verify this, it would be necessary to quantify and compare rates of 
microbial carbon fixation and respiration in identical soil microbiomes from various 
environments, with and without exposure to trace atmospheric gases. This objective 
poses significant technical challenges, as the metabolic products of respiration (CO2 
and H2O) are commonly consumed by autotrophic carbon assimilation processes (89, 
93). Instead, activity studies that trace and quantify the incorporation of 13C-labeled 
substrates into microbial biomass, or the incorporation of 18O from labeled water into 
newly formed microbial DNA, alongside the release of respiratory CO2 are most widely 
used to measure CUE (94–96). To determine the impact of trace gas oxidation upon CUE, 
this method should be applied to soil microbiomes from a range of environments, with 
and without trace gas exposure. We propose that metabolite-independent methods, 
including metatranscriptomic and metaproteomic analysis, should be implemented in 
conjunction with this research. These techniques could verify and quantify the expres­
sion of respiratory and carbon assimilatory pathways, alongside observed carbon and 
energy fluxes, for comparative analysis within whole microbiomes and isolated bacteria.

Guiding conservation frameworks to include microbes in changing environ­
ments

Terrestrial microbiomes play a substantial role in global carbon cycling, and in some cold 
desert environments such as the high Arctic, this role is rapidly changing due to climate 
change (97–99). It remains unclear how this warming will impact microbial ecology and 
the carbon cycle in Antarctica, particularly in under-studied regions, and in this case, in 
relation to photosynthetic and atmospheric chemosynthetic primary producers.

Under warming conditions, thawing events occur more frequently (100, 101), 
increasing microbial respiration rates, and resulting in the subsequent decomposition 
of ancient organic matter deposits (100–103). This process has the potential to release 92 
(±17) Pg carbon into the atmosphere by 2100 (100). Rising temperatures and moisture 
availability are also expected to alter the carbon cycle in polar soils by increasing the 
biomass and activity of photosynthetic populations. Within terrestrial Antarctica, most 
studies on the effects of climate change have centered on the maritime regions of West 
Antarctica, where plant life is increasing (104–106). However, vascular plants capable 
of counteracting increased CO2 release from microbial decomposition are absent from 
most of the ice-free areas of the continent (107), and photosynthetic microorganisms are 
frequently limited to localized niches (6, 10, 14, 108, 109). In remote coastal regions in 
eastern Antarctica, where phototroph abundances are very low, atmospheric chemosyn­
thesis may be the dominant mode of energy acquisition (14).

A warming Antarctic environment has the potential to alter the carbon balance 
and deselect microorganisms performing atmospheric chemosynthesis. For example, in 
cold oligotrophic soils at Mitchell Peninsula in the Windmill Islands of East Antarctica, 
phyla linked to this process, specifically Eremiobacterota and Ca. Dormibacterota, exist 
in far higher abundances (8.1% and 5.1%, respectively) than in temperate copiotrophic 
environments (110). In the dry Windmill Island soils, these taxa have been shown to 
decrease significantly alongside microbial community turnover when soil moisture levels 
exceeded 10%–12% (111). Given the projected increases in temperature, precipitation, 
and meltwater events across the Antarctic continent (97, 112), particularly the peninsula 
(113), it is critical that long-term monitoring of these soil communities is established. 
Furthermore, trace gas chemosynthetic taxa should be investigated across a broader 
array of threatened cold desert environments before the opportunity is lost.
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Investigations into the impacts of increasing temperatures on photosynthetic and 
atmospheric chemosynthetic primary production are severely limited, both geographi­
cally and temporally (114). Studies that expand our understanding of the distribution 
and functional capacity of microorganisms performing atmospheric chemosynthesis 
across a broader Antarctic continental scale would allow us to further understand the 
impacts of climate change and microbial primary production dynamics. Such knowledge 
will be vital in the development of long-term observation systems and conservation 
strategies (115).

Redefining the minimum nutritional requirements for life

In the ongoing search for extra-terrestrial life, researchers have focused on planetary 
bodies that demonstrate potentially habitable conditions (116). While the requirements 
of habitability have remained controversial (117, 118), one condition that is widely 
regarded as vital is the presence of bioavailable water (119, 120). Although other 
requirements may limit extra-terrestrial life, including the presence of inorganic sources 
of energy, carbon, and trace elements, these are common throughout the universe (121). 
Comparatively, liquid water is far rarer (116, 121), making it the first variable considered 
when assessing a planet’s habitability. There is increasing evidence suggesting the 
presence of liquid water on extra-terrestrial bodies, including the interior of Enceladus 
(122–124), beneath the outer ice sheet of Europa (125, 126), and in the subsurface polar 
regions of Mars (127).

