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SUMMARY Communities of microorganisms (microbiota) are present in all habitats 
on Earth and are relevant for agriculture, health, and climate. Deciphering the mecha
nisms that determine microbiota dynamics and functioning within the context of their 
respective environments or hosts (the microbiomes) is crucially important. However, the 
sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes 
poses substantial challenges to advancing our knowledge of these mechanisms. While 
nucleic acid sequencing technologies can chart microbiota composition with high 
precision, we mostly lack information about the functional roles and interactions of 
each strain present in a given microbiome. This limits our ability to predict microbiome 
function in natural habitats and, in the case of dysfunction or dysbiosis, to redirect 
microbiomes onto stable paths. Here, we will discuss a systematic approach (dubbed 
the N+1/N−1 concept) to enable step-by-step dissection of microbiome assembly and 
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functioning, as well as intervention procedures to introduce or eliminate one particular 
microbial strain at a time. The N+1/N−1 concept is informed by natural invasion events 
and selects culturable, genetically accessible microbes with well-annotated genomes 
to chart their proliferation or decline within defined synthetic and/or complex natu
ral microbiota. This approach enables harnessing classical microbiological and diver
sity approaches, as well as omics tools and mathematical modeling to decipher the 
mechanisms underlying N+1/N−1 microbiota outcomes. Application of this concept 
further provides stepping stones and benchmarks for microbiome structure and function 
analyses and more complex microbiome intervention strategies.

KEYWORDS microbiota, microbiome development, focal strains, inoculants, modeling, 
systems’ analysis

INTRODUCTION: WHY MICROBIOME ENGINEERING?

M icrobial communities, or microbiota, self-organize in a seemingly spontaneous 
way within the spatial, temporal, physical, chemical, and biological boundary 

conditions of their environments or hosts (i.e., their habitats). The microbiota within 
the context of these boundaries (i.e., “microbiomes,” Fig. 1A, Box 1) (1) contribute to 
important ecological and biogeochemical processes (2), as well as to plant (3), human 
(4), and animal health (5–8). Alarmingly, an increasing body of knowledge has pointed 
to recent changes in microbiome functioning [for example, loss of diversity or functions 
(9, 10)] across all systems (e.g., soils, animals, and human guts) (11–13). From a human 
perspective, this may have potentially dire consequences for public health, agricultural 
production, and environmental quality. Underlying causes may include a variety of 
external factors and conditions, such as pollution, climate change, land and agricul
tural management, travel to foreign areas, extensive use of antimicrobial compounds, 
pharmaceuticals, and nutritional habits. These changes motivate a deeper understand
ing of microbiome structure and function across systems in order to potentially restore 
and maintain ecosystem function.

Advances in sequencing and bioinformatic tools have enabled unprecedented 
insights into the taxonomic and functional richness of microbiota (18, 19). However, their 
collective properties remain largely unresolved, leading to several important unan
swered questions: how do external factors disrupt the tendency of natural communi
ties to maintain compositional and functional homeostasis (10), and alter the state, 
the maintenance, the resilience, or temporal dynamics (“trajectories”) of microbiomes? 
How can negative consequences on microbiome homeostasis be recognized, predicted, 
prevented, and, possibly, reverted? To rationally intervene in disrupted or dysfunctional 
microbiomes, we need a much better understanding of the processes that lead to their 
formation and maintenance, as well as experience using empirical tools that we might 
eventually deploy to invoke an intended recovery or stabilization. Currently, complex 
microbiome engineering (20) that would involve simultaneously modulating many taxa 
or factors is likely unfeasible. These challenges, therefore, pose the question of whether 
a step-by-step approach of learning from single focal strains—one that is rooted in 
established expertise with cultivable microbes in agricultural (21), environmental (22), 
nutritional (23, 24), and pathogen research (25) can provide the insights necessary to 
enable microbiome engineering.

Here, we discuss an iterative approach to rationally intervene in microbiomes and 
decipher general principles underlying microbiome assembly and functioning. We 
call this approach the N+1/N−1 concept, a framework to add or suppress individual 
microbiota members (focal strains) within the context of their habitat, and to probe 
outcomes and underlying functional processes (Fig. 1B). In this sense, N+1/N−1 can 
also be considered as an intended state to be achieved, as well as a starting point for 
developing more complex microbiome engineering strategies (Fig. 1C). Many of our 
ideas center around deploying single strains to, for example, enable specific system 
functionalities; or eliminate single strains (e.g., recurring pathogens; Fig. 1D). Through 
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successive cycles of designing, testing, and measuring (e.g., by removing or adding 
different strains, or altering nutrient profiles or habitat conditions), we can learn from 

FIG 1 Concept terms in N+1/N−1 microbiome interventions. (A) All habitats (environments and hosts) are occupied by microbiota, (different) assemblages of 

microbial cells and taxa, collectively forming the microbiomes, as illustrated. WWTP, Wastewater treatment plant. (B) N+1/N−1 approaches intend to attain a state 

into which is introduced (+1) or eliminated (−1) a microbial taxon (focal strains) from the resident microbiota with its N (total) taxa, to study their outcomes, and 

understand the molecular and ecological mechanisms leading to the observed microbiome’s properties. (C) Examples of specific applied N+1/N−1 intervention 

goals, to (D) e.g., complement microbiome functions in case of pollution damage, or restore functional networks by reducing pathogen loads. Part D modified 

after ref. (14).
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ostensibly simple N+1/N−1 intervention tasks to improve our capability to rationally 
intervene in dysfunctional microbiomes.

This review begins with a detailed explanation of the N+1/N−1 concept; followed 
by discussions of how N+1/N−1 studies can be envisioned and designed, which tools 
are available to measure and quantify microbiome processes, and how computational 
models can be leveraged to understand the effects at the microbiome’s system level. 
Since N+1/N−1 approaches are intimately related to natural processes of strain dispersal, 
we will then summarize what we might learn from natural N+1/N−1 occurrences to 
improve methods for microbiome interventions. Finally, we will present a number of case 
studies on N+1/N−1 intervention examples to summarize what has been learned, and 
how to go forward. Throughout, we emphasize the importance of systematic approaches 
across a broad spectrum of host- and environmental microbiomes to delineate general 
principles of microbiome intervention and differentiate them from system-specific traits.

BOX1: GLOSSARY OF TERMS

Microbiota / microbial community: the collective (living) microorganisms in a 
habitat (including Bacteria, Archaea, and eukaryotic microbes). Generally not 
thought to include viruses, phages, or naked DNA (1).

Microbiome: the ensemble of all microbes integrated within the context of its 
habitat boundaries (environmental system or host); microbiota and their “theatre 
of activity: structural elements, metabolites/signal molecules, and the surrounding 
environmental conditions” (1).

Habitat: the array of biotic and abiotic factors, spatial constraints, physico-chem
ical conditions, and dynamic properties (flow, fluctuations) that characterize an 
environment or host.

Dispersal: flow of microorganisms into and out of a particular habitat (15, 16).

(Evolutionary) drift: random shifts in the relative abundance of taxa or genotypes.

Diversification: genetic change by horizontal gene transfer or mutation.

Niche: a set of biotic and abiotic conditions that determine the proliferation of 
a microbial cell or taxa in a given habitat. To differentiate: the potential and the 
realized niche (17).

Probiotic: live microorganism that, when administered in adequate amounts, may 
confer a health benefit on the host.

Prebiotic: substrate which is selective for the proliferation or maintenance of the 
probiotic within the target microbiome, either directly benefiting the probiotic or 
indirectly producing favorable niche conditions.

Synbiotic: combination of pro- and prebiotic(s).

Postbiotic: preparation of inanimate microorganisms and/or their components with 
a claimed health benefit on the host. Effective postbiotics must contain inactivated 
microbial cells or cell components with or without metabolites that contribute to 
observed health benefits.

Focal strain: a single microbial strain to be studied for its proliferation, activity 
within, or effects on a microbiota.

N+1 engineering: intervention in a microbiome of choice to add a focal strain, 
either for permanent engraftment, for temporary functional effects or for influenc-
ing the developmental trajectory of the microbiome.

