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SUMMARY Aminoglycosides (AGs) are long-known molecules successfully used against 
Gram-negative pathogens. While their use declined with the discovery of new anti
biotics, they are now classified as critically important molecules because of their 
effectiveness against multidrug-resistant bacteria. While they can efficiently cross the 
Gram-negative envelope, the mechanism of AG entry is still incompletely understood, 
although this comprehension is essential for the development of new therapies in 
the face of the alarming increase in antibiotic resistance. Increasing antibiotic uptake 
in bacteria is one strategy to enhance effective treatments. This review aims, first, 
to consolidate old and recent knowledge about AG uptake; second, to explore the 
connection between AG-dependent bacterial stress and drug uptake; and finally, to 
present new strategies of potentiation of AG uptake for more efficient antibiotic 
therapies. In particular, we emphasize on the connection between sugar transport and 
AG potentiation.
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INTRODUCTION

S ince their introduction in the 1940s, antibiotics have played a major role in the 
development of modern medicine and have saved many lives. However, bacterial 

resistance to treatment has been observed since the first administrations during the 
Second World War (1), and it has only increased since then. After decades of use, the 
World Health Organization (WHO) warns that if nothing is done by 2050, millions of lives 
could be lost in the battle against pathogenic bacteria. A study published in 2022 (2) 
reports on the impact of multi-antibiotic resistant [multidrug-resistant (MDR)] bacteria 
on mortality: in 2019, 1.27 million deaths were directly due to MDR bacterial infections. 
Of these deaths, nearly 75% were related to six pathogens: Escherichia coli, Staphylococ
cus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, 
and Pseudomonas aeruginosa. Additionally, studies show the significant proportion of 
hospital infections related to Gram-negative bacteria (3–6).

This review focuses on the use of a specific class of antibiotics, the aminoglycosides 
(AGs), against Gram-negative bacteria. AGs are “old” molecules. The first member of AGs, 
streptomycin, was discovered in 1944 by Albert Schatz and isolated from Streptomyces 
griseus (7). The discovery of this major antimicrobial earned Professor Selman Waksman 
the Nobel Prize in Medicine in 1952. Despite their efficacy, one limitation of the use 
of aminoglycosides is their side effects on patients. Nephrotoxicity and ototoxicity are 
observed in variable proportions depending on the study, averaging between 3% and 
15% of cases, although these figures remain difficult to determine as they depend on 
the patient and the type of infections (8, 9). AG use decreased with the approval of new 
treatments such as fluoroquinolones or cephalosporins, but they are now experiencing 
renewed interest because of their broad-spectrum efficiency and the development of 
semi-synthetic derivatives (10). AGs are now classified as a critically important class of 
antimicrobials by the WHO (11), particularly with the arrival of plazomicin, the latest AG 
approved in the United States (2018) since amikacin in 1981. Plazomicin is active against 
MDR Enterobacteriaceae, including those resistant to carbapenemases (12).

AGs can be classified into four groups based on the core structure as illustrated in 
Table 1 (13). They are composed of an amino-sugar core structure (14). The amino- 
moieties are most often protonated under biological conditions, which confers them a 
highly positive charge at neutral pH, making these molecules basic and hydrophobic. 
These properties influence their transport across the bacterial membranes.

AGs act primarily by disrupting protein synthesis, because they bind the ribosome 
on the 16S ribosomal RNA, near the decoding site (15, 16). The 4,5- and 4,6-substituted 
AGs (Table 1) additionally bind the 23S ribosomal RNA (17), impeding ribosome assembly 
(18) and recycling (17, 19, 20). Consequently, these AGs have been associated with an 
overall slowing of translation (20, 21). Importantly, AGs are bactericidal, which makes 
them an exception among antibiotics targeting translation. Other antibiotics targeting 
the ribosome, such as chloramphenicol or tetracycline, prevent translation initiation and 
show a bacteriostatic action (22). On the other hand, AGs do not stop translation, but 
they cause mistranslation (23–27). AG-dependent translation errors have recently been 
shown to cluster together (27). As soon as a translation error occurs, others follow, 
leading to a protein synthesis catastrophe, which has implications in terms of lethality 
but also AG uptake, as we will detail below [energy-dependent phase II (EDPII)].

The primary target of the AGs is thus the ribosome. However, AGs’ mode of action and 
how they exert their bactericidal effect are still incompletely understood and sometimes 
under debate. As synthetically illustrated in reference (28), first understanding of AG 
lethality was that mistranslation would lead to insertion of misfolded proteins to the 
membrane and eventually membrane disruption (29, 30). Reactive oxygen species (ROS) 
have later been proposed as key players in AG-induced cell death (30), while iron-sulfur 
cluster biosynthesis was shown to be involved in AG lethality through increased uptake 
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in E. coli, in a ROS-independent way (31). Moreover, these mechanisms are not necessa
rily mutually exclusive and may even depend on each other. For example, membrane 
disruption was shown to lead to ROS production (30, 32). Additional complexity stems 
from the fact that not all bacterial species susceptible to AGs bear the same pathways for 
response to oxidative, envelope, and Fe-S stresses. AG mode of action is thus complex 
and available data indicate that there are many factors at play.

Several resistance mechanisms to AGs have been described, primarily involving 
enzymes that modify and inactivate AG molecules, through acetylation, adenylylation, 
or phosphorylation (14). Another resistance mechanism involves alteration of the target 
site, the ribosome, through mutations in the 30S ribosomal subunit or methylation 
of the AG binding site. Although this second mechanism also confers high levels of 
resistance, it may be associated with a fitness cost in the absence of AGs, with a general 
alteration of the ribosome functional structure. The third resistance mechanism involves 
reducing intracellular AG concentrations, which can be achieved by decreasing uptake or 
increasing efflux (33, 34). In a study on 1,349 clinical isolates including ESKAPE patho
gens, E. coli, Proteus spp., Providencia stuartii, and Serratia marcescens, it was found that 
when resistance was not due to AG inactivation enzymes, it was attributed to a decrease 
in their ability to transport AGs inside the cell. Although the molecular mechanisms 
have not been addressed in the corresponding study, it was observed that such altered 
transport was responsible for 90% of resistance to amikacin (35). It would be thus 

TABLE 1 Classification of aminoglycosides according to their core structure and examplesa

Group Examples Molecule

No core
(streptidine core)

Streptomycin

Mono-substituted deoxystreptamine Apramycin

4,5-disubstituted deoxystreptamine
Neomycin
Ribostamycin
Paromomycin

4,6-disubstituted deoxystreptamine

Kanamycin
Gentamicin
Amikacin
Tobramycin
Plazomicin

aThe molecule that is represented is underlined. Adapted from Krause et al. (13).
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important to determine the exact mechanisms by which AGs enter the bacterial cells, 
in order to understand resistance mechanisms and potentially the means to counteract 
them.

Despite their long history of use, the complete understanding of AG uptake and 
action remains incomplete. Ongoing research continues to uncover new insights into 
their transport into bacterial cells and the mechanisms underlying their bactericidal 
effects. This review aims to consolidate both the long-standing and recent discoveries 
pertaining to AG entry.

We will first review the methods available for quantifying AG uptake in bacteria, 
as these have been crucial in understanding the mechanisms involved in their entry 
through the bacterial envelope. We then focus on how AGs cross the Gram-negative 
double membrane barrier to enter bacterial cells, including recent discoveries on active 
transport mediated by carbohydrate transporters. Subsequently, we will explore the 
relationship between AG-induced cellular stress and its impact on further AG uptake. 
Finally, based on our understanding of AG uptake, we will discuss possible potentiation 
mechanisms for enhancing the efficacy of AG therapies.

METHODS FOR MONITORING AG UPTAKE

Several methods have been developed to quantify the entry of AG into bacterial cells, 
and to construct and consolidate the current model of AG uptake.

Indirect methods

Initially, indirect methods based on evaluating antimicrobial action were employed to 
assess intracellular AG uptake. The supernatant from bacterial cultures treated with 
AGs was collected and used to treat naive bacteria. The uptake by the initial batch of 
AG-treated culture was determined by measuring the concentration of AG remaining in 
the supernatant. This evaluation was performed by comparing the inhibition rate after 
treatment with the supernatant to the inhibition rate observed with the initial drug 
concentration (36). A similar approach was used to assess intracellular drug concentra
tions by measuring the inhibition rate after treatment with a lysate of bacteria previously 
exposed to the antibiotics (37). Quantification of AG in bacterial lysate can also be 
performed with high-performance liquid chromatography (38, 39).

