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SUMMARY Our knowledge about the fundamental aspects of biofilm biology, including 
the mechanisms behind the reduced antimicrobial susceptibility of biofilms, has 
increased drastically over the last decades. However, this knowledge has so far not 
been translated into major changes in clinical practice. While the biofilm concept is 
increasingly on the radar of clinical microbiologists, physicians, and healthcare professio
nals in general, the standardized tools to study biofilms in the clinical microbiology 
laboratory are still lacking; one area in which this is particularly obvious is that of 
antimicrobial susceptibility testing (AST). It is generally accepted that the biofilm lifestyle 
has a tremendous impact on antibiotic susceptibility, yet AST is typically still carried out 
with planktonic cells. On top of that, the microenvironment at the site of infection is 
an important driver for microbial physiology and hence susceptibility; but this is poorly 
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reflected in current AST methods. The goal of this review is to provide an overview of the 
state of the art concerning biofilm AST and highlight the knowledge gaps in this area. 
Subsequently, potential ways to improve biofilm-based AST will be discussed. Finally, 
bottlenecks currently preventing the use of biofilm AST in clinical practice, as well as the 
steps needed to get past these bottlenecks, will be discussed.

KEYWORDS biofilm, susceptibility testing

INTRODUCTION

M icrobial biofilms are communities of one or more microorganisms (bacteria and/or 
fungi) embedded in an extracellular polymeric matrix (produced at least par

tially by the microorganisms themselves); biofilms can be surface attached or occur 
as suspended aggregates (1–3). Although cells in the surface-attached biofilms and 
suspended aggregates show the same phenotype (1), the molecular mechanisms 
underlying their formation are not necessarily identical (4). In line with previous work, 
microbial aggregates will be defined as biofilms in this text, regardless of whether they 
are attached to a biotic or abiotic surface (1).

Microbial biofilms are present in virtually every ecological niche on Earth, and it has 
been estimated that 40–80% of all microbial cells are biofilm associated (5). An estimated 
65–80% of all infections are considered to be biofilm-related (6, 7), and although it 
is not always completely clear what criteria are used to define an infection as biofilm-
related, there is no doubt they have a considerable impact on morbidity, mortality, 
and healthcare-related costs (8). Biofilms can be found in many types of infections, 
and while typically associated with chronic infections, recent data point to a role for 
biofilms in acute infections as well (9, 10). Many biofilms are associated with the use 
of indwelling medical devices, including (but not limited to) cardiovascular implants, 
intravascular devices, orthopedic implants (mainly knees and hips), urinary catheters, 
endotracheal tubes, breast implants, contact lenses, dental implants, and intrauterine 
devices (8, 11–16). Risk factors for developing a chronic-device related infection include 
immunomodulatory therapy, diabetes, smoking, and renal disease, suggesting that a 
compromised innate immune response increases the risk for developing these infections 
(17). However, not all biofilm infections are related to the use of medical devices, and 
examples of native tissue biofilms include these identified in respiratory tract infections 
[e.g., in patients with cystic fibrosis (CF) and chronic rhinosinusitis], chronic otitis media, 
native valve endocarditis, the oral cavity, and chronically infected wounds (14, 18–22).

While our knowledge about fundamental aspects of microbial biofilms (including 
knowledge concerning the mechanisms behind their reduced antimicrobial susceptibil
ity) has increased tremendously over the past decades (1, 13, 23–26), the translation of 
this increased knowledge about biofilm biology to clinical practice is lagging behind. 
That does not mean no progress was made: for example, guidelines for improved 
diagnosis of biofilm-associated infections have been published (27, 28), and at least for 
prosthetic joint infections, “biofilm-active” antibiotics (e.g., rifampicin, ciprofloxacin) have 
been identified (29–31). However, biofilm-based susceptibility testing, i.e., antimicrobial 
susceptibility testing (AST) using biofilm-grown bacteria to select the antibiotic(s) to 
treat a biofilm-related infection, has not yet found its way to the clinical microbiology 
laboratory, although proposed technologies to do so have been around for over two 
decades (32). In the present review, I outline the state of the art concerning biofilm AST, 
highlight the knowledge gaps, and propose solutions to improve biofilm-based AST. In 
addition, I will discuss what will likely be needed for these biofilm AST methods to be 
implemented in the clinical microbiology laboratory.

Review Clinical Microbiology Reviews

December 2023  Volume 36  Issue 4 10.1128/cmr.00024-23 2

https://doi.org/10.1128/cmr.00024-23


CURRENT APPROACHES FOR ANTIMICROBIAL SUSCEPTIBILITY TESTING

Conventional approaches

In most cases (empirical therapy being the notable exception), the selection of 
antimicrobial therapy is made based on the susceptibility profile of the infecting 
organism, as determined using phenotypic tests in which susceptibility is quantified 
by measuring the effect of the antibiotic on bacterial or fungal growth, using broth 
microdilution or gradient strip-based methods. Values obtained in these tests (i.e., 
minimal inhibitory concentrations, MICs) are then compared to breakpoints established 
for specific dosing regimens by international organizations like EUCAST and CLSI (33, 
34): if the MIC is below the breakpoint, the organism is considered susceptible to the 
antibiotic, and therapy with this antibiotic is predicted to be successful. Alternatively, 
susceptibility can be assessed using disk diffusion assays in which susceptibility is 
quantified based on the size of the inhibition zone (35, 36). While there are automated 
systems for phenotypic susceptibility testing (37), the majority of these also rely on 
the growth of the bacterium, and as a consequence, it typically takes 1–2 days to 
complete the test for rapidly growing microorganisms, and even more time is required 
for fastidious, slow-growing microorganisms.

Genomic detection of resistance mechanisms

A potential solution for the latter problem is to move beyond phenotypic (growth-based) 
susceptibility testing and to use bacterial whole-genome sequences (WGS) to infer 
antimicrobial susceptibility (38–42). However, most WGS-based approaches focus on 
finding known resistance mechanisms, and while they are successful in that, identi
fying (combinations of ) mutations in one or more genes not previously associated 
with reduced susceptibility, and incorporating these in a prediction algorithm, remains 
a major challenge (43). In addition, information derived from WGS cannot predict 
the expression patterns of genes involved in antimicrobial susceptibility in specific 
conditions (44). Indeed, the specific conditions in a biofilm and at the infection site 
lead to distinct gene expression profiles that are different from those observed in 
vitro (45–47), complicating the prediction of biofilm susceptibility based on WGS. For 
example, several biofilm-specific efflux systems have been described (48, 49) as well as 
the biofilm-specific synthesis of cyclic-β−1,3-glucans that sequester antibiotics (50) and 
these mechanisms would be difficult to pick up with WGS alone.