N−1 engineering: intervention in a microbiome of choice to remove a focal strain, 
either to diminish its immediate effects (e.g., an infection) or to prevent its influence 
on the developmental trajectory of the microbiome.
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THE N+1/N−1 CONCEPT

Precise design across a broad spectrum of host and environmental micro
biomes

The N+1/N−1 concept is simple in its basic definition: to introduce (“+1”) or eliminate 
(“−1”) a focal strain of interest within a background targeted microbiome composed of 
N taxa (Fig. 1B). There may be various reasons (from an intervention point of view) to 
achieve N+1/N−1 states. For example, so-called suppressive soils have a lower incidence 
of agricultural plant diseases, which has been attributed to higher abundances of 
plant-beneficial bacteria (26). One might thus aim to complement disease-permissive 
soils with a specific plant-beneficial bacterial strain in order to ward off plant pathogens 
and enhance plant growth without intervention with phytochemicals (27) (Fig. 1C). As 
another example, one might strive to specifically remove a pathogen from the human 
gut after infection without the use of antibiotics (28), or to restore contaminated soils 
with detoxifying bacterial strains (29, 30).

Though simple, this N+1/N−1 concept opens the door to investigating the numerous 
experimental considerations and complex ecological processes that arise in microbiome 
engineering. For example, does introducing a focal strain into a microbiota mean that 
the strain should become permanently engrafted in that microbiota? Depending on the 
intervention goal, it might be sufficient to achieve only transient establishment(s), during 
which the focal strain can deploy its functionalities and then disappear. Depending on 
the dynamics or characteristics of the microbiome under scrutiny, adding or removing 
a focal strain may imply multiple successive interventions, in order to interfere with the 
microbiome development or its homeostatic processes. More generally, when aiming 
to introduce a strain that is beneficial to a host, it is critical to first understand how it 
disperses and proliferates in its habitat. This understanding in turn requires knowledge 
on the strain’s niche, its competitors and predators, and when and where it best deploys 
its beneficial functionalities.

Indeed, strain dispersal, survival, proliferation, and decline are often multifactorial 
processes, which depend on the strain’s genetic makeup, the microbiota composition, 
interspecific interactions, and characteristics of the habitat and niche. To generalize 
our understanding of these processes, N+1/N−1 studies present a tractable way to 
profile a wide range of different microbiomes and habitats (including those without 
and with hosts). As such, they can span both descriptive and mechanistic studies 
with native microbiomes as well as synthetic communities of reduced complexity that 
reproduce native microbiomes. Synthetic communities of reduced complexity (com
pared to natural microbiomes) have the advantage of better reproducibility, allowing 
more precise bottom-up in vitro systems control over the N+1/N−1 (knock-in and 
knock-out) composition and potential outcomes [see, for example, recent work on 
plant leaf synthetic microbiota (14)]. Ideally, such synthetic communities reproduce 
a native microbiome counterpart, and their composition can be guided by inference 
from multi-omics analysis of native microbiomes to have appropriate taxonomic and 
functional representation.

Importantly, N+1/N−1 approaches can bridge the gap between correlative and 
descriptive studies of microbiome composition (which are typically limited in their 
taxonomic and mechanistic resolution) and molecular studies focusing on causality 
in simplified systems (which improve reproducibility but may be biased by the com
position of its microbial members). When considering the focal strains selected, an 
N+1/N−1 approach can more readily allow one to establish the molecular basis of their 
growth or demise within their respective microbiomes. The resulting mechanistic and 
ecological knowledge can then be extended by predicting the outcome of microbiome 
interventions. Failure to predict such outcomes would help to identify crucial remaining 
knowledge gaps and encourage the re-examining of established hypotheses. Conversely, 
successful predictions would drive the improvement of precision microbiome interven
tion tools.
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N+1/N−1 experimental design

The first step in an N+1/N−1 study is the selection of focal strains. Ideal candidates are 
strains of relevance for a future application or therapy (e.g., plant-growth-promoting 
bacteria, probiotics, or xenobiotic metabolic complements; Fig. 1C) but could also consist 
of a presumed keystone taxon in a microbiota interaction network (31–33) or sentinel 
species (34). Interventions focused on pathogenic strains have the goal not to introduce 
the focal strain, but rather to remove it from a microbiome (N−1). Nonetheless, infective 
pathogens can also be studied through an N+1 framing, as they have evolved specifi-
cally to invade microbiomes. Understanding this invasive behavior may help to design 
strategies that lead to the pathogen’s suppression or removal. For example, non-patho
genic strains that can fill the same niche may inhibit the pathogen from proliferating 
within the microbiome (35–38). We may also learn from pathogen invasion to guide 
strategies to improve the transient establishment of a (non-pathogenic) N+1 inoculant. 
Additional considerations in the selection of a focal strain may include genetic tractabil
ity (to enable comparison with microbiota properties in the presence of a mutated focal 
strain) and a good experience basis for physiological and functional screening (Fig. 2). 
Additionally, focal strains should minimize potential biological safety concerns, especially 
in the context of health or environmental intervention studies.

Any N+1/N−1 study needs a minimum of four components: the focal strain by itself, 
the resident microbiota by itself, the combination of the focal strain within the resident 
microbiota, and a defined habitat (Fig. 2). By comparing the growth of the focal strain 
in isolation with its growth in the presence of the resident microbiota, kinetic and 
physiological differences can be assessed, which are the basis for uncovering underly
ing regulatory mechanisms, metabolic changes, and ecological processes. Under the 
condition that one can achieve similar growth rates and phases of the focal strain in 
laboratory and native microbiome conditions, such comparisons can point to specific 

FIG 2 The who-and-how of N+1/N−1 microbiome interventions. Focal strains (symbolized by the blue circle) to be added into or removed from the target 

habitat (dark brackets) and its microbiota (N, represented here as a taxa co-occurrence network of positive: blue, and negative: red, connecting lines). 

Experimental designs need at least three conditions; the focal strain alone in the habitat (+1), the resident microbiota alone (N), and the inoculation condition 

(N+1). Examples of the details to define under “who,” “how,” etc. are explained in the main text. Iteration of the approach results from, e.g., follow-up experiments 

with mutant focal strains or altered habitat conditions and microbiota, in order to uncover molecular, ecological, or mechanistic processes.
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adaptive mechanisms of the focal strain and to the prevailing host/habitat factors to 
which it reacts. These results can then be confirmed with focal strains mutated in 
identified characteristics or pathways.

The choice of resident microbiota into which the focal strain is introduced can 
range in complexity, different levels of which can be conducive to uncovering specific 
mechanisms and processes (e.g., interspecific interactions), and system-level properties 
(e.g., colonization resistance or niche availability) that control the focal strain’s prolifera
tion, survival, and impact (Fig. 3A). The simplest set-ups can consist of paired co-cultures 
between the focal strain and (native) culturable microbiota members (39), or even with 
any arbitrary culturable strains relevant to specific ecological processes (e.g., competi
tion) (40). Combined information from co-cultures can to some extent predict higher-
order interactions and the dominating community network (41, 42). As a next step in 
complexity, one could design simplified synthetic communities with members obtained 
either from a collection of culturable isolates (43) or from the native microbiome (38, 44–
47). The advantage of choosing simplified communities is a more controllable, reproduci
ble, and defined microbiome, which can help to produce N−1 states by composition and 
dissect effects of N+1 inoculations, treatments, or other system perturbations. However, 
such synthetic communities remain a simplification, of which it is important to under
stand the differences to the native microbiota. Multiple simplified microbiota have been 
compiled in recent years, representing a range of habitats. These include, for example, 
the Oligo-MM-12 (38), Oligo-MM-19 (48), and LCM communities (49) for the mouse gut 
microbiome, and a defined 104-strain hCom1 human gut microbiota mixture (50). Other 
model animals, such as the honeybee (46, 47), have also been used to study specific 
gut microbiota effects. Simplified representative synthetic communities have also been 
produced from cultured isolates for complex microbiomes that are inherently open in 
nature, like plants or topsoil. Examples here include the At-SPHERE [5 phyla, 430 plant 

FIG 3 Potential lay-outs of N+1/N−1 studies. (A) Focal strains (here in blue) can be tested in conjunction with microbiota of increasing complexity to establish 

ecological and molecular mechanisms of their potential survival and proliferation, as well as their impact on the microbiome in the short or longer term. 

(B) Culturing systems can be tuned specifically to the main study objectives and/or methodological tools available.
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leaf and root isolates; reference (44)], or a 21-member (4 phyla) collection of soil isolates 
(45). Higher complexity can be achieved by cell “washes” from the natural habitat of 
the microbiota and their controlled reintroduction, but this comes at the loss of some 
reproducibility (45).