More recently, the remaining amount of tobramycin in the supernatant of treated 
P. aeruginosa cell was evaluated with electroanalytic quantification through tobramy
cin binding on electrodes, which characterizes its electrochemical behavior through 
voltammetry, redox potentials, and pH dependence. In this assay, the decrease in the 
electrochemical current corresponds to consumption of tobramycin (40). This has the 
advantage to discriminate sensitive and various degrees of resistant bacteria in the 
biological sample and not only in laboratory media, and appeared as an interesting 
alternative for clinical antibiotic susceptibility testing.

Although these indirect approaches can provide valuable information, they cannot 
be employed to directly assess the penetration of the drug into the bacterial cell, and 
especially at the single cell level.

Labeled drugs

The first labeling of AG molecules was accomplished using radioactivity. Various 
radiolabeled AG drugs have been developed, with tritium-3H (3H-gentamicin, 3H-tobra
mycin, or 3H-amikacin, for example) which has the advantage of being a very low-pen
etration β emitter (41), with Iode 125 (42), Carbon 14 (43, 44), or technetium 99m 
(45). Radioactive molecules offer the advantage of sensitive detection, but their use 
is not always practical as it involves a considerable investment by the laboratory, and 
they cannot be used in microscopy for localizing the antibiotics. Moreover, radioactive 
isotopes could be subject to passive adsorption on bacteria (42).

Subsequently, fluorescent labeling techniques were developed to measure AG 
concentrations in bacteria. One such method is the automated fluorescence 
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immunopolarization assay, which involves competition between gentamicin in the 
test sample and fluorescein-labeled gentamicin on sheep anti-gentamicin serum (42). 
Compared to radiolabeled AG entry measurement, this method is less sensitive 
(threshold of 300 µg/mL) and requires a higher inoculum, although the transport 
characteristics are similar. As a result, this method is more suitable for monitoring AG 
concentration in patient fluids rather than bacterial cells (46).

The use of Texas red-AG conjugate molecules offers advantages as they exhibit a 
similar range of minimum inhibitory concentration (MIC) compared to unconjugated 
gentamicin (47). They have been tested in E. coli (48, 49), A. baumannii (50, 51), and P. 
aeruginosa (52, 53). However, the Texas red dye itself can penetrate the cell, making it 
difficult to differentiate between the uptake of Texas red alone and the Texas red-AG 
conjugate.

Kanamycin labeled with fluorescent CFDA-SE [5,(6)-carboxyfluorescein diacetate, 
succinimidyl ester] has been developed for microscopy studies (54). However, the dyes 
from the aromatic carboxylics acids family, including CFDA-SE, can also permeate cells 
and exhibit pH-dependent properties (55).

An alternative approach involves labeling neomycin with cyanine fluorophores Cy5 
and Cy3, which retains the properties of aminoglycosides for uptake and activity (56). 
Neomycin-Cy5 has been employed for uptake study in Vibrio cholerae (57–59), E. coli, and 
P. aeruginosa (60). By coupling neomycin with Cy5, it becomes possible to visualize the 
precise localization of the antibiotic, which can be found in the periplasm or cytoplasm 
depending on the duration of treatment, antibiotic concentration, and the species (56).

MECHANISM OF AMINOGLYCOSIDE ENTRY FROM THE EXTERNAL ENVIRON
MENT INTO THE CYTOPLASM

In this part, we describe how AGs can bind to and cross the outer membrane, to 
enter the periplasm, before passing the inner membrane to reach the cytoplasm. We 
include long-known and recent discoveries on non-specific and specific transport of 
these molecules through the Gram-negative double membrane. Note that the majority, 
if not all of the studies of AG entry into the bacterial cell, has been in the context of 
exponentially growing cells.

AGs can pass through the Gram-negative bacterial envelope

The outer membrane of Gram-negative bacteria consists of an asymmetric bilayer of 
phospholipids associated with a layer of lipopolysaccharides (LPS). The LPS displays 
an outwardly directed O-antigen, an oligosaccharide (sugar) core, and lipid A. The 
composition of O-antigen varies according to the bacterial species. Lipid A is composed 
of a disaccharide linked to fatty acids (61). This arrangement of the outer membrane 
forms a highly hydrophobic lipid bilayer which contains embedded pores that act as a 
selective filter for exogenous compounds (62).

The periplasmic space between the outer and the inner membranes contains a 
layer of peptidoglycan, which provides mechanical and osmotic protection to the cell. 
The inner membrane is composed of a phospholipid bilayer embedded with proteins, 
including the respiratory chain responsible for generating the proton motive force and 
enabling ATP synthesis.

The outer membrane's hydrophobic nature serves as a protective barrier against 
the external envirnoment. This constitutes a challenge for antibiotics that need to 
reach the periplasm or the cytoplasm to exert their action. Several antibiotics can 
hence be only used against Gram-positive bacteria. One such example is vancomycin, 
which targets peptidoglycan synthesis. Both Gram-negative and Gram-positive bacteria 
synthesize peptidoglycan. However, despite its high efficiency against Gram-positive 
bacteria, vancomycin is generally ineffective against Gram-negative bacteria because it 
cannot cross the Gram-negative outer membrane (63).

AGs are one class of antibiotics which can cross both membranes and are effi-
ciently used against Gram-negative bacteria. In the 1960s, the entry of AGs into the 
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Gram-negative bacterial cell was proposed to occur as follows. First, a small amount of 
the antibiotic enters by passive diffusion through both membranes. Since AGs target 
translation, their entry affects protein synthesis, among which membrane proteins, and 
eventually causes a deterioration of membrane integrity, and further AG entry. Then, 
after a lag, increased entry leads to death (64). This model was further developed in 
the 1980s, where most of the discoveries were made, that led to the currently accepted 
uptake model [see reference (65) for a comprehensive review]. The entry of AGs into 
the cytoplasm is now described as primarily dependent on the proton motive force, 
and divided into three phases: (i) a slow linear concentration-dependent entry up to 
a plateau; (ii) a second phase of linear entry, referred to as energy-dependent phase I 
(EDPI); and (iii) a rapid entry which saturates after several minutes, just before cell death, 
referred to as energy-dependent phase II (66–69).

Adding to this model, new discoveries have been made regarding AG uptake through 
outer membrane porins, and a specific entry mechanism at the inner membrane through 
sugar transporters, as detailed later in this review.

Reaching the target: initial binding to the outer membrane

AGs are small hydrophobic molecules that can bind to the LPS of the outer membrane. 
Similar to the polymyxin family of antibiotics, AGs bind to the cell through electrostatic 
interactions between the positively charged groups of the antibiotic and negatively 
charged components of the outer membrane (70). The binding sites for polymyxin 
on the outer membrane can be antagonized by the presence of cations, indicating 
that polymyxin B and cations compete for binding sites on the cells (71). Interestingly, 
a polymyxin-resistant E. coli also exhibits lower outer membrane binding of the AG 
gentamicin (72). This competition between polymyxin and an AG suggests that both 
antibiotics may share the same binding sites on the outer membrane (73). It was 
observed in P. aeruginosa that the addition of cations, such as magnesium and polya
mines, raises the MIC of AGs by preventing their adsorption to the outer membrane (74). 
However, addition of cations after AG exposure cannot not rescue viability, demonstrat
ing the irreversible binding of AGs (75). Also note that addition of magnesium (as well 
as changing other parameters of the external environment) may have pleiotropic effects 
including binding to the outer membrane, changing metabolism and gene expression, 
and impacting ribosome stability. Such experiments should thus be interpreted with 
caution.

The initial entry phase through the outer membrane occurs rapidly upon the addition 
of AGs, and the rate of uptake is influenced by AG concentration (67, 76, 77). Remarkably, 
initial observations in P. aeruginosa showed that 30 seconds of incubation with an AG 
was sufficient to result in a 312-fold increase in the intracellular concentration of the 
AG compared to the external medium (74). This binding and transport across the outer 
membrane do not appear to require energy, as indicated by the fact that following a 
cold treatment that inactivates energy-dependent transport, AG binding to the outer 
membrane remained possible (78).

