
Virology | Review

Capsid–host interactions for HIV-1 ingress

Sooin Jang,1,2 Alan N. Engelman1,2

AUTHOR AFFILIATIONS See affiliation list on p. 18.

SUMMARY ...................................................................................................................................................................... 1
INTRODUCTION..............................................................................................................................................................2
CAPSID STRUCTURE AND HOST FACTOR BINDING SITES.............................................................................4

The CYP-binding loop.............................................................................................................................................. 6
The Phe-Gly binding pocket..................................................................................................................................6
The R18 pore............................................................................................................................................................... 7
Restriction factors and the tri-hexamer interface..........................................................................................8

CAPSID-HOST FACTOR INTERACTIONS DURING HIV-1 INGRESS.............................................................. 8
HIV-1 capsid uncoating........................................................................................................................................... 9
Capsid-host interactions for cytoplasmic transport...................................................................................10
The NPC and HIV-1 nuclear import...................................................................................................................12
Nuclear trafficking and HIV-1 integration...................................................................................................... 14

CONCLUSIONS AND PERSPECTIVES....................................................................................................................16
ACKNOWLEDGMENTS...............................................................................................................................................17
AUTHOR AFFILIATIONS.............................................................................................................................................18
FUNDING........................................................................................................................................................................ 18
AUTHOR CONTRIBUTIONS...................................................................................................................................... 18
REFERENCES..................................................................................................................................................................18

SUMMARY The HIV-1 capsid, composed of approximately 1,200 copies of the capsid 
protein, encases genomic RNA alongside viral nucleocapsid, reverse transcriptase, and 
integrase proteins. After cell entry, the capsid interacts with a myriad of host factors 
to traverse the cell cytoplasm, pass through the nuclear pore complex (NPC), and then 
traffic to chromosomal sites for viral DNA integration. Integration may very well require 
the dissolution of the capsid, but where and when this uncoating event occurs remains 
hotly debated. Based on size constraints, a long-prevailing view was that uncoating 
preceded nuclear transport, but recent research has indicated that the capsid may 
remain largely intact during nuclear import, with perhaps some structural remodeling 
required for NPC traversal. Completion of reverse transcription in the nucleus may further 
aid capsid uncoating. One canonical type of host factor, typified by CPSF6, leverages 
a Phe-Gly (FG) motif to bind capsid. Recent research has shown these peptides reside 
amid prion-like domains (PrLDs), which are stretches of protein sequence devoid of 
charged residues. Intermolecular PrLD interactions along the exterior of the capsid shell 
impart avid host factor binding for productive HIV-1 infection. Herein we overview 
capsid–host interactions implicated in HIV-1 ingress and discuss important research 
questions moving forward. Highlighting clinical relevance, the long-acting ultrapotent 
inhibitor lenacapavir, which engages the same capsid binding pocket as FG host factors, 
was recently approved to treat people living with HIV.
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INTRODUCTION

H IV/AIDS is a significant global health problem. At the same time, antiretroviral 
therapy (ART) has made a historical impact on the course of the HIV-1 pandemic. 

Prior to ART, HIV-1 infection in the vast majority of cases led to acquired immunodefi­
ciency syndrome and death. Current ART regimens are typically composed of mixtures 
of antiviral compounds that target critical viral enzyme activities, including reverse 
transcriptase (RT) and integrase activities. Despite the huge positive impact of ART on 
public health, drug resistance is not uncommon, necessitating the development of new 
compounds that are active against drug resistant HIV-1 strains as well as new classes of 
drugs that target previously unexploited viral targets. Lenacapavir, which is a first­in­class 
capsid inhibitor, was recently approved to treat HIV-1 infection (1).

The capsid is a key substructure of the HIV-1 virus particle. HIV-1 particles assemble 
at the plasma membrane, through which the fledgling viruses bud (2). The resulting 
lipid-enveloped virions are roughly spherical, ~90–120 nm in diameter. Viral structural 
proteins [matrix (MA), nucleocapsid (NC), and capsid protein (CA)] and replication 
enzymes (protease, RT, and integrase) are produced during virus particle maturation 
via proteolytic cleavage of precursor Gag and Gag-Pol polyproteins, respectively (3). MA 
forms a spherical shell that interacts with the viral membrane (4, 5). Interior to the MA 
lattice lies the viral core. Roughly cone-shaped, the core is composed of the capsid 
outer shell, which itself is composed of CA. Core luminal components, which include two 
copies of the plus-stranded viral RNA genome, NC, RT, and integrase (6–8) (Fig. 1A), play 
critical roles during the early steps of HIV-1 replication.

HIV-1 ingress begins with entry of the virus particle into a susceptible CD4-positive 
cell and terminates with formation of the provirus, which is an integrated DNA copy 

FIG 1 The HIV-1 core, CA, and capsomeres. (A) The drawing depicts the core with luminal components noted in text. IN, integrase. The approximate width of 

the wide end of the core is indicated. (B) Structure of the CA monomer (based on Protein Data Bank (PDB) accession code 4XFY) (9). The NTD, short interdomain 

linker, and CTD are colored forest green, magenta, and pale green, respectively. CYP-binding loop and FG pocket locations within the NTD are noted. N57 and 

N74 sidechains, which form part of the FG pocket, are drawn as sticks. (C) All-atom model of the capsid shell built from 186 hexamers and 12 pentamers (PDB 

accession code 3J3Y) (10) alongside resected CA hexamer [PDB code 4U0D (11)], pentamer [PDB code 3P05 (12)], and hexamer-2 [PDB code 6ECO (13)] structures. 

Hexamer and hexamer-2 colorings are the same as in panel B; pentamer­specific NTDs and CTDs are colored navy and light blue, respectively. Arg18 sidechains 

within the hexamer, which surround the R18 pore label, are shown as sticks. Coalesced NTD Glu75 and CTD Glu212 and Glu 213 residues are shown in space­fill at 

the tri-hexamer interface, where a single copy of each residue is labeled.
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of viral RNA (diagrammed as steps 1–5 in Fig. 2). While unintegrated HIV-1 DNA can 
support some level of viral gene expression (14–18), recent research has clarified that 
heterochromatinization restricts the transcriptional capacity of retroviral DNA prior to 
integration (19–24). Provirus formation, accordingly, critically determines productive 
HIV-1 replication (14–16, 25, 26). The early events of HIV-1 replication are dedicated 
to cell entry (Fig. 2, step 1: Membrane fusion), reverse transcription and trafficking of 
the viral replication machinery from the cell periphery to the nuclear membrane (step 
2: Cytoplasmic transport), nuclear import (step 3), intranuclear trafficking to preferred 
sites of integration (step 4), and, finally, integrase-mediated integration (step 5). Research 
conducted over the past several years has highlighted a central role for the capsid in 
mediating the steps of HIV-1 ingress that occur after cell entry (Fig. 2, steps 2–5). At 
the same time, the capsid helps to regulate the detection of HIV-1 nucleic acids by 
intracellular innate immune sensing machineries (27–33). Herein, we overview details of 

FIG 2 Schematic of HIV-1 ingress. Following virus-cell membrane fusion (step 1), the viral core in association with motor complex adapter proteins such as 

BICD2 and FEZ1 travels along microtubules (step 2) toward the microtubule organizing complex (MTOC)/nuclear membrane. The interaction of the core with 

cell proteins such as CPSF6, NUP358, and NUP153 facilitates transport through the nuclear pore complex (NPC) (step 3). The CA-CPSF6 interaction further 

licenses core incursion into the nucleoplasm (step 4) toward speckle-associated domain (SPAD) regions of chromatin for integration (step 5). The leftward flow 

depicts steady-state condition in the absence of HIV-1 infection whereby the β-karyopherin transportin 3 (TNPO3) engages pre-mRNA splicing factors in the 

cytoplasm to affect their nuclear transport and subsequent downstream targeting of nuclear speckles (43, 44). LAD, lamina-associated domain; LEDGF, lens 

epithelium-derived growth factor; PIC, preintegration complex; Pol II, RNA polymerase II.
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the capsid structure and common host factor binding elements within this structure. 
We then describe the myriad of cell factors that reportedly bind the capsid to aid its 
journey from the cell exterior to the nuclear interior. Along the way, we discuss potential 
experimental approaches to address lingering unknowns on the roles played by these 
host factors in HIV-1 ingress. We note several previous reviews that likewise discussed 
capsid–host interactions during the early steps of HIV-1 replication (34–42), some of 
which readers may wish to consult as background to the more-recently published works 
also presented here.