Alternative methods for susceptibility testing

An alternative approach potentially yielding faster results relies on mass spectrometry 
(more specifically on matrix-assisted laser desorption ionization time-of-flight mass 
spectrometry, MALDI-TOF MS). With MALDI-TOF MS, a spectrum can be obtained from 
a microbial sample that can be used for rapid and accurate identification to the species 
level (51, 52) but also to predict antimicrobial susceptibility (53–55). Discrimination 
between susceptible and resistant isolates can be made based on presence/absence 
or change in intensity of certain peaks in the MALDI-TOF spectrum (56, 57). More 
recently, advanced machine learning algorithms have been used to predict antimicrobial 
susceptibility of various pathogens based on MALDI-TOF profiles (58–60).

Heat is a by-product of the majority of biological processes; the amount produced 
is directly related to growth, and the heat production rate is related to the metabolic 
fluxes; using microcalorimetric devices, the energy released during metabolic processes 
in microorganisms can be measured (61). Microcalorimetry has two major advantages: 
(i) it is label free and can be applied in virtually all conditions (e.g., also in turbid 
media containing blood) and (ii) it allows real-time measurements. Microcalorimetry 
has been used to determine antimicrobial susceptibility in different organisms, and the 
results obtained so far are overall in agreement with results obtained with conventional 
susceptibility tests (62–68).
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Alternative culture-based approaches for AST are also being developed. An example 
of such an approach is the AtbFinder system, in which a medium is used that supports 
the growth of many different bacteria (TGV medium) (69, 70). The system is based on 
direct plating of clinical specimens on TGV agar, with or without antibiotics added at 
a concentration that can be achieved at the infection site; the approach claims to also 
consider polymicrobial interactions influencing antimicrobial susceptibility. Case studies 
have suggested that this approach leads to the selection of antibiotics with better 
efficacy for treating nosocomial pneumonia (71) and chronic relapsing urinary tract 
infections (72). A recently published clinical trial in which the AtbFinder system was used 
in the context of respiratory tract infections in CF patients (35 patients, of which 33 were 
chronically colonized with Pseudomonas aeruginosa) suggests that antibiotics selected 
with AtbFinder lead to clearance of P. aeruginosa, a decrease in the number of pulmonary 
exacerbations, and an increase in lung function (73).

Finally, various microscopy-based approaches for AST have been developed (74–77). 
For example, the Accelerate Pheno system uses tracking of the size, shape, and division 
rate of growing cells exposed to antibiotics, to estimate the susceptibility (74, 75); in 
a clinical trial, the use of this system led to faster changes in antibiotic therapy for 
bloodstream infections caused by Gram-negative bacteria (78).

However, despite the promising results obtained with some of the alternative AST 
methods discussed above, additional validation will be required prior to their routine 
clinical use.

Shortcoming of current approaches

There is frequently a poor correlation between results obtained with in vitro susceptibility 
tests and the effect in vivo, for example, in respiratory tract infections in patients with 
CF (79–81). Indeed, both pharmacodynamic parameters (determining the relationship 
between the concentration of the antibiotic at the site of action and its physiological 
effects) and pharmacokinetic parameters (determining the relationship between the 
concentration of the antibiotic in body fluids and tissues and time) are crucial for the 
activity of antibiotics in vivo (82–84). However, the behavior of microorganisms in vitro 
can be very different from that observed in vivo. An important factor contributing 
to the failure of antimicrobial therapy is that in vivo microorganisms form biofilms 
that show reduced susceptibility toward antimicrobial agents (23, 25). Biofilm cells are 
phenotypically very different from planktonic cells, and the microenvironment in these 
surface-attached or suspended biofilms (including gradients of O2, nutrients and waste 
products) (85, 86) leads to an altered metabolism linked to reduced susceptibility (24). 
In addition, the spatial heterogeneity of biofilms may support diversification, i.e., the 
development of subpopulations with varying degrees of susceptibility, within a patient 
(87–90). The presence of such subpopulations leads to intrasample diversity in antibiotic 
susceptibility of isolates and raises questions about the validity of sampling procedures 
and the common practice of performing susceptibility testing on a limited number of 
isolates (91, 92). It is worth pointing out that this is not only the case for respiratory tract 
infections in CF patients, as adaptation and diversification (also in terms of antimicrobial 
susceptibility) are also observed in other diseases, including non-CF bronchiectasis and 
urinary tract infections (93–96). Finally, interactions between different microorganisms 
during (chronic) infections (97–102), as well as interactions between pathogens and the 
host (103, 104), play an important role in antimicrobial susceptibility, but are difficult to 
mimick in vitro.

BIOFILM-BASED ANTIMICROBIAL SUSCEPTIBILITY TESTING

Pharmacodynamic parameters for the assessment of antimicrobial activity in 
biofilms

While the MIC and minimal bactericidal concentration (MBC, defined as the lowest 
concentration that kills all planktonic bacteria) are well-established parameters to assess 
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antimicrobial activity and predict the success of a treatment, no such standardized 
parameters are available for biofilm susceptibility testing. Several parameters, includ
ing minimal biofilm inhibitory concentration (MBIC), biofilm inhibitory concentration 
(BIC), minimal biofilm eradication concentration (MBEC), biofilm prevention concentra
tion (BPC), minimum biofilm bactericidal concentration (MBBC), minimum antibiotic 
concentration for killing (MCK), and biofilm tolerance factor (BTF), have been intro
duced as measures of biofilm susceptibility (105–111). However, their exact definition 
frequently varies between different studies and may also depend on the method used 
to quantify biofilms (e.g., plate counts, crystal violet staining, resazurin-based viability 
staining) (112, 113) (Table 1). On top of this lack of unambiguously defined pharmacody
namic parameters, there is also an overall lack of standardization in biofilm research that 
makes comparison between different studies difficult (114–116). Finally, no biofilm-spe-
cific breakpoints have been defined yet, complicating the interpretation and clinical use 
of the above-mentioned parameters.