It is possible to decrease the binding of AGs to the outer membrane. AGs form strong 
hydrogen bonds with the lipids of the LPS (79, 80). Altering the LPS can thus, in some 
cases, decrease the binding and the susceptibility to AGs as observed in P. aeruginosa 
(81, 82), E. coli (83), and others (84). External agents can also alter the binding of AGs 
to the outer membrane. One illustrative example is observed in P. aeruginosa, with the 
outer membrane protein OprH. OprH binds and occupies the magnesium cross-bridging 
sites of the LPS (85), thus masking these cationic sites on the outer membrane where AGs 
bind (73, 86–88). Magnesium starvation induces the expression of OprH (89), highlight
ing how environmental factors can significantly impact the effectiveness of AGs.
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Crossing the outer membrane

Outer membrane disruption

Once bound to the outer membrane of bacteria, AGs are able to permeabilize it before 
reaching the periplasmic space. The hydrophobic fluorescent dye 1-N-phenylnaphthyla
mine was used to observe disruption of the outer membrane by AGs. This dye can 
only penetrate the Gram-negative cell upon outer membrane permeabilization. Upon 
treatment with AGs, the dye could enter inside P. aeruginosa cells, demonstrating 
the permeabilization effect of AGs (90). Such outer membrane permeabilization could 
even be observed in a setup where AGs were prevented from reaching the cytoplasm, 
indicating that the action of AGs on the outer membrane is independent of their action 
in the cytoplasm (87). In fact, AGs insert themselves into the bacterial lipid bilayer and 
initiate a threshold response, ultimately leading to surface disruption (91).

Importantly, this disruption occurs without altering the width or fluidity of the 
membrane, but it does induce membrane disorder and increase lipid dynamics (92). 
This results in rapid leakage of cytoplasmic materials (75). For example, lethal exposure 
to AGs in P. aeruginosa has been found to cause a decrease of 34% in total proteins. 
Moreover, even a short gentamicin treatment was observed to lead to removal of outer 
membrane constituents (67). Formation of small transient holes were also observed in 
the same study conducted by Martin and Beveridge.

Implication of porins

In addition to a general membrane disruption, non-specific transport through porins 
has been proposed as an uptake mechanism for AGs at the outer membrane, similar to 
what has been observed for other antibiotics, such as β-lactams (93, 94). Porin function 
does not require an energy supply such as ATP. While porins are often non-specific for 
the substrates they transport in Enterobacteriaceae, some porins may exhibit selectivity, 
such as LamB for maltose and maltodextrins (95) or ScrY for sucrose (96). The exclusion 
size of porins varies among bacteria, and in E. coli, it is estimated to range between 600 
and 800 Daltons. Thus, porins are capable of transporting small, hydrophilic solutes and 
proteins, and they also serve as signal transduction relays. In some cases, AGs were even 
proposed to induce their own passage through porin opening as exemplified with the 
MscL mechanosensitive channel which bears an attachment site for streptomycin (97, 
98).

AGs can diffuse through pores formed by porins, at a rate as rapid as that of hexoses 
and disaccharides, except for pores formed by LamB (93). Another indirect evidence of 
the interaction between AGs and porins comes from the observation that kanamycin 
affects the intrinsic tryptophan fluorescence of the OmpF porin, indicating direct binding 
(99, 100). In E. coli, it has been estimated that approximately 10–20 kanamycin molecules 
per second can pass through OmpF and OmpC. Permeation to AGs, including kanamy
cin, gentamicin, and amikacin, is also possible through ChiP (chitoporin) at a rate of 
approximately three molecules per second. However, LamB maltoporin does not show 
significant permeation, consistent with previous observations (101, 102).

On the other hand, there is limited direct in vivo evidence regarding the transport 
of AGs by porins, as few porin-deficient mutants that are resistant to AGs have been 
isolated. Most porin-deficient mutants showed no change in susceptibility to AGs (93, 99, 
103). A ΔompF (also called tolF) strain was identified as resistant to AGs (103); however, 
this effect could also be indirect, as the loss of OmpF alters the protein composition 
of the outer membrane (104). Later, it was shown that a single deletion of either ompF 
or ompC did not affect susceptibility to AGs, but the double mutant did (101). This 
suggests that these two porins may act in a redundant way and compensate for each 
other’s function in AG entry. Additionally, the probability of occurrence and selection of 
a double mutation is low, which could explain why the involvement of porins is mainly 
identified using specific experimental setups. An E. coli strain resistant to both polymyxin 
and AGs was isolated, and exhibited reduced porin levels, suggesting that decreased 
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permeability to both compounds may be a result of reduced porin abundance (105). 
However, a more recent study on a knockout strain lacking all 40 porins in P. aeruginosa 
did not demonstrate increased resistance to AGs (106), indicating that even if AGs are 
transported by porins, this may not be the primary route of entry into bacterial cells.

In addition to studying AG uptake in porin deletion mutants, overexpression studies 
have also been conducted. This is relevant because the expression of porins is usually 
inducible and they may not be expressed at high levels under normal growth condi
tions. For example, PhoE is induced under phosphate limitation, and the expression 
of LamB, OmpC, and OmpF is regulated by variations in the physicochemical environ
ment (osmolarity, temperature) (107). It has been shown that only 5% of the popula
tion produces open channels for the OprF porin (108). Therefore, under non-induced 
conditions, the expression of porins may not be sufficient to facilitate significant uptake 
of AGs, resulting in negligible impact on the MIC. However, there have been instances 
of AG transport by porins, such as OprB in P. aeruginosa, which increases susceptibility 
to AGs when overexpressed (60). It is important to mention that, to the best of our 
knowledge, no studies have been conducted on AG uptake under conditions where 
OmpC and OmpF porins are artificially overexpressed in vivo. Moreover, the overexpres
sion of OmpC in E. coli has been shown to inhibit the translation of other porins, namely 
LamB and OmpA (109). This indicates that the expression of different porins can be 
intertwined, and could potentially minimize any effect on AG susceptibility phenotypes 
upon overexpression of a given porin. This factor should be considered when investigat
ing the impact of multiple porins on antibiotic uptake using overexpression techniques.

Importantly, a species-specific effect on AG recognition by porins should not be 
overlooked. For example, while overexpression of LamB in E. coli did not enhance 
sensitivity to AGs (60), AG passage through LamB appears to be possible in V. cholerae 
(59). This may further complicate the identification of specific porins responsible for AG 
transport.

In conclusion, AGs can cross the outer membrane through electrostatic binding and 
membrane disruption, and probably also through non-specific transport by porins.

Energy-dependent phase for aminoglycoside transport across the inner 
membrane

Once AGs have crossed the outer membrane, they accumulate in the periplasmic space 
and need to traverse the inner membrane to enter the cytoplasm, where they can target 
the ribosome. This uptake process occurs in two distinct energy-dependent phases, 
which have been a topic of debate, leading to different conclusions among different 
research groups (68, 76, 110). However, the role of the membrane potential in facilitating 
AGs’ crossing of the inner membrane is widely acknowledged (65, 68, 111–113).

We describe below the details of this process.

The EDPI: slow uptake in the cytoplasm

The proton motive force (PMF)

The PMF relies on both membrane potential (∆ψ) and ∆pH. The membrane potential 
(∆Ψ) is generated by the respiratory complexes. The respiratory chain consists of a set 
of protein complexes located at the inner membrane, responsible for the oxidative 
phosphorylation of ADP to produce ATP, i.e., energy. Unlike eukaryotes, the bacterial 
respiratory chain exhibits diversity depending on the species, allowing for the utilization 
of various electron donors and acceptors. Despite their diversity, respiratory chains share 
a common organization: a dehydrogenase receives electrons from a donor and gets 
oxidized. The electrons are then transferred to a co-factor, which becomes reduced, and 
pass through several co-factors (which are subsequently re-oxidized) until they reach a 
final acceptor, which is oxygen in the case of aerobic respiration. ∆pH depends on the 
proton concentration on either side of the membrane (114). Respiratory chain com
plexes are capable of coupling their redox reactions with the transfer of protons across 
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the membrane to balance charges, thereby establishing an electrochemical gradient 
generated by proton pumps. This potential is referred to as the proton motive force. 
Thus, the PMF is tightly linked with energy production, and the uptake of AGs depends 
on the PMF, (111–113), as described below.

The EDPI

A threshold membrane potential must be reached in order to initiate AG transport. In 
E. coli cells, AG uptake occurs when ∆ψ is between −107 and −125 mV (115). As an 
indication, in E. coli, the ∆Ψ value is −105 mV during fermentation, −130 mV in anaerobic 
conditions (116), and ranges from −220 mV at the beginning of the exponential phase 
to −140 mV at the end under aerobic conditions (117, 118). On the other hand, ∆pH 
is measured as −117 mV during fermentation, −144 mV in anaerobic conditions, and 
−160 mV in aerobic conditions (116).

