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SUMMARY Numerous fungal species of medical importance have been recently 
subjected to and will likely continue to undergo nomenclatural changes as a result of the 
application of molecular approaches to fungal classification together with abandonment 
of dual nomenclature. Here, we summarize those changes affecting key groups of fungi 
of medical importance, explaining the mycological (taxonomic) rationale that under­
pinned the changes and the clinical relevance/importance (where such exists) of the 
key nomenclatural revisions. Potential mechanisms to mitigate unnecessary taxonomic 
instability are suggested, together with approaches to raise awareness of important 
changes to minimize potential clinical confusion.
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INTRODUCTION

K ingdom Fungi is an enormous and diverse collection of predominantly ubiquitous 
organisms. Of the estimated 1.5 to >5 million fungal species in the Kingdom, only 

approximately 150,000 species (<10%) have been formally described (1–6). The Kingdom 
includes many species capable of infecting humans, other animals, wild and cultivated 
plants, and other fungi (7, 8). Indeed, the annual burden of human disease was recently 
proposed to exceed 1 billion infections, with >150 million people suffering from serious 
fungal disease (7–9). While the majority of fungal infections are caused by a handful of 
key human pathogenic species that have long been recognized as opportunistic agents 
of human disease (7, 9), the potential clinical significance of hitherto undiscovered 
species is unknown (5).

The number of novel fungi reported from human infections continues to grow 
rapidly, with a 10-fold increase in reports of new fungal pathogens of humans, animals, 
and plants between 1995 and 2012 (5, 10). Indeed, 136 novel taxa isolated from human 
clinical samples have been published since 2012, with 110 of those being the agents of 
confirmed cases of human infection (11–14) and previously recognized fungi have been 
newly associated with local, national, or worldwide outbreaks of human disease (15–22). 
In parallel, human activity (alteration of natural environments, global warming, increased 
global trade and travel, widespread environmental antifungal usage, increased use of 
aggressive immunosuppressive strategies in medicine and hematology in particular, 
viral pandemics) is driving the emergence of new opportunistic fungal pathogens and 
providing more susceptible hosts for existing pathogens (7, 10, 23–28). It is, therefore, 
inevitable that the number of fungal species recognized as etiological agents of human 
disease and the numbers of human infections caused by such fungi will continue to 
grow.

Since it is well established that different fungal species have wildly variable antifun­
gal susceptibility profiles (29–36), the correct identification of the etiological agents of 
human infections coupled with accurate and unambiguous reporting to the treating 
physician is paramount to optimizing clinical outcomes in patients with invasive 
fungal disease. Historically, fungal identification was achieved by careful examination 
of morphological and phenotypic traits, which also allowed fungal taxonomists to 
classify fungi on the basis of shared traits (37–41). In medical mycology, this approach 
to identification and classification has become increasingly complicated due to the 
incredible diversity of the fungal Kingdom and the ever-increasing number of fungi 
capable of causing human infection. As more of the Kingdom was described and more 
human pathogenic fungi were discovered, new classifications and changes to existing 
nomenclature have become commonplace (5, 11–14, 21). More recently, the speed 
of taxonomic upheaval has been dramatically increased by the adoption of molecu­
lar methods for fungal identification and polyphasic approaches to species boundary 
delineation (11–14, 42–47). This review examines in detail (i) the drivers and rationale 
for changes in fungal taxonomy and nomenclature, (ii) the key genera and species of 
medical importance that have been and (iii) are likely to continue to be affected, (iv) 
the potential clinical implications of widespread nomenclatural change, and (v) potential 
mitigators to limit clinical confusion.

THE DRIVERS OF NOMENCLATURAL CHANGE

Molecular phylogenetic approaches to fungal identification

As alluded to above, traditional identification methods for fungi of medical importance 
that were based on meticulous examination of morphological and phenotypic charac­
ters (including analyses of carbohydrate assimilation/fermentation and/or biochemical 
profiling) are fraught with limitations. For filamentous fungi (molds), microscopic and 
macroscopic features often are not produced constitutively, can be dependent on 
growth substrate, and frequently differ between the sexual (teleomorph) and asexual 
(anamorph) states (42, 48, 49). Additionally, numerous genera are known to exhibit 
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dimorphism or pleomorphism (20, 49–51). Conventional (morphological) identification 
approaches are further complicated by convergent evolution of unrelated taxa (52, 
53), divergent evolution of genetically related organisms (54), and hybridization (55). 
Faced with the above conundra, the medical mycology field enthusiastically adopted 
molecular approaches to fungal identification, typically based around PCR amplification 
and sequencing of segments of the fungal genome and comparison of the sequences 
with those present in public nucleotide sequence databases (42, 43, 56). When such 
approaches are extended to include multiple genes/genome fragments and phyloge­
netic comparisons with well-characterized extant taxa (phylogenetic species recogni­
tion), they can also be used to discover, delineate, and describe novel fungal organisms 
(44, 45).

The principal advantages of molecular approaches to identification and taxonomy 
are that related fungi are grouped together regardless of growth form or morphological 
characteristics and that fungi that remain sterile in the laboratory can be identified in 
the absence of any notable morphological characters, allowing predictions to be made 
regarding potential clinical significance and likely antifungal susceptibility patterns (5, 
29, 35, 42, 43, 48, 57). At the simplest level, notwithstanding the many issues with 
sequence database integrity (3, 58–60), medical mycologists can now accurately identify 
the vast majority of fungi that they encounter and flag novelties that have not previously 
been encountered or at least subjected to sequencing (20, 51, 56, 61, 62). An immediate 
effect of implementation of molecular identification approaches was the description of 
innumerable, often hitherto unsuspected, cryptic fungal species (those that can only 
be discriminated by molecular approaches) in many well-studied morpho-species of 
established human pathogenic fungi (43, 55, 63–75). This recently discovered molecular 
diversity has resulted in an incredible increase in the number of clinically relevant fungi 
and associated novel names together with an increase in our understanding of the 
diversity and possible size of Kingdom Fungi.

The Amsterdam declaration

Historically, dual nomenclature was permitted across Kingdom Fungi, as different 
scientific names had been separately and independently assigned to the teleomorph 
and anamorph states which often bore little morphological resemblance (11–14, 76). 
Since both growth forms are identical at the genetic level and molecular methods can 
now be employed to prove this relatedness, this system was clearly impractical, and 
the Amsterdam Declaration of Fungal Nomenclature agreed that dual nomenclature 
should be prohibited by abolition of Article 59 in the Code of Botanical Nomenclature 
(77). Since 1 January 2013, not only was dual nomenclature banned, the practice of 
assigning precedence to the teleomorph name over any anamorph alternative(s) was 
also abandoned. The International Code of Nomenclature for algae, fungi, and plants 
(ICN) recommended that any one of the legitimately published names (whether for the 
anamorph or teleomorph form) for a given species can now be proposed as the correct 
name for that species. In cases where a sexual name has historical priority over the 
asexual one(s), the final decision would require the majority support by the mycological 
community. This amendment thus has profound implications for fungal nomenclature 
since all established fungal names (plus disease names where these are linked to genera, 
e.g., candidosis, aspergillosis) are potentially in jeopardy, as mycologists are forced to 
choose a single name for each fungus (78). In general, the majority of nomenclatural 
questions addressed to date have been easily resolved for many fungal genera (79–82), 
but complications have arisen for a number of medically, economically, and socially 
important fungi that have well-established sexual and asexual names, including Fusarium 
(where a consensus from the mycological community is proving harder to reach) and 
Cryptococcus (for which there was initial resistance). These will be discussed in detail 
later.
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KINGDOM- AND PHYLUM-WIDE TAXONOMIC RE-ORGANISATIONS

Although the ability to apply molecular approaches to fungal identification and 
classification has allowed the correct placement of thousands of sterile fungi (organisms 
historically classified in the false phylum Deuteromycota) in the fungal Kingdom, the 
single most significant impact of such approaches was the Kingdom-wide restructuring 
of the fungal tree of life (45, 83). The fungal Kingdom is now known to encompass either 
eight or nine phyla (instead of the original three), dependent on whether Glomeromy­
cota is recognized as a phylum or rather as the subphylum Glomeromycotina (45, 83–
85). Dramatically, although the Ascomycota and Basidiomycota are retained and now 
constitute the sub-Kingdom Dikarya, the phylum Zygomycota was disbanded based 
upon molecular approaches that demonstrated definitively that it was polyphyletic 
(83–85). Fungi previously classified in Zygomycota are now dispersed between the 
phyla Mucoromycota and Zoopagomycota (Table 1), with most of the medically impor­
tant members contained in the order Mucorales, sub-phylum Mucoromycotina, within 
Mucoromycota (86).