Tools for biofilm-based antimicrobial susceptibility testing

While most studies on biofilm susceptibility use microtiter plate (MTP)-based systems, 
in principle any biofilm model system can be used to determine biofilm susceptibility 
(12, 122–126). Nevertheless, specific methods for biofilm susceptibility testing have been 
developed, and the most well-known in this context is the MBEC Assay Kit, also known 
as the Calgary Biofilm Device (32, 107). In this MTP-based assay, biofilms are formed on 
plastic pegs (uncoated or coated) that are attached to the lid of a 96-well MTP and are 
immersed in a liquid; subsequently, the established biofilms are transferred to a new 
96-well plate for AST (127). Examples of recently described advanced model systems for 
biofilm susceptibility testing include a microfluidic platform with an integrated sensor 
(the BiofilmChip) (128), an ex vivo CF lung model comprised of pig bronchiolar tissue 
and synthetic CF sputum (129), the BioFlux system (130, 131), and dissolvable alginate 
hydrogel-based biofilm microreactors (132). Other innovative models for biofilm AST 
were recently reviewed (133).

An important part of biofilm-based AST is the quantification of the number of 
(remaining) viable and/or culturable cells in treated and untreated biofilms. Quantifica-
tion can be done using detached/dispersed cells, either immediately (i.e., plating of 
detached cells and counting CFUs after a suitably long incubation time) or after a 
regrowth phase. In the latter case, the presence or absence of growth can be measured 

TABLE 1 Proposed key pharmacodynamic parameters that could be used as measures for biofilm susceptibility and their definitione

Parameter Abbreviation Proposed definition/commenta

Prevention Biofilm prevention concentration BPC Lowest concentration of an antibiotic required to fully 
prevent formation of a biofilm (including biofilm 
aggregates) starting from planktonic cells

Inhibition Minimal biofilm inhibitory concentration MBIC Lowest concentration of an antibiotic required to fully 
prevent the further development of a biofilm

Eradication Minimal biofilm eradication concentration MBEC Lowest concentration of an antibiotic required to fully 
eradicate an established biofilm (i.e., resulting in a readout 
below the detection limit)

Killing Minimum antibiotic concentration for biofilm 
killing to achieve x-log reductionb

MCBK-x Lowest concentration of an antibiotic required to achieve 
x-log reduction in an established biofilmc

Relative parameters Biofilm toleranced factor-prevention BTF-P The ratio of the BPC and the MIC
Biofilm tolerance factor-inhibition BTF-I The ratio of the MBIC and the MIC
Biofilm tolerance factor-eradication BTF-E The ratio of the MBEC and the MIC
Biofilm tolerance factor-x BTF-x The ratio of the MCBK-x and the MIC

aThe definitions are proposed in general terms, i.e., independent of a specific quantification method.
bThe word “biofilm” was added to the definition previously proposed (110) to avoid any confusion.
cThe MCBK resulting in complete eradication is equal to the MBEC.
dFor an in-depth discussion and definition of tolerance, see references (25, 117–121).
eInformation in this table is partially based on (but not necessarily equal to) definitions proposed previously (107, 109–111, 113).
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(spectrophotometrically or by plating) or the length of the lag phase can be used 
to quantify the number of viable cells (134). Alternatively, quantification can be done 
directly on the biofilm, using, for example, ATP measurements, crystal violet stain
ing, resazurin-based viability staining, microscopy, electrical impedance, or molecular 
methods (12, 128, 135–139). A detailed description of biofilm quantification approaches 
is outside the scope of the present review but it is important to reiterate that different 
quantification approaches often measure very different things (e.g., measuring optical 
density after regrowth does not allow to determine the log reduction in CFU, crystal 
violet stains more than only living cells) and that minor modifications to procedures 
may lead to different outcomes, as documented, for example, with crystal violet staining 
(115, 140). Crystal violet staining of surface-attached biofilms is argued as the most 
used technique, but due to its limitations, it is insufficient as the only method to 
measure biofilm reduction, and it is recommended that the results obtained with crystal 
violet staining are confirmed using other approaches (e.g., CFU counts, microscopy). 
In addition, in many studies, important characteristics like repeatability (i.e., the ability 
to obtain the same results when performing multiple tests in the same laboratory), 
reproducibility (i.e., the ability to obtain the same results when performing multiple 
tests across multiple laboratories), and responsiveness (i.e., the ability to differentiate 
between different concentrations of the treatment) (116, 141) are not investigated. 
A thorough assessment of these parameters is of course crucial prior to any clinical 
implementation. Examples of biofilm-based antimicrobial susceptibility test for which 
this was done include the MBEC biofilm disinfectant efficacy test (142) and several 
MTP-based approaches (115).

Is there an association between biofilm formation and antimicrobial 
susceptibility?

If there would be an association between the biofilm formation in vitro (i.e., Can an 
organism form a biofilm in a certain model system? How much biofilm is formed 
in a certain period of time?) and antimicrobial susceptibility (i.e., the MIC value), the 
capability and extent of biofilm formation could be used to predict susceptibility. Below 
I present a selection of the many studies in which this question has been addressed, 
organized per taxonomic group in order to facilitate comparisons between studies.

Staphylococcus spp.

Biofilm formation was associated with amikacin resistance in a collection of 49 methi
cillin-resistant Staphylococcus aureus (MRSA) isolates, but not with susceptibility to 
15 other antibiotics (143). In a collection of 300 S. aureus isolates, no associations 
could be detected between methicillin resistance and biofilm formation, while resist
ance to erythromycin, clindamycin, and rifampin was associated with increased biofilm 
formation (144). In a collection of 111 staphylococci from prosthetic joint infections, no 
association was found between MBEC/MIC ratios and biofilm formation for S. aureus, 
while for S. epidermidis, increased biofilm resistance (i.e., high MBEC/MIC ratio) to several 
antibiotics was observed in strong biofilm producers (145). No significant differences 
were observed between the biofilm-forming capacity of methicillin-susceptible and 
methicillin-resistant Staphylococcus spp. isolates, or between isolates susceptible or 
resistant to most other tested antibiotics (total of 229 isolates investigated) (146). The 
exception was rifampicin: on average, rifampicin-resistant strains formed significantly 
more biofilm than susceptible strains (146) (Fig. 1A). In a collection of 70 staphylococci 
from prosthetic joint infections, MBEC/MIC ratios for ciprofloxacin (but not for seven 
other antibiotics tested) were significantly higher for “strong biofilm producers” than for 
“non/weak producers” (147).