This implies that the amount of AGs that can enter the bacterial cells varies with 
growth conditions: AGs are less effective in an environment with low pH (119, 120) 
and also less effective against anaerobic or facultative anaerobic bacteria that have 
a reduced PMF. For example, bacteria with anaerobic nitrate respiration are resistant 
to higher AG doses (121). Mutants of E. coli with defective respiratory chains exhibit 
reduced AG entry and susceptibility, indicating that a deficiency in cellular respiration 
hinders AG accumulation within the cell. Therefore, reduced AG uptake and susceptibility 
may be observed when the respiratory chain is altered, as it happens in mutants for 
NADH-dehydrogenase (31, 122), cytochrome oxidase (123), succinate dehydrogenase 
(124), or heme biosynthesis (which is a co-factor of the respiratory chain) (111, 125–127). 
Recent literature also indicates that the PMF-dependent uptake of AGs is hindered in 
mutants deficient for iron-sulfur (Fe-S) cluster machineries of the respiratory chain (31). 
Thus, mutations altering iron-sulfur cluster biogenesis can also have an impact on AG 
susceptibility.

Inhibition of the EDPI

The inhibition of the EDPI uptake phase is possible and can be achieved through 
the inhibition of membrane potential, by uncoupler, also called protonophores. These 
are compounds that dissipate the gradient of protons and decouple it from oxidative 
phosphorylation of ADP to ATP. Uncouplers include dinitrophenol, carbonyl cyanide 
m-chlorophenylhydrazone (CCCP), potassium cyanide (KCN), oxamic acid, sodium 
arsenate, and sodium azide (31, 128, 129). Moreover, nitric oxide and nitrite, by binding 
to terminal oxidases, can halt respiration (130–132). Other inhibitors such as N-eth
ylmaleimide (76, 128), p-chloromercuribenzoate (sulfhydryl reagents) (129), and low 
temperature (128, 133) have also been shown to be effective.

The direct role of ATP in AG transport was addressed in an unc mutant (F-ATPase), in 
which ATP production is uncoupled from the electron transport and the PMF. Treatment 
with the protonophore CCCP dissipates ∆ψ, and leads to a decrease in ATP levels in 
wild-type conditions, but the ATP content of the cell remains unchanged in the unc 
mutant. CCCP treatment could still abolish AG uptake in the unc mutant despite normal 
ATP levels, suggesting that ATP alone does not have a direct role in the transport of AG 
(134, 135). AG uptake does not depend on the levels of intracellular ATP, as a 10-fold 
reduction in ATP content does not modify AG uptake (136). In the same line, the use of 
the ATPase inhibitor N,N′-dicyclohexylcarbodiimide (DCCD) does not change the rate of 
AG uptake in the Gram-positive S. aureus (77), but no similar experiment was performed 
in Gram-negative bacteria.

In an interesting unpublished observation, Miller and Dougherty observed that 
AG uptake could occur in CCCP-treated cells lacking ∆Ψ [as also observed in Muir 
et al. (137) on anaerobic cells or or Nielsen (138)], but only after a lag phase [their 
personal communication to Taber in Taber et al. (65)], which probably corresponds to 
the resumption of bacterial growth and restoration of intracellular ATP levels (134). 
They hypothesized that this could be attributable to the induction of an alternative 
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uptake pathway, such as an active transport mechanism that relies on ATP rather than 
membrane potential ∆Ψ. This may be one of the first instances where the idea of active 
AG transport, e.g., through ATP-binding cassette (ABC) transporters, was mentioned (see 
“Active transport through the inner membrane” below).

In summary, during EDPI, a small amount of AGs cross the inner membrane through 
PMF-dependent passive diffusion and this amount is concentration dependent.

The EDPII: fast cytoplasmic uptake prior to cell death

The second phase of energy-dependent entry, known as EDPII, relies on the action of 
AGs on protein synthesis. As mentioned previously, AGs induce translation errors (23–25, 
27), leading to the production of non-functional, misfolded, or truncated proteins. Recent 
research has demonstrated the presence of error clusters following AG treatment, with 
an error rate within these clusters that is 60,000 times higher than the predicted random 
error rate. AGs can remain bound to the ribosome over multiple protein elongation 
cycles, inducing consecutive errors and causing proteotoxic stress and protein aggrega
tion (27). Furthermore, AGs stimulate the accumulation of ROS (139, 140), which are 
also associated with the misfolding of mistranslated proteins (141), further exacerbating 
proteotoxic stress (see Aminoglycoside uptake and stress section below).

How mistranslation primes AG entry during EDPII is still unclear, although it is widely 
accepted that poorly translated membrane proteins can create pores and facilitate the 
entry of AGs into the cell (29, 65, 142, 143), in a so-called leakage pathway. This, in 
turn, disrupts various cellular processes and ultimately leads to cell death due to the 
irreversible nature of absorption (29). It has been proposed that after protein mistransla
tion, rapid proteolysis occurs, trapping the AGs inside the cell and contributing to its 
irreversible action (144).

Inhibition of the EDPII

Protein synthesis and interaction with the ribosome are necessary to initiate EDPII (145). 
Inhibiting AG binding to the ribosome prevents EDPII. A specific example can be found in 
an rpsL (ribosomal protein S12) mutant, which lacks the high-affinity ribosomal binding 
site for streptomycin (146, 147). In this mutant, the second phase of uptake for the AG 
streptomycin cannot occur, demonstrating the essential role of ribosomal binding of AGs 
in EDPII.

Reduced ribosomal activity has also been associated with a decrease in EDPII, likely 
due to a reduced amount of mistranslated proteins: for example, chloramphenicol 
supplementation, which halts protein synthesis, during or before treatment with AGs, 
hinders AG uptake (128) by blocking EDPII, not EDPI (148–150). Therefore, protein 
production is required for both the initiation and continuation of EDPII (145).

Although this EDPII is not directly linked to respiration or alteration of the PMF, this 
step is still referred to as energy-dependent because it is prevented by uncouplers 
(as described above), and requires the presence of the PMF (76, 115). This energy 
dependency is inconsistent with a simple leakage pathway resulting from membrane 
damage but rather suggests the involvement of energized channels in the passage of 
AGs. Furthermore, a possible link between the protein translation machinery (essential 
for EDPII) and the PMF (essential for EDPI/EDPII) cannot be excluded. For example, 
PMF drives the translocation and resolution of protein folding problems in the inner 
membrane (151–153). However, no studies have provided substantial evidence to 
support such a hypothesis.

During EDPII, a large amount of AGs enter the bacterial cytoplasm following 
mistranslation of membrane proteins. This phase necessitates the presence of a 
membrane potential.

Active transport through the inner membrane

In addition to unspecific uptake during EDPII due to membrane damage, the possibil
ity of active transport of AGs through the inner membrane has been proposed and 

Review Microbiology and Molecular Biology Reviews

December 2023  Volume 87  Issue 4 10.1128/mmbr.00036-2210

https://doi.org/10.1128/mmbr.00036-22


debated for half a century. In 1978, Holtje observed that streptomycin induces the 
active transport of polyamines and competes with them for entry into the cell. He 
proposed that streptomycin could be actively recognized and carried by the polyamine 
transporters (129). Since then, new insights invalidated this hypothesis. Firstly, it was 
observed that polyamine uptake is inhibited during amino acid depletion in a stringent 
strain of E. coli but not in a relaxed strain (154). A stringent strain constitutively activates 
the stringent response. We now know that AGs also induce the stringent response 
(155), which could explain the observed “competitive” effect with polyamine uptake. 
Additionally, polyamines have the ability to displace gentamicin from the ribosome in 
vitro (156), suggesting that the competition between AGs and polyamines may be due 
to their opposed effects on the ribosome. In P. aeruginosa, polyamines have been shown 
to increase the MIC of several antibiotics, including AGs, but this effect was found to be 
linked to LPS perturbation and not to an active transporter (157).

Another observation supporting the hypothesis of active transport of AGs arose from 
the finding that AGs accumulates in E. coli when chloramphenicol is present, provided 
that the AG is added prior to chloramphenicol treatment. Initially, this observation was 
interpreted as evidence of the AG inducing an active transport system (66). Subsequent 
studies showed that active protein synthesis is necessary for AG accumulation (EDPII), 
only during the early stages of treatment. Current theory suggests that the requirement 
for protein synthesis during early AG accumulation can be explained by the fact that, at 
later stages, some AGs have already entered the cell (EDPI) and induced a certain amount 
of misfolded proteins, thereby initiating EDPII (147). However, this does not rule out the 
potential involvement of active transport in AG entry (128).