CAPSID STRUCTURE AND HOST FACTOR BINDING SITES

HIV-1 CA is an ~231-residue polypeptide that folds into two largely alpha-helical 
domains: the N-terminal domain (NTD) and C-terminal domain (CTD) (45, 46) (Fig. 1B). 
Independent CA molecules in turn interact intermolecularly to form distinct ring-like 
capsomeres, which are the building blocks of the capsid shell. The major capsomere is a 
hexamer of six CA molecules, while the minor capsomere is a CA pentamer (9, 12, 47, 48). 
The capsid shell is built from approximately 200 hexamers and exactly 12 pentamers (10, 
49, 50) (Fig. 1C). The pentamers provide declinations to the otherwise regular hexameric 
honeycomb surface to induce curvature for shell closure. The distribution of seven 
pentamers at one end of the structure and five at the opposing end provides the cone 
shape typical of HIV-1 capsids (49).

Different types of in vitro assays are used by investigators to assess the binding 
of host factors to HIV-1 capsid, and it is worth noting that the nature of the binding 
assay can significantly influence the types of conclusions that can be drawn. Reac­
tions performed with purified components, including proteins or peptides, can provide 
evidence for direct protein binding. Depending on reactants and techniques, affinity 
binding constants may be determined, and structure-based approaches such as NMR, 
X-ray crystallography, cryogenic electron microscopy (cryo-EM), or molecular dynamics 
(MD) may further yield atomistic models of bound complexes. Genetic-based approaches 
that then confirm the importance of the visualized protein-protein contacts in HIV-1 
replication round out some of the most complete capsid–host interaction studies.

HIV-1 CA purified from recombinant sources such as Escherichia coli bacteria displays 
favorable biochemical properties, typically yielding protein concentrations as high 
as 20 mg/mL in isotonic salt-containing buffers. Early protein binding studies lever­
aged monomeric CA constructs including the isolated NTD (51–53). Determination of 
conditions that yielded the construction of stable CA hexamers (9, 47) subsequently 
led to their use in binding and structure-based studies, revealing novel contacts with 
the host that were missed from prior studies that utilized unassembled CA substrates 
(11, 54). Still, substrates that harbor the multi-hexamer honeycomb arrangement of the 
mature capsid lattice will capture interactions that exceed the binding capacities of 
individual CA molecules or capsomeres (Fig. 1C).

Recombinant CA-containing proteins under appropriate in vitro conditions template 
the formation of tube-like honeycomb arrays, a.k.a. capsid nanotubes, the surfaces of 
which mimic the surface of the mature capsid lattice (49, 55, 56). HIV-1 Gag is composed 
of MA-CA-spacer peptide 1 (SP1)-NC-SP2-p6 domains and recombinant CA-SP1-NC 
protein in the presence of templating nucleic acid formed nanotubes and capsid-like 
particles (CLPs) in isotonic salt conditions (49). These findings spearheaded the use 
of mature CA lattice-containing structures in host factor binding studies (53, 57–62). 
Because the comparatively large nanotubes/CLPs pellet by centrifugation at nominal g, 
host factor binding is oftentimes assessed via co-pelleting. Although CA on its own could 
also template nanotube formation (55), such structures required comparatively high salt 
concentration (1–2 M) to remain intact, limiting binding assays to nonphysiological salt 
conditions. Investigators have described two common workarounds of this bottleneck. 
One utilizes CA protein modified by cysteine replacement at positions 14 and 45 (A14C/
E45C) (47), which, upon disulfide crosslinking, yields nanotubes that remain stable at 
isotonic salt conditions (63). The other advancement is inositol hexakisphosphate (IP6), 
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which, since its discovery as a CA pocket factor, has significantly widened physiologically 
relevant approaches to capsid-host factor interaction and structure-based studies. At 
pH 8, unmodified recombinant CA in the presence of IP6 can form nanotubes that 
remain stable in isotonic salt buffers. Assembly conditions at pH 6 moreover yield a 
predominance of CLPs (48, 56). Leveraging such CLPs in single particle cryo-EM studies 
(48, 64) in the coming years will predictably revolutionize the field to yield a wealth 
of information on the structural details of HIV-1 capsid-host interactions. Complemen­
tary advancements in structural methodologies include cryo-electron tomography to 
visualize host factors bound to native HIV-1 cores following perforation of viral mem­
branes (65).

On the host factor side, binding is oftentimes measured in the context of cell extracts, 
which fails to address whether host-capsid interactions are direct or perhaps require 
unknown intermediators. In these latter cases, the detected binding is indirect. This 
importantly contrasts results of direct protein binding that can be gleaned from work 

TABLE 1 CA-interacting host factors for HIV-1 ingress

Ligand UniProtKB Intracellular localizationa Binding Binding site Reference(s)

BICD2 Q8TD16 Cytosol Direct – (66, 67)
CLASP2 A0A804HJG7 Cytosol – – (68)
CLIP1 P30622 Cytosol; microtubule ends – – (69)
CPSF6 Q16630 Nucleoplasm Direct FG pocket (11, 54, 58, 70)
CYPA P62937 Cytosol; nucleusb Direct CYP-binding loop (51, 65, 71–73)
CYPB P23284 Nucleus Direct CYP-binding loop (71, 74)
DAXX Q9UER7 Nucleus; nuclear bodies – – (75)
DCTN1 Q14203 Actin filaments; cytosol – – (76)
DIAPH1 O60610 Plasma membrane – – (77)
DIAPH2 O60879 Nucleoli; ER – – (77)
FEZ1 Q99689 Cytosol Direct R18 pore (78, 79)
MAP1A P78559 Cytosol – – (80)
MAP1S Q66K74 Cytosol – – (80)
MAPK1 P28482 Cytosol; NSc – – (81)
MARK2 Q7KZI7 Nucleoplasm; PM – – (82)
MELK Q14680 Cytosol; nucleusd – – (83)
MX2 P20592 Nuclear membranee Direct Tri-hexamer interface (61, 62, 84–87)
NONO Q15233 Nucleoplasm Direct HIV-2 CA residues 49, 101, 102 (33)
NUP153 P49790 Nuclear membrane Direct FG pocket; tri-hexamer interface (11, 53, 54, 60, 88, 89)
NUP214 P35658 Nucleus – – (59, 88, 90)
NUP358 H2QII6 Nuclear membrane; vesicles Direct CYP-binding loop (91, 92)
NUP62 P37198 Nuclear membrane; vesicles Direct – (88, 93, 94)
NUP88 Q99567 Nucleoplasm – – (93)
NUP98 P52948 Nucleoplasm – – (60)
PDZD8 Q8NEN9 Nucleoli; PM – – (95)
PIN1 Q13526 Nucleoplasm; cytosol – – (96)
PQBP1 O60828 NS Direct – (31)
SEC24C P53992 Vesicles Direct FG pocket (90)
SUN1 O94901 Nuclear membrane – – (97, 98)
SUN2 Q9UH99 Nuclear membrane – – (97, 98)
TNPO1 Q92973 Nucleoplasm; cytosol Direct CYP-binding loop (99)
TNPO3 Q9Y5L0 Vesicles – – (100)
TRIM11 Q96F44 Nucleus; cytosol Direct – (101)
TRIM34 Q9BYJ4 Nucleoli; centrosome – – (102)
TRIM5α Q9C035 Cytosol Direct Mature lattice (103–105)
aBased on reference (106), unless noted otherwise. ER, endoplasmic reticulum; NS, nuclear speckles; PM, plasma membrane.
bFrom reference (107).
cBased on reference (108).
dFrom reference (109).
eFrom reference (110).
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with purified components. Table 1 lists human proteins that have been reported to 
bind CA/capsid, most of which will be discussed in the main text, and whether these 
interactions have been shown to be direct. When known, the site/region of the capsid 
that mediates host binding is indicated. The table also lists the physical locations of the 
host factors within the cell. Following are descriptions of distinct aspects of HIV-1 CA and 
the capsid structure that serve as common host factor binding sites.

