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Abstract

Perception is known to cycle through periods of enhanced and reduced sensitivity to exter-

nal information. Here, we asked whether such slow fluctuations arise as a noise-related epi-

phenomenon of limited processing capacity or, alternatively, represent a structured

mechanism of perceptual inference. Using 2 large-scale datasets, we found that humans

and mice alternate between externally and internally oriented modes of sensory analysis.

During external mode, perception aligns more closely with the external sensory information,

whereas internal mode is characterized by enhanced biases toward perceptual history.

Computational modeling indicated that dynamic changes in mode are enabled by 2 inter-

linked factors: (i) the integration of subsequent inputs over time and (ii) slow antiphase oscil-

lations in the impact of external sensory information versus internal predictions that are

provided by perceptual history. We propose that between-mode fluctuations generate

unambiguous error signals that enable optimal inference in volatile environments.

1. Introduction

The capacity to respond to changes in the environment is a defining feature of life [1–3].

Intriguingly, the ability of living things to process their surroundings fluctuates considerably

over time [4,5]. In humans and mice, perception [6–12], cognition [13], and memory [14]

cycle through prolonged periods of enhanced and reduced sensitivity to external information,

suggesting that the brain detaches from the world in recurring intervals that last from millisec-

onds to seconds and even minutes [4]. Yet, breaking from external information is risky, as

swift responses to the environment are often crucial to survival.

What could be the reason for these fluctuations in perceptual performance [11]? First, peri-

odic fluctuations in the ability to parse external information [11,15,16] may arise simply due to

bandwidth limitations and noise. Second, it may be advantageous to actively reduce the costs

of neural processing by seeking sensory information only in recurring intervals [17], otherwise
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relying on random or stereotypical responses to the external world. Third, spending time away

from the ongoing stream of sensory inputs may also reflect a functional strategy that facilitates

flexible behavior and learning [18]: Intermittently relying more strongly on information

acquired from past experiences may enable agents to build up stable internal predictions about

the environment despite an ongoing stream of external sensory signals [19]. By the same

token, recurring intervals of enhanced sensitivity to external information may help to detect

changes in both the state of the environment and the amount of noise that is inherent in sen-

sory encoding [19].

In this work, we sought to elucidate whether periodicities in the sensitivity to external infor-

mation represent an epiphenomenon of limited processing capacity or, alternatively, result

from a structured and adaptive mechanism of perceptual inference. To this end, we analyzed 2

large-scale datasets on perceptual decision-making in humans [20] and mice [21]. When less

sensitive to external stimulus information, humans and mice did not behave more randomly

but showed stronger serial dependencies in their perceptual choices [22–33]. These serial

dependencies may be understood as driven by internal predictions that reflect the autocorrela-

tion of natural environments [34] and bias perception toward preceding experiences

[30,31,35]. Computational modeling indicated that ongoing changes in perceptual perfor-

mance may be driven by systematic fluctuations between externally and internally oriented

modes of sensory analysis. We suggest that such bimodal inference may help to build stable

internal representations of the sensory environment despite an ongoing stream of sensory

information.

2. Results

2.1 Human perception fluctuates between epochs of enhanced and reduced

sensitivity to external information

We began by selecting 66 studies from the Confidence database [20] that investigated how

human participants (N = 4,317) perform binary perceptual decisions (Fig 1A; see Methods for

details on inclusion criteria). As a metric for perceptual performance (i.e., the sensitivity to

external sensory information), we asked whether the participant’s response and the presented

stimulus matched (stimulus-congruent choices) or differed from each other (stimulus-incon-
gruent choices; Fig 1B and 1C) in a total of 21.05 million trials.

In a first step, we asked whether the ability to accurately perceive sensory stimuli is constant

over time or, alternatively, fluctuates in periods of enhanced and reduced sensitivity to external

information. We found perception to be stimulus-congruent in 73.46% ± 0.15% of trials

(mean ± standard error of the mean; Fig 2A), which was highly consistent across the selected

studies (S1A Fig). In line with previous work [8], we found that the probability of stimulus-

congruence was not independent across successive trials: At the group level, stimulus-congru-

ent perceptual choices were significantly autocorrelated for up to 15 trials (Fig 2B), controlling

for task difficulty and the sequence of presented stimuli (S2 Fig).

At the level of individual participants, the autocorrelation of stimulus-congruence exceeded

the respective autocorrelation of randomly permuted data within an interval of

3.24 ± 2.39×10−3 trials (Fig 2C). In other words, if a participant’s experience was congruent (or

incongruent) with the external stimulus information at a given trial, her perception was more

likely to remain stimulus-congruent (or stimulus-incongruent) for approximately 3 trials into

the future. The autocorrelation of stimulus-congruence was corroborated by logistic regression

models that successfully predicted the stimulus-congruence of perception at the index trial

t = 0 from the stimulus-congruence at the preceding trials within a lag of 16 trials (S3 Fig).
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These results confirm that the ability to process sensory signals is not constant over time

but unfolds in multitrial epochs of enhanced and reduced sensitivity to external information

[8]. As a consequence of this autocorrelation, the dynamic probability of stimulus-congruent

perception (i.e., computed in sliding windows of ±5 trials; Fig 1C) fluctuated considerably

within participants (average minimum: 35.46% ± 0.22%, maximum: 98.27% ± 0.07%). In line

with previous findings [9], such fluctuations in the sensitivity to external information had a

Fig 1. Concept. (A) In binary perceptual decision-making, a participant is presented with stimuli from 2 categories (A vs. B; solid line) and

reports consecutive perceptual choices via button presses (solid line). All panels below refer to these stimulated example data. (B) When the

response matches the external stimulus information (i.e., overlap between the dotted and solid lines in panel (A)), perceptual choices are stimulus-
congruent (red line). When the response matches the response at the preceding trial, perceptual choices are history-congruent (blue line). (C) The

dynamic probabilities of stimulus- and history-congruence (i.e., computed in sliding windows of ±5 trials) fluctuate over time. (D) The mode of

perceptual processing is derived by computing the difference between the dynamic probabilities of stimulus- and history-congruence. Values

above 0% indicate a bias toward external information, whereas values below 0% indicate a bias toward internal information. (E) In computational

modeling, internal mode is caused by an enhanced impact of perceptual history. This causes the posterior (black line) to be close to the prior (blue

line). Conversely, during external mode, the posterior is close to the sensory information (log likelihood ratio, red line). (F) The bimodal inference

model (M1) explains fluctuations between externally and internally biased modes (left panel) by 2 interacting factors: a normative accumulation of

evidence according to parameter H (middle panel), and antiphase oscillations in the precision terms ωLLR and ωψ (right panel). (G) The control

models M2-M5 were constructed by successively removing the antiphase oscillations and the integration of information from the bimodal

inference model. Please note that the normative-evidence-accumulation model (M4) corresponds to the model proposed by Glaze and colleagues

[51]. In the no-evidence-accumulation model (M5), perceptual decisions depend only on likelihood information (flat priors).