Active transporters of nutrients in bacteria usually exhibit both compound selectiv
ity and size selectivity. For example, in contrast to the AG dihydrostreptomycin, its 
adenylated derivative does not enter E. coli cells. This disparity could be attributed to 
charge modifications or to the size of the modified molecule being too large to pass 
through an active transporter. These findings support the notion of transport occurring 
via specific carriers (158). Another supportive fact came from a study using N-ethylmalei
mide, which is a compound known to inactivate several transporters with thiol groups 
in E. coli, without affecting the growth rate or the PMF. Similar to lactose, melibiose, and 
proline, the uptake of the AG tobramycin is hindered when N-ethylmaleimide is added. 
This suggests that AGs may be transported by proteins with accessible thiol groups on 
the external face of the cytoplasmic membrane (76).

A recent study suggests that AGs are transported by amino acid carriers in E. coli. This 
hypothesis is based on the fact that deletion of the gcvB sRNA, which represses amino 
acid transporters, increases sensitivity to several AGs (159). Moreover, AG import was 
reduced in the btuD ATP-binding subunit mutant of the vitamin B12 transporter, which 
was attributed to an active transport of the AG in Lysobacter (54), but this has not yet 
been further studied.

Finally, recent studies have suggested that AG transport occurs through carbohy
drate transporters, regulated by carbon catabolite repression (CCR). CCR is a regulatory 
mechanism in bacteria that controls the transport and utilization of carbon sources. It 
ensures efficient utilization of the most favorable carbon source, e.g. glucose for E. coli, 
before utilizing secondary carbon sources (160). Thus, in the presence of the prefer
red carbon source, bacteria repress the transport and utilization of alternative carbon 
sources. The repression is mediated by catabolite repression protein, such as the cAMP 
receptor protein (CRP), in complex with cyclic AMP (cAMP). The specific mechanisms vary 
between bacterial species, as different organisms may have their own set of regulatory 
proteins and signaling pathways involved in CCR.

Although sugar utilization-related genes have sometimes been detected (161, 162), 
the vast majority of high-throughput studies of resistant/persistent populations usually 
identify and study PMF and membrane-related mutants (e.g., electron transport and 
oxidative respiration) (163–165). Initial data leading to the hypothesis of a link between 
sugar transporters and AG uptake came from the observation in E. coli, that glucose 

Review Microbiology and Molecular Biology Reviews

December 2023  Volume 87  Issue 4 10.1128/mmbr.00036-2211

https://doi.org/10.1128/mmbr.00036-22


supplementation reduces the rate of uptake of the AGs (129). These findings suggested 
a connection between AG uptake and CCR. Recent research in V. cholerae (59) and other 
Gram-negative bacteria (E. coli, P. aeruginosa, and A. baumannii) (60) has demonstrated 
that AGs are actually transported by a diverse array of sugar transporters. In the case of V. 
cholerae, high-throughput studies have identified the involvement of a small non-coding 
RNA called ctrR in AG susceptibility. Inactivation of ctrR leads to increased tolerance to 
AGs (59). A homolog of ctrR has in parallel been identified in Vibrio tasmaniensis (166), 
and it has been shown to interact with mRNAs of carbohydrate utilization and transport 
genes, resulting in the stabilization of these transcripts. In both species, upregulation of 
this small RNA leads to an increased number of the corresponding transporters.

This discovery highlighted the connection between carbon source utilization and AG 
uptake. Even though no ctrR homolog was identified in other genera, this mechanism of 
AG uptake by sugar transporters is shared among other Gram-negative bacteria. Indeed, 
at least 11 transporters have been confirmed as involved in AG-specific susceptibility and 
uptake when overexpressed in E. coli. They are primarily located at the inner membrane 
(PTS [phosphotransferase system] and ABC transporters) and are non-preferential sugar 
transporters, induced by the CRP-cAMP complex, upon glucose limitation. Thus, AG 
uptake seems to be regulated by CCR and de facto, under the control of environmental 
factors. Moreover, other small regulatory RNAs can regulate sugar transport, such as Spot 
42 (spf) in ɣ-proteobacteria (167, 168), but their involvement in AG susceptibility has not 
been tested.

The recognition of AGs by sugar transporters could be attributed to the sugar moiety 
of AGs (60). However, there are still unresolved questions regarding the relationship 
between this active transport mechanism and the PMF, as the PMF may play a direct 

FIG 1 Model of AG entry in Gram-negative bacteria. (1) Electrostatic binding. The interaction between AG and the outer membrane induces its destabilization. 

Entry through porins is possible. (2) Energy-dependent phase I. Slow uptake, proton motive force dependent. Active transporters (notably carbohydrates 

transporters) are also able to carry AG. The link between active transporters and the role of the PMF in AG entry remains to be fully elucidated. (3) Ribosome 

binding. AGs induce protein mistranslations. (4) Energy-dependent phase II. Misfolded protein induces membrane permeability and large uptake, preceding cells 

death. “Active transporter” corresponds to carbohydrate transporters and others.
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or indirect role in powering or regulating active sugar transporters (169–171). Moreover, 
several active transport systems, such as lactose permease, are proton-driven transport
ers (172), and their functionality can be inhibited by the uncoupler CCCP, which is also 
an inhibitor of AG entry (173). These recent findings raise the question of the extent to 
which the dependence on membrane potential is connected to active transport systems 
that are coupled to proton transport.

In summary, once AGs have reached the periplasm, there is an initial slight increase in 
entry known as the energy-dependent phase I, followed by a plateau, and then a rapid 
increase in entry referred to as energy-dependent phase II. The latter is dependent on 
the production of proton motive force by cellular respiration, which drives the uptake 
process (68). In addition, specific transport of AGs through carbohydrate transporters has 
also been demonstrated. Fig. 1 summarizes the current AG uptake model in Gram-nega
tive bacteria.

Once AGs have entered the cytoplasm, the uptake process becomes irreversible, as 
the molecules cannot exit the cell even when the proton gradient is artificially removed 
using a protonophore to dissipate the membrane potential (68).

AMINOGLYCOSIDE UPTAKE AND STRESS

Once AGs have entered inside the bacterial cell, they can exert their action primarily by 
targeting the ribosome, but also, and consequently, by triggering various stresses, some 
of which can also influence their further uptake.

Bacterial stress responses are important molecular mechanisms that bacteria deploy 
to survive and adapt to a variety of stressful conditions and challenges, including 
exposure to antibiotics. Indeed, as part of the everlasting arms race among microor
ganisms, antibiotics have been well-known stressors for bacteria with several studies 
showing how the presence of these compounds, sometimes even at very low con
centrations, induces different bacterial stress responses (174–180). Activation of these 
mechanisms can enhance bacterial survival in the presence of antibiotics by either 
modulating the accumulation of antibiotics inside the cell or by interacting with the 
factors required for their efficacy. In this section, we will briefly review how AGs trigger 
different bacterial stress responses and how these affect AG entry.

Aminoglycosides and heat shock response

As previously mentioned, after their entry in the cell, the primary target of aminoglyco
sides is the 16S rRNA at the 30S small subunit of the ribosome (143, 181). The binding 
of AGs to the ribosome’s 16S rRNA, specifically at the tRNA acceptor A site (aminoacyl 
site), disrupts the proofreading mechanism responsible for accurately discriminating 
between cognate and non-cognate tRNAs during protein synthesis (182–186). Conse
quently, ribosomes bound by AGs result in a greater occurrence of erroneous amino 
acid incorporation during protein synthesis (27) which in turn leads to the synthesis 
of proteins with a higher propensity to misfold. The presence of misfolded proteins 
in the cell is the main stress signal triggering the heat shock response (187), charac
terized by the induction of a set of heat shock proteins that help protect cells from 
the damaging effects of misfolded proteins. Establishing the link between AGs and 
misfolded proteins, several studies have shown the induction of heat shock genes 
and the importance of several chaperones and proteases in both Gram-positive and 
Gram-negative bacteria exposed to these antibiotics (30, 179, 188–193). For example, 
microarray analysis of Pseudomonas aeruginosa exposed to lethal concentrations of the 
AG tobramycin revealed the induction of several heat shock genes including a Lon-type 
protease important for this activation (179). Similarly, a study on the proteomic response 
of P. aeruginosa to different classes of antibiotics also showed a higher abundance of the 
chaperones DnaK/GrpE and GroESL, in cells treated with tobramycin or gentamicin (194). 
Moreover, the induction of these chaperones and other heat shock genes have equally 
been observed in streptomycin-treated Acinetobacter baumannii (195) and E. coli (177), 
and tobramycin-treated V. cholerae (196, 197).
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Misfolded proteins have long been suggested to be key factors in AG lethality 
because several of these misfolded proteins would be inserted in the membrane, 
forming pores and disrupting membrane stability (29, 198, 199). This would in turn 
lead to the PMF-dependent second phase of AG uptake (EDPII) as described above. How 
adaptative can heat shock response activation be in this process?