The phylum Ascomycota currently contains three subphyla (Table 1): (i) subphy­
lum Taphrinomycotina, contains a single medically important genus, Pneumocystis, 
which is formally subsumed into Kingdom Fungi; (ii) subphylum Saccharomycotina 
contains a single medically important order Saccharomycetales, which encompasses 
most pathogenic ascomycetous yeasts, including Candida and many related teleo­
morph genera; (iii) subphylum Pezizomycotina contains the remainder of the medically 
important Ascomycete genera, distributed among the 14 different orders which are 
listed in Table 1 (83–85, 87). Even with the advent of molecular phylogenetic approaches, 
some medically important Ascomycetous genera (Neoscytalidium, Geomyces, and 
Pseudogymnoascus) remain incertae sedis (unknown position), pending analyses of more 
of the fungal Kingdom. Finally, the phylum Basidiomycota contains three subphyla 
(Pucciniomycotina, Ustilaginomycotina, and Agaricomycotina) and at least 46 orders (83–
85, 87), only a handful of which include the ~20 Basidiomycete genera that have been 
formally associated with human infections (Table 1).

KEY FUNGI OF MEDICAL IMPORTANCE SUBJECT TO RECENT TAXONOMIC 
REVISIONS AT THE GENUS LEVEL

The delineation of species boundaries traditionally depended upon sexual compatibil­
ity and the ability to produce viable progeny after mating (88). Today, such bounda­
ries can generally be tested with molecular approaches by Genealogical Concordance 
Phylogenetic Species Recognition (88, 89), However, all taxonomic categories above 
species are intrinsically arbitrary in nature, since genera were historically erected to 
encompass collections of species that shared similar phenotypic and/or morphological 
traits. Similarly to more traditional identification and classification methods, there are 
currently no accepted molecular criteria that can be used to define and delimit a genus, 
although phylogenetic distance and clustering of species in well-delimited clades are 
the most common parameters used in current taxonomic practice [reviewed in reference 
(76)]. Given the above, it was inevitable that many genera circumscribed based on shared 
morphological characters would prove to be polyphyletic using molecular approaches, 
with the result that a number of well-established human fungal pathogens might be 
subject to nomenclatural revision (6, 12–14, 45, 57, 76).

Candida and allied ascomycete yeast genera

Asexual yeasts that divide by multilateral budding with no other distinctive morpholog­
ical features have traditionally been ascribed to the anamorphic ascomycetous yeast 
genus Candida, with the result that this genus has continued to grow disproportionately 
in size [reviewed in reference (90)]. However, DNA-based studies have clearly shown that 
the classification of asexually producing yeasts based on phenotypic characteristics is 
often discordant with well-established and apparently stable molecular phylogenies (91, 
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TABLE 1 Revised taxonomy of the fungal Kingdom, indicating the positions of key medically relevant 
genera

Phylum Subphylum Order Genera

Ascomycota Taphrinomycotina Pneumocystidiales Pneumocystis
Saccharomycotina Saccharomycetales Candida

Clavispora
Cyberlindnera
Debaryomyces
Diutina
Hanseniaspora
Issatchenkia
Kazachstania
Kluyveromyces
Lodderomyces
Metschnikowia
Meyerozyma
Nakaseomyces
Pichia
Saccharomyces
Wickerhamiella
Yarrowia
Wickerhamomyces
Zygosaccharomyces

Pezizomycotina Capnodiales Cladosporium
Hortaea
Piedraia

Dothideales Aureobasidium
Pleosporales Alternaria

Curvularia
Emarellia
Exserohilum
Falciformispora
Medicopsis
Neotestudina
Nigrograna
Parathyridaria
Phoma
Trematosphaeria
Ulocladium

Chaetothyriales Cladophialophora
Exophiala
Fonsecaea
Phialophora
Ramichloridium
Rhinocladiella

Eurotiales Aspergillus
Monascus
Paecilomyces
Penicillium
Rasamsonia
Talaromyces
Thermoascus

Onygenales Aphanoascus
Arthroderma
(Continued on next page)
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TABLE 1 Revised taxonomy of the fungal Kingdom, indicating the positions of key medically relevant 
genera (Continued)

Phylum Subphylum Order Genera

Chrysosporium
Blastomyces
Coccidioides
Emergomyces
Emmonsia
Epidermophyton
Histoplasma
Lacazia
Lophophyton
Microsporum
Myceliophthora
Nannizzia
Nannizziopsis
Paracoccidioides
Paraphyton
Trichophyton

Hypocreales Acremonium
Fusarium
Nectria
Purpureocillium
Sarocladium

Microascales Lomentospora
Pseudallescheria
Scedosporium
Scopulariopsis

Sordariales Chaetomium
Madurella
Phialemonium

Calosphaeriales Pleurostoma
Patellariales Rhytidhysteron
Coniochaetiales Lecythophora
Ophiostomatales Sporothrix
Diaporthales Phaeoacremonium

Basidiomycota Pucciniomycotina Sporidiales Rhodotorula
Sporobolomyces

Ustilagiomycotina Malasseziales Malassezia
Agaricomycotina Cystofilobasidiales Cystobasidium

Filobasidiales Naganishia
Filobasidium

Tremellales Cryptococcus
Papiliotrema

Trichosporonales Trichosporon
Cutaneotrichosporon
Apiotrichum

Agaricales Bjerkandera
Coprinus
Hormographiella
Schizophyllum
Sporotrichum

Mucoromycota Mucormycotina Mucorales Apophysomyces
Cokeromyces
(Continued on next page)
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92). Indeed, for several decades, it has been accepted that Candida is polyphyletic: the 
medically relevant species among the >400 currently recognized Candida species are 
distributed among at least 13 teleomorph genera in the order Saccharomycetales [Table 
1; (90–94)]. Under the rules of the new Code that require fungal species to have a single 
valid name (77), many of the current species of Candida and other asexual yeast genera 
must undergo nomenclatural revision so that genus membership reflects phylogenetic 
affinities.

The type species of Candida, C. vulgaris (a synonym of C. tropicalis), forms a well-
supported monophyletic group within the family Debaryomycetaceae that contains a 
limited number of other medically important Candida spp., including members of the 
C. albicans complex (C. albicans, C. dubliniensis, and C. africana) and the C. parapsilosis 
complex (C. parapsilosis, C. metapsilosis, and C. orthopsilosis) (90). Given that C. albicans 
is the most widely recognized species medically and that the use of the Candida genus 
name for this clade has precedence, it makes sense to retain the anamorph genus 
name for this group of organisms. Many of the Candida species that sit outside this 
group form well-circumscribed phylogenetic clades with members of other recognized 
teleomorph genera and their transfer to those teleomorph genera is thus theoretically 
relatively straightforward. Key, medically important species affected include members of 
the Candida glabrata complex (C. glabrata, C. nivariensis, and C. bracarensis), which sit 
in the Nakaseomyces clade (95); Candida krusei, C. norvegensis, and C. inconspicua which 
have Pichia teleomorphs (90, 92, 94); Candida guilliermondii and Candida fermentati with 
Meyerozyma teleomorphs (96, 97); members of the C. rugosa complex (C. rugosa, Candida 
pseudorugosa, Candida pararugosa, Candida mesorugosa, and Candida neorugosa) plus 
C. catenulata, which all have Diutina teleomorphs (98); Candida kefyr [teleomorph 
Kluyveromyces marxianus (99)]; Candida lipolytica [teleomorph Yarrowia lipolytica (100)]; 
Candida lusitaniae [teleomorph Clavispora lusitaniae (101)]; Candida pelliculosa [teleo­
morph Wickerhamomyces anomalus (102)]; and Candida utilis [teleomorph Cyberlindnera 
jadinii (103)]. A list of the most commonly encountered Candida species subject to 
nomenclatural changes is provided in Table 2 and references (13, 94). All of the 
alternative names listed above are legitimate according to the new Code and have been 
registered with Mycobank.