https://doi.org/10.1371/journal.pbio.3002410.g001
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power density that was inversely proportional to the frequency in the slow spectrum [11]

(power * 1/f β, β = −1.32 ± 3.14×10−3, T(1.84×105) = −419.48, p< 2.2×10−308; Fig 2D). This

feature, which is also known as a 1/f power law [36,37], represents a characteristic of scale-free

Fig 2. Internal and external modes in human perceptual decision-making. (A) In humans, perception was stimulus-congruent in 73.46% ±
0.15% (in red) and history-congruent in 52.7% ± 0.12% of trials (in blue; upper panel). History-congruent perceptual choices were more frequent

when perception was stimulus-incongruent (i.e., on error trials; lower panel), indicating that history effects impair performance in randomized

psychophysical designs. (B) Relative to randomly permuted data, we found highly significant autocorrelations of stimulus-congruence and

history-congruence (dots indicate intercepts 6¼ 0 in trial-wise linear mixed effects modeling at p< 0.05). Across trials, the autocorrelation

coefficients were best fit by an exponential function (adjusted R2 for stimulus-congruence: 0.53; history-congruence: 0.72) as compared to a linear

function (adjusted R2 for stimulus-congruence: 0.53; history-congruence: 0.51), decaying at a rate of γ = −1.92×10−3 ± 4.5×10−4 (T(6.88×104) =

−4.27, p = 1.98×10−5) for stimulus-congruence and at a rate of γ = −6.11×10−3 ± 5.69×10−4 (T(6.75×104) = −10.74, p = 7.18×10−27) for history-

congruence. (C) Here, we depict the number of consecutive trials at which autocorrelation coefficients exceeded the respective autocorrelation of

randomly permuted data within individual participants. For stimulus-congruence (upper panel), the lag of positive autocorrelation amounted to

3.24 ± 2.39×10−3 on average, showing a peak at trial t+1 after the index trial. For history-congruence (lower panel), the lag of positive

autocorrelation amounted to 4.87 ± 3.36×10−3 on average, peaking at trial t+2 after the index trial. (D) The smoothed probabilities of stimulus-

and history-congruence (sliding windows of ±5 trials) fluctuated as a scale-invariant process with a 1/f power law, i.e., at power densities that were

inversely proportional to the frequency. (E) The distribution of phase shift between fluctuations in stimulus- and history-congruence peaked at

half a cycle (π denoted by dotted line). (F) The average squared coherence between fluctuations in stimulus- and history-congruence (dotted line)

amounted to 6.49 ± 2.07×10−3%. (G) We observed faster RTs for both stimulus-congruence (as opposed to stimulus-incongruence, β =

−0.14 ± 1.6×10−3, T(1.99×106) = −85.84, p< 2.2×10−308) and history-congruence (β = −9.56×10−3 ± 1.37×10−3, T(1.98×106) = −6.97,

p = 3.15×10−12). (H) The mode of perceptual processing (i.e., the difference between the smoothed probability of stimulus- vs. history-

congruence) showed a quadratic relationship to RTs, with faster RTs for stronger biases toward both external sensory information and internal

predictions provided by perceptual history (β2 = −19.86 ± 0.52, T(1.98×106) = −38.43, p = 5×10−323). The horizontal and vertical dotted lines

indicate maximum RT and the associated mode, respectively. (I) Confidence was enhanced for both stimulus-congruence (as opposed to

stimulus-incongruence, β = 0.48 ± 1.38×10−3, T(2.06×106) = 351.54, p< 2.2×10−308) and history-congruence (β = 0.04 ± 1.18×10−3, T(2.06×106) =

36.85, p = 3.25×10−297). (J) In analogy to RTs, we found a quadratic relationship between the mode of perceptual processing and confidence,

which increased when both externally and internally biased modes grew stronger (β2 = 39.3 ± 0.94, T(2.06×106) = 41.95, p< 2.2×10−308). The

horizontal and vertical dotted lines indicate minimum confidence and the associated mode, respectively.

https://doi.org/10.1371/journal.pbio.3002410.g002
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fluctuations in complex dynamic systems such as the brain [38] and the cognitive processes it

entertains [9,10,13,39,40].

2.2 Humans fluctuate between external and internal modes of sensory

processing

In a second step, we sought to explain why perception cycles through periods of enhanced and

reduced sensitivity to external information [4]. We reasoned that observers may intermittently

rely more strongly on internal information, i.e., on predictions about the environment that are

constructed from previous experiences [19,31].

In perception, serial dependencies represent one of the most basic internal predictions that

cause perceptual decisions to be systematically biased toward preceding choices [22–33]. Such

effects of perceptual history mirror the continuity of the external world, in which the recent

past often predicts the near future [30,31,34,35,41]. Therefore, as a metric for the perceptual

impact of internal information, we computed whether the participant’s response at a given

trial matched or differed from her response at the preceding trial (history-congruent and his-
tory-incongruent perception, respectively; Fig 1B and 1C).

First, we confirmed that perceptual history played a significant role in perception despite

the ongoing stream of external information. With a global average of 52.7% ± 0.12% history-

congruent trials, we found a small but highly significant perceptual bias towards preceding

experiences (β = 16.18 ± 1.07, T(1.09×103) = 15.07, p = 10−46; Fig 2A) that was largely consis-

tent across studies (S1B Fig) and more pronounced in participants who were less sensitive to

external sensory information (S1C Fig). Importantly, history-congruence was not a corollary

of the sequence of presented stimuli: History-congruent perceptual choices were more fre-

quent at trials when perception was stimulus-incongruent (56.03% ± 0.2%) as opposed to stim-

ulus-congruent (51.77% ± 0.11%, β = −4.26 ± 0.21, T(8.57×103) = −20.36, p = 5.28×10−90;

Fig 2A, lower panel). Despite being adaptive in autocorrelated real-world environments

[19,34,35,42], perceptual history thus represented a source of bias in the randomized experi-

mental designs studied here [24,28,30,31,43]. These serial biases were effects of choice history,

i.e., driven by the experiences reported at the preceding trial, and could not be attributed to

stimulus history, i.e., to effects of the stimuli presented at the preceding trial (S1 Text).

Second, we asked whether perception cycles through multitrial epochs during which per-

ception is characterized by stronger or weaker biases toward preceding experiences. In close

analogy to stimulus-congruence, we found history-congruence to be significantly autocorre-

lated for up to 21 trials (Fig 2B), while controlling for task difficulty and the sequence of pre-

sented stimuli (S2 Fig). In individual participants, the autocorrelation of history-congruence

was elevated above randomly permuted data for a lag of 4.87 ± 3.36×10−3 trials (Fig 2C), con-

firming that the autocorrelation of history-congruence was not only a group-level phenome-

non. The autocorrelation of history-congruence was corroborated by logistic regression

models that successfully predicted the history-congruence of perception at an index trial t = 0

from the history-congruence at the preceding trials within a lag of 17 trials (S3 Fig).