The final system choice to make with the selected focal strain(s) and resident 
communities is the habitat itself (Fig. 3B). In addition to the native habitat of the 
resident microbiota, one can test a range of different culturing conditions that allow for 
more precise control of the habitat and comparison across systems to identify consis
tent underlying mechanisms and processes. For example, liquid-suspended culturing is 
accessible and offers flexibility in terms of nutrients and growth conditions. It is also 
simple to parallelize in medium- to high throughput while maintaining flexibility to 
analyze microbiota (compositional) outcomes. At higher throughput, one could choose 
for fragmented and miniaturized growth in, e.g., encapsulated beads (51), microdrop
lets (41), or microchip formats (42). Spatial constraints are more easily implemented in 
microfluidic chambers (52–54), on surfaces (55), or “reprints” of native habitat structures 
(56).

In case the native habitat is preferred, one could reproduce this in a sterile form with 
the same overall conditions. When working with animal or plant hosts, one could deploy 
gnotobiotic or microbe-depleted individuals. This allows a controlled recolonization of 
the habitats, which is an extremely important element of N+1/N−1 studies. For example, 
gnotobiotic animal models permit growing microbiomes with known strain composition; 
in which case the natural habitat (e.g., animal gut) is colonized by a resident micro
biota with reduced complexity. Cross-inoculation experiments are frequently possible, 
as demonstrated by human fecal microbiota grown in gnotobiotic mice as surrogate 
hosts, so-called “humanized microbiota” mice (57). Also, microbiota-depleted bees 
have been successfully recolonized by mixtures of their resident gut microbiota of 
defined composition and reduced complexity, to test specific host-microbiota and even 
behavioral effects (46, 47, 58). Similarly, gnotobiotic plants permit culturing of reduced 
complexity leaf or root microbiomes, which has been exploited to measure the effect of 
individual members of the At-LSPHERE microbiota collection by drop-out experiments 
(59). As an alternative approach to representative synthetic communities with cultured 
isolates one can also extract the mixture of resident microbiota from their original 
habitat and transplant this mixture in reproduced sterile or gnotobiotic habitats, as 
recently shown for soils (45). In certain cases, this results in reproducible high-complexity 
communities that can serve as resident background for testing N+1/N−1 scenarios.

Methods to monitor focal strains

The proliferation and physiology of an introduced focal strain within the microbiota 
and selected habitat can be measured with a variety of methods. For example, high-
throughput sequencing and mass-spectrometry approaches can quantify changes in 
gene and protein expression as well as in metabolism between defined laboratory 
growth conditions and natural environments or the habitats intended for targeted 
application (60, 61). Instead of single focal strain genotypes, random insertion (36, 60) or 
CRISPRi mutant libraries (62) can be produced and inoculated, in order to gain functional 
evidence for the relevant mechanisms enabling the focal strain to proliferate. Kept 
in a library format of individual clones with each a single insertion mutant or CRISPRi-
inhibited transcript, the complete library covers multiple times all coding content, such 
that positive and negative fitness effects and their modulation by habitat conditions 
and the microbiome can be detected. This is typically accomplished by growing the 
library under the conditions of the intended application, in comparison with defined 
laboratory conditions. Samples taken at different incubation time points are used for 
DNA extraction and sequencing of the marker insertion positions or CRISPRi-targets. 
Subsequently, the relative abundances of all marker insertion/target positions in the 
different conditions are quantified and compared among each other and to those in the 
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starting library. Depletion of marker insertion positions is interpreted as a sign of their 
negative fitness effect, whereas enrichment may point to fitness gain.

Fluorescently tagged focal strains may also be used to address specific questions on 
their in situ behavior or individual cell variability within a microbiome (63–65). Growth 
dilution markers [e.g., conditionally replicative plasmids (66), inducible fluorescent 
protein expression (67), or isotope labeling (68)], oscillation circuit-based molecular 
clockworks (69), and isogenic genomic barcoding tags can further inform on in situ 
growth rates and population bottlenecks (36, 70, 71). Fluorescent reporter systems can 
also reveal the actual spatial, temporal, and population-wide distribution of specific 
metabolic or physiological activities of the focal strain (54, 72–74), which can then be 
related to habitat substrate or niche availability and metabolic adaptation. Inducible 
off-on tags can be used to develop sentinel strains whose exposure to a specific stimulus 
in their habitat can be recorded and read out following their re-isolation (34, 75).

Microbiomes that can be observed over longer (e.g., evolutionary) timescales can be 
deployed to re-isolate clones of the focal strain during its colonization, survival, and/or 
population decline (76–78). The genomes of such isolates can be sequenced to identify 
the emergence of genetic or phenotypic traits that facilitated habitat adaptation (79). 
Ideally, this can be combined with in vitro growth experiments to validate assumed 
adaptive traits in niche colonization.

Methods to follow resident microbiota functioning and focal strain effects

Changes in the taxonomic composition of the microbiota can be quantified using 
amplicon sequencing of phylogenetic marker genes such as the 16S rRNA gene for 
Bacteria and Archaea, the 18S rRNA gene for microeukaryotes such as protists, or the 
internal transcribed spacer region for fungi. Depending on the compositional complexity 
of the resident microbiota, sequencing approaches may be replaced by, for instance, 
quantitative PCR. Although amplicon sequencing has the disadvantage of a lower 
taxonomic resolution, its convenience lies in its speed, cost efficiency per sample, and 
greater compositional depth. Interpretation of resident microbiota composition patterns 
is facilitated by numerous recent tools. By using a closed reference for mapping data (80), 
comparisons can be made across a large variety of studies. This can be explored in web 
interfaces such as the Microbe Atlas Database (https://microbeatlas.org/). The Microbe 
Atlas Database follows a single standardized approach to deduce taxonomic member
ships, making it extremely powerful to compare taxa occurrences across habitats. Still, 
the current taxonomic resolution of Microbe Atlas and similar databases is limited 
because of their reliance on a single marker gene. In addition, only limited metabolic 
and functional microbiota information can be inferred from amplicon sequencing (81). 
Methods have been proposed to overcome this [e.g., reference (82)], but these depend 
on the availability of annotated reference genomes and ignore possible strain-level 
variations.

Alternative efforts aim to integrate taxonomic and functional information from 
metagenomic sequencing in the form of metagenome-assembled genomes [MAGs (83)]. 
As an example, mOTUs (metagenomic operational taxonomic units) is a community-
benchmarked (84) metagenomic profiling tool that, in its latest version (85), leverages 
large-scale reconstruction of MAGs [e.g., reference (18)] and single-copy marker genes 
that can be identified in any metagenome (86). This makes mOTUs genome-independ
ent, which is particularly useful for N+1/N−1 approaches involving resident microbiota 
that are not well represented by available reference genomes: a common issue across a 
wide range of environments and hosts (85). Ongoing efforts aim at mapping sequences 
of 16S rRNA genes and single-copy marker genes to their MAGs of origin, which would 
allow for quantifying gene functional compositions rather than inferring functions from 
taxonomic profiles, all while accounting for taxa without available reference genomes. 
These efforts will be facilitated by deploying long-read sequencing for metagenomics 
(87).
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For simplified resident communities, amplicon sequencing can serve to follow 
compositional changes at high depth and resolution. It should be noted, however, that 
currently available sequencing strategies do not provide absolute but only relative strain 
abundances, except if combined with DNA spiking (88). Since the absolute population 
size is a crucial readout (e.g., for estimating growth), it can also be quantified using 
plate counts, flow cytometry, or quantitative PCR (89). Recent advances in flow cytometry 
have also demonstrated that community size quantification and population “typing” 
can be achieved simultaneously by applying machine learning classifiers, at least for 
low-complexity communities (90, 91). Such advances may greatly simplify the analy
sis of high-resolution time dynamic compositional changes emerging from N+1/N−1 
experiments.

The analysis of diversity and compositional changes in the resident microbiota can 
be further coupled to pairwise random growth experiments with the inoculants, in order 
to understand how the focal strain may benefit or inhibit specific microbiota members. 
For small, defined microbial consortia, full interaction networks can be obtained by 
exhaustive (paired) co-culturing. Such networks are valuable tools to understand how a 
system is structured, contributing to hypotheses on, for example, the community-wide 
effects of centrally positioned microbes with high disruptive potential (31, 32, 59, 92, 93). 
While recent co-cultivation methods (42, 94) have enabled the screening of increasingly 
complex communities, obtaining networks for large, natural communities is still out of 
reach. Statistical methods based on co-occurrence (95–98) or time series data (99, 100) 
are useful instruments to start investigating such systems, allowing a first glimpse at 
the structure of the underlying ecological networks. More practically, they could guide 
the design of tractable synthetic microbial consortia—ensuring the predicted ecological 
network is well-covered—or help to strategically prioritize focal strains with a high 
predicted impact on the overall community. Schäfer et al., for example, systematically 
studied the impact of more than 200 individual strains on a defined synthetic community 
of 15 members to identify the major interacting species (39).