Basidiomycetous yeast genera

A number of recent phylogenetic studies have resulted in the revision of the taxonomy 
of those Cryptococcus species that frequently cause human and animal disease (C. 
neoformans and C. gattii complexes), together with the reorganization of those species 
in the genus Cryptococcus that are rarely associated with human disease. The species 
complexes previously designated Cryptococcus neoformans and C. gattii, after some initial 
resistance, are now accepted to encompass at least seven species, including five species 
in the C. gattii complex (55). In parallel, the vast majority of the non-C. neoformans/gattii 
species that have been anecdotally reported as possible agents of mammalian infection 

TABLE 1 Revised taxonomy of the fungal Kingdom, indicating the positions of key medically relevant 
genera (Continued)

Phylum Subphylum Order Genera

Cunninghamella
Lichtheimia
Mucor
Rhizomucor
Rhizopus
Saksenaea

Mortierellales Mortierella
Zoopagomycota Entomopthoromycotina Entomophthorales Conidiobolus

Basidiobolales Basidiobolus
Kickxellomycotina Kickxellales Kickxella
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have been renamed, including Cryptococcus adeliensis, Cryptococcus albidus, Crypto­
coccus curvatus, Cryptococcus diffluens, Cryptococcus flavescens, Cryptococcus luteolus, 
Cryptococcus laurentii, Cryptococcus liquefaciens, Cryptococcus terreus, and Cryptococcus 
uniguttulatus (Filobasidium uniguttulatum). Many of these species are only distantly 
related to the seven species in the Cryptococcus neoformans/C. gattii species complexes, 
and for this reason, they are among the >100 ex-Cryptococcus spp. that have recently 
been correctly reassigned to alternative Tremellomycete genera, including Naganishia 
(C. adeliensis, C. albidus, C. diffluens, and C. liquefaciens), Hannaella (C. luteolus), Solicocco­
zyma (C. terreus), and Papiliotrema (C. laurentii and C. flavescens) (115).

The genus Trichosporon, which previously contained in excess of 30 validly described 
species, is also now known to be polyphyletic (115). Trichosporon asahii, Trichosporon 
asteroides, Trichosporon cutaneum, Trichosporon dermatis, Trichosporon inkin, Trichosporon 
jirovecii, Trichosporon loubieri, Trichosporon mucoides, Trichosporon mycotoxinivorans, and 
Trichosporon ovoides have all been reported from human infections (118). T. asahii, T. 
asteroides, and T. ovoides have been retained in Trichosporon; T. loubieri and T. mycotoxi­
nivorans are reclassified in Apiotrichum; and T. cutaneum, T. mucoides, T. dermatis, and 
T. jirovecii have been assigned to the novel genus Cutaneotrichosporon (115). Similarly, 
although more than 60 species of Rhodotorula were originally listed in the Mycobank 
database, the genus is now known to be polyphyletic (119). The major clinically 

TABLE 2 Taxonomic revisions affecting basidiomycete and ascomycete yeasts of medical importance

Previous name Revised name Order Family Reference

Candida bracarensis Nakaseomyces bracarensis Saccharomycetales Saccharomycetaceae 104
Candida catenulata Diutina catenulata Saccharomycetales Metschnikowiaceae 105
Candida fabianii Cyberlindnera fabianii Saccharomycetales Phaffomycetaceae 103
Candida famata Debaryomyces hansenii Saccharomycetales Debaryomycetaceae 106
Candida fermentati Meyerozyma caribbica Saccharomycetales Debaryomycetaceae 97
Candida glabrata Nakaseomyces glabratus Saccharomycetales Saccharomycetaceae 104
Candida haemulonii group II Candida duobushaemulonii Saccharomycetales Metschnikowiaceae 107
Candida inconspicua Pichia cactophila Saccharomycetales Pichiaceae 108
Candida infanticola Wickerhamiella infanticola Saccharomycetales Trichomonascaceae 109
Candida kefyr Kluyveromyces marxianus Saccharomycetales Saccharomycetaceae 99
Candida krusei Pichia kudriavzevii Saccharomycetales Pichiaceae 110
Candida guilliermondii Meyerozyma guilliermondii Saccharomycetales Debaryomycetaceae 97
Candida lambica Pichia fermentans Saccharomycetales Pichiaceae 111
Candida lipolytica Yarrowia lipolytica Saccharomycetales Dipodascaceae 100
Candida lusitaniae Clavispora lusitaniae Saccharomycetales Metschnikowiaceae 101
Candida nivariensis Nakaseomyces nivariensis Saccharomycetales Saccharomycetaceae 104
Candida norvegensis Pichia norvegensis Saccharomycetales Pichiaceae 112
Candida pararugosa Wickerhamiella pararugosa Saccharomycetales Trichomonascaceae 109
Candida pelliculosa Wickerhamomyces anomalus Saccharomycetales Phaffomycetaceae 102
Candida pintolopesii Kazachstania telluris Saccharomycetales Saccharomycetaceae 113
Candida pulcherrima Metschnikowia pulcherrima Saccharomycetales Metschnikowiaceae 114
Candida utilis Cyberlindnera jadinii Saccharomycetales Phaffomycetaceae 103
Cryptococcus albidus Naganishia albida Filobasidiales Filobasidiaceae 115
Cryptococcus curvatus Cutaneotrichosporon curvatum Trichosporonales Trichosporonaceae 115
Cryptococcus diffluens Naganishia diffluens Filobasidiales Filobasidiaceae 115
Rhodotorula minuta Cystobasidium minutum Cystobasidiales Cystobasidiaceae 116
Rhodotorula slooffiae Cystobasidium slooffiae Cystobasidiales Cystobasidiaceae 116
Stephanoascus ciferrii Trichomonascus ciferrii Saccharomycetales Trichomonascaceae 117
Trichosporon cutaneum Cutaneotrichosporon cutaneum Trichosporonales Trichosporonaceae 115
Trichosporon loubieri Apiotrichum loubieri Trichosporonales Trichosporonaceae 115
Trichosporon mucoides Cutaneotrichosporon mucoides Trichosporonales Trichosporonaceae 115
Trichosporon mycotoxinivorans Apiotrichum mycotoxinivorans Trichosporonales Trichosporonaceae 115
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relevant species are Rhodotorula mucilaginosa, Rhodotorula minuta, Rhodotorula glutinis, 
Rhodotorula slooffiae, and Rhodotorula dairenensis. R. mucilaginosa, R. dairenensis, and 
R. glutinis are retained in Rhodotorula; R. minuta and R. slooffiae have been reclassified 
in Cystobasidium (119). We believe that these nomenclatural corrections to the less 
common Cryptococcus spp. and to the outlier Rhodotorula spp., which are well supported 
by the available DNA data, are welcome as they reflect that most of these organisms 
are unlikely or very rare human pathogens and are more commonly encountered in 
the clinical laboratory as either contaminants or common (frequently skin) commensal 
organisms (120–123).

Dermatophytes and their relatives

It has been known for some time that the three historical genera of dermato­
phytes (Microsporum, Trichophyton, and Epidermophyton) as delineated by conventional 
morphological criteria were only partly concordant with phylogenetic analyses based on 
limited data sets that included the nuclear rRNA genes (124, 125). In particular, Trichophy­
ton was clearly polyphyletic in most studies, with the strictly anthropophilic organisms 
and those geophilic members of the genus that rarely cause human infections clustering 
separately in molecularly stable trees (124, 126). This was confirmed more recently via 
an MLST approach targeting five loci and a large panel of type and reference strains of 
the Arthrodermataceae (127). Tree topologies were remarkably similar to those earlier 
phylogenies, indicating that the phylogenetic representation of the dermatophytes and 
their relatives had reached a level of stability not influenced by taxon bias or sampling 
errors.

Under the auspices of these new phylogenetic analyses, the main anthropophilic 
dermatophytes and those zoophilic organisms regularly associated with human 
infections were almost all retained in Trichophyton, Microsporum, and Epidermophyton 
and the geophilic species, and additional zoophilic organisms that are rare human 
pathogens were re-distributed between Arthroderma, Nannizzia, and Lophophyton (Table 
3). Under that newly proposed taxonomy, Arthroderma contained 21 species; Trichophy­
ton, 16; Nannizzia, 9; Microsporum and Paraphyton were restricted to 3 species each; and 
Lophophyton and Epidermophyton, 1 species each (127). In that study, it was recog­
nized that the numbers of zoophilic and particularly geophilic species were still likely 
to grow as these organisms were likely under-sampled compared to their anthropo­
philic counterparts (127). Indeed, in a little over 6 years, the numbers of Arthroderma, 
Trichophyton, and Nannizzia spp. have risen to 27, 22, and 13, respectively [reviewed in 
reference (128) and references therein].

Dimorphic fungal pathogens of humans and animals in the family Ajellomy­
cetaceae

For almost a century, four main genera of systemic, dimorphic fungal pathogens of 
humans were recognized (Histoplasma, Coccidioides, Blastomyces, and Paracoccidioides), 
with each genus containing at most one or two species [reviewed in references 
(147–150)]. Additional dimorphic fungi which resided in the genus Emmonsia are 
the etiological agents of the pulmonary disease adiaspiromycosis which is principally 
encountered in small burrowing mammals [Emmonsia crescens and Emmonsia parva 
(151–153)] or occasionally disseminated infections in immunocompromised hosts 
[Emmonsia pasteuriana (154, 155)].