The CYP-binding loop

Cyclophilin (CYP) A and B, encoded by human PPIA and PPIB genes, respectively, were 
initially shown using the yeast two-hybrid assay to interact with HIV-1 Gag protein (71). 
CYPA was subsequently shown to directly bind an exposed loop within the CA NTD 
(the CYP-binding loop) (45, 51) (Fig. 1B). One consequence of the Gag-CYPA interaction 
is the incorporation of the host factor into virus particles (111, 112). However, subse­
quent research revealed that the interaction with the CYPA protein present in nascently 
infected target cells, as compared to the CYPA in virus particles, determines the host 
factor’s role in HIV-1 infection (113, 114).

The CA-CYPA interaction can impact many steps throughout the early phase of 
the virus lifecycle, including cytoplasmic trafficking (107), nuclear import (115), and 
integration site targeting (52). Recent work has shown that CYPA can regulate the 
interaction of CA with other host factors, including cleavage and polyadenylation 
specificity factor 6 (CPSF6) (107), Sad1 and UNC84 domain containing (SUN) 1 (116), 
SUN2 (117), tripartite motif 5α (TRIM5α) (118, 119), and myxovirus resistance 2 (MX2) 
(120). Parallel studies have identified within the mature capsid lattice two CYPA binding 
sites in addition to the canonical CYP-binding loop (72, 73). Plausibly, the ability to 
regulate the interaction of several host factors with the capsid underlies the multifaceted 
role of CYPA in HIV-1 ingress.

Although much less studied than CYPA, the CA-CYPB interaction has also been shown 
to regulate HIV-1 nuclear import (74). All told, there are more than 20 human proteins 
with predicted cyclophilin-like domains, 7 of which can be depleted from cell extracts 
using glutathione S-transferase (GST)-tagged HIV-1 Gag in a pulldown assay format 
(121). The CTD of the large nucleoporin (NUP) NUP358 (a.k.a. RAN binding protein 2 or 
RANBP2), which is a component of the nuclear pore complex (NPC), contains a cyclophi­
lin-homology (CypH) domain that engages the CYP-binding loop similarly as CYPA (52, 
91, 92). Additional work is required to determine if cyclophilin domain-containing human 
proteins beyond CYPA, CYPB, and NUP358 play a role in HIV-1 ingress and, if so, where 
along the infection pathway they may exert their affects.

The Phe-Gly binding pocket

CPSF6 (11, 54, 70), NUP153 (11, 53, 54, 88), and SEC24 homolog C (SEC24C) (90) use 
specific Phe-Gly (FG) peptides to engage the FG-binding pocket (Fig. 3A). Although 
formulated primarily via the CA NTD (Fig. 1B), CTD elements from an adjacent CA 
molecule within the capsomere ring contribute important elements to the FG pocket (11, 
54, 88, 90, 122). Recent research indicates that CA hexamers as compared to pentamers 
harbor functional FG-binding pockets (48, 123).

While CPSF6 contains but a single FG peptide, NUP153 and SEC24C contain 29 and 
8, respectively. Most of these sequences are located within the C-terminal FG domain 
of NUP153 and the NTD of SEC24C (Fig. 3A). Remarkably, despite the comparatively 
high density of FG peptides within the NUP153 FG domain, capsid binding maps to a 
single FG sequence (53, 89). Recent work has shown that the key capsid-binding FG 
sequences within CPSF6, NUP153, and SEC24C reside within prion-like domains (PrLDs) 
(122) (Fig. 3A, yellow), which are low-complexity regions (LCRs) devoid of charged amino 
acid residues (124). PrLD sequences abutting the FG peptides moreover play critical roles 
in high­affinity capsid binding. Thus, while ~15 residue synthetic FG peptides bound 
recombinant CA hexamers comparatively weakly (Kd ~70 µM to 1 mM), the correspond­
ing GST-tagged PrLD proteins bound purified HIV-1 cores with Kd’s in the 0.3–0.9 µM 
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range. The structural basis of the CPSF6 PrLD-capsid interaction was visualized at the 
comparatively low resolution of ~7.9 Å using CA nanotubes and single-particle cryo-EM, 
which revealed that the FG-anchored PrLDs interlinked intermolecularly to form chains of 
CPSF6 molecules between adjoined rows of CA hexamers (122). These data suggest that 
a specific type of FG/PrLD-mediated higher-order interaction underlies the structural 
basis for avid FG host factor interactions with the HIV-1 capsid. Further details of the 
CPSF6-capsid interaction will be enumerated by studying larger CPSF6 substrates that 
incorporate the host factor’s N-terminal RNA recognition motif (RRM) and/or C-terminal 
Arg-Ser-like domain (RSLD) (Fig. 3A) and/or by improving the resolution of the cryo-EM 
maps. Parallel structure-based work with the PrLD segments of NUP153 and SEC24C will 
reveal if these domains form similar higher-order linked chains as observed for CPSF6.

SEC24C was identified via a mass spectrometry (MS)-based screen for capsid binding 
host factors using recombinant CA nanotubes as bait (90). Interestingly, this screen 
identified several additional host factors with FG sequences amid predicted PrLDs. 
Some of these proteins, such as NUP62, NUP98, and NUP214, were previously shown 
to co-pellet with CA-SP1-NC (60, 88) or CA nanotubes (93) in vitro. Additional work 
is required to determine if PrLD-embedded FGs are responsible for these host-capsid 
interactions, as well as for the interactions detected for other FG-containing host factors 
uncovered in the CA nanotube binding screen (90). Plausibly, the FG pocket mediates the 
binding of a comparatively large array of host factors for HIV-1 ingress.

The R18 pore

A locally enriched electropositive pore composed of Arg18 residues at the center of 
hexameric and pentameric capsomeres provides a binding platform for electronegative 
cellular components including relatively small metabolites and proteins (Fig. 1C). The 
binding of dNTPs to the R18 pore can facilitate their transport into the core for reverse 
transcription (126, 127). IP6 is incorporated into virions via engaging CA residues Lys158 
and Lys227 in the context of HIV-1 Gag. Following maturation, IP6 is coordinated by 
the guanidino sidechain groups of the R18 pore (56, 128–130). Recent research has 
highlighted that IP6 mediates capsid assembly via kinetically trapping pentamers into 
growing hexameric lattices (131). As previously mentioned, its addition to CA assembly 
reactions at pH 6 yields a predominance of CLPs. Adding IP6 to permeabilized virions 

FIG 3 Host factor binding sequences and regions. (A) Domain arrangements of FG host factors NUP153, SEC24C, and CPSF6. Short vertical lines mark positions 

of FG peptides, with green arrows highlighting specific FGs for capsid binding. Yellow shade demarcates PrLDs as predicted from the PLAAC server (124). The 

red ticks at the NUP153 C-terminus demarcate the terminal RRRKCOOH sequence (triple-Arg binding motif underlined). The CPSF6 PrLD lies amid a larger Pro-rich 

domain (PRD), which is denoted as orange rectangle. ZnF, zinc­finger domain; RRM, RNA recognition motif; RSLD, arginine-serine like domain [a.k.a. Arg-mixed 

charge domain or R-MCD (125)]. (B) Sequence alignment of similar stretches of FEZ1 (top) and PQBP1 (bottom) proteins. Numbers refer to amino acid positions 

within the respective proteins. Asterisks demarcate FEZ1 residues shown by MD to bind CA Arg18 at >87.8% occupancy, with E182 and E183 showing near 

complete occupancy (>99.5%). Black and gray backgrounds indicate identical residues and physiochemically conserved side chains, respectively.
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(132) or isolated cores (133) moreover dramatically stimulated the synthesis of dou­
ble-stranded DNA in so-called endogenous reverse transcription assays, yielding DNA 
products that were competent for integration (132). These assays hold great promise to 
reconstitute various aspects of HIV-1 ingress under acutely controlled in vitro conditions.