At a systems level, responses of the resident microbiome to the presence or absence 
of focal strains or to changes in biotic or abiotic factors can be followed by metatran
scriptomics, metaproteomics, or meta-metabolomics. These methods are particularly 
applicable for observing changes in carbon or nutrient flows relevant to an N+1/N−1 
engineering process (101).

Impact of spatial organization on the N+1/N−1 concept

Microbial habitats generally do not consist of homogenously mixed environments with 
ideally suspended individual cells of different strains but rather form highly spatially 
structured and dynamic assemblages of strains, biofilms, microcolonies, and with 
accompanying (dynamic) gradients in nutrients or electron acceptors. Unfortunately, 
studying spatial structures of complex microbiota is a challenging task that is currently 
almost exclusively accomplished by fluorescence in situ hybridization (FISH) techniques 
using probes to target different taxonomic groups (102–106), or extended to specific 
gene expression patterns in a spatial context (107). Despite its advantages, the appli
cation of FISH is limited in that the cells are inactivated through fixation and that 
probes are not species-specific. Together, these limitations complicate the interpreta
tion of positive FISH-hybridization signals to corresponding functional activity. The 
use of genetically tagged fluorescently labeled focal strains is of an advantage here, 
as it can point to their live-specific spatial localization within the habitat and amidst 
resident strains. This approach can also be combined with suitable host models and 
live microscopy to obtain time-resolved information (108–110). Reduced complexity 
in the target microbiota and standardized habitats that enable non-invasive and live 
visualization would enormously simplify the characterization of the colonization process 
of a focal strain and could thus provide crucial dynamic information that is hard to 
obtain otherwise. This may be achieved, for example, by using microfluidic culturing 
systems, which enable control over spatial geometry, hydrodynamic and/or substrate 
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flow, material properties, nutrient sources, or gradients of electron acceptors. In addition, 
microfluidics approaches present opportunities to study bacterial cell adhesion, invasion, 
and virulence in habitats that mimic those of the host (111). Bead-encapsulation (51) or 
picoliter droplet culturing systems can be used to propagate microcolonies or micro-
assemblages of different strains that reflect discontinuous growth environments (42). 
This might be coupled with sequencing strategies to detect specific compositional biases 
between inoculants and resident strains.

TOOLS AND STRATEGIES FOR N+1 AND N−1 ENGINEERING

Learning from nature

Despite its conceptual simplicity, successfully achieving N+1/N−1 states is a major 
challenge. The main reason is that the outcomes of focal strain inoculations are governed 
by complex ecosystem processes (which iterative N+1/N−1 cycles themselves aim to 
uncover). To better understand these processes, it is helpful to focus our attention briefly 
on what is generally known about the growth and development of microbiomes. More 
particularly, it is important to understand the characteristics of dispersal processes and 
how they can inform rational N+1/N−1 engineering efforts.

Microbiomes are inherently dynamic entities subject to processes that change their 
composition and functional gene repertoires. Here, we collectively refer to these as 
microbiome “developmental” processes. The development of microbiomes is, first of 
all, dependent on the microbial taxa that they encompass and their functionalities. 
Microbiomes are connected to the rest of the natural environment, and therefore, any 
microbiota is at any time subject to dispersal processes that lead to inflow of new strains 
(from “outside” the microbiome) and outflow (loss) of resident strains due to migration 
or cell death (Fig. 4A). For example, a growing plant will become colonized by microbes 
from the soil microbiome, an insect eating from a plant leaf will ingest microbes from the 
phyllosphere microbiome, and the microbes in its droppings (the insect gut microbiome) 
may find their way back into the soil. Existing resident and newly incoming strains 
undergo growth and decline as a function of selective pressures, available nutrients, 
or changes in the habitat, leading to fluctuations in taxon abundances, extinctions, 
and an eventual natural homeostatic state for the microbiome. Processes within the 
microbiome also contribute to its diversification, due, for example, to mutational drift, 
phage infection or predation pressure, and horizontal gene transfer processes, which can 
cause the sudden outgrowth or decline of resident strains (Fig. 4A) (15, 112–114).

Dispersal of strains can be considered as natural (albeit uncontrolled) N+1/N−1 
events, most of which may go unnoticed or do not lead to strain establishment (though 
they may lead to the replacement of strains with others with very similar properties). 
For example, in the human gut, various strains of Escherichia coli succeed one another 
at relatively short time intervals (115). Progressive strain replacement has also been 
observed for plant-interacting pseudomonads, which evolve over time with their plant 
host, leading to the disappearance of ancestor strains (116, 117). Wastewater treatment 
systems, which act as open pools of inflowing material, collect a wide variety of microbial 
taxa with a specific set of recurrent core members (118). In some instances, however, 
incoming strains are able to expand their population at the expense of the stability of the 
resident microbiome. In these instances, one could speak of strain invasion, potentially 
leading to long-term deleterious consequences for the homeostatic processes of the 
natural microbiome (119). Pathogens are best known for their invasive behavior (Fig. 
4B). For example, gut pathogens such as Salmonella enterica serovar Typhimurium 
(S. Tm) have evolved to exploit and release niches for their own establishment (36). 
Extreme distortion and collapse of microbiome homeostasis can also originate from 
within the existing microbiota by opportunistic strains. For example, several endogenous 
pathogens (such as Clostridiodes difficile) can occur at relatively low abundances in an 
undisturbed gut microbiome, but their outgrowth can arise when the composition, size, 
and function of the resident population are significantly impacted as a result of antibiotic 
treatment (120).
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FIG 4 Concepts of microbiome development and N+1/N−1 engineering. (A) Dispersion processes leading to in- and outflow of strains into the habitats that form 

the microbiome boundaries. The initial establishment may be dependent on active seeding or transmission of specific microbial strains into the habitat, followed 

by the passive inflow of further strains, some of which may invade the established microbiota. Priority, selective, and random processes further determine the 

development of the microbiome. (B) Community development as a succession of different individual strain populations (colored lines), selected by the local 

environmental conditions, priorities, inflow, mutation, and available nutrients. Modification of habitat properties occurs as a consequence of growth, interspecific 

interactions, and emergent microbiome system-level properties. (C) Examples of N+1 interventions to restore microbiota-homeostasis: in case of a dysbiosed 

microbiome resulting from pathogen invasion or in case of a pollutant-stressed microbiome. Lines indicate N+1 population development and general microbiota 

richness. Gradients point to (reduced) pollutant levels resulting from inoculant activity. (D) Creating nutritional niches for N+1 proliferation, for example, by 

selective inhibition of a resident niche occupant (cells with red crosses).
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Natural microbiomes strongly differ in their propensity, frequency, or range for 
dispersal, and individual strains likewise differ in their capability to establish in a new 
habitat, which has been associated to their growth competitiveness under available 
resources (121–123). Microbiomes existing in (more or less) open environments, such as 
soils, wastewater, or aquatic systems, as well as on skin, and plant leaves or roots, would 
intuitively be expected to be more strongly influenced by species dispersal (from other 
environments) than microbiomes in more closed environments, such as human, animal, 
or insect guts. Dispersal success and environmental filtering are further dependent on 
the occupation state of the habitat (124). Some habitats like guts or skin tissues of 
newborns and growing roots are rather pristine at the time of microbiota colonization 
and settlement (77, 113), whereas others may be fully occupied with microorganisms 
up to the system’s carrying capacity. Intuitively, a pristine habitat may be easier to 
colonize than a system at carrying capacity, for which colonization resistance (i.e., the 
occupation of most available niches) needs to be overcome. Colonization processes of 
pristine habitats have been studied in detail and are typically characterized by waves of 
succession of different taxa and turnover until some form of steady-state or homeostasis 
is reached (45). For example, during human development, there is a pronounced rapid 
strain evolution and turnover of the microbiota in early childhood, when the human 
colonic microbiome follows a succession as the taxa gradually occupy the available 
niches (77). Colonic succession has been suggested to be strongly deterministic within 
the habitat conditions (45) but is further dependent on environmental cues. This has 
been attested by the permanent changes in gut microbiota composition in children with 
chronic undernutrition (125) or high-fat diets (126).