Acinetobacter baumannii

In a collection of 271 A. baumannii isolates, non-multidrug-resistant (MDR) A. baumannii 
isolates tended to form stronger biofilms than MDR and extensively drug-resistant (XDR) 
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strains. For 20/21 antibiotics tested (polymyxin being the exception), susceptible isolates 
were stronger biofilm formers than intermediate and resistant ones (149). However, in a 
study with 207 A. baumannii isolates, susceptible and less-susceptible strains were found 
to be equally capable of biofilm formation (150). Likewise, in a collection of 309 A. 
baumannii isolates, no difference was observed between MDR and non-MDR isolates in 
terms of their biofilm-forming capacity (151).

Escherichia coli and Klebsiella pneumoniae

In a meta-analysis of the link between biofilm formation and antibiotic resistance 
in uropathogenic E. coli (17 studies included), 14 studies showed a positive associa
tion between biofilm formation and antibiotic resistance, 2 studies did not show any 
association, and 1 study reported a negative association between biofilm production 
and antibiotic resistance (152). Two studies addressed this question in K. pneumoniae. 
In a first study (120 isolates), XDR strains showed a higher ability to form biofilms than 

FIG 1 (A) Association between biofilm-forming capacity and resistance to specific antibiotics in a 

collection of 299 Staphylococcus spp. strains; *: P < 0.05. Only for rifampicin a significant association 

between increased biofilm formation (assessed by crystal violet staining) and resistance was observed. 

Based on data reported in (146). Abbreviations: FOX, cefoxitin; ERY, erythromycin; CLI, clindamycin; NOR, 

norfloxacin; GEN, gentamicin; SXT, sulfamethoxazole/trimethoprim; TIG, tigecycline; LZD, linezolid; FUS, 

fusidic acid; RIF, rifampicin; VAN, vancomycin. (B) Association between planktonic (MIC) and biofilm 

(BPC) susceptibility toward three antibiotics for nine P. aeruginosa isolates. The yellow line indicates the 

situation in which both parameters would be identical. While the BPC is always higher than the MIC, exact 

BPC values cannot be predicted based on MIC based on the data reported in (148). TOB, tobramycin; CIP, 

ciprofloxacin; COL, colistin.
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MDR and susceptible strains (153). In a second study with 100 K. pneumoniae isolates, 
ciprofloxacin-susceptible isolates formed stronger biofilms than resistant isolates; such a 
difference was, however, not observed for other antibiotics (154).

Pseudomonas aeruginosa

Increased biofilm formation (as well as reduced motility) was observed in MDR/XDR 
high-risk P. aeruginosa clones (ST-111, ST-175, and ST-235) (155). However, in a collection 
of 302 P. aeruginosa isolates, the distribution of isolates with different biofilm-forming 
capacities did not differ among the MDR and non-MDR groups (156). In contrast, in a 
study with 66 isolates (of which 40 were MDR), an inverse association between resistance 
and biofilm formation was observed, with more biofilm formation in isolates categorized 
as non-MDR (157). Finally, a meta-analysis (20 eligible studies published between 2000 
and 2019, on isolates recovered in Iran) found that overall biofilm formation was higher 
in MDR P. aeruginosa, although a significant association between biofilm formation and 
antibiotic resistance was only observed in 10 studies (50%) (158). The above-mentioned 
studies suggest that the interaction between antimicrobial resistance mechanisms and 
biofilm formation in P. aeruginosa is complex. For example, inactivation of the negative 
regulator NfxB leads to overexpression of the MexCD-OprJ efflux pump but also to 
impaired constitutive AmpC overexpression and consequently to decreased periplasmic 
β-lactamase activity (important for β-lactam resistance). While this leads to increased 
susceptibility to β-lactam antibiotics in planktonic cells, AmpC secreted by nfxB mutants 
still protects biofilm cells, probably due to the accumulation of AmpC in the biofilm 
matrix (159).

Discussion

The studies mentioned above clearly indicate that the question whether there is an 
association between biofilm formation and antimicrobial susceptibility is difficult to 
answer, with conclusions differing between different studies, even within the same 
taxonomic group. However, closer inspection reveals that the setup of many studies is 
suboptimal in terms of including a sufficiently diverse and large collection of isolates, 
the biofilm model system and quantification approach used, as well as analysis and 
interpretation of data. In many cases, the biomass of surface-attached biofilms is 
indirectly quantified (e.g., by using crystal violet), and the values obtained are compared 
to that of a reference strain and/or arbitrary cut-offs. For example, in one study, biofilms 
yielding optical density (OD) readouts (at 550 nm, OD550nm) after crystal violet staining 
that were higher than that of the negative control, but lower than that of a particular 
reference strain, were designated as “weak biofilm formers,” while those with OD550nm 
values higher than that of the reference strain were considered “strong biofilm formers” 
(149). In another study, the mean of blank-corrected OD values was used to group 
isolates into the categories “non-producer” (OD <0.120), “weak producer” (0.120 < OD 
< 0.240), and “strong producer” (OD > 0.240) (145). While these approaches may work 
well within a single study, they will likely be difficult to reproduce between different 
laboratories, and the biological relevance of the (seemingly arbitrary) cut-offs established 
is unclear. In addition, biofilm susceptibility is often defined based on the MIC of a 
particular antibiotic for a given isolate, and as discussed in more detail below, using 
breakpoints established for planktonic cells to categorize biofilms as “susceptible” or 
“resistant” may lead to misleading results. Finally, the post hoc ergo propter hoc assump
tion (after this, therefore because of this) is frequently made in studies in which a 
link between biofilm formation and antimicrobial susceptibility is observed, but we 
need to be careful to accept such an assumption. Biofilm formation and antimicrobial 
susceptibility (of planktonic and biofilm cells) are influenced by many factors, including 
stochastic events (e.g., stochastic formation of dormant persister cells) (160), variability 
in microbial populations (e.g., occurrence of heteroresistance in populations containing 
subpopulations of cells with lower susceptibility than the majority of the population) 
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(117, 161), and the microenvironment (in vitro as well as in vivo at the site of infection, 
e.g., presence of certain nutrients) (26, 162, 163), and it may very well be that there 
simply is no mechanistic link between biofilm formation and planktonic susceptibility.