Despite a dependence upon bioavailable water, microbial life has been discovered 
in the most arid environments on Earth (128) with few reports of apparently abiotic 
habitats (13, 129). Within cold hyper-arid deserts, such as those of the McMurdo 
Dry Valleys and the Vestfold Hills in Antarctica, atmospheric chemosynthesis provides 
microbiomes with the energy required for bacterial growth and may also be a strategy 
for generating metabolic water (37, 130). This is because the microbial oxidation of trace 
hydrogen is hydrogenic (2H2 + O2 = 2H2O) (130).

In cold deserts, microbial trace H2 oxidation has been reported to be as rapid as 
421.4 nmol/mol/h/g in unwetted soils (43), resulting in an estimated 0.2 mg of H2O 
produced per day, per gram of soil (130). Trace gas-dependent hydro-genesis could, 
therefore, be a significant source of water for microorganisms residing in hyper-arid 
ecosystems. In hot deserts, estimates of maximum H2 oxidation rates are theoretically 
sufficient to fulfil ecosystem water requirements (37); however, these rates have been 
primarily derived from wetted soils, which oxidize trace gases more rapidly than when 
dry. For example, wetting induces a 60-fold H2-uptake rate increase in Australian soils 
(31) and a 26-fold increase in Judea Hills and Negev Desert soils (47) with these increases 
not reflected in heat-killed controls. However, temporal moisture content fluctuations 
greatly influence the microbial oxidation of H2 in a non-linear manner (131), and the high 
levels of biochemical activity observed during these assays may only occur in situ during 
or after infrequent precipitation or snowmelt events. Therefore, the use of wetted soils 
to calculate H2 oxidation rates and theoretical water yields does not directly substantiate 
the hypothesis that H2 oxidation significantly contributes to cellular water budgets 
within arid and hyper-arid environments where water is naturally scarce. It is critical that 
the role and ecological significance of trace H2 oxidation in metabolic water generation 
are verified under in situ conditions, particularly extending to hot desert environments.

In addition to water, sources of energy and carbon are also vital for life. Subsurface 
environments within “habitable zones” are widely regarded as plausible extra-terrestrial 
habitats, as liquid water and redox disequilibria are more likely to exist, and the impacts 
of strong, mutagenic solar radiation are minimized. Within these environments, solar 
radiation could potentially be utilized by photosynthetic organisms, as this has been 
observed at intensities as low as 0.01 µmol m−2 s−1, which is ∼5 × 10−6 of the direct solar 
flux at Earth (121). However, trace gas oxidation and atmospheric chemosynthesis offer 
alternative mechanisms for energy liberation and light-independent growth, potentially 
allowing for the adaptation of microorganisms to more diverse extra-terrestrial niches.
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Available data indicate that trace gas chemosynthetic microorganisms can survive 
by oxidizing atmospheric gases to support their carbon, energy, and possibly water 
requirements (31, 47). This means that planetary bodies with atmospheric H2 and CO 
or CO2 could be capable of supporting atmospheric chemosynthetic lifeforms (132), 
given that other abiotic factors fell within the biological requirements (116, 121, 133). 
The Martian polar subsurface is a candidate extra-terrestrial environment where trace 
gas oxidation and atmospheric chemosynthesis may occur. Dry permafrost ground in 
the north polar plains of Mars exhibits temperatures warmer than −18°C, water activity 
values >0.6, and a lower atmosphere rich in CO2 (95.32%), CO (0.6%), and H2 (15 
± 5 ppmv) with low levels of O2 (0.16%) available (134–137). Furthermore, in liquid 
environments across Mars, oxygen capable of driving hydrogen oxidation is dissolved 
at concentrations of ~2.5 × 10−6 mol m−3 to 2 mol m−3, and is particularly concentrated 
within polar regions due to lower temperatures (138).

Biosignatures of trace gas oxidation and carbon fixation processes offer new targets 
in the search for extra-terrestrial life. Further research is necessary first to confirm 
whether atmospheric chemosynthesis fulfils the energy, water, and carbon requirements 
of microbiomes within terrestrial analogs on Earth (139), such as the Atacama Desert 
(140, 141) and the McMurdo Dry Valleys (142–144), where the indicator genes have 
already been detected (43, 145). If trace gas oxidation and atmospheric chemosynthesis 
are viable sources of cellular water, energy, and carbon, it will become necessary to 
update the known detection limits of life (146) and incorporate a broader range of 
environments into our search for extra-terrestrial life.

Aerobiology and aeolian dispersal

Earth’s atmosphere is estimated to contain approximately 5 × 1022 microbial cells (147), 
and while bacteria have been detected in the mesosphere (148) and thermosphere 
(149), at altitudes as high as 400 km, the majority of this atmospheric biomass is within 
altitudes below 11 km (150, 151). Aerobiology is a relatively new discipline developed 
throughout the last century, historically focused on human health and food safety, 
particularly the airborne transmission of pollen, fungal spores, and pathogenic taxa 
(152). However, airborne bacteria are ecologically significant as they influence atmos­
pheric composition (153) and climate events, including rainfall (154, 155), and are readily 
dispersed by wind to establish or alter microbiomes within new environments (151, 156, 
157). As a result, there is a growing focus on the role of airborne microorganisms on 
microbial ecology and climate, with a dire need for studies generating more empirical 
data to support foundational science in this area.