It is almost intuitive that stressors and conditions that could induce heat shock genes 
in bacterial cells, independently of aminoglycoside treatment, would lead to expression 
of chaperones and proteases which in turn would limit the amount of misfolded proteins 
inserted in the membrane and thus temporarily increase AG tolerance once in presence 
of these drugs. This was in fact shown to be case, with numerous studies reporting that 
overexpression of products of the heat shock machinery, such as chaperones and/or 
proteases, increased tolerance and led to short-term adaptation to AGs in different 
species (179, 188, 189, 192, 195). Moreover, some of these studies provide evidence of 
reduced membrane depolarization during the first hours of aminoglycoside treatment 
upon heterologous expression of different heat shock proteins in E. coli, which highlights 
the link between heat shock response and EDPII phase of AG uptake (188, 189).

However, even though it is clear that AGs induce the heat shock response in bacteria, 
the consequences of such response on further aminoglycoside uptake and lethality 
are not yet totally understood and may vary in different contexts. Indeed, a recent 
study challenges some of these previous observations, showing that a pre-heat shock 
induction of E. coli cells could also potentiate AG lethality through enhancing of the PMF 
(200).

Aminoglycosides and envelope stress

Misfolded proteins generated during AG treatment may have as target both the inner 
and outer membranes of the cell. As previously said, insertion and accumulation of 
these aberrant proteins at bacterial membranes are thought to generate envelope 
stress leading to entry of more AGs. This is sensed by bacteria which trigger several 
envelope stress responses (ESRs) to mitigate such stress (201, 202). Thus, it is perhaps not 
surprising that aminoglycoside susceptibility has been often linked to the activation of 
some of these ESRs in many Enterobacteriaceae. One example of a component of the ESR 
tightly linked to aminoglycoside susceptibility is the Cpx.

The Cpx is a well-known two-component system (TCS) composed of a sensor protein 
CpxA that senses misfold protein insertion in the inner membrane and the periplasm, 
and the regulator CpxR which regulates many genes including proteases responsible for 
cleavage of the aberrant proteins (203). The first observations on the link between the 
Cpx system and aminoglycoside susceptibility are not new, with a 1970s study showing 
that mutations in cpx genes are associated with changes in AG resistance levels (204). 
More recently, in E. coli, it was shown that a cpxR mutant leads to increased sensitivity to 
aminoglycosides (205) and, in S. enterica cpxAR system activation has also been shown to 
increase AG resistance (206). Moreover, cpxP, a member of the cpx regulon, was found to 
be highly induced by the aminoglycoside gentamicin in E. coli, in a process dependent 
on cpx system (207). The Cpx system is also important for the AG-tolerant phenotype 
of a V. cholerae ∆ravA-viaA mutant (124). The RavA-ViaA complex of E. coli is known to 
modulate AG sensitivity (208–210) but mechanisms are still elusive.

Because the cpx regulon is complex and involves several genes, the role of the cpx 
system on AG susceptibility may be highly pleiotropic. For example, the activation of the 
Cpx response in E. coli leads to a reduction in the transcription of genes involved in the 
electron transport chain (205), and more recently, it was also observed in E. coli that the 
Cpx stress response is involved in the turnover of respiratory chain proteins (211). These 
observations thus suggest an indirect role of cpx system on the metabolic state of the 
cell, which in turn may affect membrane polarization and consequently aminoglycoside 
uptake.

Similar to the cpxAR system in E. coli, aminoglycoside resistance in Pseudomonas 
aeruginosa has been linked to the AmgRS TCS (190, 212). One of the primary effects of 
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the AmgRS system activation is the upregulation of specific genes involved in aminogly
coside resistance, such as several membrane proteases like FtsH and HtpX (190). The 
mechanism of intrinsic aminoglycoside resistance through the AmgRS are proposed 
to be similar to that of Cpx in E. coli, i.e., efficient degradation of aberrant misfolded 
membrane proteins and maintenance of envelope homeostasis.

Another TCS of high importance in AG resistance in E. coli is the EnvZ/OmpR system. 
This system, which can be activated by several environmental cues, is known to control 
the relative levels of the outer membrane proteins OmpC and OmpF to adjust membrane 
permeability and maintain cell envelope stability. As AGs can passively diffuse through 
these OMP (as previously discussed in this review) (101), it is likely that EnvZ/OmpR 
system ends up by affecting AG uptake.

Finally, TCS systems linked with uptake or response to AGs are still being discovered, 
such as the Zra system which was proposed to be a functional homolog of Cpx in E. coli 
(213) and a Zra/Cpx hybrid system newly discovered in V. cholerae (124).

Aminoglycosides and oxidative stress response

Oxidative stress in bacteria occurs due to excessive production of ROS (214). ROS are 
highly reactive molecules derived from oxygen and include superoxide anions (O2-), 
hydrogen peroxide (H2O2), and hydroxyl radicals (•OH), which can react with nearly 
all biomolecules in the cell including proteins and ribonucleic acids. ROS are naturally 
byproducts of aerobic metabolism because leakage of electrons from the electron 
transport chain can react with oxygen. To cope with the presence of ROS, bacteria 
encode several proteins capable of detoxifying the cell from these molecules (215). 
However, external factors such as antibiotics can also induce ROS production in bacteria 
and generate excessive ROS, overwhelming the antioxidant machinery of the cell. For 
example, because of AG-induced mistranslation, misfolded membrane proteins are 
thought to generate ROS through disruption of membrane integrity and alterations 
in the PMF (198). Indeed, some studies have reported a link between AGs and ROS 
formation in different bacterial species (139, 198) and others have shown that overpro
duction of ROS scavengers increase AG resistance (191). It is also important to note that 
not only misfolded proteins induce ROS production, but also that misfolded proteins 
may be themselves more prone to oxidation by ROS (191, 216). Indeed, excessive levels 
of ROS cause post-translational modification of specific amino acids and side chains 
which in turn affects folding chemistry and can result in protein aggregation (217, 218).

Thus, from the moment of the initial uptake until the collapse of proteostasis, AGs are 
involved in the activation of several bacterial stress responses that interplay and dictate 
the fate of AGs uptake and their efficiency.

POTENTIATION OF AMINOGLYCOSIDES

Potentiation as a strategy to enhance antibiotic efficacy

In response to the lack of new antibiotic molecules, researchers have been explor
ing alternative approaches for the treatment of bacterial infections (219–221). One 
promising strategy lays in methods improving the efficacy of existing antibiotics (222). 
One such approach is antibiotic potentiation, which involves combining an antibacterial 
agent with a non-active agent (molecule, physical treatment, or chemical treatment) 
to enhance the effectiveness of the antibiotic. This concept has been classified into 
two types by reference (223): class I adjuvants/potentiators that act directly on the 
pathogen by inhibiting active resistance mechanisms (e.g., modifying enzymes or efflux 
pumps) or passive resistance mechanisms (e.g., targeting the membrane barrier or 
biofilm formation); and class II adjuvants that enhance the host’s ability to eliminate 
the pathogen. It is important to note that this review does not discuss potentiation of the 
lethal effect of aminoglycosides that are independent of uptake. We will focus below on 
class I adjuvants that have been proposed as potentiators of AGs.
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The use of aminoglycosides in modern medicine

AGs are crucial molecules in the fight against infectious diseases due to their broad 
spectrum of action, targeting aerobic Gram-negative bacteria, Staphylococci, and 
Gram-positive bacilli. However, they are ineffective against Streptococci, Pneumococci, 
and anaerobic bacteria. AGs are prescribed in humans for prophylaxis during surgery 
or as part of the treatment for various infections, including urinary tract infections, 
pyelonephritis, abscesses, septicemia, pneumonia, and endocarditis (224). The primary 
AGs used in hospital settings are gentamicin, amikacin, and tobramycin (225). Initially, 
these antibiotics were administered in multiple doses until the effectiveness of single 
doses was demonstrated, attributed to their prolonged post-antibiotic effect resulting 
from irreversible binding to ribosomes (226). This is conditioned by a normal renal 
function (227, 228). The administration of multiple doses is however still necessary for 
specific infections such as endocarditis, pediatric treatment, or in synergistic combina
tions with other antibiotics such as β-lactams, colistin, fosfomycin, or glycopeptides 
(225).