The kinesin adapter protein fasciculation and elongation factor zeta 1 (FEZ1) binds 
capsid to effect HIV-1 ingress (78) (discussed in detail in the capsid-host interactions for 
cytoplasmic transport section). MD simulations revealed that FEZ1 leverages a stretch 
of electronegative residues, namely Asp180, Glu182, Glu183, and Glu184, to engage the 
capsid via the R18 pore (79). Polyglutamine binding protein 1 (PQBP1) engages HIV-1 
capsid to effect innate immune sensing via cyclic GMP-AMP synthetase (cGAS) (31, 134). 
The N-terminal 46 residues of PQBP1, which, like FEZ1, is enriched in electronegative 
residues (Fig. 3B), interacted with capsids in cells more robustly than did the C-terminal 
fragment composed of residues 47–265 (31). Moreover, binding was effectively negated 
by the R18G amino acid substitution in CA. Additional structure-based work is required 
to determine if PQBP1 electronegative residues analogous to those in FEZ1 directly 
engage the R18 pore.

Restriction factors and the tri-hexamer interface

The main treatise of this paper is CA–host interactions that promote HIV-1 infection. Cells 
additionally harbor so-called restriction factors, which can thwart retroviral replication 
at distinct steps of their replication cycles [see references (135) and (136) for recent 
reviews]. Because some restriction factors, namely TRIM5α from rhesus macaques (137), 
DAXX (138), TRIM11 (101), TRIM34 (102), and MX2 (139, 140), can inhibit HIV-1 ingress via 
engaging the incoming capsid (57, 61, 62, 75, 84, 85), we, for completeness, include brief 
descriptions of these CA-binding protein functionalities.

TRIM5α forms a higher-order hexagonal lattice encasing the HIV-1 capsid (103, 104), 
the consequences of which accelerate uncoating and impede reverse transcription (57, 
137). While TRIM11 also restricts reverse transcription via accelerating uncoating (101), 
DAXX reportedly impedes HIV-1 DNA synthesis via stabilizing incoming cores (75). MX2 
restricts HIV-1 ingress a bit further down the infection pathway. While reverse transcrip­
tion proceeds normally, MX2 restricts the accumulation of nuclear forms of HIV-1 DNA 
(unintegrated and integrated), indicating that MX2 primarily inhibits nuclear import or 
destabilizes post-import viral DNA (139–141).

MX2 is a multidomain protein composed of an N-terminal unstructured region, 
followed by GTPase and stalk domains with interspersed bundle signaling elements 
[reviewed in reference (142)]. While protein oligomerization (61, 62, 85) and the GTPase 
domain (86) contributed to capsid binding, binding is principally determined via an 

11RRR13 triplet of arginine residues that reside near the protein’s N-terminus (87). MD 
simulations have shown that these Arg residues can interact with the electronegative 
side chain-enriched tri-hexamer interface that is formed via the juxtaposition of three 
neighboring CTDs from three distinct CA hexamers (13, 143) (Fig. 1C). Recent work has 
implicated a triplet of arginine residues near the C-terminus of Nup153—1472RRR1474 
(Fig. 3A)—in capsid binding and HIV-1 nuclear import (89). MD simulations moreover 
indicated that this RRR motif—similar to the one in MX2—engages the tri-hexamer 
interface. Thus, while the main FG binding determinant of NUP153 engages individual 
CA hexamers, two additional protein elements—the PrLD and C-terminal RRR motif—
potentially engage in higher-order interactions to impart high­affinity NUP153 binding 
to capsid. Additional research is required to determine the extents that the PrLD versus 
RRR motif contribute to avid NUP153-capsid interactions.

CAPSID-HOST FACTOR INTERACTIONS DURING HIV-1 INGRESS

Following are the descriptions of the roles purportedly played by CA-interacting proteins 
in capsid cytoplasmic trafficking, nuclear transport, and intranuclear trafficking to sites 
of viral DNA integration. A wide variety of approaches are used to assess the roles of 
host cell factors in HIV-1 replication. With the advent of RNA interference (RNAi) in 2001 
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(144), researchers could effectively deplete specific host factors from mammalian cells 
to assess their influences on virus infection and replication. The subsequent applica­
tion of CRISPR-Cas9 has significantly expanded ways in which researchers can deplete 
specific mammalian cellular factors (145). The advent of complementary knockdown 
technologies moreover helps to alleviate concerns that may arise from technique-spe­
cific off­target effects. If the targeted factor is nonessential for cell viability, CRISPR-Cas9 
can further be used to generate knockout cell lines. HIV-1 mutant viruses with changes 
in CA residues that are known to effect capsid-host interactions are also commonly used 
in the field. Because any given CA change might affect interactions with more than one 
cell factor (see preceding section), comprehensive studies often combine the study of CA 
mutant viruses with RNAi/CRISPR-Cas9 depletion strategies.

HIV-1 capsid uncoating

Because measures of capsid uncoating are commonly employed in HIV-1 ingress studies, 
we would be remiss without a short overview of this subject. We by no means intend 
this to be comprehensive—readers are directed elsewhere for reviews dedicated to HIV-1 
uncoating (146–148).

Operationally, uncoating refers to loss of CA or capsomeres (or perhaps larger 
chunks) from the capsid shell during HIV-1 ingress. Both biochemical and microscopy-
based approaches have been used to assess uncoating. Two intermediates of retrovi­
ral early event replication, namely, reverse transcription complexes (RTCs) (149, 150) 
and preintegration complexes (PICs) (151–153), are defined as high-molecular weight 
entities in cell extracts that support the processes of reverse transcription and integra­
tion, respectively. Initial analyses of partially purified HIV-1 RTCs and PICs by western 
immunoblotting revealed little, if any, CA content (150, 154, 155). Evidence for CA among 
active PIC fractions was subsequently revealed using more sensitive enzyme-linked 
immunosorbent assays and immunoprecipitation techniques (156). The fate-of-the-cap­
sid (FOC) assay, which is a state-of-the-art biochemical uncoating assay, leverages the 
pelletability of CA soon after cell lysis. Intact capsids or other high molecular weight CA 
structures partition to the pelleted fraction while uncoated CAs (individual molecules or 
perhaps capsomeres) remain in supernatant fractions (57, 157). FOC assays are routinely 
used in studies that test the effects of specific host factors in uncoating. Advanced 
biochemical approaches that leverage fluorescent microscopy to monitor CA content of 
individual, permeabilized virions attached to glass slides have more recently been used 
to assess uncoating (158, 159).

The advent of advanced cell biology techniques (160) opened the door to in 
situ observation of replication intermediates in intact cells to assess HIV-1 uncoating. 
Numerous approaches, including accessibility of labeled RNA after virus-cell fusion (161) 
or loss of fluorescent marker proteins such as encapsulated, fluid phase green fluorescent 
protein (GFP) (162, 163), have been utilized. Systems that track loss or fluorescent fusion 
proteins with CA (164–166) or CYPA (167, 168) have also been used, though fluorescent 
tagging of important ingress factors such as CA or CYPA may subtly alter protein 
function. Recent attempts to mitigate potential off­targeting affects have leveraged 
the comparatively noninvasive labeling technique known as genetic codon expansion, 
where unnatural amino acid residues can be labeled in situ via click chemistry (169). 
Another confounding issue for ingress studies is that less than half of HIV-1 particles are 
infectious (170), necessarily complicating microscopy-based approaches. One ingenious 
workaround to this caveat is end-point dilution, whereby integration-dependent viral 
reporter genes are used to earmark cells productively infected via single viral particles 
(162, 168).