Can biofilm susceptibility be predicted based on the MIC?

The question whether planktonic susceptibility can be used to predict biofilm suscept
ibility is an important one, because if MIC values, determined according to highly 
standardized EUCAST or CLSI procedures, would be a good proxy for biofilm suscepti
bility, dedicated biofilm AST would not be needed. Although planktonic and biofilm 
susceptibility parameter values for the same strain/antibiotic combinations have been 
determined in many studies, direct comparisons are again difficult due to differences 
in methodology and/or the lack of reporting susceptibility data for individual isolates. 
Below I focus on a selected set of studies that addressed this question for P. aeruginosa 
clinical isolates.

Moskowitz et al. compared the susceptibility of planktonic cultures (MIC, determined 
according to CLSI guidelines) and biofilms (BIC, using the Calgary Biofilm Device) for 
94 P. aeruginosa isolates toward 12 antibiotics (105). BICs were substantially higher 
than MICs for doxycycline and most of the β-lactam antibiotics investigated (aztreonam, 
ceftazidime, piperacillin-tazobactam, and ticarcillin-clavulanate), while BICs of gentami
cin and meropenem were only somewhat higher than the corresponding MICs, and 
BICs and MICs were fairly similar for amikacin, tobramycin, and ciprofloxacin. Azithro
mycin showed fairly low BICs, although P. aeruginosa is considered as resistant in 
standard susceptibility testing. In a study with 57 non-mucoid P. aeruginosa isolates, 
planktonic (MIC) and biofilm (BPC, BIC) susceptibilities were determined for levofloxa-
cin, ciprofloxacin, imipenem, ceftazidime, tobramycin, colistin, and azithromycin (106). 
Some antibiotics showed median BPCs that were in the same range as MICs (fluoroqui-
nolones, tobramycin, colistin), while others (ceftazidime, imipenem) had BPCs that were 
much higher than MICs. The former antibiotics also had relatively low BICs, indicating 
they may have activity against established biofilms. In a study with 133 P. aeruginosa 
isolates, marked differences between MIC and “biofilm active score” (BAS) values (the 
latter determined based on microscopic assessment of the fraction of living cells after 
treatment) were observed for aztreonam and tobramycin (164). For 19.4% and 30.0% 
of the isolates that are resistant toward aztreonam and tobramycin, respectively, when 
grown planktonically, the biofilm biomass (as evaluated microscopically) was reduced 
with 50–75%. Vice versa, 63.6% of the aztreonam-sensitive and 66.2% of the tobramycin-
sensitive isolates were non-responsive when grown as a biofilm. Using MIC, minimum 
antibiotic concentrations for killing (MCK, the concentration that resulted in a certain 
reduction in number of CFU of biofilm-grown cells) and the biofilm tolerance factor (BTF, 
the ratio of MCK and the MIC) (Table 1) as parameters for susceptibility to tobramycin, 
ciprofloxacin and colistin, Thöming & Häussler (110) observed that in a large (n = 352) 
collection of clinical P. aeruginosa isolates, biofilm susceptibility values showed a wide 
distribution, even among isolates for which MIC values were similar; in addition, among 
isolates with a similar MCK value, a wide spread in MIC values was observed (110). 
In a recent study, BPC values of tobramycin, ciprofloxacin, or colistin (obtained with 
a resazurin-based viability staining on P. aeruginosa biofilms formed in a synthetic CF 
sputum medium) were at least four-fold higher than the MIC values (148) (Fig. 1B). 
However, BPC/MIC ratios were antibiotic dependent, with BPC/MIC ratios for colistin 
being significantly higher than those for ciprofloxacin. Overall, a strong and significant 
rank correlation was observed between the MIC and the BPC for all antibiotics (i.e., 
strains showing higher MICs also show higher BPCs). Comparison of BPC with the MBC 
yielded a different picture. BPC values could be higher, equal, or lower than the MBC, 
and the overall differences between BPC and MBC were smaller than the differences 
between BPC and MIC. The BPC/MBC ratio was significantly smaller for ciprofloxacin than 
for colistin or tobramycin, and while strong and significant correlations were observed 
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between MBC and BPC for tobramycin and ciprofloxacin, this was not the case for colistin 
(148).

The selected studies discussed above suggest that while there may be an overall 
positive correlation between planktonic and biofilm susceptibility measurements, in 
many cases the reduced susceptibility observed in biofilms is independent of resist
ance in planktonic cultures. In addition, the relation between planktonic and biofilm 
susceptibility is antibiotic dependent, and the impact of the biofilm model used and 
the stage in which the biofilms are tested on this relation is likely substantial (165–169). 
Finally, due to the lack of biofilm-specific antimicrobial susceptibility breakpoints, in 
many studies BPC, MBIC, or MBEC values that are above the MIC are taken as evidence for 
“biofilm resistance”. Considering the profound differences between planktonic cultures 
and biofilms, it seems, however, ill-advised to use breakpoints established for planktonic 
cells to categorize biofilms as “susceptible” or “resistant.”

Do the results of biofilm-based susceptibility tests correlate with clinical 
outcome?

While there are many in vitro studies in which planktonic and biofilm susceptibility 
toward different antibiotics are compared, there are few studies in which these data 
are linked to the clinical outcome of treatment with these particular antibiotics. Most of 
these pertain to prosthetic joint infections or respiratory tract infections in CF.