Enhancing uptake for aminoglycoside potentiation

Once administered in the human body, the antibiotic reaches a peak concentration 
that gradually decreases over time. Thus, the choice of the dosage protocol for a given 
antibiotic is determined by its pharmacokinetic and pharmacodynamic parameters. AGs 
exert their effects in a concentration-dependent manner, and the dosing strategy for 
these molecules aims to achieve a higher peak concentration (Cmax) in relation to 
the MIC (Fig. 2). The probability of a clinical response, indicating treatment efficacy, 

FIG 2 Pharmacokinetic and pharmacodynamic parameters of aminoglycosides concentration. The probability of clinical response is correlated with the dose 

administered (peak Cmax/MIC), rather than the time of exposure.
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has been shown to be strongly correlated with the dose administered and the peak 
concentration (Cmax/MIC) (229). However, the occurrence of adverse effects (230), limits 
the flexibility in therapeutic options. Generally, a dose at least 10 times higher than the 
MIC is recommended to ensure effective treatment and to minimize the risk of selecting 
antibiotic-resistant mutations (231, 232). This means that, in the case of AGs, increasing 
the intracellular drug uptake in bacteria increases the peak at Cmax and enhances 
the likelihood of treatment efficacy. Recently, Webster and Shepherd (28) provided a 
comprehensive review of the environmental and metabolic factors that can influence 
the efficacy of AGs. Some of these factors act as booster of AG entry into cells and 
can be exploited to potentiate AGs and improve their effectiveness in killing bacterial 
pathogens. This becomes particularly relevant in the context of rising antimicrobial 
resistance, where each effective molecule plays a crucial role.

PMF-dependent potentiation of aminoglycoside uptake

In the case of AGs, the literature suggests that the modes of potentiation primarily 
involve increasing drug entry by stimulating the PMF. Various approaches have been 
tested and published to enhance aminoglycoside uptake by increasing PMF.

As mentioned earlier, PMF is generated by respiration, and also depends on pH. Thus, 
modifying respiration, energy metabolism, or pH can be a strategy to increase PMF 
and, consequently, drug uptake. The use of bacterially metabolizable compounds, such 
as amino acids, nucleosides, and sugars, provides the advantage of reduced toxicity in 
humans. Below are examples of the proposed use of such compounds to potentiate AGs.

Regarding pH, the use of basic molecules such as L-arginine or L-lysine has been 
shown to potentiate AGs against persistent cells of A. baumannii (233), S. aureus, E. coli, 
and P. aeruginosa (234). Interestingly, lung epithelial cells have been found to secrete 
host metabolites such as succinate and glutamate, which also increase intracellular 
pH (235), and contact between P. aeruginosa and mouse epithelial cells sensitizes the 
bacteria to AGs (236).

Activating respiration by fumarate inhibits the formation of persistent P. aeruginosa 
cells (53, 237). On the other hand, the biosynthetic pathways of specific amino acids, 
such as serine, glycine, glutamine, tryptophan, threonine, and alanine, were found to 
potentiate AG uptake by E. coli persisters by influencing the cellular energy state (49). 
In the same line, a study on lab-evolved E. coli revealed that AG-resistant clones had 
low levels of metabolites involved in amino acid metabolism which fuels the energy 
metabolism (238). However, this effect was not specific to AGs (239). Adenosine has 
been shown to enhance the effectiveness of various antibiotic families, including AGs, 
against persister bacteria, through increase of PMF, and suppression of stress respon
ses (240). NADH plays a central role in energy metabolism and respiration. Promoting 
NADH production directly leads to increased PMF (241). Metabolites such as glutamate, 
L-tryptophan, or alanine have been shown to increase NADH production, thus AG 
uptake, re-sensitizing resistant bacteria or reducing persister cell formation (49, 242–
245). Alanine’s role in AG sensitivity has also been associated to ROS production (246).

In a similar way to the above-mentioned amino acids, some sugars have also been 
shown to increase AG uptake through increased NADH. These include D-ribose in 
Salmonella (247), fructose in Edwardsiella tarda biofilms and persister cells (248), glucose 
in cefoperazone/sulbactam-resistant Pseudomonas (249), and fructose in resistant 
Salmonella enteritidis (250).

One promising carbohydrate potentiator of AGs is mannitol. Potentiation of AGs using 
mannitol stimulates PMF and leads to eradication of persistent E. coli cells and biofilms 
(48), and of persistent Pseudomonas cells (251). Importantly, such a potentiating effect 
of mannitol can lead to the use of effective concentrations below the threshold of renal 
toxicity (252).

But other carbohydrates can also potentiate AGs without stimulating the PMF, 
because they can regulate the expression of carbohydrate transporters, which internal
ize AGs. One promising strategy of potentiation comes from the search for molecules 
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capable of increasing the number of sugar transporters at the membrane (60) identifying 
uridine and other nucleosides as metabolites that increase the expression of sugar 
transporters. Supplementation with uridine increases AG uptake into E. coli and improves 
the efficiency of AGs, without changing the PMF. However, it is important to maintain 
the PMF for this potentiating effect to be observed (60), likely because its presence is 
necessary to power the sugar transporters.

Alternative approaches to metabolites have also been proposed as potentiators of 
AGs, such as heats shock which, similarly to AGs, can induce proteotoxic stress, protein 
misfolding, and ROS formation. A synergistic effect is thus almost expected between 
high temperature and AGs. However, high temperature appeared also to boost the PMF 
in E. coli stationary phase cells, and facilitate AG uptake (200).

The use of n-butanol has demonstrated effectiveness in rapidly eradicating persistent 
cells of S. aureus, as well as various Gram-negative and Gram-positive species within a 
short period (1 minute). This potentiation effect of n-butanol is PMF-dependent since it is 
abolished by CCCP, although PMF is not modified, and still relies on the action of AGs on 
the ribosome, as it is abolished by the presence of a ribosomal mutation (253). However, 
implementing this type of potentiation strategy would be challenging due to concerns 
regarding toxicity of such an alcoholic compound.

Synergy between AG and other drugs for the uptake of AGs

In addition to potentiators devoid of any bactericidal action when administered alone, 
AG uptake can also be increased due to synergistic effect with other drugs (254). The 
majority of these examples involve boosting of PMF by the co-administered drug. This 
is the case for tigecycline, an inhibitor of protein synthesis (255), the silver-containing 
antimicrobial “AGXX” (256), or even anticancer drugs such as vincristine or vinblastine 
(257), which are indole derivatives. Another indole derivative, 4-fluoroindole, not only 
acts on PMF, but also possibly inhibits the efflux pump MexXY-OprM (258). One PMF 
boosting adjuvant was recently identified through an approach based on the idea that 
antibiotic-producing bacteria could also produce adjuvants: the actinomycete product 
VentA (for venturicidin A) potentiates gentamicin against multidrug-resistant clinical 
isolates (259). Agents that target the bacterial cell wall, such as β-lactam antibiotics, 
have also been shown to facilitate AG entry (260–262). The combination of AGs with 
penicillin, for example, has been proven to be effective and is currently used in clinical 
therapies. The synergistic effect between penicillin and AGs can be suppressed by 
electron transport inhibitors (263), indicating that penicillin also enhances AG entry 
through PMF-dependent uptake into the cytoplasm.

PMF-independent potentiation of aminoglycoside uptake

PMF-independent potentiation of uptake primarily involves strategies that enhance AGs 
uptake by destabilizing the outer membrane and modulating porins, or through EDPII.

One mechanism is believed to occur through physical perturbations applied to the 
cell membrane, and the inhibition of cellular responses to such stress. For instance, 
hypotonic shock has been proposed to potentiate AGs entry through the mechanosensi
tive MscL porin, which is activated in response to membrane destabilization (264). Cold 
shock also significantly increases the entry of AGs in P. aeruginosa in a skin infection 
model in mice (265). Rifampicin was found to interact with the Pseudomonas AmgRS 
two-component system (mentioned earlier), counteracting the stress response against 
AG-induced membrane damage (266).

Potentiators that act on AG export through efflux pumps have also been described 
(267). For example, meropenem, which inhibits the MexXY-OprM efflux system in P. 
aeruginosa, increases sensitivity to AGs (268).