Aeolian dispersal of microorganisms is of particular interest in the cold desert 
environment of Antarctica, where selection pressures faced in the atmosphere often 
resemble those in the terrestrial environment, and where geographical isolation and 
circumpolar currents limit microbial inputs from other sources (151). An important 
limitation on aeolian dispersal is the timeframe that microorganisms can remain dormant 
or metabolically active within the troposphere, although this duration is predicted to be 
longer over Antarctica compared to temperate environments (157). It was once believed 
that airborne microorganisms were inherently inert and were thus termed “spora” (148). 
However, studies have shown bacterial survival and growth within supercooled cloud 
droplets (158) and on airborne particles (159). The underlying metabolic processes 
that support airborne bacteria, and the proportion of airborne bacteria that remain 
active, are poorly understood. Organic material at oligotrophic concentrations may 
support heterotrophic communities (151, 160–162), and light exposure may support 
their photosynthetic counterparts (163–165). Actinobacteriota, a phylum widely linked 
to trace gas oxidation and atmospheric chemosynthesis, and Firmicutes and Verrucomi­
crobiota, which have recently been associated with these processes through metage­
nomic analysis (43), have been identified within outdoor aerobiomes, including above 
Antarctica (151, 156, 166, 167) and the high Arctic (168). However, aerobiological 
studies are highly limited in quantity and scope, restricting our ability to form concrete 
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conclusions about the extent of this activity, the source of these microorganisms, and 
their taxonomic distribution throughout the broader aerosphere.

It is hypothesized here that a subset of airborne microorganisms may supplement 
energy needs through trace gas oxidation or use the energy to drive carbon fixation in 
the process of atmospheric chemosynthesis, thereby fulfilling their nutritional require­
ments through the uptake of almost exclusively atmospheric inputs. If this is the case, 
these microorganisms could also make up a substantial, uncharacterized component of 
aerobiology. Furthermore, if trace gas chemosynthetic bacteria do make up a significant 
proportion of the atmospheric microbiome, then they could be substantially influenc-
ing climatic conditions, nutrient cycling, and aeolian dispersal that warrants further 
investigation.

To fill this gap in our understanding, it is recommended that metagenomic and 
transcriptomic analyses are conducted on airborne microbial communities to iden­
tify potentially atmospheric chemosynthetic taxa and characterize their underlying 
functionality. Low microbial biomass in airborne environments (~1 × 104/m3) (160, 
169) has previously restricted the use of omics technologies in aerobiology. However, 
improved study protocols that utilize longer sampling times and carefully designed 
controls, thorough DNA extraction protocols and particulate removal, and repair of 
damaged DNA (170, 171), as well as the development of more sensitive omics technolo­
gies (172, 173), have led to more successful analysis of air samples (170, 173, 174).

We recommend that future investigations into atmospheric chemosynthesis within 
airborne microbiomes focus on samples obtained from the troposphere over deserts. 
This is because the underlying terrestrial environment is likely to contain high abundan­
ces of trace gas oxidizing microorganisms and predicted atmospheric chemosynthetic 
taxa (14, 43, 47). Investigation into atmospheric microbiomes over Antarctica should be 
prioritized, due to the well-established significance of aeolian dispersal on the ecology 
within this region (175–177), higher estimated airborne residence times (157), and the 
existence of a proposed standardized protocol for Antarctic aerobiological sampling and 
analysis (178).

CONCLUSION

Atmospheric chemosynthesis is a potentially important microbial primary production 
process that appears to be widespread in the Earth’s desert soil environments. A growing 
body of evidence suggests that this is an ecologically significant process, with broad-
reaching implications for global nutrient cycling and aerobiology, life detection limits 
and environmental habitability, and for the isolation of novel microorganisms. However, 
many issues remain unresolved: the global extent of atmospheric chemosynthesis, the 
true diversity of functional taxa, the validation of underlying metabolic pathways, and 
the time-dependent kinetics of these processes all remain as future research objectives. 
To fill these substantial gaps in our understanding, sophisticated methodologies should 
be implemented, including global phylogeographical studies in a broader array of 
microbiomes, DNA stable isotope probing, carbon flux experiments, expression-based 
“omics” surveys, and a wide array of relevant kinetic analyses, particularly targeting 
purified proteins linked to atmospheric chemosynthesis. The integration of such data will 
ultimately yield a much more complete understanding of atmospheric chemosynthetic 
metabolism and provide an accurate quantitative estimate of the contribution of trace 
gas chemotrophy to global ecosystem processes.
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