This historical taxonomy was recently challenged by the description of a number of 
novel thermally dimorphic human fungal pathogens which was coupled with detailed 
MLST and whole genome analyses of new and extant members of the Onygenales 
(51, 133, 156–158). As a result, five existing or novel Emmonsia-like fungi (including 
Emmonsia pasteuriana, now Emergomyces pasteurianus) were placed in a newly erected 
Onygenalean genus Emergomyces, which includes Emergomyces africanus, the most 
common dimorphic fungal pathogen encountered in immunocompromised patients 
in Southern Africa (156). Additionally, Emmonsia parva and Emmonsia helica were 
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TABLE 3 List of revised taxa of key human pathogenic filamentous fungi (molds)

Previous species name(s) Revised species name Order Reference

Absidia corymbifera Lichtheimia corymbifera Mucorales 129
Acremonium kiliense Sarocladium kiliense Hypocreales 130
Acremonium strictum Sarocladium strictum Hypocreales 130
Aspergillus amoenus Aspergillus versicolor Eurotiales 131
Aspergillus austroafricanus Aspergillus versicolor Eurotiales 131
Aspergillus cvetkovicii Aspergillus creber Eurotiales 131
Aspergillus fructus Aspergillus versicolor Eurotiales 131
Aspergillus griseoaurantiacus Aspergillus versicolor Eurotiales 131
Aspergillus hongkongensis Aspergillus versicolor Eurotiales 131
Aspergillus jensenii Aspergillus creber Eurotiales 131
Aspergillus pepii Aspergillus versicolor Eurotiales 131
Aspergillus protruberus Aspergillus versicolor Eurotiales 131
Aspergillus puulaaueensis Aspergillus creber Eurotiales 131
Aspergillus tabacinus Aspergillus versicolor Eurotiales 131
Aspergillus tennesseensis Aspergillus creber Eurotiales 131
Aspergillus venenatus Aspergillus creber Eurotiales 131
Bipolaris australiensis Curvularia australiensis Pleosporales 132
Bipolaris hawaiiensis Curvularia hawaiiensis Pleosporales 132
Bipolaris spicifera Curvularia spicifera Pleosporales 132
Emmonsia helica Blastomyces helicus Onygenales 133
Emmonsia parva Blastomyces parvus Onygenales 133
Emmonsia pasteuriana Emergomyces pasteurianus Onygenales 51
Geosmithia argillacea Rasamsonia argillacea Eurotiales 134
Lecythophora hoffmannii Coniochaeta hoffmannii Coniochaetales 135
Lecythophora mutabilis Coniochaeta mutabilis Coniochaetales 135
Leptosphaeria senegalensis Falciformispora senegalensis Pleosporales 136
Leptosphaeria tomkinsii Falciformispora tomkinsii Pleosporales 136
Madurella grisea Trematosphaeria grisea Pleosporales 136
Microsporum cookei Paraphyton cookei Onygenales 127
Microsporum fulvum Nannizzia fulva Onygenales 127
Microsporum gallinae Lophophyton gallinae Onygenales 127
Microsporum gypseum Nannizzia gypsea Onygenales 127
Microsporum nanum Nannizzia nana Onygenales 127
Microsporum persicolor Nannizzia persicolor Onygenales 127
Ochroconis gallopava Verruconis gallopava Venturiales 137
Paecilomyces lilacinus Purpureocillium lilacinum Hypocreales 53
Penicillium marneffei Talaromyces marneffei Eurotiales 138
Phialemonium curvatum Thyridium curvatum Sordariales 139
Phoma versabilis Sclerotiophoma versabilis Pleosporales 140
Pleurostomophora ochracea Pleurostoma ochraceum Calosphaeriales 141
Pleurostomophora richardsiae Pleurostoma richardsiae Calosphaeriales 141
Pleurostomophora repens Pleurostoma repens Calosphaeriales 141
Pseudallescheria boydii Scedosporium boydii Microascales 142
Pyrenochaeta mackinnonii Nigrograna mackinnonii Pleosporales 143
Pyrenochaeta romeroi Medicopsis romeroi Pleosporales 144
Sarcopodium oculorum Thyridium oculorum Sordariales 139
Scedosporium prolificans Lomentospora prolificans Microascales 142
Trichophyton benhamiaea Trichophyton africanum Onygenales 145
Trichophyton benhamiaeb Trichophyton europaeum Onygenales 145
Trichophyton benhamiaec Trichophyton japonicum Onygenales 145
Trichophyton terrestre Arthroderma terrestre Onygenales 146
aAfrican race.
bEuropean race, predominates in guinea pigs.
cEast Asia strains, found in rabbits and guinea pigs.
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reassigned to Blastomyces as B. parvus and B. helicus, respectively [Table 3; (51, 133)]. 
Currently, Emergomyces encompasses five distinct species some of which are potentially 
geographically restricted (Es. pasteurianus, Es. africanus, Es. canadensis, Es. europaeus, and 
Es. orientalis), and Blastomyces has been expanded to include seven species (B. dermatiti­
dis, B. gilchristii, B. parvus, B. silverae, B. percursus, B. emzantsi, and B. helicus). While the 
genus Emmonsia has been preserved (it was originally typified by E. parva), it is now 
limited to two species, E. crescens (the cause of adiaspiromycosis worldwide and 
designated new type species) and E. soli (currently represented by a single isolate).

Individual genera of fungi of medical interest

Aside the examples of extensive revisions of the large genera listed above, a significant 
number of other individual medically important pathogenic fungi have undergone 
recent taxonomic and nomenclatural changes. The dimorphic fungal pathogen endemic 
to parts of Asia formerly known as Penicillium marneffei (159, 160) was shown to be 
unrelated to most of the other, principally saprobic, Penicillium species, and was moved, 
together with most other biverticillate “Penicillium” species into the teleomorph genus 
Talaromyces (as Talaromyces marneffei), which better reflects its pathogenic potential 
(138).

In a similar vein, the emerging fungal pathogen originally described as Paecilomy­
ces lilacinus was shown by MLST to be unrelated to other Paecilomyces spp., and 
the novel genus Purpureocillium was erected to accommodate it, as Purpureocillium 
lilacinum (53). The recognition that P. lilacinum (Hypocreales) was genetically unrelated 
to Paecilomyces variotii (its previous sister species; Eurotiales) also helped explain the 
very different antifungal susceptibility profiles of these two pathogens: P. lilacinum 
isolates are routinely resistant to amphotericin B in vitro but have low MICs with the 
triazole antifungal drugs itraconazole, posaconazole, and voriconazole, whereas isolates 
of Paecilomyces variotii are generally susceptible to amphotericin B but resistant to 
voriconazole (35). Phylogenetic analyses of additional organisms contained in Hypo­
creales similarly demonstrated that species classified as Acremonium formed two major, 
distantly related clades, with the two principal, medically important species A. kiliense 
and A. strictum found in a cluster containing the type species of the genus Sarocladium, 
which justified their reassignment to this genus and the new combinations of Sarocla­
dium kiliense and S. strictum, respectively (130).

Many of the agents of dark grain eumycetoma were historically classified in the 
umbrella genus Madurella (Sordariales) which contained two sister species M. myceto­
matis and M. grisea (161–163). Since many of these fungi fail to sporulate in culture, 
identification was based on colonial morphology and clinical presentation [reviewed 
in references (48, 164)]. More recently, molecular approaches have demonstrated that 
although M. mycetomatis is a homogeneous species, albeit with additional mainly cryptic 
sibling species (M. pseudomycetomatis, M. tropicana, and M. fahalii) (165), “M. grisea” is 
clearly polyphyletic (48, 164). Indeed, organisms conforming to the historical concept of 
Madurella grisea, the majority of which are actually classified in Pleosporales, are entirely 
unrelated to the type species of the genus (M. mycetomatis; Sordariales) (162). Such 
molecular phylogenetic approaches have resulted in the transfer of historical isolates 
of “M. grisea” to other genera, both extant and novel, including Trematosphaeria [T. 
grisea (136)] Emarellia [E. grisea and E. paragrisea (48)] and Nigrograna [N. mackinnonii 
(143)]. Additional pleosporalean agents of eumycetoma that were also subjected to 
taxonomic revisions using the same approaches included Leptosphaeria senegalensis and 
L. tompkinsii which were transferred to Falciformispora [F. senegalensis and F. tomkinsii, 
respectively (136)] and Pyrenochaeta romeroi which was renamed as Medicopsis romeroi 
(144).

The genus Scedosporium represents another group of medically important fungi 
that has been the subject of recent and major taxonomic revisions. Phylogenetic 
analyses revealed that Scedosporium apiospermum and Pseudallescheria boydii were 
distinct species rather than the anamorph-teleomorph forms of the same fungus and 
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also identified a number of additional species within this complex many of which were 
indistinguishable morphologically (142, 166, 167). The “Scedopsorium apiospermum” 
complex thus comprises S. apiospermum and S. boydii, with the two Pseudallescheria 
species Ps. angusta and Ps. ellipsoidea included in the broadest sense of the complex. The 
additional species S. aurantiacum, S. dehoogii, and Ps. minutispora are more phylogeneti­
cally distant from this core S. apiospermum complex and exhibit phenotypic differences, 
including in antifungal susceptibility profiles and virulence, which merit their differentia­
tion (168–171). Scedosporium prolificans, which is phylogenetically and clinically very 
different to all other Scedosporium species, including the high resistance it exhibits to 
all currently available antifungal drug classes, was renamed as Lomentospora prolificans 
(142).