Other potentiators act on protein synthesis and potentiate EDPII, like silver (269). 
While the precise mechanism is not yet fully understood, silver is believed to destabilize 
the membrane, bypassing the EDPI process and increasing the entry of AGs into the 
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cytoplasm. This requires EDPII, i.e., the production of non-functional proteins. Alterna
tively, the action may occur directly at the level of the translating ribosome, leading to 
the generation of more misfolded/non-functional proteins and consequently increasing 
entry (269). Silver has actually been observed to interact with various bacterial cellu
lar processes, ultimately leading to membrane permeability (270). In a Caenorhabditis 
elegans model, silver nanoparticles reduced the MIC of amikacin by 22-fold without 
toxicity against the host (271).

Certain potentiation pathways are specific to Gram-positive bacteria and cannot be 
exploited in Gram-negative bacteria. For instance, rhamnolipids increase PMF-independ
ent entry of AGs in S. aureus and other Gram-positive bacteria by altering membrane 
charges, fluidity, and permeability. However, it is ineffective against E. coli (150).

The process of developing a new molecule and bringing it to market can span over 
20 years, involving extensive research, clinical trials, and production setup, incurring 
significant costs. Potentiating antibiotics by enhancing the entry of existing antibiotics 
represents a rapid, effective, and cost-efficient alternative to the development of new 
molecules.

CONCLUSION AND PERSPECTIVES

In the current scenario, the rise in antibiotic resistance is anticipated to result in up to 
50 million deaths per year within the next 30 years, leading to significant economic 
implications such as increased treatment costs and work absences, in addition to the 
obvious public health concerns (272). Gram-negative bacteria are associated with high 
lethality: for example, in the case of MDR P. aeruginosa septicemia, the rate of associ
ated death is 67%. For a soft tissue infection with K. pneumoniae-necrotizing hyper-vir
ulent strain, it is from 25% to 47% (273). Concurrently, pharmaceutical companies are 
progressively disengaging from antibiotic research due to the high development costs 
and limited financial returns associated with them (274).

Therefore, the need for new treatments has become imperative. A comprehensive 
review by Walesch and colleagues provides insights into the present and future of 
antimicrobial development (275). Discovering new active compounds faces numerous 
challenges, including the isolation of molecules from non-cultivable organisms, the 
necessity for novel mechanisms of action to overcome pathogen resistance, concerns 
regarding toxicity and lower efficacy in humans compared to animal models, as well 
as the difficulty of crossing the bacterial outer membrane. Alternatively, improving 
existing antibiotics through structural modifications, targeted delivery, and potentiation 
or combination therapies is another avenue (276).

Understanding the different mechanisms by which AGs enter bacterial cells can 
contribute to the development of new treatments, as exemplified by several promis
ing studies on AG potentiation. Among ongoing antimicrobial projects, 8% involve 
potentiation approaches (277). Most of the potentiators currently being developed are 
β-lactamase inhibitors, such as those from the diazabicyclooctane family, which are 
currently undergoing clinical trials (278). In terms of improving antibiotic uptake, SPR741, 
a novel polymyxin derivative, has shown the ability to enhance the penetration of 
macrolides or glycopeptides in Gram-negative bacteria and is currently in clinical trials 
for systemic use (279, 280).

AGs uptake now appears to be tightly linked to carbon sources utilization, as 
demonstrated by numerous studies that show the relevance of using sugars to stimulate 
PMF, and the role of active sugar transporters in AG transport. This can pave the way 
for future research on AG uptake through specific transporters, and have implications in 
terms of potentiation.

From a fundamental perspective, further research is needed to establish the profiles 
of carbon source-related regulation (CCR) in different Gram-negative pathogens and the 
identification, for each species of interest, of sugar transporters that also transport AGs. 
This would enhance our understanding of the conditions that lead to increased uptake of 
AGs in a variety of bacterial species.
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The regulation of AG transporters can be species-specific, particularly regarding the 
CRP-cAMP-dependent CCR. CCR is well-characterized E. coli, and the regulator CRP is 
highly conserved, but the regulatory mechanisms can vary among different species 
(281), as different bacterial species are specialized in their own natural environment. 
This means that, although it would be ideal to identify a universal molecule to increase 
the number of AG transporters, the use of a particular sugar would not necessarily 
produce the same outcome in every species. For instance, bacteria belonging to the 
order Pseudomonadales, including the genera Pseudomonas and Acinetobacter, exhibit 
a diverse range of metabolic capabilities. Unlike for Enterobacteria, glucose does not 
play a central role for them. Instead, they preferentially utilize amino acids or succinate 
as carbon sources, which repress the enzymes involved in glucose utilization. CCR in 
Pseudomonadales is thus referred to as “inverted” (282). Unlike for E. coli (283, 284), 
the levels of cAMP in P. aeruginosa and Pseudomonas putida remain relatively constant 
regardless of the growth conditions (285), and does not alter CCR (286).

Transcriptional regulators of CCR can also be unexpectedly different among different 
species. In Pseudomonas, while the transcriptional regulator Vfr shares 67% identity with 
CRP (287), the functional homolog of CRP in P. aeruginosa is, in fact, not Vfr (288), but Crc 
(289–292). Consequently, understanding the impact of sugar transporters and different 
carbon sources on AG uptake can be more challenging in P. aeruginosa.

Additional regulatory layers even complicate the complete understanding of 
regulation of sugar transporters, as observed with the example of Vibrio spp., where the 
ctrR, a non-coding RNA is involved in regulation of the abundance of sugar transporters, 
resulting in increased AG uptake (59). Although no sequence homolog of this RNA has 
been found in other species, one cannot exclude the existence of such RNA-related 
regulation. One indication is that in Pseudomonadales, CCR involves the RNA chaperone 
Hfq and the small RNAs CrcZ and CrcY (293–296).

While the regulatory mechanisms can be complex, sugar transporters may be able 
to transport AGs in numerous, if not all, bacterial organisms, and they can easily be 
identified through overexpression strategies (60).

From a clinical perspective, the use of sugars as potentiators of AGs could be a 
promising strategy due to the expected innocuity of these metabolizable compounds 
and the wealth of previous clinical studies on the (non-)toxicity of these molecules in 
the human body. In fact, mannitol and uridine, described above as potentiators of AGs, 
are already used in clinics for other indications. Mannitol is currently used for managing 
cerebral edema or for kidney protection (297). In addition, numerous studies have been 
conducted to compare the pharmacokinetic and dynamic properties, as well as side 
effects, considering different modes of administration, for compounds such as uridine, 
used in cancer therapies and rheumatology, and ribose, used as dietary supplement [e.g., 
(298–300)]. This offers the possibility of potentiating AGs using existing treatments, with 
new applications.

In several countries, including France, there is the provision for the use of drugs for 
purposes other than those specified in their marketing authorization, particularly when 
no therapeutic alternatives are available. This approach, known as drug repositioning, 
often applies to older drugs. With drug repositioning, the initial steps of assessing 
toxicity and tolerance in humans have already been conducted, eliminating the need 
for repetition. Similarly, “off-label” use of drugs is not prohibited in the United States. 
This rationale has also been applied to the development of treatments for coronavi
rus disease 2019 (COVID-19). For instance, the combination of the drugs remdesivir 
(originally developed for ebola) and diltiazem (an anti-hypertensive) could provide 
significant benefits to COVID-19 patients (301). Given the concerning rise of antibi
otic resistance, this approach is gaining increasing interest among scientists. For AG, 
potentiators have been identified among various molecules that are already approved 
and available on the market for treating other diseases, as described above.

These investigations help to reduce costs and time-to-market by leveraging existing 
knowledge and data, thereby minimizing the need for extensive clinical trials.
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In addition to the advantage conferred by the use of potentiators together with 
known antibiotics in the context of drug repurposing, potentiation also offers the 
possibility of a novel treatment, while avoiding the necessity of identifying new bacterial 
targets for new antibiotics. Potentiation can also allow for bypassing bacterial resist
ance mechanisms, through efflux compensation or saturation of antibiotic-inactivating 
enzymes, as is the case for a widely used antibiotic Augmentin, which combines the 
β-lactam amoxicillin with a β-lactamase inhibitor. AGs are particularly suitable for 
potentiation through enhanced uptake, as their efficacy is closely tied to their concentra
tion within bacteria. While the use of AGs is limited due to their side effects (302, 303), 
increasing the intracellular concentration of AGs in bacteria could enable the administra
tion of lower doses and mitigate side effects in humans. The study of potentiation largely 
focuses on stimulating the PMF or CCR, both of which are highly conserved mechanisms. 
This suggests broad-spectrum efficacy, thus simplifying patient recruitment compared to 
pathogen-specific drugs.

Considering the escalating threat of antibiotic-resistant infections, AGs could play a 
crucial role in the effective treatment, and potentiation appears to be a fast and efficient 
approach of unlocking the full potential of these molecules.
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