Modes of strain dispersal also play a role in successful establishment. Dispersal 
can take the form of active microbial motility, like gliding on surfaces, swarming, or 
swimming towards chemicals (110, 127) or light (128, 129), or can be a passive process. 
For example, bacteria can passively disperse via transport by fungal hyphae in soil (130, 
131), by wind or water flow, association to particles, food uptake, or macroorganism 
activity (124, 132). Active motility typically allows for dispersal at smaller spatial scales, 
while passive transport allows for dispersal at larger spatial scales. Successful disper
sal also entails overcoming ecological bottlenecks, which may determine the founder 
population size necessary for colonization. Finally, some dispersal mechanisms may have 
been selected naturally to ensure successful (or controlled) invasion and colonization of 
habitats, such as gut microbiota transmission through fecal pellets (133), maternal brood 
balls (134, 135), or breastfeeding (113).

In summary, N+1/N−1 intervention methods can thus take inspiration from these 
different processes to guide, for example, the design of specific requirements for 
windows of inoculation opportunity, niche availability, transmission, and temporal or 
long-term establishment.

Considerations for N+1/N−1 implementation

The processes underlying the outcomes of artificially introducing or eliminating strains 
from a microbiome will be similar to natural processes taking place during strain 
dispersal or microbiota transmission, except that by the engineering effort known 
limitations can be overcome (e.g., founder cell population size or niche availability). As 
a consequence, one can expect that the growth or demise of a focal strain in a target 
habitat will similarly depend on multiple factors, such as the state (composition, spatial 
structure, and functionalities) of the resident microbiota, the dynamic time window for 
inoculation opportunities (priority effects), physico-chemical parameters of the habitat, 
niche availability for the focal strain, selection for its metabolic capacities within the 
context of the habitat, its sensitivity to predation, and any specific competitive traits that 
a focal strain may deploy (136). To target a state in which N+1 focal strains can proliferate 
and survive within the target microbiome, it is necessary that appropriate nutrients are 
available to generate the metabolic energy necessary for their growth and that they can 
tolerate or adapt to any biological or physico-chemical stresses present in that habitat. 
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These considerations may lead to different approaches depending on the microbiome. 
Targeted colonization of the relatively pristine guts or skin tissues of newborns, or 
growing roots of fresh seedlings, will require different strategies than inoculation for 
restoration of disrupted microbiomes resulting from medical interventions or pathogen 
attacks or for reduction of pollutant loads in contaminated environments. Since N+1/N−1 
strategies may be particularly envisioned in contexts of disrupted or dysbiotic micro
biomes (Fig. 1C), nutrient availabilities and potentially unfavorable habitat conditions 
may play a crucial role in successful inoculant establishment and activity.

For example, one might aim to revert the consequences of an invading gut patho
gen and the accompanying microbiome changes by the intake of a non-pathogenic 
niche competitor (37). This competitor would have to be able to proliferate in the 
dramatically altered gut nutrient conditions (137), in order to exclude the pathogen 
from its occupied niche (127) (Fig. 4C). As a different example, environmental changes 
imposed by diet shifts, fertilizers, antimicrobials, pesticides, or pollutants can disrupt 
microbiota composition and function, thereby altering the nutrient availability while 
imposing additional toxic stress. The goal of a focal strain here might be to reduce the 
toxic load, but to do so it must be able to take advantage of an excess of available 
nutrients to grow to a sufficiently large population to have an effect (Fig. 4C). Environ
mental toxicity can mask competition for resources and promotes facilitation between 
community members, which could help a focal strain establish (138).

In some cases, the intended outcome of an N+1 engineering strategy may be to 
achieve permanent establishment (“engraftment”) of a focal strain within a microbiome, 
whereas in others the aim may rather be its transient and reversible presence. Examples 
of the latter may include the degradation of a toxic compound within a polluted system 
or the elimination of a plant pathogen during the vulnerable growth period of a crop 
(Fig. 1C). Alternatively, intended N+1 states may consist of engrafting specific genetic 
properties into the resident community members by means of the focal strain, but 
without necessarily maintaining it in the microbiota. This strategy has been followed, 
for example, to transfer pollutant degradation properties on mobile genetic elements 
into resident community members (139), but also to specifically inhibit functions in a 
targeted host within a microbiota (140, 141) or induce its killing (142). Temporal and 
controlled maintenance of focal strains has been a major goal of bioengineering efforts, 
which may involve genetically constructing or selecting strains with auxotrophies or 
inducible killing mechanisms that could restrict the survival of the focal strain outside 
the targeted habitat (142–145).

N+1/N−1 engineering tools

A number of tools are available to carry out an N+1/N−1 intervention process. In the 
easiest conception, N+1 engineering entails inoculating (i.e., mixing, injecting, swallow
ing, transplanting, etc.) a focal strain into a resident community at a defined dosage 
of live cells (Fig. 4D). Strain inoculation may be accompanied by a provision of unique 
carbon substrates or growth factors (synbiotics) exclusive for the focal strain that are 
added to the habitat or host, with the expectation that such substrates may at least 
temporarily favor its proliferation within the new habitat (146). Some studies have 
considered priming the focal strain before its inoculation, such that its adaptation period 
is minimal and does not hinder its proliferation within the target microbiome (147).

N−1 engineering, conversely, aims to deliberately eliminate, reduce, or inactivate a 
focal strain within a microbiome. Several means are conceivable for achieving this state, 
some of which rely on N+1 to achieve N−1 (in this context, introducing a focal strain 
to remove another, Fig. 4C). One approach, for example, has been used to eliminate a 
pathogenic strain by introducing a niche competitor at large numbers, which coloni
zes the microbiome and accelerates the clearance of the pathogen (143). Competitive 
niche exclusion is likely the reason underlying the frequent natural appearance of strain 
successions in the gut, which could thus be turned into a viable N−1 procedure (120). 
Similarly, the introduction of naturally occurring or engineered auxotrophic variants 
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could drive the targeted extinction of a focal strain (148, 149). A recent success in the 
elimination of a recurring human gut pathogen, C. difficile, was obtained by re-inocula
tion not by a single focal strains but by complex microbiota retrieved from the distal 
gastrointestinal tract of healthy donors, a principle now known as fecal transplantation 
(150). Remarkably, this leads to the replacement of some 80% of strains present in the 
gastrointestinal tract before the transplantation and stable engraftment (more than 5 
years) of almost two-thirds of the introduced donor taxa (151).

A second approach relies on eliciting an infection of the N−1 focal strain with a 
bacterial virus such as a lytic bacteriophage (phage), which can lead to its death. 
Phage infection is highly strain-specific and can be “self-propagating,” in that infected 
and lysed target cells produce more phage particles that can then specifically infect 
neighboring cells (152). As a result of its selectivity, phage therapy could “spare” most 
of the members in a microbiome in contrast to broad-spectrum antibiotics (153). Phage 
killing of the focal strain could also be used to “open” the niche for colonization with 
non-pathogenic competitor strains of the same species, which are resistant to the 
applied phage. However, resistance to applied phages has been observed to rapidly arise 
and a combination therapy with antibiotics may, therefore, be necessary for effectively 
treating an infection (154). Phages are also considered as tools to restore dysbiosed 
microbiomes, in an approach termed phage rehabilitation (155, 156). As an alternative 
to infective phage particles, microbiomes may be dosed with purified phage proteins, 
such as endolysins, to target strain-specific lysis and removal (157, 158). Finally, purified 
phage tail-like particles known as tailocins are also being considered as tools to control 
or provoke subtle strain abundance changes within microbiomes (159).

Similarly, N−1 focal strains may be targeted by toxic proteins leading to their cell 
death. A proof of principle for this concept has been demonstrated, in which a donor 
strain transmitted a genetic construct into an (E. coli or Vibrio cholerae) focal strain by 
horizontal gene transfer, leading to the expression of a toxin that inhibited further cell 
division (142). In another example, E. coli engineered to produce a narrow-spectrum 
siderophore-bacteriocin Microcin MccI47 was introduced into the mouse gut as a live 
biotherapeutic agent, which was able to selectively inhibit Enterobacteriaceae (160, 161). 
Lastly, N−1 approaches could also rely on purified bacteriocins with high host specificity 
(162, 163), or on drugs, especially if they display a narrow host spectrum (13, 164, 
165). However, even narrow-spectrum agents may still be affecting commensal bacterial 
strains and, therefore, secondary effects on resident microbiota should be an integral 
part of N+1/N−1 studies.