Different uncoating scenarios can be envisioned during HIV-1 ingress [comprehen­
sively reviewed in reference (171)]. One posits that complete uncoating occurs soon after 
cell entry. While not uncommon in the early literature, the advent of microscopy-based 
approaches has since de-popularized this theory. Another posits progressive loss of CA 
during ingress, with perhaps nuclear transport requiring near-complete uncoating. This 
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stance was in part based on the long-held view that the width of the wide end of the 
HIV-1 core, ~60 nm (Fig. 1A) (50), exceeded the ~40–45 nm width of the NPC inner 
channel (172). However, recent work based on images from intact cells has indicated 
greater plasticity in NPC organization than once thought. In particular, the average inner 
diameter of 64 nm in T cells was sufficiently large to accommodate HIV-1 capsids for 
nuclear transport (173). These observations are consistent with other microscopy-based 
findings that HIV-1 capsids can remain largely intact during nuclear transport (163, 165, 
169), with perhaps some remodeling required to pass through the nucleocytoplasmic 
sieve (166, 174, 175). Recent findings that nuclear factors such as CPSF6 and NUP153 (89, 
122) display high affinity binding to mature capsid lattice substrates is consistent with 
the notion that some aspect of the mature lattice must survive nuclear transport and 
that HIV-1 uncoating primarily occurs post nuclear import (148, 163, 165, 169, 176, 177).

A key driving factor of HIV-1 uncoating is the physical process of reverse transcription 
(178–183). Indeed, imaging reconstituted endogenous reverse transcription reactions 
that also support integration has revealed fenestrations where apparent nascent DNA 
strands extrude from broken or cracked capsid shells (132). Such observations raise 
the intriguing possibility that integration may proceed before the capsid shell is fully 
disassembled.

Capsid-host interactions for cytoplasmic transport

The makeup of the intracellular environment, which is heavily populated by macro­
molecular complexes, precludes directional inward movement of large entities such 
as viruses or subviral complexes by passive diffusion [reviewed in reference (184)]. 
Viruses accordingly have evolved to hijack intracellular transport systems to navigate 
the cellular milieux. The cell harbors a cytoskeleton composed of actin microfilaments 
(~7 nm in diameter), intermediate filaments (~10 nm), and microtubules (~25 nm) 
[reviewed in reference (185)]. Microtubules are dynamic structures composed of 
α-tubulin and β-tubulin that enable the assisted trafficking of cargoes inward toward the 
nucleus (retrograde movement) or outward toward the cellular periphery (anterograde 
movement). The orientation of tubulin dimers within the polymers provides microtu­
bules with intrinsic polarity. Microtubule plus-ends localize toward the cell periphery, 
while the minus-ends congregate with the microtubule organizing complex (MTOC), a 
comparatively large structure that, during interphase, often associates with the nuclear 
membrane (Fig. 2) [reviewed in reference (186)]. Different types of molecular motor 
proteins, namely dynein and kinesins, associate with microtubules to facilitate retrograde 
versus anterograde transport, respectively [see reference (187) for review].

Microtubules can become locally stabilized, which is associated with specific 
α-tubulin post-translational modifications including acetylation and detyrosination (188). 
HIV-1 infection induced the formation of stable microtubules, which required the 
function of microtubule plus-end tracking proteins (+TIPs) including microtubule-associ­
ated protein (MAP) RP/end-binding (EB) family member 1 (MAPRE1; a.k.a. EB1) (189), 
diaphanous-related formin 1 (DIAPH1), and DIAPH2 (77). While CA-SP1-NC nanotubes 
depleted DIAPH1 and DIAPH2 from cell extracts in vitro, MAPRE1 has not revealed capsid 
binding activity (69, 77). Interestingly, the sequence of the MAPRE1 C-terminal region 
mimics the sequence of the N-terminal portion of the HIV-1 CA CTD, which coincides 
with the phylogenetically conserved major homology region (69, 190). Thus, CA has 
seemingly evolved to mimic MAPRE1 to congregate +TIPs for effective microtubule 
engagement. Indeed, other +TIPs, namely cytoplasmic linker protein (CLIP)-associated 
protein 2 (CLASP2) (68) and CLIP1 (a.k.a. CLIP170) (69), have been shown to facilitate 
HIV-1 cytoplasmic transport and bind HIV-1 CA-SP1-NC nanotubes in cell extracts. MAPs 
MAP1A and MAP1S also facilitate microtubule stabilization and can interact with HIV-1 
cores to affect their retrograde transport (80). Stabilized microtubules provide tracks for 
comparatively long-range motility, which is exploited by HIV-1 for the inward movement 
of its core.
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HIV-1 capsids bind specific adapter proteins to engage ATP-metabolizing motors 
for microtubule-dependent transport. Eukaryotic cells harbor numerous kinesins but 
only one type of cytoplasmic dynein, which, during interphase, plays critical roles to 
traffic membrane-bound organelles, RNAs, protein complexes, and viruses [reviewed in 
reference (191)]. Dynein is a 13-component protein complex composed of heavy chains 
DYNC1H1 and DYNC2H1, intermediate chains DYNC1I1 and DYNC1I2, and various light 
intermediate and light chains. Dynein function requires the co-factor dynactin, which 
itself is a multi-component complex. Adapter proteins, which typically harbor coiled-coil 
domains, tether cargoes to the dynein-dynactin supracomplex to effect directional 
movement (191). The adapter protein bicaudal D homolog 2 (BICD2) enhanced the 
affinity of the dynein-dynactin interaction and dramatically activated the motility of the 
macromolecular complexes to move long distances in vitro (192, 193). BICD2 effectively 
bound CA/CA-SP1-NC nanotubes in vitro and was required for optimal HIV-1 infection 
and cytoplasmic trafficking (66, 67). By using purified recombinant BICD2 proteins, the 
interaction with capsid was moreover shown to result from direct binding (67). Several 
dynein/dynactin proteins in cell extracts also co-pelleted with CA-SP1-NC/CA nanotubes 
in vitro. Because the binding of these proteins to capsid lattices depended on the cellular 
concentration of BICD2, dynein/dynactin protein binding was almost certainly indirect 
and mediated via BICD2 (67) (Table 1). A separate study determined that the dynactin 
component DCTN1 can act as a +TIP to compete with CLIP1 for binding to HIV-1 cores 
and accordingly negatively regulate microtubule engagement and viral infection (76).

Kinesins comprise a comparatively large superfamily of ~45 related genes in mice that 
can be subclassified into 15 families [reviewed in reference (194)]. Based on the relative 
location of kinesin motor domains, family members can be broadly typed into N-kinesins 
(N-terminally located motors), M-kinesins (midregion located motors), and C-kinesins 
(C-terminal motors). While M-kinesins typically support retrograde transport of cargoes, 
N-kinesins typically support anterograde transport (194). Indeed, early studies implicated 
N-kinesins KIF4 (195, 196) and KIF3A (197) in Gag transport for retroviral assembly and 
release from cells. Perhaps counterintuitively, N-kinesins have also been implicated in 
retrograde transport of the HIV-1 core.

Depletion of cellular N-kinesin KIF5B was initially shown to delay the process of 
capsid uncoating in HIV-1-infected cells (198). Akin to dynein-dynactin, adapter proteins 
tether kinesin motor proteins to cargoes, and the kinesin adapter protein FEZ1 was 
subsequently shown to co-pellet with CA-SP1-NC nanotubes and facilitate the inward 
movement of HIV-1 cores (78). Purified FEZ1 proteins specifically interacted with CA 
hexamers and, as discussed above, MD simulations have yielded an atomistic model 
of electronegative FEZ1 residues that engage the R18 pore (79). Phosphorylation of 
FEZ1 by microtubule affinity­regulating kinase 2 (MARK2) in association with HIV-1 
cores enhanced FEZ1’s interaction with KIF5B and facilitated retrograde transport and 
HIV-1 infection (82). KIF5B moreover induced the relocalization of NUP358 from the 
nuclear membrane to the cytosol in a manner that was dependent on the capsid-CPSF6 
interaction (199). Concordantly, capsid-CPSF6 complexes have been observed to traffic 
along microtubules (107). Plausibly, the connection of KIF5B with downstream factors 
such as NUP358 and CPSF6, which are predominantly associated HIV-1 nuclear import 
and intranuclear trafficking, respectively (199–203), instills overall retrograde movement 
for a kinesin that would usually move cargoes anterogradely. It also seems possible that 
KIF5B/FEZ1 could support the anterograde transport of HIV-1 cores from the MTOC to 
proximal NPCs for nuclear transport (Fig. 2) (199).