Third, we asked whether the impact of internal information fluctuates as a scale-invariant

process with a 1/f power law (i.e., the feature typically associated with fluctuations in the sensi-

tivity to external information [9,10,13,39,40]). The dynamic probability of history-congruent

perception (i.e., computed in sliding windows of ±5 trials; Fig 1C) varied considerably over

time, ranging between a minimum of 12.77% ± 0.14% and a maximum 92.23% ± 0.14%. In

analogy to stimulus-congruence, we found that history-congruence fluctuated at power densi-

ties that were inversely proportional to the frequency in the slow spectrum [11] (power* 1/fβ,

β = −1.34 ± 3.16×10−3, T(1.84×105) = −423.91, p< 2.2×10−308; Fig 2D).
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Finally, we ensured that fluctuations in stimulus- and history-congruence are linked to

each other. When perceptual choices were less biased toward external information, partici-

pants relied more strongly on internal information acquired from perceptual history (and vice

versa, β = −0.05 ± 5.63×10−4, T(2.1×106) = −84.21, p< 2.2×10−308, controlling for fluctuations

in general response biases; S1 Text). Thus, while sharing the 1/f power law characteristic, fluc-

tuations in stimulus- and history-congruence were shifted against each other by approximately

half a cycle and showed a squared coherence of 6.49 ± 2.07×10−3% (Fig 2E and 2F; we report

the average phase and coherence for frequencies below 0.1 1/Ntrials; see Methods for details).

In sum, our analyses indicate that perceptual decisions result from a competition of external

sensory signals with internal predictions provided by perceptual history. We show that the

impact of these external and internal sources of information is not stable over time but fluctu-

ates systematically, emitting overlapping autocorrelation curves and antiphase 1/f profiles.

These links between stimulus- and history-congruence suggest that the fluctuations in the

impact of external and internal information are generated by a unifying mechanism that

causes perception to alternate between 2 opposing modes [18] (Fig 1D): During external mode,
perception is more strongly driven by the available external stimulus information. Conversely,

during internal mode, participants rely more heavily on internal predictions that are implicitly

provided by preceding perceptual experiences. The fluctuations in the degree of bias toward

external versus internal information created by such bimodal inference may thus provide a

novel explanation for ongoing fluctuations in the sensitivity to external information [4,5,18].

2.3 Internal and external modes of processing facilitate response behavior

and enhance confidence in human perceptual decision-making

The above results point to systematic fluctuations in the decision variable [44] that determines

perceptual choices, causing enhanced sensitivity to external stimulus information during

external mode and increased biases toward preceding choices during internal mode. As such,

fluctuations in mode should influence downstream aspects of behavior and cognition that

operate on the perceptual decision variable [44]. To test this hypothesis with respect to motor

behavior and metacognition, we asked how bimodal inference relates to response times (RTs)

and confidence reports.

With respect to RTs, we observed faster responses for stimulus-congruent as opposed to

stimulus-incongruent choices (β = −0.14 ± 1.6×10−3, T(1.99×106) = −85.84, p< 2.2×10−308;

Fig 2G). Intriguingly, while controlling for the effect of stimulus-congruence, we found that

history-congruent (as opposed to history-incongruent) choices were also characterized by

faster responses (β = −9.56×10−3 ± 1.37×10−3, T(1.98×106) = −6.97, p = 3.15×10−12; Fig 2G).

When analyzing the speed of response against the mode of sensory processing (Fig 2H), we

found that RTs were shorter during externally oriented perception (β1 = −11.07 ± 0.55, T

(1.98×106) = −20.14, p = 3.17×10−90). Crucially, as indicated by a quadratic relationship

between the mode of sensory processing and RTs (β2 = −19.86 ± 0.52, T(1.98×106) = −38.43,

p = 5×10−323), participants became faster at indicating their perceptual decision when biases

toward both internal and external mode grew stronger.

In analogy to the speed of response, confidence was higher for stimulus-congruent as

opposed to stimulus-incongruent choices (β = 0.04 ± 1.18×10−3, T(2.06×106) = 36.85,

p = 3.25×10−297; Fig 2I). Yet, while controlling for the effect of stimulus-congruence, we found

that history-congruence also increased confidence (β = 0.48 ± 1.38×10−3, T(2.06×106) =

351.54, p< 2.2×10−308; Fig 2I).

When depicted against the mode of sensory processing (Fig 2J), subjective confidence was

enhanced when perception was more externally oriented (β1 = 92.63 ± 1, T(2.06×106) = 92.89,
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p< 2.2×10−308). Importantly, however, participants were more confident in their perceptual

decision for stronger biases toward both internal and external mode (β2 = 39.3 ± 0.94, T

(2.06×106) = 41.95, p< 2.2×10−308). In analogy to RTs, subjective confidence thus showed a

quadratic relationship to the mode of sensory processing (Fig 2J).

Consequently, our findings predict that human participants lack full metacognitive insight

into how strongly external signals and internal predictions contribute to perceptual decision-

making. Stronger biases toward perceptual history thus lead to 2 seemingly contradictory

effects, more frequent errors (S1C Fig) and increasing subjective confidence (Fig 2I and 2J).

This observation generates an intriguing prediction regarding the association of between-

mode fluctuations and perceptual metacognition: Metacognitive efficiency should be lower in

individuals who spend more time in internal mode, since their confidence reports are less pre-

dictive of whether the corresponding perceptual decision is correct. We computed each partic-

ipant’s M-ratio [45] (meta-d0/d0 = 0.85 ± 0.02) to probe this hypothesis independently of

interindividual differences in perceptual performance. Indeed, we found that biases toward

internal information (as defined by the average probability of history-congruence) were stron-

ger in participants with lower metacognitive efficiency (β = −2.98×10−3 ± 9.82×10−4, T

(4.14×103) = −3.03, p = 2.43×10−3).

In sum, the above results indicate that reporting behavior and metacognition do not map

linearly onto the mode of sensory processing. Rather, they suggest that slow fluctuations in the

respective impact of external and internal information are most likely to affect perception at

an early level of sensory analysis [46,47]. Such low-level processing may thus integrate percep-

tual history with external inputs into a decision variable [44] that influences not only percep-

tual choices but also the speed and confidence at which they are made.

In what follows, we probe alternative explanations for between-mode fluctuations, test for

the existence of modes in mice, and propose a predictive processing model that explains fluc-

tuations in mode by ongoing shifts in the precision afforded to external sensory information

relative to internal predictions driven by perceptual history.

2.4 Fluctuations between internal and external mode cannot be reduced to

general response biases or random choices

The core assumption of bimodal inference—that ongoing changes in the sensitivity to external

information are driven by internal predictions induced via perceptual history—needs to be

contrasted against 2 alternative hypotheses: When making errors, observers may not engage

with the task and respond stereotypically, i.e., exhibit stronger general biases toward one of the

2 potential outcomes or simply choose randomly.

Logistic regression confirmed that perceptual history made a significant contribution to

perception (β = 0.11 ± 5.79×10−3, z = 18.53, p = 1.1×10−76) over and above the ongoing stream

of external sensory information (β = 2.2 ± 5.87×10−3, z = 375.11, p< 2.2×10−308) and general

response biases toward one of the two possible outcomes (β = 15.19 ± 0.08, z = 184.98,

p< 2.2×10−308).