Niche engineering

Apart from the biological tools needed for N+1/N−1 engineering, one should also 
consider the niches that are necessary for the focal strain to proliferate. Engineering 
the niches themselves can then be used as a tool to restore, implement, or prevent the 
growth of focal strains (or to combine both, Fig. 1C and 4D). For example, a wastewa
ter treatment plant may in a sense be considered a (very rough) niche-engineered 
system to facilitate specific biogeochemical processes such as carbon removal, nitrogen 
transformation, or phosphate uptake, by controlling oxygen inflow and carbon dosage. 
Microbiome niche precision engineering has, until now, not been very well-developed, 
apart from a few examples including the synbiotic additions to inoculated strains 
mentioned above (146). For precise niche engineering, one would first have to map 
the available functional and spatial niches in a microbiome—a first approximation of 
which could be achieved by genome-scale metabolic models from individual isolates 
or metagenomes (Fig. 5A). In addition, one would also have to get an idea of the 
niche “size,” i.e., the carrying capacity of the niche for functionally similar strains. As an 
example, most soils have a relative abundance of around 25% Proteobacteria, which 
may constitute hundreds of individual strains (166). At a typical bacterial cell density 
of 109 per gram of soil, it may thus be challenging to expect maintenance of an N+1 
focal strain at much higher than 107 cells per gram. The true accessibility of a niche may 

Invited Review Microbiology and Molecular Biology Reviews

December 2023  Volume 87  Issue 4 10.1128/mmbr.00063-2315

https://doi.org/10.1128/mmbr.00063-23


FIG 5 Computational tools for N+1/N−1 engineering. (A) Genome-scale metabolic networks incorporate all known biochemistry of an organism based on 

functional annotation from individual genomes or binned metagenome sequence data and can be contextualized by integrating additional constraints and 

data. (B) Metabolic interaction maps for the N+1/N−1 focal strains can be reconstructed by graph-based or constraint-based methods. (C) Microbial community 

function and development can be simulated at different scales to predict the effects of N+1/N−1 focal strain inoculations.
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also be dependent on some window of inoculation opportunity. For example, an N+1 
focal strain co-inoculated with resident community members simultaneously (so that all 
members need to grow) may find a larger niche than when inoculated into a steady-state 
community (essentially no net growth of any of the community members). Temporarily 
liberating niches to allow recolonization by others may, therefore, be a strategy to 
accompany N+1 /N−1 interventions (167) (Fig. 4D). This can be achieved by using abiotic 
compounds (antimicrobials, food additives, diet shifts, pesticides, or others) that target 
certain members of the community (37, 168, 169). When applied non-recurrently, these 
compounds can create a transient niche for the focal strain that can be occupied (37). In 
the case of mammalian-associated communities, the adaptive immune system can be 
harnessed via targeted vaccination approaches. While immunotherapies are intuitively 
an N−1 approach, recent evidence indicates some antibody responses can enhance 
microbial fitness, making it a feasible, targeted approach for N+ 1 interventions (108, 
170–175).

N+1/N−1 computational tools

Computational models are powerful tools to better understand the inherent complexity 
of single species’ metabolism and the emerging metabolic capabilities in the context of 
a microbiome (Fig. 5). These methods can be used as platforms to integrate and analyze 
data from the experimental designs outlined above, as well as to generate hypotheses 
and guide the design of experimental setups. Functional genome annotation based on 
sequence similarity has enabled the reconstruction of metabolic networks representative 
of all known biotransformation capabilities of an organism (Fig. 5A). These networks 
can be translated into mathematical models, which are known as genome-scale models 
(GEMs). GEMs can be coupled with constraint-based optimization methods to allow the 
estimation of feasible flux distribution profiles that support an observed phenotype (e.g., 
growth) and help gain mechanistic understanding (176). Additional layers of information 
can be added to GEMs, including but not limited to thermodynamic constraints (177), 
gene expression (178, 179), regulation (180, 181), kinetic rate law expressions (182), 
and various types of omics data, to make GEMs context- and application-specific. In 
the context of multispecies microbiota, reduced GEMs (183, 184) that preserve network 
properties can be considered to increase computational efficiency.

The information contained in metabolic networks and GEMs of single organisms 
can be leveraged to infer possible outcomes of N+1/N−1 interventions through the 
prediction of metabolic interactions between different species. Qualitative predictions 
of interspecific metabolic interactions can be made using metabolic networks and 
graph-based approaches (Fig. 5B). A metabolic network can be represented as a graph 
where each node represents a metabolite and each edge a reaction. Efficient graph 
search algorithms can then be employed to identify alternative pathways from a source 
metabolite in species A to a target metabolite in species B (185). The existence and 
multiplicity of such pathways can hint at possible cooperation among the species and 
can be informative of the resilience of a community to perturbations. Similarly, this 
approach can be employed to examine how these pathways are affected after the 
addition or removal of a focal strain. For example, one would expect that taxa with high 
connectivity act as metabolic hubs, whose elimination can radically affect community 
composition and function. Finally, community networks can be enriched with hypotheti
cal biochemistry based on the enzymatic functions present in each genome (186, 187), 
allowing the discovery of yet uncharacterized community functions.

Constraint-based optimization methods can be used to infer metabolic interactions in 
a community (Fig. 5B). To do this, several tools have been developed under assumptions 
tailored to different types of interactions (e.g., positive or negative interactions, pairwise, 
or higher-order interactions) (188–190). These methods generally involve two steps. First, 
the external nutrients available to the community are specified. Such external nutrients 
are provided either by the metabolism of the host or by the environment. In the second 
step, the metabolic interactions are reconstructed given the external nutrients and 
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organisms’ metabolic capabilities, i.e., their uptake and secretion reactions. This process 
yields valuable information on how abiotic (nutrient availability) or biotic perturbations 
(adding or removing a member) can alter the interaction networks. In addition, the 
generation of alternative interaction profiles helps to account for the uncertainty and 
variability of microbiome composition.

Simulation and design of microbial communities

Like a population of a single taxon in a closed environment, a microbial community 
in a habitat can be assumed to grow and converge to some stable state [arguably 
subject to the same dispersal and turnover mechanisms as described above (191, 
192)]. Simulating the microbiome’s composition and relative taxon abundances, and 
its global metabolic functioning, is a longstanding challenge. The least complex form 
of computational methods simulates microbial communities at a steady state without 
making any assumptions about the history or taxonomic successions in the community 
(Fig. 5C). Such methods allow for a variety of analyses, including capturing nutrient 
uptake and byproduct secretion (193), estimating internal metabolic fluxes (194, 195), 
predicting relative abundances (196), studying resource allocation to macromolecule 
synthesis (197), and designing synthetic communities with desired properties (198, 199). 
Similarly, such computational tools can be used to study how the addition or elimination 
of an existing member might cause the community to converge to a different steady 
state. Perturbations in community composition, i.e., biotic perturbations, can affect flux 
profiles, abundances, nutrient requirements, byproduct formation, or resource allocation.

The scope of computational simulations can then be extended by incorporating 
temporal species and habitat dynamics (Fig. 5C). Dynamic species models include two 
classes: ecological models and evolutionary models (200). Lotka-Volterra models are 
a classic example of the former. They include a phenomenological description of the 
system in the form of ordinary differential equations (201). Evolutionary models, on the 
other hand, study the evolution and variation of a genotype of species over long-time 
scales (200). Dynamic simulations based on GEMs can capture temporal variations 
in microbial abundances, extracellular metabolite concentrations, and macromolecule 
synthesis (179, 202–204). Such methods allow studying and predicting the effect of 
adding/removing a member as a function of time, where the simulations can be 
contextualized based on the initial conditions, growth properties, and species interac
tions (205).