SEC24C is a member of the coat protein complex II or COPII complex that typically 
plays a role to transport cargoes from the endoplasmic reticulum to the Golgi apparatus 
(204), though a separate COPII component, SEC13, forms part of the NPC (205, 206). As 
described above, SEC24C was uncovered in an MS-based screen for host factors that 
interact with CA nanotubes (90). Knockout cells revealed a critical role for SEC24C in 
the production of HIV-1 under multi-cycle replication conditions. When analyzed under 
single round infection conditions, HIV-1 displayed similar 2- to 3-fold defects in core 
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stability, reverse transcription, and nuclear import, indicting an important role for this 
FG-pocket factor to maintain optimal core stability during HIV-1 ingress (90).

Phosphorylation can also reportedly regulate capsid stability during the early stage 
of HIV-1 infection. Maternal embryonic leucine zipper kinase (MELK) phosphorylates CA 
residue Ser149 for optimal reverse transcription and core uncoating (83). Peptidylprolyl 
cis/trans isomerase, NIMA-interacting 1 (PIN1) is a phosphopeptide-binding enzyme that 
isomerizes phosphorylated (S/T)-P peptide bonds (207). Virion-associated mitogen-acti­
vated protein kinase 1 (a.k.a. ERK2) phosphorylation of CA residue Ser16 was critical for 
the association of PIN1 with capsid and optimal core uncoating and HIV-1 infection (81, 
96).

PDZ domain-containing protein 8 (PDZD8) was identified through a yeast 2-hybrid 
screen to interact with HIV-1 Gag and to play an important role in virus infection 
(208). PDZD8 in cell extracts was subsequently shown to co-pellet with CA-SP1-NC 
nanotubes, and RNAi-mediated knockdown reduced HIV-1 infection via accelerating 
the rate of capsid uncoating, which negatively impacted reverse transcription (95). 
Perhaps unexpectedly, HEK293T and HeLa cell clones knocked out for PDZD8 expression 
supported the wild-type levels of virus infection, indicating that PDZP8 is not an essential 
HIV-1 host cofactor (209).

The NPC and HIV-1 nuclear import

Nucleocytoplasmic transport is regulated by the NPC, a massive assembly of NUPs that 
precludes passive diffusion of comparatively large macromolecules (210). Eukaryotic 
cells have accordingly evolved specific chaperon-like nuclear transport receptor (NTR) 
proteins, also called β-karyopherins, to assist in the nucleocytoplasmic transport of 
comparatively large cellular cargos [reviewed in reference (211)]. Occasionally, cellular 
cargoes can access the NPC through direct binding of one of its constitutive components 
(212).

The human NPC is constructed from ~33 NUPs arranged in 8-fold rotational symmetry 
[reviewed in reference (206)]. Various NUP subcomplexes, namely cytoplasmic NUPs, 
the Y-complex, inner ring NUPs, pore membrane proteins, and nuclear basket NUPs, 
come together to form the NPC. Of the NUPs that have been shown to interact with 
CA (Table 1), NUP358, NUP214, and NUP88 are cytoplasmic filament NUPs, NUP62 and 
NUP98 are inner ring NUPs, and NUP153 is a nuclear basket NUP. Nine of the 33 human 
NUPs contain FG-repeat domains, including NUP214, NUP62, NUP98, and NUP153. 
The molecular sieving property of the NPC is determined by conglomeration of NUP 
FG-repeat domains within the inner NPC channel (206). It is important to note that capsid 
binding activity does not necessarily translate to a role for the NUP protein in HIV-1 
nuclear import. For example, NUP214 function has been mapped to the comparatively 
late step of HIV-1 mRNA nuclear export (59).

The HIV-1 capsid has evolved specific interactions with NPC components to affect 
its nuclear transport. The interaction with NUP358 likely docks HIV-1 cores at the NPC 
(52, 59, 199). Although capsid binding predominantly maps to the RBD4-CypH didomain 
composed of the C-terminal CypH and adjacent Ran-binding domain IV (52, 59, 94), 
CA-SP1-NC in cell extracts co-pelleted a C-terminal truncation mutant lacking these 
domains about 40% as efficiently as full-length NUP358 (59). Plausibly, this residual 
binding activity accounts for CypH-independent NUP358 functionality under certain 
conditions of HIV-1 infection (213). Although not classified as possessing an FG-repeat 
domain, NUP358 does harbor 22 FG dipeptides, including 19 upstream of the C-terminal 
didomain. None of these, however, is predicted to lie within a PrLD. Additional work 
is required to map NUP358 determinants upstream of the RBD4-CypH didomain that 
contributes to capsid binding.

Binding reactions conducted with purified proteins have shown that NUP358 and 
NUP153 interact directly with CA (52, 53). HIV-1 nuclear import is moreover impeded 
in NUP358 or NUP153-depleted cells (52, 59, 200, 214). The β-karyopherin transportin 1 
(TNPO1 or TRN-1) has also been shown to directly bind CA (99). While this study revealed 
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significant HIV-1 uncoating and nuclear transport defects in TNPO1-depleted cells, other 
studies reported no obvious HIV-1 infection defect in cells depleted for TNPO1 (93, 
215). Additional work is accordingly warranted to investigate the contribution of the 
CA-TNPO1 interaction to HIV-1 nuclear import.

The β-karyopherin TNPO3 (a.k.a. TRN-SR2) has also been shown to play a signifi­
cant role in HIV-1 nuclear import (216). Although first thought to be mediated via an 
interaction with integrase, subsequent work showed that the requirement for TNPO3 
during HIV-1 infection mapped to CA and not integrase (217). Additional work has 
indicated that the connection between TNPO3 and CA is predominantly indirect and 
mediated via CPSF6 (218, 219). CPSF6, which is a member of the cleavage factor I 
mammalian (CFIm) complex (220), was first implicated in HIV-1 biology via the ability of 
a C-terminal truncation variant to potently restrict HIV-1 infection and nuclear import 
(58). Subsequent work revealed that TNPO3 is the β-karyopherin responsible for CPSF6 
nuclear import (221, 222). In this way, TNPO3 depletion partially relocalized the normally 
nuclear sequestered CPSF6 to the cytosol, the consequences of which restricted HIV-1′s 
access to the nucleus (218, 219). Although CA-SP1-NC could deplete TNPO3 from cell 
extracts (100), this binding may very well be mediated via CPSF6. Additional work with 
CPSF6 knockout cells (223) and purified TNPO3 protein (221) could help to clarify if 
TNPO3 binds CA in a CPSF6-independent manner. Follow-up work has confirmed a 
marginal role for the TNPO3-integrase interaction in HIV-1 nuclear import (224, 225).

The role of CPSF6 in HIV-1 infection is highly context dependent, in general requiring 
spreading replication assays with primary cells to see substantial effects. For example, 
HEK293T knockout cells, if anything, supported increased levels of HIV-1 single-round 
infection compared with control cells (223), similar to responses observed using other 
transformed cell types depleted for CPSF6 expression via RNAi (58, 226). While RNAi-
mediated knockdown in primary macrophages yielded an approximate 2.5-fold infection 
defect under single round conditions (203), this approach in a separate study counter­
acted the ability for the cells to support spreading HIV-1 replication (29). CRISPR-Cas9-
mediated depletion of CPSF6 from primary, resting CD4+ T cells moreover reduced HIV-1 
infection ~7- to 10-fold under single round conditions (227). Approximate 2- to 3-fold 
reductions in HIV-1 nuclear import have been reported under certain CPSF6 knockdown 
conditions (201, 203).