When eliminating perceptual history as a predictor of individual choices, Akaike informa-

tion criterion (AIC; [48]) increased by δAIC = 1.64×103 (see S4 Fig for parameter- and model-

level inference at the level of individual observers). Likewise, when eliminating slow fluctua-

tions in history-congruence as a predictor of slow fluctuations in stimulus-congruence across

trials, we observed an increase in AIC by δAIC = 7.06×103. These results provided model-level

evidence against the null hypotheses that fluctuations in stimulus-congruence are driven

exclusively by choice randomness or general response bias (see S1 Text and S5 Fig for an in-

depth assessment of general response bias).
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To confirm that changes in the sensitivity to external information are indicative of internal

mode processing, we estimated full and history-dependent psychometric curves during inter-

nal, external, and across modes [21]. If, as we hypothesized, internal mode processing reflects

an enhanced impact of perceptual history, one would expect a history-dependent increase in

biases and lapses as well as a history-independent increase in threshold. Conversely, if internal

mode processing were driven by random choices, one would expect a history-independent

increase in lapses and threshold and no change in bias. In line with our prediction, we found

that internal mode processing was associated with a history-dependent increase in bias and

lapse as well as a history-independent increase in threshold (S1 Text and S6 Fig). This con-

firmed that internal mode processing is indeed driven by an enhanced impact of perceptual

history.

In line with this, the quadratic relationship between mode and confidence (Fig 2J) sug-

gested that biases toward internal information do not reflect a postperceptual strategy of

repeating preceding choices when the subjective confidence in the perceptual decision is low.

Moreover, while responses became faster with longer exposure to the experiments of the Con-

fidence database, the frequency of history-congruent choices increased over time, speaking

against the proposition that participants stereotypically repeat preceding choices when not yet

familiar with the experimental task (S1 Text).

Taken together, our results argue against recurring intervals of low task engagement, which

may be signaled by stereotypical or random responses, as an alternative explanation for the

phenomenon that we identify as bimodal inference.

2.5 Mice fluctuate between external and internal modes of sensory

processing

In a prominent functional explanation for serial dependencies [22–28,32,33,46], perceptual

history is cast as an internal prediction that leverages the temporal autocorrelation of natural

environments for efficient decision-making [30,31,34,35,41]. Since this autocorrelation is one

of the most basic features of our sensory world, fluctuating biases toward preceding perceptual

choices should not be a uniquely human phenomenon.

To test whether externally and internally oriented modes of processing exist beyond the

human mind, we analyzed data on perceptual decision-making in mice that were extracted

from the International Brain Laboratory (IBL) dataset [21]. We restricted our analyses to the

basic task [21], in which mice responded to gratings of varying contrast that appeared either in

the left or right hemifield with equal probability. We excluded sessions in which mice did not

respond correctly to stimuli presented at a contrast above 50% in more than 80% of trials (see

Methods for details), which yielded a final sample of N = 165 adequately trained mice that

went through 1.46 million trials.

We found perception to be stimulus-congruent in 81.37% ± 0.3% of trials (Fig 3A, upper

panel). In line with humans, mice were biased toward perceptual history in 54.03% ± 0.17% of

trials (T(164) = 23.65, p = 9.98×10−55; Figs 3A and S1D). Since the basic task of the IBL dataset

presented stimuli at random in either the left or the right hemifield, we expected stronger

biases toward perceptual history to decrease perceptual performance. Indeed, history-congru-

ent choices were more frequent when perception was stimulus-incongruent (61.59% ± 0.07%)

as opposed to stimulus-congruent (51.81% ± 0.02%, T(164) = 31.37, p = 3.36×10−71; T(164) =

31.37, p = 3.36×10−71; Fig 3A, lower panel), confirming that perceptual history was a source of

bias [24,28,30,31,43] as opposed to a feature of the experimental paradigm.

At the group level, we found significant autocorrelations in both stimulus-congruence (42

consecutive trials) and history-congruence (8 consecutive trials; Fig 3B), while controlling for
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the respective autocorrelation of task difficulty and external stimulation (S2 Fig). In contrast to

humans, mice showed a negative autocorrelation coefficient of stimulus-congruence at trial 2,

which was due to a feature of the experimental design: Errors at a contrast above 50% were fol-

lowed by a high-contrast stimulus at the same location. Thus, stimulus-incongruent choices

on easy trials were more likely to be followed by stimulus-congruent perceptual choices that

were facilitated by high-contrast visual stimuli [21].

Fig 3. Internal and external modes in mouse perceptual decision-making. (A) In mice, 81.37% ± 0.3% of trials were stimulus-congruent (in

red) and 54.03% ± 0.17% of trials were history-congruent (in blue; upper panel). History-congruent perceptual choices were not a consequence of

the experimental design, but a source of error, as they were more frequent on stimulus-incongruent trials (lower panel). (B) Relative to randomly

permuted data, we found highly significant autocorrelations of stimulus-congruence and history-congruence (dots indicate intercepts 6¼ 0 in trial-

wise linear mixed effects modeling at p< 0.05). Please note that the negative autocorrelation of stimulus-congruence at trial 2 was a consequence

of the experimental design (S2 Fig). As in humans, autocorrelation coefficients were best fit by an exponential function (adjusted R2 for stimulus-

congruence: 0.44; history-congruence: 0.52) as compared to a linear function (adjusted R2 for stimulus-congruence: 3.16×10−3; history-

congruence: 0.26), decaying at a rate of γ = −6.2×10−4 ± 5.93×10−4 (T(3.55×104) = −1.05, p = 0.3) for stimulus-congruence and at a rate of γ =

−6.7×10−3 ± 5.94×10−4 (T(3.69×104) = −11.27, p = 2.07×10−29) for history-congruence. (C) For stimulus-congruence (upper panel), the lag of

positive autocorrelation was longer in comparison to humans (4.59 ± 0.06 on average). For history-congruence (lower panel), the lag of positive

autocorrelation was slightly shorter relative to humans (2.58 ± 0.01 on average, peaking at trial t+2 after the index trial). (D) In mice, the dynamic

probabilities of stimulus- and history-congruence (sliding windows of ±5 trials) fluctuated as a scale-invariant process with a 1/f power law. (E)

The distribution of phase shift between fluctuations in stimulus- and history-congruence peaked at half a cycle (π denoted by dotted line). (F) The

average squared coherence between fluctuations in stimulus- and history-congruence (dotted line) amounted to 3.45 ± 0.01%. (G) We observed

shorter trial durations (TDs) for stimulus-congruence (as opposed to stimulus-incongruence, β = −1.12 ± 8.53×10−3, T(1.34×106) = −131.78,

p< 2.2×10−308), but longer TDs for history-congruence (β = 0.06 ± 6.76×10−3, T(1.34×106) = 8.52, p = 1.58×10−17). (H) TDs decreased

monotonically for stronger biases toward external mode (β1 = −4.16×104 ± 1.29×103, T(1.35×106) = −32.31, p = 6.03×10−229). The horizontal and

vertical dotted lines indicate maximum TD and the associated mode, respectively. (I) For TDs that differed from the median TD by no more than