Prosthetic joint infections

In the context of prosthetic joint infections, biofilm-active antibiotics (defined as 
antibiotics that penetrate into the biofilm and are able to eradicate the bacteria 
in the biofilm) have been identified; these include rifampicin for staphylococci and 
ciprofloxacin for Gram-negative bacteria (31). A distinction is frequently made been 
“difficult-to-treat” infections that are caused by pathogens resistant to these biofilm-
active antibiotics and prosthetic joint infections caused by susceptible organisms (29). 
Using a prospective cohort of patients (n = 163) treated with a two-stage prosthesis 
exchange according to a standardized algorithm, Akgun et al. investigated whether the 
outcome of “difficult-to-treat” prosthetic joint infections (n = 30, 18.4%) is worse than 
that of other prosthetic joint infections (n = 133, 81.6%) (170). While the infection-free 
survival rate at 2 years did not differ between both groups, hospital stay, prosthesis-free 
interval, and duration of treatment were significantly longer in the “difficult-to-treat” 
group than in the other group. This indicates that treatment with antibiotics that have 
activity against biofilms improves outcome, suggesting that knowing which antibiotic 
has such an anti-biofilm activity could be clinically relevant. In a prospective cohort 
study with 131 patients with a prosthetic knee infection, the outcome of the treatment 
was compared between patients treated with biofilm-active antibiotics (n = 55, 42%) 
or other antibiotics (n = 76, 58%) (30). The infection-free survival after 1 year and 
2 years was significantly higher for patients who received biofilm-active antibiotics, 
and treatment with biofilm-active antibiotics was associated with lower pain intensity 
(30). In a group of 93 patients with infected spinal implants, treatment outcome was 
also compared between patients receiving biofilm-active antibiotics (n = 30, 32%) 
and those who received no biofilm-active antibiotics (n = 63, 68%). The infection-free 
survival differed significantly between both groups: for patients who received biofilm-
active antibiotics, it was 94% and 84% after 1 year and 2 years, respectively, while 
it was only 57% and 49% for patients who received no biofilm-active antibiotics. In 
addition, patients receiving biofilm-active antimicrobial therapy reported lower intensity 
of postoperative pain (171). In a retrospective, observational, multicenter study involving 
203 cases, treatment with biofilm-active antibiotics (rifampicin/fluoroquinolones) had 
a favorable impact on infections caused by staphylococci and Gram-negative bacteria. 
For example, the combination fluoroquinolone/rifampicin for staphylococcal infections 
significantly reduced implant failure (2% compared to 11% in the control group) 
(172). However, despite these observations, no association between MBEC values (for 
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oxacillin, daptomycin, levofloxacin, rifampicin, and levofloxacin/rifampicin combinations) 
and clinical outcome was observed in a study with 88 patients with a S. aureus pros
thetic joint infection (173). This seems to contradict the evidence that the good in 
vitro anti-biofilm activity of antibiotic combinations containing rifampicin translates into 
high activity in animal prosthetic joint infection models and in patients suffering from 
biofilm-associated staphylococcal prosthetic joint infections (147, 174–180). It should 
be noted that the addition of rifampicin to the standard treatment did not lead to 
better outcomes in a recent clinical trial (181), although the setup of this trial was 
later criticized (31, 182). In two recent studies, MBEC/MIC ratios were determined for 
staphylococci recovered from prosthetic joint infections and linked to clinical outcome 
(145, 147). In both studies, these ratios were lowest for rifampicin, again suggesting 
rifampicin has good antibiofilm activity in vivo. For 70 strains recovered from 49 patients 
with a first-time prosthetic joint infection (monomicrobial infection caused by staphylo
cocci or polymicrobial infection caused by two different species of staphylococci), the 
oxacillin MBEC/MIC ratios were significantly higher in recurrent infections compared to 
resolved infections; no significant differences between the two patient groups were 
observed for MBEC/MIC ratios for other antibiotics (147). In a subsequent study (111 
staphylococcal strains from 66 patients), the increased oxacillin MBEC/MIC ratios for 
S. aureus from unresolved prosthetic joint infections (median MBEC/MIC ratio of 1,166 
for isolates from unresolved infections vs median MBEC/MIC ratio of 808 for isolates 
from resolved infections) were confirmed (145), suggesting that high relative MBEC 
values (compared to the MIC) are associated with poorer treatment outcome after a 
staphylococcal prosthetic joint infection. There are less data on the added value of using 
biofilm-active fluoroquinolones against prosthetic joint infections caused by Gram-neg
atives. In a study with 47 patients with acute prosthetic joint infections caused by a 
Gram-negative organism, treatment with a fluoroquinolone (when all the strains isolated 
were susceptible to this antibiotic) was associated with a good prognosis (183). In a study 
on 160 patients with an early prosthetic joint infection, treatment failed in 43 patients 
(26.9%), and the presence of a Gram-negative infection not treated with fluoroquino-
lones was identified as an independent predictor of therapy failure (184). Finally, in 
patients with prosthetic joint infections due to ciprofloxacin-susceptible Gram-negatives, 
the success rate of treatment was 79% (98/124 patients) in patients receiving ciproflox-
acin; this was significantly lower in patients not treated with ciprofloxacin (40%, 6/15 
patients) (185).

Respiratory tract infections in CF

In a retrospective study involving 110 CF patients (infected with different microorgan
isms), patients treated with antibiotics that were found to be active against biofilm-
grown bacteria in vitro showed a significant reduction in the sputum bacterial density, 
a significant reduction in the length of hospital stay, and a non-significant decrease in 
treatment failure (186). However, the only two randomized clinical studies addressing the 
added value of using antibiotics with activity against biofilms yielded no evidence for 
choosing antibiotics based on biofilm AST for the treatment of P. aeruginosa respira
tory tract infections in people with CF (187). In the first study (188), 39 patients were 
randomized to biofilm and conventional treatment groups, in which antibiotics were 
selected based on biofilm susceptibility testing with the Calgary biofilm device and broth 
susceptibility testing, respectively. However, no microbiological or clinical differences 
were observed between both groups. In the second study (189), the effect of 14 d 
of intravenous antibiotic treatment for pulmonary exacerbations due to P. aeruginosa 
was compared between patients receiving treatment based on conventional or biofilm 
antimicrobial susceptibility results. Also in this study, no differences in microbiological 
(sputum density at day 14 of the treatment and at the 1 mo follow-up visit) or lung 
function parameters could be observed between both groups.
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Potential explanations for the lack of association between biofilm susceptibility 
and clinical outcome