An ingenious approach to the study of HIV-1 nuclear import leveraged a drug 
inducible forced dimer construct of NUP62, called Nup62DG (176). By staggering the 
time of drug addition, these investigators were able to assess the time required post-
infection to achieve 50% nuclear import, which ranged from about 3–4 h in CD4+ 
T cells and macrophages to about 7 h in HeLa cells. The resistance of the P90A CA 
mutant virus, which is defective for CYPA binding (111), to the effects of Nup62DG 
(176) suggests a potential cyclophilin component to NUP62 dependency during HIV-1 
infection. Additional work with factor­specific knockdowns under baseline infection 
and drug-induced Nup62DG restricted conditions could potentially flush out such a 
dependency.

Recent in vitro work with DNA-origami mimics of the human NPC (called NuPODs for 
NUPs organized by DNA) suggests a potential model for HIV-1 nuclear import (94). The 
NuPOD scaffold afforded specific placement of NUP domains, or in the case of NUP62, 
the full-length protein, in regions representative of the NPC cytoplasmic face (NUP358 
RBD4-CypH didomain), nuclear face (NUP153 FG domain), or in between (NUP62). The 
NUP153 FG domain revealed strong preference for binding to comparatively curved 
regions of the capsid lattice, including the narrow “tip end” of HIV-1 cores that feature 
five capsomere pentamers (Fig. 1C). Based on co-pelleting of purified proteins with 
CA nanotubes, the NUP153 FG-repeat domain bound capsids at higher affinity than 
did either the NUP358 RBD4-CypH didomain or full-length NUP62 protein. Accordingly, 
after NUP358-mediated docking at the NPC, an apparent binding affinity gradient from 
the cytoplasmic side of the NPC toward the nucleoplasm, combined with the affinity 
of the NUP153 FG domain for the highly curved tip, would naturally orient the core 
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for tip­first insertion and passage through the NPC. While the tip­first model is con­
sistent with some tomographic images of HIV-1-infected cells (173), there are several 
caveats with the NuPOD system that deserve further testing. First, while the FG domain 
seemingly fully accounts for NUP153’s capsid binding activity (53), elements upstream 
of the RBD4-CypH didomain, as mentioned, contribute to the NUP358-capsid interaction 
(59). Larger versions of NUP358 need to be tested to confirm if indeed NUP153 binds 
HIV-1 capsids with higher affinity than does (full-length) NUP358. Second, although 
CA-containing nanotubes readily interacted with NUP62 in cell extracts (88, 93) and with 
purified NUP62 protein (94), they failed to engage NUP62-engrated NuPODs. Moreover, 
engrafted NUP62 presented a barrier that HIV-1 cores could not effectively breach (94). 
Numerous FG NUPs, including NUP62, have the ability to form hydrogels (228), and 
it seems possible that multiple NuPOD-engrafted copies surpassed the local NUP62 
concentration required for hydrogel formation. How then could the HIV-1 core breach 
cellular NPCs? In cells, NUP62 forms the channel NUP heterotrimer (CNT) complex with 
NUP54 and NUP58 partner proteins (229), so reconstituted CNTs should be tested in 
place of NUP62 to see if the physiological trimeric complex might present less of a barrier 
than did engrafted NUP62. Tests with relevant β-karyopherins, including TNPO1 and/or 
TNPO3 (± CPSF6), could also be performed, as the physiological roles of such NTRs is to 
ferry cargoes through the NPC. Finally, HIV-1 infection can induce the relocalization of 
nuclear-membrane bound NUP62 to the cytoplasm to associate with HIV-1 cores (176, 
230), indicating that viral infection may help to reduce the barrier-forming properties 
inherent to the inner NPC channel. Additional experiments should be performed to 
test whether the other CNT proteins are also similarly relocalized in response to HIV-1 
infection.

Nuclear trafficking and HIV-1 integration

An over-expression screen for nuclear envelop-associated proteins identified SUN1 
and, to a lesser extent, SUN2, as potent inhibitors of HIV-1 infection. Sensitivity to 
SUN1 mapped to CA, and SUN1 and SUN2 in cell extracts co-pelleted with CA-SP1-NC 
nanotubes in vitro. While SUN2 knockout yielded marginal ~2-fold defects in HIV-1 
infection, there was no apparent infection defect using SUN1 knockout cells (97). While 
restriction of infection by over-expression and CA-binding activities are reproducible 
across studies (98, 231), the physiological roles of SUN1 and SUN2 in HIV-1 infection 
await clarification. One RNAi-based study indicated that integration was significantly 
impaired in SUN1 knockdown cells, though this defect was not associated with a parallel 
defect in HIV-1 infection (116).

CA-binding proteins can significantly influence sites of HIV-1 integration. HIV-1 
integration into human DNA occurs nonrandomly, with preferences observed at multiple 
levels that span from local nucleotide sequence to global chromatin architecture 
[see references (232) and (233) for recent reviews]. HIV-1 integration displays marked 
preferences for annotations associated with active chromatin including genes, transcrip­
tional activity, gene-dense regions (234), activating epigenetic marks (235), speckle-
associated domains (SPADs) (236), and topologically associating domains (TADs) (237). 
As a consequence, integration significantly negatively correlates with heterochromatic 
markers including repressive epigenetic marks (235) and lamina-associated domains 
(202, 238), which locate outward toward the nuclear periphery in association with lamin 
proteins (239) (Fig. 2 and 4).

Gene knockout and RNAi studies have highlighted two virus-host interactions that 
in large part account for HIV-1 integration targeting preferences. One of these interac­
tions occurs between integrase and chromatin-associated host protein lens epithelium-
derived growth factor (LEDGF)/p75 (241–243). Although this manuscript centers on 
CA-interacting proteins, we will briefly touch upon the role of LEDGF/p75 in HIV-1 
integration targeting. When LEDGF/p75 was depleted from cells, preferences for the 
above-mentioned active chromatin annotations decreased across the board, though at 
the same time each of these targeting metrics remained enriched relative to random 
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values (223, 242, 243). Under baseline infection conditions, HIV-1 integration favors gene 
mid-regions (244). In LEDGF/p75 knockout cells, this preference strikingly shifted to gene 
5′ end regions, suggesting LEDGF/p75’s role in HIV-1 integration targeting may be linked 
to transcriptional elongation (223, 245). Most recently, LEDGF/p75 has been shown to 
play an important role in the targeting of TADs (237).

Initial investigations into the roles of CA-binding host factors revealed comparatively 
minor effects in HIV-1 integration targeting. Thus, while NUP358 deletion revealed 
significant reductions in the targeting of gene dense regions, integration into genes 
was reduced only slightly (246). Similarly, NUP153 depletion in one study was repor­
ted to significantly reduce integration into gene-dense regions without affecting the 
frequency of intragenic integration targeting (247). A separate study however revealed 
significant 8% and 5% reductions in intragenic targeting frequencies upon knockdown 
of NUP153 and NUP98, respectively (60). Curiously, infections conducted in the presence 
of cyclosporin A, which is an inhibitor of the capsid-CYPA interaction (112), increased 
integration into gene-dense regions without significantly affecting the percentage of 
intragenic integration targeting (52).

The second virus-host interaction observed to play a dominant role in HIV-1 
integration targeting is CA-CPSF6. In CPSF6 knockout cells, integration into genes was 
reduced by as much as 25%, similar to the effect observed in LEDGF/p75 knockout 
cells. However, in contrast to the results observed in LEDGF/p75 knockout cells, other 
chromatin targeting metrics, namely gene-dense regions, activating epigenetic marks, 
and SPADs, became disfavored when CPSF6 was knocked out (223, 236). As a conse­
quence, heterochromatin marks, such as repressive histone modifications and LADs, 
can become favored integration targets in CPSF6 knockout cells (202, 223). LEDGF/p75 
and CPSF6 are lentiviral and primate lentiviral­specific host factors, respectively (58, 248–
251), and the integration targeting profile of the γ-retrovirus Moloney murine leukemia 
virus was largely unchanged in LEDGF/p75 and CPSF6 knockout cells (223, 251). At the 
extent analyzed, proximity to SPADs and nuclear speckles (NS) is the strongest genomic 
predictors of HIV-1 integration targeting (252).