1.5 × MAD (median absolute distance; [49]), mice exhibited a quadratic component in the relationship between the mode of sensory processing

and TDs (β2 = −1.97×103 ± 843.74, T(1.19×106) = −2.34, p = 0.02). This explorative post hoc analysis focuses on trials at which mice engage more

swiftly with the experimental task. The horizontal and vertical dotted lines indicate maximum TD and the associated mode, respectively.

https://doi.org/10.1371/journal.pbio.3002410.g003
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At the level of individual mice, autocorrelation coefficients were elevated above randomly

permuted data within a lag of 4.59 ± 0.06 trials for stimulus-congruence and 2.58 ± 0.01 trials

for history-congruence (Fig 3C). We corroborated these autocorrelations in logistic regression

models that successfully predicted the stimulus-/history-congruence of perception at the index

trial t = 0 from the stimulus-/history-congruence at the 33 preceding trials for stimulus-con-

gruence and 8 preceding trials for history-congruence (S3 Fig). In analogy to humans, mice

showed antiphase 1/f fluctuations in the sensitivity to internal and external information

(Fig 3D–3F).

The above results confirm that fluctuations between internally and externally biased modes

generalize to perceptual decision-making in mice. Following our hypothesis that bimodal

inference operates at the level of perception, we predicted that between-mode fluctuations

modulate a decision variable [44] that determines not only perceptual choices but also down-

stream aspects of mouse behavior [44]. We therefore asked how external and internal modes

relate to the trial duration (TD, a coarse measure of RT in mice that spans the interval from

stimulus onset to feedback; [21]). Stimulus-congruent (as opposed to stimulus-incongruent)

choices were associated with shorter TDs (δ = −262.48 ± 17.1, T(164) = -15.35,

p = 1.55×10−33), while history-congruent choices were characterized by longer TDs (δ =

30.47 ± 5.57, T(164) = 5.47, p = 1.66×10−7; Fig 3G).

Across the full spectrum of the available data, TDs showed a linear relationship with the

mode of sensory processing, with shorter TDs during external mode (β1 = −4.16×104 ±
1.29×103, T(1.35×106) = −32.31, p = 6.03×10−229, Fig 3H). However, an explorative post hoc

analysis limited to TDs that differed from the median TD by no more than 1.5 × MAD

(median absolute distance; [49]) indicated that, when mice engaged with the task more swiftly,

TDs did indeed show a quadratic relationship with the mode of sensory processing (β2 =

−1.97×103 ± 843.74, T(1.19×106) = −2.34, p = 0.02, Fig 3I).

As in humans, it is important to ensure that ongoing changes in the sensitivity to external

information are driven by perceptual history and cannot be reduced to general choice biases

or random behavior. Logistic regression confirmed a significant effect of perceptual history on

perceptual choices (β = 0.51 ± 4.49×10−3, z = 112.84, p< 2.2×10−308), while controlling for

external sensory information (β = 2.96 ± 4.58×10−3, z = 646.1, p< 2.2×10−308) and general

response biases toward one of the 2 outcomes (β = −1.78 ± 0.02, z = −80.64, p< 2.2×10−308).

When eliminating perceptual history as a predictor of individual choices, AIC increased by

δAIC = 1.48×104, arguing against the notion that choice randomness and general response bias

are the only determinants of perceptual performance in mice (see S4 Fig for parameter- and

model-level inference in individual subjects).

In mice, fluctuations in the strength of history-congruent biases had a significant effect on

stimulus-congruence (β1 = −0.12 ± 7.17×10−4, T(1.34×106) = −168.39, p< 2.2×10−308) beyond

the effect of ongoing changes in general response biases (β2 = −0.03 ± 6.94×10−4, T(1.34×106)

= −48.14, p< 2.2×10−308). Eliminating the dynamic fluctuations in history-congruence as a

predictor of fluctuations in stimulus-congruence resulted in an increase in AIC by δAIC =

2.8×104 (see S1 Text and S5 Fig for an in-depth assessment of general response bias).

When fitting full and history-conditioned psychometric curves to the IBL data [21], we

observed that internal mode processing was associated with a history-dependent increase in

bias and lapse as well as a history-independent increase in threshold (S1 Text and S7 Fig).

Over time, the frequency of history-congruent choices increased alongside stimulus-congru-

ence and speed of response as mice were exposed to the experiment, arguing against the prop-

osition that biases toward perceptual history reflected an unspecific response strategy in mice

who were not sufficiently trained on the IBL task (S1 Text and S8 Fig).
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In sum, these analyses confirmed that the observed fluctuations in sensitivity to external

sensory information are driven by dynamic changes in the impact of perceptual history and

cannot be reduced to general response bias and random choice behavior.

2.6 Fluctuations in mode result from coordinated changes in the impact of

external and internal information on perception

The empirical data presented above indicate that, for both humans and mice, perception fluc-

tuates between external and modes, i.e., multitrial epochs that are characterized by enhanced

sensitivity toward either external sensory information or internal predictions generated by

perceptual history. Since natural environments typically show high temporal redundancy [34],

previous experiences are often good predictors of new stimuli [30,31,35,41]. Serial dependen-

cies may therefore induce autocorrelations in perception by serving as internal predictions (or

memory processes; [9,13]) that actively integrate noisy sensory information over time [50].

Previous work has shown that such internal predictions can be built by dynamically updat-

ing the estimated probability of being in a particular perceptual state from the sequence of pre-

ceding experiences [35,46,51]. The integration of sequential inputs may lead to accumulating

effects of perceptual history that progressively override incoming sensory information,

enabling internal mode processing [19]. However, since such a process would lead to internal

biases that may eventually become impossible to overcome [52], changes in mode may require

ongoing wave-like fluctuations [9,13] in the perceptual impact of external and internal infor-

mation that occur irrespective of the sequence of previous experiences and temporarily decou-

ple the decision variable from implicit internal representations of the environment [19].