To accelerate N+1/N−1 research efforts, another layer of complexity is needed, which 
accounts for the spatiotemporal dynamics of microbial communities (Fig. 5C). Both 
synthetic and natural microbiota have an inherent spatial component that significantly 
affects their evolution and function. Microbial cells take up diffusing nutrients from 
their environment to grow and divide, driving the community to expand into spatial 
structures such as biofilms or cellular aggregates. The niche architecture is, therefore, 
constantly changing due to the local variations in the concentrations of metabolites 
and the abundance of microbial cells. In addition, the close proximity of microbial cells 
creates a crowded environment and reduces diffusion, which affects nutrient availabil
ity and the metabolic capabilities of the organisms (206). Spatiotemporal modeling 
approaches can simulate such complex biophysical (crowded) cell environments and 
can help us understand the stochastic effects of the N+1/N−1 events that are not 
captured by other modeling frameworks. These approaches differ in the level of detail 
they capture, often involving a trade-off between spatial resolution and computational 
cost (201). These models can incorporate the various biophysical and mechanical 
properties of the systems, such as cell shoving (207, 208), production of extracellular 
polymeric substances (209, 210), crowding effects (206, 211), cell morphology effects 
(212), complex habitat geometries (213, 214), and (flow) hydrodynamics (209, 215). 
Spatially resolved modeling of the cell environment and cell-cell interactions can help to 
understand how perturbations in abiotic or biotic factors (N+1/N−1) affect the system’s 
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emergent properties (201, 216). Finally, such models help to predict changes in microbial 
interactions and functions between well-mixed and spatially organized environments.

N+1/N−1 INTERVENTION APPLICATIONS

Plant-beneficial bacteria and/or arbuscular mycorrhizal fungi in the rhizo
sphere

Plant-beneficial bacterial inoculants in agriculture have long been studied as substitutes 
for chemical fertilizers and pesticides, being able to ward off phytopathogens or insect 
pests, or to provide further beneficial functions such as solubilization of nutrients or 
priming for plant defense and stress tolerance (26, 217, 218). In practice, however, 
plant-beneficial strains typically only transiently establish, e.g., within the rhizosphere 
microbiome (219). Hence, multiple inoculations are needed, leading to temporary 
population increases followed by progressive decline until the next inoculation (27). 
The reasons that underlie this transient rhizosphere colonization are multiple and 
intricate. The inoculant must persist and be active in order to be able to exert its 
plant-beneficial functions in the rhizosphere. This implies that the inoculant must adapt 
to the particular physico-chemical and biotic conditions in the rhizosphere environment, 
including varying soil pH (220), water availability (221), or micro- and macronutrient 
accessibility (222, 223), but also to plant immune responses that can involve the release 
of signaling compounds (224). Root exudates provide carbon-rich compounds at the 
root surface and soil interface, which can support bacterial growth at high numbers 
(225). Nonetheless, plant roots also secrete secondary metabolites such as coumarins, 
flavones, and benzoxazinoids that can promote or inhibit the growth of specific taxa 
(226–229). Bacterial inoculants, in turn, may release metabolites that allow them to shape 
the root microenvironment (230–233), as well as modify plant metabolism and defense 
(234–236). These processes then indirectly alter the root microbiota composition.

As discussed in general terms above, the success of a beneficial inoculant to 
invade the rhizosphere microbiome is dependent on niche competition for resources 
or space. This competition is often mediated by broad-spectrum diffusible antimicro
bial compounds, such as phenazines or acylphloroglucinols (237), and by specialized 
weaponry, such as contact-dependent type VI secretion systems (238), bacteriocins 
(239), or tailocins (240, 241). In addition, the survival of the plant-beneficial inoculant 
can be affected by natural predators inhabiting the rhizosphere microbiome, such as 
bacteriophages (242, 243) or grazing phagotrophic protists (244). The establishment of a 
newcomer into an otherwise settled rhizosphere microbiome could further influence 
the microbiome composition by altering the structure of key microbial functional 
groups, such as the nitrogen-fixing bacterial community (245). These modifications can 
ultimately have repercussions on plant growth and development (245–247).

Agricultural practice could also benefit from the selective removal of undesired taxa, 
notably bacterial, fungal, or oomycete phytopathogens that hinder plant development, 
impair plant health, and reduce crop yields (217, 248, 249). This is the long-desired goal 
of biocontrol strategies aimed at removing plant pathogens. Most biocontrol techni
ques have focused on introducing specific plant-beneficial strains, which can directly 
compete for resources or space with the pathogen, causing niche exclusion (26, 237). 
However, there are also approaches that would potentially allow the selective removal 
of an undesired member of the rhizosphere or soil microbial community without the 
introduction of another individual. For example, bacteriophages that directly prey on 
specific bacterial plant pathogens such as Ralstonia or Pectobacterium species were 
introduced as seed, tuber, or soil treatments (250). Similarly, the direct application of 
taxon-specific bacteriocins or tailocins to leaves resulted in diminished populations of 
pathogenic Pseudomonas and Xanthomonas and reduced disease incidence (251–253).

Future strategies for successful introduction of plant-beneficial inoculants should 
implement interactions between the inoculant and the plant microbiota in genotype-
specific plant breeding strategies and foster agricultural measures such as soil amend
ments or adapted cropping sequences aimed at sustaining inoculant establishment and 
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function (247, 254, 255). Many studies where bacteria are added to field soils have 
focused on the effects of inoculation (e.g., on plant growth or protection). However, few 
have followed how successful the added bacterial inoculum was in colonizing the soil 
or rhizosphere or have even examined the factors that determine whether or not it was 
successful.

Bioremediation and bioaugmentation in soil and wastewater systems

The concept of inoculating individual suspensions or mixtures of pure culture strains 
to induce or augment targeted metabolic processes within a microbiome (hence the 
term bioaugmentation) has been intensively and long practiced in the areas of soil and 
wastewater bioremediation (29, 256–258). Here, the underlying premise is that strains 
that have naturally adapted or evolved to use specific pollutants as carbon, nitrogen, 
or energy sources can be purified, isolated, and transplanted from one (contaminated) 
environment into another (259). Furthermore, specific cases of engineered bacteria 
with additional properties to their metabolic capacities, such as to better withstand 
toxicity, have been considered for bioaugmentation (22, 260–262). Strain inoculation has 
mostly been a trial-and-error approach (263–267), with emphasis on the outcomes of 
pollutant disappearance and bioavailability (263, 268–270), but little on understanding 
the underlying reasons or mechanisms for these outcomes. Fundamental questions as 
to whether strain characteristics predetermine success or whether there is a need for 
specific native ecological networks (given that strains do not come from the same site as 
where they are introduced) have traditionally not received the necessary attention (257). 
Only more recently have studies emerged that combine systematic efforts to determine 
inoculant properties or genetic factors that may support or disfavor their (temporary) 
establishment, to characterize the processes taking place during inoculation, survival, or 
strain demise, to unveil any commonalities among strains that may prime them for being 
effective colonizers, and to simultaneously uncover properties and reactions within the 
targeted microbiome [e.g., references (60, 61, 271, 272)].

Several studies using different inoculants intended for the degradation of aromatic 
compounds, for instance, have shown that physiological adaptations to a contamina
ted soil environment typically involve upregulation of stress defense systems, heavy 
metal resistance, nutrient scavenging, adhesion factors, and downregulation of motility 
(147, 273–277). Importantly, such adaptations are within the scope of the focal strains’ 
inherent properties, leading to their growth and temporal establishment within the 
target microbiome (60, 272), which is to a large extent dependent on the bioavailability 
of the targeted compound (147, 277, 278). As it can be assumed that the presence of the 
pollutant for which the N+1 inoculant is intended also presents its specific colonizable 
nutrient niche, the proliferation of the inoculant is favored for as long as the compound 
is available, and no other factors limit its activity or lead to its decline. Though it is 
not straightforward to understand at which point inherent strain properties break down 
and result in the strain’s decline, some studies have pointed to trivial yet difficult-to-over-
come biological factors such as predation (256, 279, 280).