While large randomized clinical trials about the use of biofilm-active antibiotics in 
prosthetic joint infections are lacking, the data summarized above seem to indicate an 
added value of using biofilm-active antibiotics in this context, suggesting that predict
ing which antibiotics would have activity against biofilms (especially in the context of 
“difficult-to-treat” infections and/or infections caused by less-frequently encountered 
pathogens) could lead to an improved outcome (although the apparently conflicting 
data about biofilm activity of rifampicin remains to be settled). The situation is, however, 
different in the context of biofilm-related respiratory tract infections in CF, where two 
randomized clinical trials could not find an added value of biofilm-based susceptibility 
testing, despite promising data in a retrospective study (186). While it cannot be ruled 
out that the very different etiology of prosthetic joint infections and respiratory tract 
infections in CF is behind this apparent discrepancy, it should be noted that in the 
two clinical trials in CF patients, biofilm susceptibility was determined using the Calgary 
biofilm device and cation-adjusted Mueller-Hinton broth as growth medium (105, 188, 
189). In this model, biofilms will develop as surface-attached communities in a growth 
medium that is physicochemically very different from CF sputum. However, we know 
that the microenvironment plays an important role in various aspects of biofilm biology 
(including metabolism) and likely has a profound impact on antimicrobial susceptibil
ity (13, 26, 148, 190, 191). It should thus maybe not come as a surprise that biofilm 
susceptibility testing in an in vitro model that is poorly representative of the in vivo 
situation yields susceptibility data that are poorly representative of the activity of the 
antibiotic against in vivo biofilms (114, 192); indeed, such tests may not be a better 
predictor of in vivo anti-biofilm activity than planktonic susceptibility tests.

HOW CAN WE IMPROVE BIOFILM SUSCEPTIBILITY TESTING AND MAKE IT 
MORE RELEVANT FOR CLINICAL PRACTICE?

The importance of standardization and use of appropriate parameters

In order for biofilm AST to find its way to clinical practice, substantial standardization 
will be required in order to obtain methods that are reproducible and repeatable and 
yield susceptibility data that are in categorical agreement, regardless of the place where 
they were obtained (114). Standardization and reproducibility in biofilm research have 
been receiving increasing attention, especially (but not exclusively) in the context of 
developing products or devices with anti-biofilm activity (114–116, 125, 142, 192–196). 
The recent launch of an International Biofilm Standards Task Group (https://www.bio
films.ac.uk/international-standards-task-group/) is in line with this increased attention for 
standards. The challenge of developing standardized biofilm susceptibility tests should 
not be underestimated. Biofilm-based assays are inherently more complex than assays 
based on planktonic cells, and even results from these (technically less-demanding) 
conventional susceptibility tests are influenced by minor deviations from the published 
reference methods, again highlighting the need for standardization and adequate 
quality control (34, 197–200). While many factors influence the outcome of a biofilm 
experiment, results from several studies suggest that how the biofilm is grown and how 
the inoculum is prepared are crucial (115, 201–203) and that reproducibility between 
laboratories improves when a common (standardized) protocol is used (115).

However, prior to standardization, there needs to be a consensus on which phar
macodynamic parameter(s) (Table 1; Fig. 2) is (are) the most important. It could be 
argued that in line with planktonic susceptibility testing, we first and foremost want 
to know which antibiotic will affect the development of a biofilm, but whether this 
pertains to the development starting from a planktonic culture (i.e., prevention of biofilm 
formation, parameter: BPC) or from a young biofilm (i.e., inhibition of progression of 
biofilm formation, parameter: MBIC) is open for discussion. It is currently unclear whether 
biofilm-associated infections are initiated by the introduction of single cells, aggregates, 
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or both (1), but regardless of this, it seems in most cases unlikely that antibiotic therapy 
would be started so quickly after the introduction of the organisms that no aggregates 
would be present at the start of the treatment (even if the infection was initiated by 
single cells), which would argue for the use of MBIC as parameter. An exception to 
this would be antibiotic therapy started prior, during, or immediately after surgery in 
which case the presence of single cells or very small aggregates is more likely. In many 
cases, antibiotic therapy will only be started after the patient starts showing symptoms, 
and this means that in most cases, biofilm aggregates will already have formed. This 
implies that it is also important to know which concentrations of an antibiotic will 
lead to partial reduction (i.e., a reduction in biofilm, but not complete eradication) or 
full eradication. For the latter, the MBEC is an appropriate parameter, while the MCK-x 
(i.e., the concentration required to achieve x-log reduction) can be used for the former. 
Finally, biofilm tolerance factors (BTF-I, BTF-E, BTF-x; Table 1) could be used to quantify 
biofilm-related reduced susceptibility in comparison to susceptibility of planktonic cells 
(110).

The proposed definitions in Table 1 are independent of the analysis method used 
and are (at least in theory) equally valid for different biofilm quantification approaches. 
However, in the context of biofilm AST, approaches that directly (e.g., plate counts) 
or indirectly (e.g., resazurin-based viability staining, ATP measurements) quantify the 
number of living and/or culturable cells will likely be preferred over methods that only 
provide crude measurements of biofilm biomass (e.g., biofilm biomass staining with 
crystal violet).

Setting of biofilm breakpoints

Breakpoints are used to distinguish between “susceptible” organisms (“susceptible” 
implying that the use of a particular antibiotic for this organism is associated with a high 
likelihood of therapeutic success) and “resistant” organisms (“resistance” implying that 

FIG 2 Illustration of key pharmacodynamic parameters that could be used as measures for biofilm 

susceptibility. MIC, minimal inhibitory concentration; MBC, minimal bactericidal concentration; BPC, 

biofilm prevention concentration; MBIC, minimal biofilm inhibitory concentration; MBEC, minimal biofilm 

eradication concentration.
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the use of this particular antibiotic for an infection caused by this organism is typically 
associated with clinical failure) (33, 204). These breakpoints are set by organizations like 
EUCAST and CLSI and take into account a wide range of parameters, including data from 
large-scale clinical studies, wild-type MIC distributions, and PK/PD aspects (33, 35, 36, 
205–207). As none of these data are currently available for biofilm infections, setting 
biofilm breakpoints will be far from trivial, and as already mentioned above, there is 
no evidence for an added value of using planktonic breakpoints to categorize biofilms 
as “susceptible” or “resistant.” Recently, a potential solution was proposed for the lack 
of biofilm breakpoints, i.e., determining epidemiological cut-off (ECOFF) values (MBIC-
ECOFF and MBEC-ECOFF) to distinguish between strains belonging to the wild-type 
population and strains belonging to the population possessing acquired mechanisms 
responsible for reduced antimicrobial susceptibility of biofilms (208). This approach is 
in line with the EUCAST recommendations for setting breakpoints for the topical use of 
antimicrobial agents and the use of inhaled antibiotics (209). Of course, establishing such 
ECOFFs would only be the first step, and biofilm breakpoints should ultimately be based 
on data from large clinical studies.