Following Bayes’ theorem, binary perceptual decisions depend on the log posterior ratio L
of the 2 alternative states of the environment that participants learn about via noisy sensory

information [51]. We computed the posterior by combining the sensory evidence available at

time point t (i.e., the log likelihood ratio LLR) with the prior probability ψ, weighted by the

respective precision terms ωLLR and ωψ:

Lt ¼ LLRt∗oLLR þ ctðLt� 1;HÞ∗oc ð1Þ

We derived the prior probability ψ at time point t from the posterior probability of percep-

tual outcomes at time point Lt−1. Since a switch between the 2 states can occur at any time, the

effect of perceptual history varies according to both the sequence of preceding experiences and

the estimated stability of the external environment (i.e., the hazard rate H; [51]):

ct Lt� 1;Hð Þ ¼ Lt� 1 þ log
1 � H
H
þ expð� Lt� 1Þ

� �

� log
1 � H
H
þ expðLt� 1Þ

� �

ð2Þ

The LLR was computed from inputs st by applying a sigmoid function defined by parameter

α that controls the sensitivity of perception to the available sensory information (see Methods

for details on st in humans and mice):

ut ¼
1

1þ expð� a∗stÞ
ð3Þ

LLRt ¼ log
ut

1 � ut

� �

ð4Þ

To allow for bimodal inference, i.e., alternating periods of internally and externally biased

modes of perceptual processing that occur irrespective of the sequence of preceding
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experiences, we assumed that likelihood and prior vary in their influence on the perceptual

decision according to fluctuations governed by ωLLR and ωψ. These antiphase sine functions

(defined by amplitudes aLLR/ψ, frequency f, and phase p) determine the precision afforded to

the likelihood and prior [53]. The implicit antiphase fluctuations are mandated by Bayes-opti-

mal formulations in which inference depends only on the relative values of prior and likeli-

hood precision (i.e., the Kalman gain; [54]). As such, ωLLR and ωψ implement a hyperprior

[55] in which the likelihood and prior precisions are shifted against each other at a dominant

timescale defined by f:

oLLR ¼ aLLR∗sinðf ∗t þ pÞ þ 1 ð5Þ

oc ¼ ac∗sinðf ∗t þ pþ pÞ þ 1 ð6Þ

Finally, a sigmoid transform of the posterior Lt yields the probability of observing the per-

ceptual decision yt at a temperature determined by z−1:

P yt ¼ 1ð Þ ¼ 1 � P yt ¼ 0ð Þ ¼
1

1þ expð� z∗LtÞ
ð7Þ

We used a maximum likelihood procedure to fit the bimodal inference model (M1; Fig 1F)

to the behavioral data from the Confidence database [20] and the IBL database [21], optimiz-

ing the parameters α, H, ampLLR, ampψ, f, p, and z (see Methods for details and S2 Table for a

summary of the parameters of the bimodal inference model). We validated our model in 3

steps:

First, to show that bimodal inference does not emerge spontaneously in normative Bayesian

models of evidence accumulation but requires the ad hoc addition of antiphase oscillations in

prior and likelihood precision, we compared the bimodal inference model to 4 control models

(M2 to M5; Fig 1G). In these models, we successively removed the antiphase oscillations (M2

to M4) and the integration of information across trials (M5) from the bimodal inference

model and performed a model comparison based on AIC.

Model M2 (AIC2 = 9.76×104 in humans and 4.91×104 in mice) and Model M3 (AIC3 =

1.19×105 in humans and 5.95×104 in mice) incorporated only oscillations of either likelihood

or prior precision. Model M4 (AIC4 = 1.69×105 in humans and 9.12×104 in mice) lacked any

oscillations of likelihood and prior precision and corresponded to the normative model pro-

posed by Glaze and colleagues [51]. In model M5 (AIC4 = 2.01×105 in humans and 1.13×105 in

mice), we furthermore removed the integration of information across trials, such that percep-

tion depended only in incoming sensory information (Fig 1G).

The bimodal inference model achieved the lowest AIC across the full model space (AIC1 =

8.16×104 in humans and 4.24×104 in mice) and was clearly superior to the normative Bayesian

model of evidence accumulation (δAIC = −8.79×104 in humans and −4.87×104 in mice; S9 Fig).

As a second validation of the bimodal inference model, we tested whether the posterior

model predicted within-training and out-of-training variables. The bimodal inference model

characterizes each subject by a sensitivity parameter α (humans: α = 0.5 ± 1.12×10−4; mice: α =

1.06 ± 2.88×10−3) that captures how strongly perception is driven by the available sensory

information, and a hazard rate parameter H (humans: H = 0.45 ± 4.8×10−5; mice:

H = 0.46 ± 2.97×10−4) that controls how heavily perception is biased by perceptual history.

The parameter f captures the dominant timescale at which likelihood (amplitude humans: aLLR
= 0.5 ± 2.02×10−4; mice: aLLR = 0.39 ± 1.08×10−3) and prior precision (amplitude humans: aψ
= 1.44 ± 5.27×10−4; mice: aψ = 1.71 ± 7.15×10−3) fluctuated and was estimated at

0.11 ± 1.68×10−5 1/Ntrials and 0.11 ± 1.63×10−4 1/Ntrials in mice.
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As a sanity check for model fit, we tested whether the frequency of stimulus- and history-

congruent trials in the Confidence database [20] and IBL database [21] correlated with the esti-

mated parameters α and H, respectively. As expected, the estimated sensitivity toward stimulus

information α was positively correlated with the frequency of stimulus-congruent perceptual

choices (humans: β = 0.84 ± 0.26, T(4.31×103) = 32.87, p = 1.3×10−211; mice: β = 1.93 ± 0.12, T

(2.07×103) = 16.21, p = 9.37×10−56). Likewise, H was negatively correlated with the frequency

of history-congruent perceptual choices (humans: β = −11.84 ± 0.5, T(4.29×103) = −23.5,

p = 5.16×10−115; mice: β = −6.18 ± 0.66, T(2.08×103) = −9.37, p = 1.85×10−20).

Our behavioral analyses reveal that humans and mice show significant effects of perceptual

history that impaired performance in randomized psychophysical experiments

[24,28,30,31,43] (Figs 2A and 3A). We therefore expected that humans and mice underesti-

mated the true hazard rate Ĥ of the experimental environments (Confidence database [20]:

ĤHumans ¼ 0:5 ± 1.58×10−5); IBL database [21]: ĤMice ¼ 0:49 ± 6.48×10−5). Indeed, when fitting

the bimodal inference model to the trial-wise perceptual choices, we found that the estimated

(i.e., subjective) hazard rate H was lower than Ĥ for both humans (β = −6.87 ± 0.94, T(61.87) =

−7.33, p = 5.76×10−10) and mice (β = −2.91 ± 0.34, T(112.57) = −8.51, p = 8.65×10−14).

To further probe the validity of the bimodal inference model, we asked whether posterior

model quantities could explain aspects of the behavioral data that the model was not fitted to.

We predicted that the posterior decision variable Lt not only encodes perceptual choices (i.e.,

the variable used for model estimation) but also predicts the speed of response and subjective

confidence [30,44]. Indeed, the estimated trial-wise posterior decision certainty |Lt| correlated

negatively with RTs in humans (β = −4.36×10−3 ± 4.64×10−4, T(1.98×106) = −9.41,

p = 5.19×10−21) and TDs mice (β = −35.45 ± 0.86, T(1.28×106) = −41.13, p< 2.2×10−308). Like-

wise, subjective confidence reports were positively correlated with the estimated posterior

decision certainty in humans (β = 7.63×10−3 ± 8.32×10−4, T(2.06×106) = 9.18, p = 4.48×10−20).