Finally, nomenclatural revisions affecting fungi that are less frequent human 
pathogens include: (i) transfer of the species of Bipolaris reported as occasional human 
pathogens (B. australiensis, B. hawaiiensis, and B. spicifera) to the alternative anamorph 
genus Curvularia based on phylogenetic analyses of these organisms with overlapping 
morphological traits (132); (ii) reassignment of the emerging pathogen of patients with 
cystic fibrosis Geosmithia argillacea (172) to the newly erected genus Rasamsonia (as R. 
argillacea) together with other related thermotolerant Geosmithia and Talaromyces spp. 
(134); (iii) transfer of Lecythophora hoffmannii and L. mutabilis to the teleomorph genus 
Coniochaeta (as C. hoffmannii and C. mutabilis, respectively) following phylogenetic 
evidence of genus-level synonymy and nomenclatural priority/precedence (135); (iv) 
Pleurostomophora ochracea, Pleurostomophora repens, and Pleurostomophora richardsiae 
were transferred to Pleurostoma (with the species epithets ochraceum, repens, and 
richardsiae, respectively) also for reasons of anamorph-teleomorph synonymy and the 
principle of priority (141); (v) the thermophilic fungal pathogen associated with human 
brain infections Ochroconis gallopava (173, 174) was moved to a new genus Verruconis 
(as V. gallopava) to distinguish it from the mainly mesophilic Ochroconis spp. (137); 
transfer of Phoma versabilis to the novel genus Sclerotiophoma (with epithet retained) 
following a large-scale multi-locus phylogenetic evaluation of the polyphyletic genus 
Phoma (140).

CRYPTIC SIBLING SPECIES IN KEY FUNGAL MORPHOSPECIES

As alluded to earlier in this review, another key impact of molecular phylogenetic 
approaches to fungal identification and classification was the discovery of innumerable 
sibling species in key morphospecies of human pathogenic fungi (5, 6, 11–14, 21, 175). In 
many cases, these cryptic species could only reliably be identified by DNA sequence 
analyses, often involving multiple, artificially concatenated barcoding sequences or 
sometimes by using proteomic approaches such as matrix-assisted laser desorption/ion­
ization-time of flight (MALDI-TOF MS) (5, 6, 11–14, 21, 64, 175). For the more common 
ascomycetous yeasts of medical importance, closely related sibling species have been 
described in Candida albicans (175–179), Candida parapsilosis (64, 180), and Nakaseomy­
ces (Candida) glabratus (95, 181–183). At least some of the novel cryptic siblings have 
been associated with altered antifungal susceptibility patterns, clinical presentations, 
and/or virulence (177, 178). In many respects, the situation is equally if not more complex 
with regard to cryptic species in filamentous fungi (molds). The presence of cryptic 
species within Scedosporium and the distinction of the S. apiospermum complex from 
other recently described Scedosporium sister species have been alluded to above and 
will not be discussed further. Other key genera/families of filamentous fungi will be 
discussed in detail separately below.

Cryptic species in the dimorphic fungal pathogens

Closely related molecular siblings have been extensively reported in the Ajellomyceta­
ceae (51, 133, 157, 158), with cryptic sister species identified up to a century after 
the initial descriptions of Coccidioides immitis [sister species C. posadasii (184)], Blasto­
myces dermatitidis [B. gilchristii (185)], and Paracoccidioides brasiliensis [P. lutzii (186)]. 
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As explained previously, the genus Blastomyces has been further expanded by the 
additional, predominantly cryptic, species B. emzantsi (157), B. percusus (51), and B. 
silverae (133) and the transfer to the genus from Emmonsia of B. helicus and B. par­
vus (133). For Paracoccidioides, the novel species Paracoccidioides ceti was erected to 
accommodate the uncultivated pathogen of dolphins, with P. loboi (ex Lacazia loboi) 
reserved for the agent of similar disease in humans (187). The additional species 
P. restrepoana, P. americana, and P. venezuelensis have been separately proposed to 
accommodate three additional cryptic species in the P. brasiliensis complex (188) but 
together with P. lutzii are currently invalid under article 40.7 (Schenzhen) of the Code (a 
single herbarium, collection, or institution in which the type strain is conserved was not 
specified in the description).

The historical concept of Histoplasma entailed three varieties of a single etiolog­
ical agent (H. capsulatum) based on differences in clinical disease presentation and 
geographical distribution: (i) the widely dispersed human pathogen causative of classical 
pulmonary histoplasmosis, H. capsulatum var. capsulatum; (ii) the old world pathogen H. 
capsulatum var. duboisii, the causative agent of African histoplasmosis, a disease typified 
by skin/bone involvement; and (iii) H. capsulatum var. farciminosum, the causative agent 
of equine epizootic lymphangitis endemic in parts of Africa [reviewed in reference (189)]. 
Phylogeographical studies spanning nearly two decades have indicated that Histoplasma 
encompasses far more genetic variation than can be accommodated in this historical 
concept of the genus, with at least eight clades recognized across seven phylogenetic 
lineages/species (190–193). More recently, several of these independently evolving 
lineages were elevated to species level: alongside H. capsulatum sensu stricto (retained 
for the Panamanian lineage) and H. capsulatum var. duboisii, H. mississippiense, H. ohiense, 
and H. suramericanum were proposed for the H. capsulatum lineages previously known 
as Nam1, Nam2, and LAmA, respectively (193), although all three are listed as invalidly 
described in MycoBank and Index Fungorum. However, a recent multi-locus evaluation of 
Histoplasma isolates from Brazil where considerable genetic diversity parallels geograph­
ical origin (189), together with similar analyses of isolates from cases of histoplasmosis 
in India (194), suggests that the genus might contain significantly more diversity than 
can be accounted for in the recently proposed concept of Histoplasma (193). Regardless 
of the final numbers of cryptic species and the status of those proposed or accep­
ted to date, it is clear that numerous novel sibling species exist in Blastomyces, Histo­
plasma, Coccidioides, and Paracoccidioides and that at least a proportion of them exhibit 
particular geographical distributions, are associated with different disease presentations, 
or have measurable differences in virulence in animal or invertebrate models of infection 
(157, 184, 185, 187, 189, 195).

Sporothrix schenckii, the sole recognized dimorphic agent of human sporotrichosis 
for over a century, is also now recognized to be a complex of a number of individual 
cryptic species (196), with the clinically relevant species S. brasiliensis, S. globosa, and S. 
mexicana described in addition to S. schenckii sensu stricto following extensive pheno­
typic and phylogenetic studies (197). S. schenckii has worldwide distribution and remains 
the principal agent of cutaneous human sporotrichosis following traumatic inoculation 
involving vegetation (196, 198), S. brasiliensis is the principal agent of zoonotic (feline) 
sporotrichosis in Brazil (199), whereas S. globosa has been reported from isolated human 
infections in Europe but appears endemic in Northeast China where it is acquired from 
contact with certain plants (200, 201). S. mexicana is principally environmental and has 
only rarely been reported from human disease (197). Recently, S. schenckii var. luriei 
has also been proposed to be a distinct species (S. luriei) on the basis of multilocus 
sequence analyses, but this again is a rare human pathogen (196, 202). The major human 
pathogens S. schenckii, S. brasiliensis, S. globosa, and S. luriei are recovered in a clinical 
clade coined the Sporothrix pathogenic clade, which is more distantly related to the 
Sporothrix pallida complex containing those Sporothrix species that have either reduced 
pathogenicity in mammalian models and/or are principally environmental saprobes (S. 
pallida, S. chilensis, and S. mexicana) (203).