Increasing the biological relevance of in vitro tests

We know that the nutritional environment can influence the results of conventional AST, 
and several attempts have been made to increase the biological relevance of in vitro AST 
by re-creating the in vivo conditions in vitro (104, 163, 210–216). However, in the absence 
of a thorough validation, it is unclear whether these modified test conditions really are 
more in vivo-like, and it is often also unclear whether microorganisms grown in these 
systems reflect the in vivo biofilm phenotype.

Many different artificial or synthetic sputum media, mimicking the composition of 
CF sputum, have been developed (217–220), and it is also in this context that the “in 
vivo-likeness” of at least some media has been evaluated to the greatest extent, both in 
terms of gene expression (45, 47) and in terms of morphological similarity between in 
vitro and in vivo P. aeruginosa aggregates (221). Likewise, substantial efforts have been 
made to develop growth media that better represent the in vivo microenvironment of 
a prosthetic joint infection, mainly based on the addition of human or animal synovial 
fluid, or the development of synthetic synovial fluid (222–230) (Fig. 3). Most of the work 
done in these media so far has focused on studying the formation of biofilm aggregates 
in various staphylococci, but some of the media developed have been used to asses 
biofilm antimicrobial susceptibility as well (223, 224, 226). Finally, a range of relevant 
models for the study of infected wounds have been developed that allow to study 
antimicrobial treatments of these biofilm-related infections under in vivo or in vivo-like 
conditions (231–238).

The need for clinical trials to validate the use of biofilm-based susceptibility 
testing in clinical practice

Even if we manage to develop standardized and physiologically relevant in vivo-like 
biofilm models that can be incorporated in the workflow of a clinical microbiology lab, 
their success will ultimately depend on whether using them improves the clinical 
outcome of a treatment.

The added value of biofilm-based AST for treating a specific biofilm-related infection 
could be determined in a clinical trial in which patients are randomized to a “conven
tional treatment group” (in which antibiotic treatment is selected based on conventional 
susceptibility testing) and a “biofilm treatment group” (in which antibiotic treatment is 
selected based on biofilm-based susceptibility testing), much like was done for CF (188, 
189). A protocol of a proposed prospective randomized clinical trial for the selection of 
antibiotics in periprosthetic joint infections guided by MBEC and MIC determinations was 
recently published (239). This trial aims to include patients with first-time prosthetic joint 
(hip or knee) infections (monomicrobial infections with Staphylococcus spp.), and its 
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primary outcome measurement is the proportion of changes in antimicrobial regimen 
from first-line treatment. The trial aims to recruit 64 patients who will be randomized to a 
standard of care arm (choice of antibiotic guided by MIC) or a comparative arm (selection 
of antibiotics based on MIC and MBEC) (239).

However, setting up such a randomized controlled trial, with a sufficiently high 
number of patients in each group and clearly defined endpoints, will be challenging. 
Obtaining ethical approval might also be difficult, either because it is accepted by 
many that a particular antibiotic is superior to others, e.g., in the case of rifampicin for 
treating prosthetic joint infections (182), or because of the disappointing outcomes in 
earlier trials, e.g., in CF (188, 189). Finally, for many biofilm-related infection (including 
wound infections and prosthetic joint infections), administration of antibiotics is only 
a part of the treatment; and variations in other interventions (e.g., surgical debride
ment, one-or two-stage revision surgery) will complicate recruitment, randomization, 
and interpretation of the outcome (240). Considering these difficulties, a more feasible 
alternative approach could be envisaged in which the antibiofilm activity of antibiotics 
is determined in one or more optimized models in order to devise treatment regimens 
with potential in vivo activity against biofilms. In a second step, the clinical outcome 
of these biofilm-active regimens can then be compared to the outcome observed with 
conventional therapy (i.e., therapy with antibiotics selected based on conventional AST).

The results obtained such studies will allow to build a knowledge base for fur
ther research that could ultimately pave the way for a broader introduction of these 
approaches in the clinical microbiology laboratory.

FIG 3 (A) P. aeruginosa biofilm aggregate grown in SCFM2 medium. (B) S. aureus biofilm aggregate 

grown in synthetic synovial fluid medium. (C) Biofilm prevention concentration of three antibiotics 

against nine P. aeruginosa biofilms (A–I) determined in SCFM2 [based on data reported in (148)].
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Practical aspects

The success of biofilm-based AST in the clinical laboratory will also depend on the 
development and implementation of affordable, reproducible, and high-throughput 
tools that yield results that are easy to interpret, as it seems very unlikely that methods 
based on complex low-throughput biofilm model systems, using expensive advanced 
approaches for readouts, and/or requiring extensive hands-on time, will find their way 
to clinical practice. However, the highly successful introduction of MALDI-TOF mass 
spectrometry for rapid and accurate identification of microorganisms in the clinical 
microbiology laboratory (241–244) shows that the development and implementation of 
advanced methodology are possible. While it is at this point difficult to predict what 
exactly will be needed, it will likely involve the development of validated and standar
dized premade relevant media to grow biofilms and the development and implemen
tation of automated and high-throughput methods for reading biofilm susceptibility. 
Regardless of what form biofilm-based AST ultimately will take, the successful implemen
tation will require the collaboration between basic researchers, clinical microbiology 
laboratories, and (potentially new) companies involved in developing and marketing 
diagnostic tools.

CONCLUDING REMARKS

The call for bringing biofilm AST to the clinic is not new. Already in 2006, Sandoe 
et al. wrote that “Data from large numbers of clinical episodes would be required to 
define the relationship between MBIC and clinical outcome before any advantages over 
MIC could be assessed. We hope that this work will stimulate the investigation of suscept
ibility tests that have more relevance to biofilm infections than current methods.” (245). 
Our profound knowledge about biofilm formation (1), our insights into mechanisms 
responsible for reduced susceptibility in biofilms (25, 86), and the realization that the 
infectious microenvironment plays a crucial role in antimicrobial susceptibility (26) will 
be essential to develop and validate relevant biofilm-based AST methods that can be 
used in clinical microbiology laboratories. The crucial next step will be the evaluation of 
these methods in well-designed clinical trials, with an ultimate goal to improve antibiotic 
treatment of patients suffering from biofilm-related infections.
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