The dynamic accumulation of information inherent to our model entails that biases toward

perceptual history are stronger when the posterior decision certainty at the preceding trial is

high [30,31,51]. Due to the link between posterior decision certainty and confidence, confident

perceptual choices should be more likely to induce history-congruent perception at the subse-

quent trial [30,31]. In line with our prediction, logistic regression indicated that history-con-

gruence was predicted by the posterior decision certainty |Lt-1| extracted from the model

(humans: β = 8.22×10−3 ± 1.94×10−3, z = 4.25, p = 2.17×10−5; mice: β = −3.72×10−3 ±
1.83×10−3, z = −2.03, p = 0.04) and the subjective confidence reported by the participants

(humans: β = 0.04 ± 1.62×10−3, z = 27.21, p = 4.56×10−163) at the preceding trial.

As a third validation of the bimodal inference model, we used the posterior model parame-

ters to simulate synthetic perceptual choices and repeated the behavioral analyses conducted

for the empirical data. Simulations from the bimodal inference model closely replicated our

empirical results: Simulated perceptual decisions resulted from a competition of perceptual

history with incoming sensory signals (Fig 4A). Stimulus- and history-congruence were signif-

icantly autocorrelated (Fig 4B and 4C), fluctuating in antiphase as a scale-invariant process

with a 1/f power law (Fig 4D–4F). Simulated posterior certainty [28,30,44] (i.e., the absolute of

the log posterior ratio |Lt|) showed a quadratic relationship to the mode of sensory processing

(Fig 4H), mirroring the relation of RTs and confidence reports to external and internal biases

in perception (Figs 2G, 2H, 3G and 3H,). Crucially, the overlap between empirical and simu-

lated data broke down when we removed the antiphase oscillations or the accumulation of evi-

dence over time from the bimodal inference model (S10–S13 Figs).

In sum, computational modeling suggested that between-mode fluctuations are best

explained by 2 interlinked processes (Fig 1E and 1F): (i) the dynamic accumulation of
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information across successive trials mandated by normative Bayesian models of evidence accu-

mulation and (ii) ongoing antiphase oscillations in the impact of external and internal

information.

3. Discussion

This work investigates the behavioral and computational characteristics of ongoing fluctua-

tions in perceptual decision-making using 2 large-scale datasets in humans [20] and mice [21].

We found that humans and mice cycle through recurring intervals of reduced sensitivity to

Fig 4. Internal and external modes in simulated perceptual decision-making. (A) Simulated perceptual choices were stimulus-congruent in

71.36% ± 0.17% (in red) and history-congruent in 51.99% ± 0.11% of trials (in blue; T(4.32×103) = 17.42, p = 9.89×10−66; upper panel). Due to the

competition between stimulus- and history-congruence, history-congruent perceptual choices were more frequent when perception was stimulus-

incongruent (i.e., on error trials; T(4.32×103) = 11.19, p = 1.17×10−28; lower panel) and thus impaired performance in the randomized

psychophysical design simulated here. (B) At the simulated group level, we found significant autocorrelations in both stimulus-congruence (13

consecutive trials) and history-congruence (30 consecutive trials). (C) On the level of individual simulated participants, autocorrelation

coefficients exceeded the autocorrelation coefficients of randomly permuted data within a lag of 2.46 ± 1.17×10−3 trials for stimulus-congruence

and 4.24 ± 1.85×10−3 trials for history-congruence. (D) The smoothed probabilities of stimulus- and history-congruence (sliding windows of ±5

trials) fluctuated as a scale-invariant process with a 1/f power law, i.e., at power densities that were inversely proportional to the frequency

(power* 1/fβ; stimulus-congruence: β = −0.81 ± 1.18×10−3, T(1.92×105) = −687.58, p< 2.2×10−308; history-congruence: β = −0.83 ± 1.27×10−3, T

(1.92×105) = −652.11, p< 2.2×10−308). (E) The distribution of phase shift between fluctuations in simulated stimulus- and history-congruence

peaked at half a cycle (π denoted by dotted line). The dynamic probabilities of simulated stimulus- and history-congruence were therefore were

strongly anticorrelated (β = −0.03 ± 8.22×10−4, T(2.12×106) = −40.52, p< 2.2×10−308). (F) The average squared coherence between fluctuations in

simulated stimulus- and history-congruence (black dotted line) amounted to 6.49 ± 2.07×10−3%. (G) Simulated confidence was enhanced for

stimulus-congruence (β = 0.03 ± 1.71×10−4, T(2.03×106) = 178.39, p< 2.2×10−308) and history-congruence (β = 0.01 ± 1.5×10−4, T(2.03×106) =

74.18, p< 2.2×10−308). (H) In analogy to humans, the simulated data showed a quadratic relationship between the mode of perceptual processing

and posterior certainty, which increased for stronger external and internal biases (β2 = 31.03 ± 0.15, T(2.04×106) = 205.95, p< 2.2×10−308). The

horizontal and vertical dotted lines indicate minimum posterior certainty and the associated mode, respectively.

https://doi.org/10.1371/journal.pbio.3002410.g004
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external sensory information, during which they rely more strongly on perceptual history, i.e.,

an internal prediction that is provided by the sequence of preceding choices. Computational

modeling indicated that these slow periodicities are governed by 2 interlinked factors: (i) the

dynamic integration of sensory inputs over time and (ii) antiphase oscillations in the strength

at which perception is driven by internal versus external sources of information. These cross-

species results suggest that ongoing fluctuations in perceptual decision-making arise not

merely as a noise-related epiphenomenon of limited processing capacity but result from a

structured and adaptive mechanism that fluctuates between internally and externally oriented

modes of sensory analysis.

3.1 Bimodal inference represents a pervasive aspect of perceptual decision-

making in humans and mice

A growing body of literature has highlighted that perception is modulated by preceding

choices [22–28,30,32,33]. Our work provides converging cross-species evidence supporting

the notion that such serial dependencies are a pervasive and general phenomenon of percep-

tual decision-making (Figs 2 and 3). While introducing errors in randomized psychophysical

designs [24,28,30,31,43] (Figs 2A and 3A), we found that perceptual history facilitates postper-

ceptual processes such as speed of response [42] (Figs 2G and 3G) and subjective confidence in

humans (Fig 2I).

At the level of individual traits, increased biases toward preceding choices were associated

with reduced sensitivity to external information (S1 Fig) and lower metacognitive efficiency.

When investigating how serial dependencies evolve over time, we observed dynamic changes

in the strength of perceptual history (Figs 2 and 3B) that created wavering biases toward inter-

nally and externally biased modes of sensory processing. Between-mode fluctuations may thus

provide a new explanation for ongoing changes in perceptual performance [6–11].

In computational terms, serial dependencies may leverage the temporal autocorrelation of

natural environments [31,46] to increase the efficiency of decision-making [35,43]. Such tem-

poral smoothing [46] of sensory inputs may be achieved by updating dynamic predictions

about the world based on the sequence of noisy perceptual experiences [22,31], using algo-

rithms based on sequential Bayes [25,42,51] such as Kalman [35] or Hierarchical Gaussian fil-

tering [54]. At the level of neural mechanisms, the integration of internal with external

information may be realized by combining feedback from higher levels in the cortical hierar-

chy with incoming sensory signals that are fed forward from lower levels [56].