Unsurprisingly, studies using omics approaches have found evidence for the 
importance of a multitude of microbial genes for survival and proliferation in natural 
colonized habitats (60, 278). Their interpretation is complicated by the many unknown 
and hypothetical gene functions that appear to give selective benefit for growth and 
that point to multiple different mechanisms that enable N+1-inoculants to proliferate 
(273, 281). Obviously, contaminated soil is a very heterogeneous environment in which 
additional nutrients are limiting, which potentially hinders the population development 
of N+1 inoculants. Specific advantages for their proliferation may be found in spatially 
localized substrate provision from plant roots, leading to rhizo- (282, 283) and phytore
mediation efforts (30, 281).
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Food and nutrition

Probiotics are live microorganisms that, when administered in adequate amounts, may 
confer a health benefit on the host (284). The use of probiotics in the form of freeze-dried 
or liquid products, or cultured as part of food fermentation, is pervasive in modern 
nutrition and has a long tradition. This application has more recently been expanded 
with specific probiotic strains or strain mixtures, whose use has been claimed to result 
in potential benefits against obesity (285, 286), for stimulation of the immune system 
(287), or (re-)development of a homeostatic gut microbiota (113, 288–290). One could, 
therefore, consider the use of probiotics as an example of an N+1 intervention in the 
human gut microbiome. However, as in the two other application areas mentioned 
above, there is a strong focus concerned with clinical or health outcomes, whereas 
probiotic colonization itself remains complex and controversial (290). In addition, 
understanding the mechanisms of action, causalities, and impacts of probiotics on 
microbiome development is still limited and under debate.

Today, the most commonly used probiotics include Bifidobacterium and Lactobacil
lus strains (291), but also Streptococcus salivarius, Enterococcus faecium, Akkermansia 
muciniphila (286), or Anaerobutyricum soehngenii (292). Their application (in the sense of 
the N+1 concept) consists of high dosages (109–1010 live bacteria per intake), taken daily 
over months (287, 288). Available measurements of, e.g., stool content seem to indicate 
that the swallowed probiotics do not engraft within the (human) gut environment 
and need to sustain high constant titers to exert their action. For example, mothers in 
a mother-infant cohort ingested capsules with four probiotic strains (total 1.2 × 1010 

colony forming units) daily for 6 months until birth, and then the newborns followed 
this pattern for 3 months. Significant probiotic strain survival (reaching up to 80% of 
relative abundances) was observed only when infants were breastfed, and mostly for 
Bifidobacterium breve (288). Pre- and probiotics, therefore, often accompany each other, 
with the purpose to provide specific carbon sources or other nutrients to the probiotic 
strain (146, 290, 293).

Despite demonstrated physiological effects on the host, there is also evidence that 
intake of probiotics may be harmful, particularly in sensitive groups or individuals (294). 
This risk highlights the need for a precise understanding of the mechanisms, causality, 
impact, and safety of probiotics (292). For example, the effects of Bifidobacterium longum 
administration may be dependent on the composition of the underlying gut microbiota 
and differences in intestinal cell wall adhesion (295). A more thorough and personalized 
understanding of the risks and benefits of these treatments may be achieved through 
targeted microbiota interventions in an N+1/N−1 framing.

Enteropathogenic infections in the animal gut

The composition and function of the microbiota in the animal gut are affected not 
only by available nutrients, interactions between its members, and physical constraints 
(size of the gut, gut transit times, body temperature, etc.) but also by the host immune 
defenses. The latter can specifically enhance the removal of unwanted microbes and 
the colonization efficiency of newcomers (296). Moreover, host genetic variation also 
contributes to microbial colonization efficiency (297).

The gut is a portal of infection by a significant number of food-borne enteropa
thogenic bacteria, which cause much morbidity and mortality worldwide (298). Of 
particular relevance are members of the Enterobacteriaceae, including pathogenic E. 
coli, Shigella, and Salmonella strains. These enteropathogens are ideal focal strains for 
N+1/N−1 studies, because of their high prevalence, their genetic accessibility, a vast 
body of knowledge on E. coli and S. enterica serovar Typhimurium growth physiology and 
metabolism, and a multitude of robust ex vivo and in vivo infection models [reviewed in 
references (168, 299, 300)]. Their study has greatly helped to understand the mechanisms 
promoting infection, which, as mentioned above, resembles a natural N+1 situation. In 
addition, studies on enteropathogenic infections have helped to understand the role 
of colonization resistance in preventing infectious diarrhea after pathogen ingestion. 
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Finally, many of the effects of the gut microbiota on host immune responses during the 
course of an infection and frequent spontaneous pathogen elimination when the host 
recovers from acute diarrhea have been detailed and summarized (168, 296).

The resident gut microbiota normally provides resistance against colonization of a 
food-ingested pathogen such as S. Tm, limiting its growth in the gut lumen and thereby 
preventing gut tissue invasion and enteric disease in many infected hosts. This has been 
inferred from epidemiological data (301) and mouse experiments. Many experimental 
infection models rely on microbiome perturbation prior to pathogen introduction to 
establish colonization and pathogenesis (169, 302, 303). Complex gut microbiota indeed 
efficiently protect mice from Salmonella gut colonization, and the effect of coloniza
tion resistance can be increased by introducing competitive E. coli strains (37, 38, 304, 
305). Recent work suggests that strain-specific capacities to utilize poly-arabinose fibers, 
arabinose, or sugar alcohols like galactitol can enhance their gut-luminal growth (306, 
307). This might provide a concept that can be used to create niches that would select 
for proliferation of added competitive Enterobacteriaceae strains and could prevent or 
reduce S. Tm diarrhea and its spread in food animal herds.

S. Tm gut colonization is further suppressed by the host’s adaptive immune system, in 
particular, by secretory Immunoglobulin A, which crosslinks S. Tm daughter cells during 
division, leading to large aggregates. This prevents tissue invasion and favors more 
efficient clearing by the fecal stream (108). Moreover, recent work has further indicated 
that oral vaccination in combination with N+1 competitor E. coli strains can suppress 
S. Tm gut colonization (N−1) in otherwise susceptible mice (308). Finally, an intestinal 
colonization-competent auxotrophic S. Tm vaccine strain induced an immune response 
in mice and acted as a niche competitor (143). Such proof-of-concept studies in mice 
illustrate that combining orthogonal approaches can provide powerful tools or therapies 
to prevent infection via N+1/N−1 strategies.

OUTLOOK

The field of microbiome engineering is still in its infancy. Nonetheless, the wide variety 
of studies in a range of microbiome systems has already presented a wealth of infor
mation on potential strategies for microbiome interventions. What is clear from the 
overview presented here is that much can be learned from cross-microbiome efforts, 
coupled with general conceptual theory on natural microbiome development. While 
immediate success might be observed in specific applications related to potential health 
or environmental benefit, behavior and processes are often more complex than initially 
assumed. There is thus a strong need to start small: with single focal strains, including 
specific designs that aim to study strain behavior and survival in the context of the 
microbiome, and including the most appropriate approaches to understand strain and 
system function, as illustrated here. Such approaches could also embrace reintroduction 
attempts of strains that were depleted in the recent past (309), or that are geographically 
distinct (290).

Advancing general theory is difficult but will greatly benefit from the depth of data 
that can be achieved using omics techniques and analyses of clinical or environmen
tal parameters. Crucial for understanding cross-system N+1/N−1 processes are compu
tational approaches, consisting not only of the data analyses that underlie most of 
the experimental designs outlined above but also of specific computational efforts 
to simulate or compare N+1/N−1 inoculations with natural events. Ideally, one would 
be able to predict the growth and survival of focal strains within target microbiomes 
under the conditions of their native habitats. Considering that growth relies on energy 
generating and anabolic processes, much will be gained by the improvement and 
application of computational—and specifically genome-scale, models. The in silico 
behavior of an N+1 focal strain could thus be approached within its environmental 
context. Combining multiple individual genome-scale models into a coherent micro
biome model is still a daunting task, but first efforts show how important metabolic 
features and fluxes between taxa can be approximated.
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Finally, it is important to capture community assembly processes within the context 
of the habitat, as a function of physical processes, microbial activity, and taxonomic 
composition using computational frameworks. As discussed, a variety of approaches are 
available for this task, even for models that predict the compositional development 
of communities based on carbon, nutrient, and energy input or as a function of 
assumed (imposed) interspecific interactions. Models can further be discretized to allow 
the division of individual “agents” (virtual cells) of different taxa within defined space 
that add cell movement, and allow nutrient gradients, diffusion terms, or cell crowd
ing effects. The agents can be subject to more general deterministic laws of growth 
physiology (e.g., Monod) or interspecific interactions (e.g., Lotka-Volterra), but can also 
be represented by reduced genome-scale models for increased computational efficiency 
while still maintaining a representative set of metabolic reactions. Harmonized strategies 
like the N+1/N− concept may thus eventually facilitate the comparison of ecological 
roles, organism characteristics, and effects of perturbations on a system scale across 
studies and microbiomes. Crucially, these advances will benefit greatly from appropriate 
data accessibility and stewardship practices in microbiome research (310–312).
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