Review Clinical Microbiology Reviews

December 2023  Volume 36  Issue 4 10.1128/cmr.00099-22 13

https://doi.org/10.1128/cmr.00099-22


Cryptic species in Aspergillus, Cladosporium, Fusarium, and Trichophyton

Since early reports of cryptic speciation in Aspergillus flavus (204) and the descrip­
tion of Aspergillus lentulus as a new sibling species of A. fumigatus with potentially 
reduced antifungal susceptibility (63), clinically relevant cryptic species have been 
described across the entire genus, to the extent that Aspergillus is now arranged into 
six sub-genera and 27 sections that accommodate species complexes of well-known 
morphospecies and their relatives (82), with the species encountered in the clinical 
laboratory distributed across the sections Aspergillus, Candidi, Circumdati, Clavati, Flavi, 
Flavipedes, Fumigati, Nidulantes, Nigri, Polypaecilum, Restricti, Tannerorum, Terrei, and Usti. 
For example, Aspergillus section Fumigati, which contains the most common cause 
of invasive aspergillosis [A. fumigatus (205)] contains in excess of 60 phylogenetically 
distinct species, of which approximately 20 have been reported from human and animal 
infections (5, 206). Although some of these species are distinguishable phenotypically, 
e.g., on the basis of electrolyte profiles (207), these are not tests that are available 
in routine mycology/microbiology laboratories, and these species are thus effectively 
cryptic in the clinical setting. Similarly, Aspergillus section Nidulantes series Versicolores 
has been proposed to contain 18 (mainly cryptic) species that are ubiquitous and 
preponderant in indoor air, many of which are opportunistic pathogens (208), and similar 
complexity has been reported for sections Nigri and Flavi (209, 210). Several surveillance 
studies have suggested that a significant proportion of Aspergillus isolates encountered 
in the clinical setting are cryptic (211–213), with frequencies of 11% and 14.5% reported, 
respectively, from the TRANSNET (USA) and FILPOP (Spain) studies (212, 213). Moreover, 
a growing body of evidence supports the contention that at least some cryptic species 
are associated with different disease presentations (210, 214, 215) and altered antifungal 
susceptibility profiles and disease outcome (63, 209, 210, 214–217).

Cladosporium spp., while being rare causes of invasive human disease, are often 
encountered in the clinical laboratory as Cladosporium spores are ubiquitous in indoor 
environments and are thus often recovered as plate contaminants (218). While the 
number of Cladosporium species associated with clinical cases was originally believed 
to be restricted to four (C. cladosporioides, C. herbarum, C. oxysporum, and C. sphaero­
spermum), C. cladosporioides, C. herbarum, and C. sphaerospermum have been shown 
to be species complexes (219–221). Indeed, a phylogenetic revision of Cladosporium 
from 2012 already recognized 7, 21, and 39 named sibling species in C. sphaerosper­
mum, C. herbarum, and C. cladosporioides, respectively (222), and a later study of C. 
cladosporioides listed 54 sibling species, many of which have been recovered from clinical 
materials (223).

The genus Fusarium comprises a large number of human and plant pathogenic 
fungi that were originally segregated into relatively vague morphological sections 
based on increasingly complicated phenotypic characters (224, 225), many of which 
sections later proved to be polyphyletic and/or encompass complexes of numerous 
cryptic sibling species. Clinically relevant Fusarium species are now grouped in at 
least eight distinct species complexes: Fusarium solani species complex, Fusarium 
oxysporum species complex, Fusarium dimerum species complex, Fusarium fujikuroi 
species complex, Fusarium chlamydosporum species complex, Fusarium incarnatum-equi­
seti species complex, Fusarium sambucinum species complex, and Fusarium tricinctum 
species complex (226). The F. fujikuroi species complex was recently expanded to contain 
at least 74 phylogenetic sibling species (227), and over 60 distinct species are encom­
passed in the F. solani species complex (228). For the latter, a proportion of species 
have received formal species epithets, while most are identified by haplotype based on 
multilocus sequencing of housekeeping genes (229, 230).

Complexes of closely related but distinguishable genotypes are also known to exist 
in certain species of the dermatophyte genera Trichophyton and Arthroderma. The 
Trichophyton mentagrophytes species complex, which was originally a zoophilic species 
associated with rodents and other small mammals, contains a number of clonal lineages 
[nine genotypes to date based on sequences of the ITS1 region (231, 232)], several 
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of which are now commonly found in humans. These include the now anthropophilic 
T. interdigitale (genotypes I and II) and genotype VIII which has recently emerged as 
a highly virulent and often terbinafine­resistant cause of tinea corporis first in India 
and now with outbreaks worldwide (231–233). Given the specific clinical manifesta­
tions associated with genotype VIII infections (predominantly recalcitrant tinea cruris), 
greater virulence and reduced susceptibility to several antifungal drugs as compared to 
other members of the complex, and the rapid clonal expansion/outbreak potential of 
genotype VIII, it has been proposed to be practical and clinically useful to specifically 
elevate this genotype to species level under the name Trichophyton indotineae (234, 
235). Additional species complexes in the dermatophytes and their relatives include 
Trichophyton terrestre and T. benhamiae complexes. Trichophyton terrestre was historically 
a mitosporic, geophilic dermatophyte relative referable to three closely related, but 
distinct sexual species in Arthroderma (A. lenticularum, A. quadrifidum, and A. insingulare) 
but conspecific with none of them [discussed in reference (236)]. Recent phylogenetic 
studies employing three genes supported the transfer of T. terrestre to the genus 
Arthroderma (as A. terrestre), with their close relatives grouped in five distinct clades 
(146). Members of this complex are geophilic (or less commonly zoophilic) and, as such, 
are rare pathogens of humans (146, 236).

Historically, the T. benhamiae complex encompassed several closely related zoophilic 
dermatophyte species (T. benhamiae, T. erinacei, T. eriotrephon, and T. verrucosum) plus 
the anthropophilic species T. concentricum (127). Originally described as Arthroderma 
benhamiae and considered to be the perfect state of T. mentagrophytes (237), Trichophy­
ton benhamiae is an emerging pathogen in humans, causing highly inflammatory tinea 
corporis and tinea capitis, with the guinea pig as predominant animal host (238–240). 
T. benhamiae exists as two independent geographically constrained races, an African 
race and an Americano-European race which are genetically distinct (241), and two 
different phenotypic groups (yellow and white phenotypes) among the Americano-Euro­
pean strains (242). Recent polyphasic approaches that included phylogenetic analyses 
of four separate loci demonstrated that isolates of the white phenotype contain three 
independent taxa and supported the creation of the novel species T. africanum (African 
race, known strains mostly from humans so animal host unknown), T. europaeum (widely 
distributed in guinea pigs in Europe), and T. japonicum (widely distributed in Japan in 
rabbits and less commonly in guinea pigs, less common in Europe where the natural host 
is more often guinea pigs than rabbits) and the varieties T. benhamiae var. luteum (yellow 
form, widely distributed but predominant in Europe, animal host mainly guinea pigs) 
and T. benhamiae var. benhamiae (animal hosts dogs, cats, chinchillas, North Ameri­
can porcupines) (145). These delineations were supported in subsequent independent 
polyphasic studies that also included proteomic analyses (243).

RESOLVED AND UNRESOLVED ISSUES OF CONTENTION

For certain species that have been or should be renamed, additional problems and 
conflicts exist. Currently, these chiefly concern the large traditional anamorph genera 
Aspergillus and Fusarium, where no operational molecular criteria have been established 
to delimit the fungal genus and the existing groupings currently encompass multiple 
teleomorph genera. For both of these genera, different approaches have been proposed 
that would result either in fragmentation of the genus or merging of smaller more 
distantly related genera to maintain Aspergillus and Fusarium in their classical sense. For 
the genus Cryptococcus, initial disputes concerning the recognition of seven distinct 
species in C. neoformans/C. gattii have been fully resolved. Each will be discussed 
separately below.

Aspergillus

The ascomycete anamorph genus Aspergillus is huge compared to many other fungal 
genera and contains numerous clades that are organized into sections and series 
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each containing complexes of related species (81, 82). The genetic distances between 
these clades are much larger than those seen in many other fungal genera (81, 82). 
Additionally, Aspergillus encompasses at least 10 teleomorph genera that are more 
narrowly delimited than the anamorph genus (81, 82, 244, 245). Theoretically, these 
teleomorph names could be proposed for retention as the accepted name(s) for the 
various Aspergillus species after the abolition of dual nomenclature (244, 245). If this 
approach were adopted, since the type species of Aspergillus is A. glaucus (Aspergillus 
section Aspergillus; teleomorph Eurotium), many other Aspergillus species of medical, 
agricultural, and biotechnological importance would be removed from the genus and 
placed in one of the known teleomorph genera [reviewed in reference (81)]. The 
alternative suggestion to conserve the genus Aspergillus with a different type species 
(e.g., A. fumigatus as the most clinically relevant or A. niger as the predominant species of 
biotechnological importance) would provoke equal debate and would not resolve issues 
around nomenclatural stability since again all Aspergillus spp. with different teleomorphs 
from A. fumigatus (teleomorph Neosartorya) or A. niger (teleomorph Eurotium) would 
require renaming (246, 247). Several recent analyses of the phylogenetic relationships 
of Aspergillus and related fungi in Penicillium have supported the monophyly of both 
of these genera in their widest senses, albeit with numerous sub-genera or clades (81, 
82, 244, 247–250). On the basis of those studies showing that Aspergillus is monophy­
letic and in the absence of precise criteria for the genetic delimitation of the genus 
in Kingdom Fungi, the working solution that is currently in place is the retention of 
the genus Aspergillus in its widest sense (with all teleomorph genera absumed), a 
solution that has received the support of the International Commission of Penicillium 
and Aspergillus as it maintains the prevailing, broad concept of Aspergillus (81, 247–250).