Recent image-based work has drawn interesting parallels between intranuclear 
localization of HIV-1 cores and integration targeting preferences. Viruses unable to 
interact with CPSF6 (through CA mutagenesis or CPSF6 knockdown/knockout) were 
arrested for nuclear penetration and uncharacteristically targeted LADs for integration 
(165, 168, 201–203) (Fig. 4A). Initial reports of roles for NUPs and CYPA in HIV-1 integra­
tion targeting may be interpreted in light of these more recent findings. NUP358 or 
NUP153 depletion may similarly restrict the extent of nuclear incursion of HIV-1 cores, 
leading to significant decreases in integration in gene-dense regions, which strongly 
track with SPADs (252). Conversely, because CYPA binding regulates the CA-CPSF6 
interaction (107), loss of CYPA may simply increase CPSF6 occupancy, translating to 
further penetration distance than observed under baseline infection conditions. Such 
hypotheses can be tested by quantifying intranuclear penetration distances of HIV-1 
cores under NUP and CYPA knockdown conditions.

Under baseline infection conditions, CPSF6, independent of cell type, relocalized 
from broadly pan-nuclear (nucleoli excluded) patterns to distinct puncta that co-localize 
with NS (175, 177, 203, 236, 253). This dramatic reorganization of nuclear CPSF6 strictly 
depended on its interaction with CA (177, 203, 236). Consistent with the notion that 
reverse transcription terminates in cell nuclei (176, 177, 236), viral DNA synthesis can 
occur in the context of CPSF6-HIV puncta (253). Imaging of live cells has indicated 
that fluorescently labeled CPSF6-HIV puncta are long-lived and highly dynamic (236, 
240). Recovery of fluorescently labeled CPSF6 puncta within ~2 to 4 min of photobleach­
ing was interpreted as evidence for liquid-liquid phase separation (LLPS) (240). LLPS 
of macromolecules drives intermolecular interactions that underlie the formation of 
biomolecular condensates and cellular bodies, including NS (254–256).

These observations have suggested the following model for the role of CPSF6 in HIV-1 
nuclear trafficking and integration targeting (Fig. 4B). CPSF6 displaces the capsid from 
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its interaction with NUP153 at the nuclear basket to license core penetration into the 
nucleoplasm (203). CPSF6 LLPS activity may then help to determine HIV-CPSF6 puncta 
formation and integration into SPAD chromosomal regions (240, 257), though this has 
yet to be formally demonstrated. Consistent with a potential role for LLPS activity, 
fluorescently tagged CPSF6 RSLD fusion proteins co-localize with NS in cells and display 
LLPS activity in vitro (125). Moreover, hyperosmotic stress can induce the formation of 
cellular CPSF6 foci, which is indicative of LLPS activity (258), and recombinant mCherry-
CPSF6 fusion protein displayed LLPS activity in vitro (259). Several questions immedi­
ately arise from these observations. For example, might CPSF6 LLPS activty primarily 
underlie visible punta formation at NS, or perhaps also play a role to translocate the 
HIV-1 core through the nucleoplasm? CPSF6 contains two separate LCRs (the PrLD and 
RSLD) and although each LCR on its own can pase separate in vitro (125, 259), the 
contribution of each region to CPSF6’s overall LLPS activity needs to be established. Such 
observations raise the intriguing possibility that CPSF6 functionality beyond CA-binding 
might contribute to HIV-1 intranuclear trafficking and integration targeting. Additional 
questions include whether other capsid and/or CA-binding proteins play potential roles 
in CPSF6 puncta formation and HIV-1 integration targeting? Moving forward, we would 
propose that assays for CPSF6 puncta formation and SPAD-proximal integration should 
be incorporated into studies that examine the roles of CA-binding proteins in intranu­
clear trafficking and HIV-1 integration targeting.

CONCLUSIONS AND PERSPECTIVES

The HIV-1 ingress field has uncovered a dizzying array of human proteins that can 
interact with CA and the capsid (Table 1). Several questions arise based on these 

FIG 4 Roles for the CA-CPSF6 interaction in HIV-1 intranuclear trafficking and integration targeting. (A) In the absence of its interaction with CA, CPSF6 

localization remains largely pan-nuclear, HIV-1 trafficking arrests at the nuclear pore complex (NPC), and integration occurs at proximal chromosomal locations 

including lamina-associated domains (LADs). (B) The CA-CPSF6 interaction is critical for nuclear evasion of the HIV-1 core, CPSF6 puncta formation, and 

SPAD-integration targeting. Recent work has raised the intriguing possibility that CPSF6 LLPS activity underlies HIV-induced puncta formation (240), which will 

require additional experiments to formally prove or disprove. NS, nuclear speckles; SPAD, speckle-associated domain.
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observations. What fraction of the interactions that play demonstrative roles in growth 
promotion are required for HIV-1 to successfully infect any given cell? Plausibly, some 
of these interactions may be cell-type specific, while others may be equally impor­
tant regardless of cell type. Given the applicability of CRISPR-Cas9 with primary cells 
associated with HIV-1 research (260, 261), we would highlight the inclusion of knock­
down/knockout experiments with primary cells moving forward. Because each capsid 
is constructed from ~200 (or so) hexamers and exactly 12 pentamers (Fig. 1C), there 
are several binding sites available at any given point during HIV-1 ingress. Thus, it is 
theoretically possible (and seems probable) that interactions with multiple host factors 
could occur at any given point in time. It would be informative if future studies could 
extend analyses of new capsid-host interactions to test importance alongside factor(s) 
that were previously established to play an important role at the indicated point of the 
infection cycle.

As cytoplasmic trafficking transits to nuclear translocation, new sets of CA-host 
interactions will occur. How cytoplasmic­specific interactions transfer to interactions 
specific to nuclear import is largely a black box and should be one focus of future 
work. For example, is it important for NUP358 to displace CYPA from the CYP-binding 
loop, or does NUP358 engage unoccupied CYP-binding loops to dock the core at the 
NPC? Similarly, does NUP153 need to displace SEC24C from FG-binding pockets, or 
might NUP153 and SEC24 simultaneously bind the capsid to form higher-order PrLD 
interactions along the mature lattice? There is reasonable evidence to suggest that 
CPSF6 displacement of NUP153 from capsid is important to transition from nuclear 
import to intranuclear trafficking (203). In the preceding section, we have highlighted 
several interesting questions that arise from the potential involvement of CPSF6 LLPS 
activity to intranuclear trafficking and HIV-1 integration targeting.

One of the most important aspects of basic scientific research is the potential to 
inform translational medicines. LEN is a highly potent capsid inhibitor that displays 
greater potency to inhibit HIV-1 ingress as compared to the late steps of virus replication 
(262). Based on efficient competition with FG host factors for capsid binding (262, 263), 
it has been proposed that inhibition of capsid-host interactions in part underlies LEN’s 
potency (263). However, the results of a more recent study have argued that inhibi­
tion of capsid-host interactions plays little if any role in determining the compound’s 
potency (122). Drug binding at the interface of two separate molecules, in this case 
two adjacent CA molecules that compose a single FG pocket within the hexamer, can 
elicit allosteric affects that may alter structure/function distal from the point of drug 
binding, in this case decreasing capsid pliability that may be required for uncoating and 
integration (122). This story is reminiscent of the allosteric integrase inhibitors (ALLINIs) 
that bind HIV-1 integrase at the LEDGF/p75 binding site, which is likewise composed 
of two separate viral protein molecules (264, 265). Inhibition of integrase-LEDGF/p75 
binding was initially thought to underlie ALLINI potency (265). However, follow-up work 
showed that these compounds elicit uncontrolled integrase polymerization (266, 267), 
the consequences of which primarily inhibit HIV-1 particle morphogenesis in a LEDGF/
p75-independent manner (268). Thus, for both LEN and ALLINIs, due to the engage­
ment of viral pockets that are composed of more than one target molecule, antiviral 
potency is driven by allosteric affects felt throughout higher-order structures: the mature 
capsid lattice in one case, and aberrant linear and branched chain integrase polymers 
in another. These highly unpredictable antiviral mechanisms of action should inspire 
investigators to seek small molecule inhibitors of other virus-host interactions, especially 
in cases where more than one viral molecule composes the complete host factor binding 
site.
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