Fusarium

The large genus Fusarium presents an equally complex nomenclatural conundrum for 
similar reasons to those discussed for Aspergillus above, namely, the presence of a single, 
large anamorph genus of medical and agricultural interest that encompasses numerous 
individual teleomorph genera. Since the type species for Fusarium is F. sambucinum 
which has a Gibberella teleomorph, the genus name must be retained at least for all 
species with Gibberella teleomorphs, which is not disputed (251–253). However, the 
genetic delineation of the genus remains hotly disputed, with different groups of authors 
proposing distinctly different nodes in the phylogenetic trees of the Nectriaceae to serve 
as the terminal Fusarium clade (TFC) and thus delimit the genus. Simplistically, a (large) 
subset of the Fusarium community argue that the TFC should be reserved for Fusarium 
sensu stricto (i.e., the Gibberella clade, the F3 node), which is highly supported in all 
MLST phylogenies as monophyletic (251, 252) and which would exclude Fusarium solani 
species complex (teleomorph Neocosmospora) and Fusarium dimerum species complex 
(253) among others. Based upon those analyses, a modern revision was published for 
Neocosmospora to encompass 68 species including Fusarium solani species complex 
(254), and the novel genus Bisifusarium was proposed for members of the Fusarium 
dimerum complex (253). The arguments for a broader concept for Fusarium centre 
around the selection of “upstream” nodes in phylogenetic analyses to represent the TFC 
or the broader Fusarium clade, with the nodes F1 (all Fusarium spp. including F. dimerum 
complex) or F2 (includes F. solani complex but excludes F. dimerum clade) proposed (252, 
255, 256). Counter arguments against the latter proposals, which would result ultimately 
in less nomenclatural change, are that the nodes F1 and F2 are less well supported by 
the existing multi-gene phylogenies (with phylogenetic support skewed by insufficient 
sampling of clades upstream of node F1) and that the resulting Fusarium genus would 
be polyphyletic (253, 254, 257) with 10 and 9 distinct genera delimited by the F1 and F2 
nodes, respectively. This situation has not been definitively resolved.
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Cryptococcus

Even after removal of basidiomycetous yeasts that are only distantly related to Crypto­
coccus to the alternative Tremellomycete genera Naganishia and Papiliotrema (115) as 
discussed previously, it has long been apparent that the remaining genetic diversity in 
the medically important Cryptococcus neoformans/gattii species complex far exceeds 
the number of currently accepted species (55, 258, 259). Based on a phylogenetic 
analysis of 11 loci and a panel of 115 isolates in this complex, Hagen and colleagues 
proposed the recognition of seven species (55). Cryptococcus neoformans was retained 
to describe species formerly referred to as Cryptococcus neoformans var. grubii, Cryp­
tococcus deneoformans was erected to encompass serotype D isolates (formerly C. 
neoformans var. neoformans) as proposed at the International Conference on Cryptococ­
cus and Cryptococcosis in 2011 and embraced by the audience at the time and at 
least five cryptic species were described in the C. gattii species complex. These inclu­
ded C. gattii, Cryptococcus deuterogattii, Cryptococcus tetragattii, Cryptococcus decagattii, 
and Cryptococcus bacillisporus. These new species differ in prevalence, pathogenicity, 
and antifungal susceptibility and are represented as distinct lineages in most recent 
molecular analyses (260–263). However, this proposal was initially criticized by some 
workers (259) who argued that insufficient numbers of strains had been examined 
with insufficiently sampled loci/chromosomes to fully capture the diversity of the 
complex and that identification of the seven species would require MLST phylogenetic 
approaches that would likely be difficult to instigate in routine clinical laboratories. On 
this basis, they argued that the erection of the seven proposed taxa was premature and 
proposed the continued use of C. neoformans species complex and C. gattii species 
complex for reporting of such isolates in clinical laboratories (259). The arguments 
against the recognition of the seven species were subsequently thoroughly refuted in 
detail (263): the individual species are readily distinguishable by sequencing of the ITS1 
region or by MALDI-TOF MS approaches, the original loci and methods used for species 
delineation have been widely used for species delineation in both sexual and asexual 
fungi and the vast majority of prior and subsequent studies employing whole genome 
sequencing revealed the same well-demarcated and supported clades (263).

MYCOLOGICAL AND CLINICAL IMPACTS OF TAXONOMIC REVISIONS

Nomenclatural changes are neither new nor unique to fungi. However, due to the 
increasingly widespread application of molecular phylogenetic approaches to fungal 
taxonomy over the last three decades, the pace of nomenclatural change and the 
number of fungal organisms recognized as threats to human health have significantly 
increased (5, 6, 11–14, 21–23, 29, 42, 43, 48, 51, 53, 55–57, 63–76, 264). Since phylo­
genetic relationships are highly subject to sampling bias, it is inevitable that many 
existing phylogenies will be subject to considerable change when additional, more 
diverse taxa are sampled (57, 265). Thus, the species Sarcopodium oculorum which was 
newly described as an opportunistic agent of keratitis in 2002 (266) was transferred 
together with Phialemonium curvatum (267) into a newly created genus Phialemoniopsis 
in 2013 (268) only for this genus to be synonymized with the historical genus Thyri­
dium in 2022 (139). Similarly, Lichtheimia corymbifera, which was originally described 
as Mucor corymbifer in 1884 (269), was transferred to the genus Lichtheimia in 1903 
(270), transferred again in 1912 to the genus Absidia as A. corymbifera (271) where it 
remained until 1991 when it was removed to the genus Mycocladus (272). Since the type 
of Mycocladus has since been shown to likely be a co-culture with elements that appear 
to be conspecific with Absidia, the oldest available name for the fungus is Lichtheimia 
corymbifera which it has now regained (129, 273).

The potential issues of instability will be exaggerated for phyla that have been 
delineated using only the conventional rDNA fungal barcode regions ITS and LSU, 
as they perform poorly at taxonomic classifications above species level and neither 
locus adequately classified fungi at the generic level (46, 274, 275). Moreover, ITS as 
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the universal barcode has limited utility for some medically important species due to 
extensive gene flow between sub-lineages (276). Thus, continued revisions of the fungal 
Kingdom at the generic level will likely be necessary in the future.

Accelerated taxonomic change has led to serious concerns in parts of the medical 
mycology community with vocal reticence to implement such nomenclatural advances 
(277–280). The arguments raised included (i) disruption of molecular databases and lack 
of continuity of historical literature sources, (ii) loss of traceability of epidemiological and 
antifungal susceptibility data, (iii) confusion caused by clinical reporting of unfamiliar 
pathogen names, and even (iv) ensuing patient harm if clinicians dismiss old pathogens 
reported with new names either as contaminants or colonizers (277, 278, 280). The latter 
two fears concerning clinical confusion, while genuine, are surmountable and will be 
discussed in the remainder of this review under “Avoiding unnecessary instability,” and 
“Managing nomenclatural change in medical mycology.”

The first two concerns, while theoretically valid, are largely unwarranted. Since all the 
principal databases (including those of the National Center for Biotechnology Informa­
tion) rely on standardized taxonomic databases that cross-reference novel and obsolete 
names, key searches will retrieve all relevant historical records (281, 282). Similarly, 
the publicly available databases/resources at MycoBank (www.mycobank.org; curated 
by Konstanze Bensch at the Westerdijk Fungal Biodiversity Institute, The Netherlands) 
and Index Fungorum (www.indexfungorum.org; curated by Paul Kirk, Royal Botanic 
Gardens Kew, United Kingdom) are regularly updated with nomenclatural changes and 
are thus an invaluable and usually highly accurate record of the status of a fungal 
name, together with links to obsolete names and their associated literature. In rare cases, 
there are discrepancies between the accepted current names listed in MycoBank and 
Index Fungorum. In such instances, a list of additional useful taxonomy/nomenclature 
resources (with links) is available in Table 3 of reference (6) which is usually helpful 
to clarify any confusion. If these fail to resolve the conflicting taxonomic positions, 
consultation with a regional or national mycology reference center is advisable.

AVOIDING UNNECESSARY INSTABILITY

The instability described above can be partially mitigated going forward via the use of 
multi-locus approaches to phylogenetic inference and also the increasing availability of 
completely sequenced fungal genomes which produce robust scaffolds with improved 
taxonomic resolution (47, 51, 62, 131). However, genome scale assemblies often do not 
include the ribosomal RNA cistron which is necessary to allow comparability with data 
sets generated by DNA barcoding (283). Taxonomic instability can further be lessened 
by delaying the implementation of changes that involve closely related species until the 
underlying taxonomy has been confirmed by independent authors, preferably employ­
ing or obtained via multiple phylogenetic inference methods and wide taxon sampling.

When multilocus phylogenetic methods were combined with multispecies coales­
cence model-based approaches to analyze a large collection of strains of Aspergillus 
series Versicolores, all methods consistently supported only four species (A. creber, A. 
versicolor, A. sydowii, and A. subversicolor), with a broad species concept, rather than the 
17 species that had been previously accepted, 13 of which have now been returned to 
synonymy with either A. versicolor or A. creber (284; Table 3). Recent similar approaches 
with isolates of Aspergillus series Nigri supported the reduction in the number of 
recognized species from 14 to at most six [see reference (285) for taxonomic details]. In 
both cases, the significantly reduced species numbers better correlated with intraspe­
cific variation previously reported for other aspergilli and were better recognized by 
proteomic or DNA-sequence-based laboratory identification methods (284, 285).
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MANAGING NOMENCLATURAL CHANGES IN MEDICAL MYCOLOGY

The “species complex” for closely related collections of siblings

A number of groups have suggested that name changes to fungi of medical impor­
tance are more easily accepted by the clinical community when they are phylogeneti­
cally convincing and clinically relevant, i.e., when they are underpinned by significant 
evolutionary distances that are likely to or known to affect their behavior in terms of 
virulence, pathogenicity, and resistance to antifungal drugs (5, 11–14, 21, 73, 76, 127, 
277, 279, 280). For complexes of cryptic species described as a result of molecular 
phylogenetic approaches, it is seldom initially apparent whether the novel taxa exhibit 
clinically significant differences or indeed whether such differences are universally 
applicable. In such instances, it has been proposed that the use of “species complex,” 
although not clearly defined taxonomically, be employed for groups of closely related 
sibling species that share clinically similar properties (5, 11–14, 57, 76, 280). This has 
been seamlessly implemented across many major fungal species including the Candida 
parapsilosis (64, 180), C. albicans (177–179), Rasamsonia argillacea (74), and Scedosporium 
apiospermum (166, 169) species complexes and also the large complexes of cryptic 
species in many of the medically important morphospecies in Aspergillus (65, 286) and 
Fusarium (228).

Managing major nomenclatural shifts by education and re-iteration

Aside from the issues of closely related siblings and the treatment of hitherto unsuspec­
ted diversity in common morphospecies discussed above, many of the nomenclatural 
changes alluded to in this review represent genuine revisions of fungal taxonomy/phy­
logeny that accurately recognize the unrelatedness of organisms previously grouped 
together in historical genera. As such, they absolutely fulfil the criteria proposed for 
nomenclatural revision of medically important fungi (5, 11–14, 21, 73, 76, 127, 277, 
279, 280): (i) they are phylogenetically compelling and (ii) recognition of this amen­
ded taxonomy is clinically important as it impacts fundamental behavior (virulence, 
pathogenicity, thermostability, and antifungal drug susceptibility) and thus potentially 
patient management.

Numerous examples of recent nomenclatural revisions that have met with little 
resistance from the medical mycology community exist (5, 11, 12, 57, 76) including (i) the 
separation Purpureocillium lilacinum (53), a species uniformly resistant to amphotericin B 
(35), from its historical sister species Paecilomyces variotii (264) which is amphotericin 
B susceptible but resistant to voriconazole (35); (ii) recognition that the dimorphic 
human fungal pathogen Talaromyces marneffei is only distantly related to principally 
saprobic Penicillium species (138); (iii) assignment of the pan-resistant fungus Scedospo­
rium prolificans to the genus Lomentospora to distinguish it from the other members 
of the Scedosporium/Pseudallescheria complex (142); (iv) large-scale re-arrangements of 
the genera Blastomyces and Emmonsia (51, 133); (v) re-assignment of the principally 
zoophilic and geophilic dermatophyte relatives from Trichophyton and Microsporum 
to Arthroderma and Nannizzia, respectively (127); (vi) removal of many of the distant 
relatives of Cryptococcus that are extremely rare human pathogens to allied basidiomy­
cete genera (26); (vii) renaming of many of the agents of dark-grain eumycetoma based 
on phylogenetic analyses (48, 136, 143, 144). A common feature to these accepted 
taxonomic reassignments, aside from the clinical relevance, is that, for the most part, 
they involve fungi that are relatively rarely encountered in the medical microbiology 
laboratory and changes have been introduced sporadically as data became available. 
In addition, these transitions were facilitated by retention of the same species epithet 
for the former and new names, after appropriate minor adjustments to conform to the 
requirements of Latin declension.

The arguments for the re-assignment of many species previously grouped in 
the polyphyletic anamorph genus Candida are equally if not more compelling. 
The phylogenetic distances (as measured by amino acid substitutions/site) between 
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members of the Nakaseomyces glabratus (ex-Candida glabrata) species complex (104) 
and C. albicans are more than double those that separate humans and pythons (287). In 
addition, isolates of the clinically relevant members of N. glabratus species complex (N. 
glabratus, N. nivariensis, and N. bracarensis; Table 2) exhibit significantly higher MICs with 
fluconazole than C. albicans (33, 288) and marked differences as compared to C. albicans 
in virulence (289), biofilm formation (290), and other pathogenicity traits that have been 
acquired independently of C. albicans (291). Similarly, and as discussed previously (13, 
278), recognition that Candida krusei belongs to the genus Pichia (as Pichia kudriav­
zevii) (76) explains the “unusual” innate resistance of the former to fluconazole: all 
isolates of Pichia species exhibit high fluconazole and flucytosine MICs (33). Despite 
overwhelming evidence that recognition of the correct taxonomic standing of many 
species in “Candida” has genuine clinical relevance, recent reviews that summarized the 
current taxonomic anomalies and suggested revision (13) were met with widespread 
criticism with concerns that clinicians would not recognize or act appropriately to if old 
pathogenic “Candida” species were reported under their new identities [discussed in 
references (277–281)].

As we and others have pointed out previously (277, 278), name changes have been 
successfully applied to common “Candida” species in the past, and these changes 
reached global acceptance. Prior to 1923, Candida albicans was known successively 
as Oidium albicans and then Monilia albicans (292, 293), and Nakaseomyces glabratus 
was transferred from the genus Torulopsis, where it had resided for 40 years (294), 
to Candida as late as 1978 (295). Critical to the successful implementation of those 
past changes and to assimilation of continued taxonomic revisions going forward is 
the education of both laboratory and medical staff which we believe is best achieved 
by modifications to the way that clinical mycology laboratories convey results. The 
approach that we advocate (13, 278) and indeed have implemented at the UK National 
Mycology Reference laboratory is the one shared by Wiederhold and Gibas (5) and Kidd 
and colleagues (277, 279, 280). We report the new (accurate) nomenclature together with 
the most recent, previous name(s) that is most commonly encountered in the literature: 
“Isolate identified as Pichia kudriavzevii (previously known as Candida krusei),” in this way 
allowing clinicians to access the wealth of historical data concerning treatment options 
and patient management. The intention is to persist with this system until the novel 
nomenclature has been widely assimilated.

In the UK, this approach has been met with limited resistance (Borman and John­
son, personal observation), and recent surveys of Australasian clinicians and laboratory 
staff showed these proposals to be well supported (279). Many commercial fungal 
identification systems have adopted at least partially updated nomenclature for fungi 
of medical importance. We would strongly encourage the manufacturers of such 
databases to continue to provide the previous names for those “Candida” species 
that have been assigned to alternative genera in a similar manner to that which we 
have suggested above, which should also aid implementation of current nomenclature, 
reduce resistance to change, and limit clinician confusion [discussed in reference (280)]. 
Similarly, acceptance and increased clinical awareness of nomenclatural changes would 
also be facilitated if groups such as the Clinical Laboratories Standards Institute and the 
European Committee on Antimicrobial Susceptibility Testing were to employ both novel 
and previous names in their documents and standards. As discussed previously, avoiding 
unnecessary and transient name changes is central to the acceptance of the concept 
that nomenclatural change may be beneficial. In this respect, we certainly support 
many of the suggestions in the recent opinion piece by Yurkov and colleagues (296) 
that are intended to limit unnecessary nomenclatural changes that result from invalid 
description of novel fungal taxa. Finally, publication of regular update articles listing the 
latest (accepted) nomenclatural changes and explaining the mycological and/or clinical 
rationale behind them will aid in the continued education of both the laboratory worker 
and the clinician and also hopefully increase the speed of acceptance of changes (5, 11, 
12, 57, 76, 280).
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