Yet, relying too strongly on serial dependencies may come at a cost: When accumulating

over time, internal predictions may eventually override external information, leading to circu-

lar and false inferences about the state of the environment [57]. Akin to the wake–sleep algo-

rithm in machine learning [58], bimodal inference may help to determine whether errors

result from external input or from internally stored predictions: During internal mode, sen-

sory processing is more strongly constrained by predictive processes that auto-encode the

agent’s environment. Conversely, during external mode, the network is driven predominantly

by sensory inputs [18]. Between-mode fluctuations may generate an unambiguous error signal

that aligns internal predictions with the current state of the environment in iterative test-

update cycles [58]. On a broader scale, between-mode fluctuations may regulate the balance

between feedforward versus feedback contributions to perception and thereby play an adaptive

role in metacognition and reality monitoring [59].

We hypothesized that observers have certain hyperpriors that are apt for accommodating

fluctuations in the predictability of their environment, i.e., people believe that their world is

inherently volatile. To be Bayes optimal, it is therefore necessary to periodically reevaluate
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posterior beliefs about the parameters that define an internal generative model of the external

sensory environment. One way to do this is to periodically suspend the precision of prior

beliefs and increase the precision afforded to sensory evidence, thus updating Bayesian beliefs

about model parameters.

The empirical evidence above suggests that the timescale of this periodic scheduling of evi-

dence accumulation may be scale-invariant. This means that there may exist a timescale of

periodic fluctuations in precision over every window or length of perceptual decision-making.

Bimodal inference predicts perceptual decisions under a generative model (based upon a haz-

ard function to model serial dependencies between subsequent trials) with periodic fluctua-

tions in the precision of sensory evidence relative to prior beliefs at a particular timescale.

Remarkably, a systematic model comparison based on AIC indicated that a model with fluctu-

ating precisions has much greater evidence, relative to a model in the absence of fluctuating

precisions. This ad hoc addition of oscillations to a normative Bayesian model of evidence

accumulation [51] allowed us to quantify the dominant timescale of periodic fluctuations

mode at approximately 0.11 1/Ntrials in humans and mice that is appropriate for these kinds of

paradigms.

3.2 Bimodal inference versus normative Bayesian evidence accumulation

Could bimodal inference emerge spontaneously in normative models of perceptual decision-

making? In predictive processing, the relative precision of prior and likelihood determines

their integration into the posterior that determines the content of perception. At the level of

individual trials, the perceptual impact of internal predictions generated from perceptual his-

tory (prior precision) and external sensory information (likelihood precision) are thus neces-

sarily anticorrelated. The same holds for mechanistic models of drift diffusion, which

understand choice history biases as driven by changes in the starting point [51] or the drift

rate of evidence accumulation [32]. Under the former formulation, perceptual history is

bound to have a stronger influence on perception when less weight is given to incoming sen-

sory evidence, assuming that the last choice is represented as a starting point bias. The effects

of choice history in normative Bayesian and mechanistic drift diffusion models can be mapped

onto one another via the Bayesian formulation of drift diffusion [60], where the inverse of like-

lihood precision determines the amount of noise in the accumulation of new evidence, and

prior precision determines the absolute shift in its starting point [60].

While it is thus clear that the impact of perceptual history and sensory evidence are anticor-

related at each individual trial, we here introduce antiphase oscillations as an ad hoc modifica-

tion to model slow fluctuations in prior and likelihood precision that evolve over many
consecutive trials and are not mandated by normative Bayesian or mechanistic drift diffusion

models. The bimodal inference model provides a reasonable explanation of the linked autocor-

relations in stimulus- and history-congruence, as evidenced by formal model comparison, suc-

cessful prediction of RTs and confidence as out-of-training variables, and a qualitative

reproduction of our empirical data from posterior model parameter as evidence against over-

or underfitting.

Of note, similar non-stationarities have been observed in descriptive models that assume

continuous [61] or discrete [12] changes in the latent states that modulate perceptual decision-

making at slow timescales. A recent computational study [12] has used a Hidden Markov

model to investigate perceptual decision-making in the IBL database [21]. In analogy to our

findings, the authors observed that mice switch between temporally extended strategies that

last for more than 100 trials: During engaged states, perception was highly sensitive to external

sensory information. During disengaged states, in turn, choice behavior was prone to errors
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due to enhanced biases toward one of the 2 perceptual outcomes [12]. Despite the conceptual

differences to our approach (discrete states in a Hidden Markov model that correspond to

switches between distinct decision-making strategies [12] versus gradual changes in mode that

emerge from sequential Bayesian inference and ongoing oscillations in the impact of external

relative to internal information), it is tempting to speculate that engaged/disengaged states and

between-mode fluctuations might tap into the same underlying phenomenon.

3.3 Task engagement and residual motor activation as alternative

explanations for bimodal inference

As a functional explanation for bimodal inference, we propose that perception temporarily dis-

engages from internal predictions to form stable inferences about the statistical properties of

the sensory environment. Between-mode fluctuations may thus elude circular inferences that

occur when both the causes and the encoding of sensory stimuli are volatile [19,57]. By the

same token, we suggest that fluctuations in mode occur at the level of perceptual processing

[26,30,46,47] and are not a passive phenomenon that is primarily driven by factors situated

up- or downstream of sensory analysis.

How does attention relate to phenomenon of between-mode fluctuations? According to

predictive processing, attention corresponds to the precision afforded to the probability distri-

butions that underlie perceptual inference [53]. From this perspective, fluctuations between

external and internal mode can be understood as ongoing shifts in the attention afforded to

either external sensory information (regulated via likelihood precision) or internal predictions

(regulated via prior precision). When the precision of either likelihood or prior increases, pos-

terior precision increases, which leads to faster RTs and higher confidence. Therefore, when

defined from the perspective of predictive processing as the precision afforded to likelihood

and prior [53], fluctuations in attention may provide a plausible explanation for the quadratic

relationship of mode to RTs and confidence (Figs 2H–2J, 3I, and 4I).

Outside of the predictive processing field, attention is often understood in the context of

task engagement [62], which varies according to the availability of cognitive resources that are

modulated by factors such as tonic arousal, familiarity with the task, or fatigue [62]. Our results

suggest that internal mode processing cannot be completely reduced to intervals of low task

engagement: In addition to shorter RTs and elevated confidence, choices during internal

mode were not random or globally biased but driven by perceptual history (S1 Text). More-

over, our computational model identified the dominant timescale of between-mode fluctua-

tions at 0.11 1/Ntrials, which may be compatible with fluctuations in arousal [63] but is faster

than to be expected for the development of task familiarity or fatigue.

However, in interpreting the impact of between-mode fluctuations on perceptual accuracy,

speed of response, and confidence, it is important to consider that global modulators such as

tonic arousal are known to have nonlinear effects on task performance [64]: In perceptual

tasks, performance seems so be highest during midlevel arousal, whereas low- and high-level

arousal lead to reduced accuracy and slower responses [64]. This contrasts with the effects of

bimodal inference, where accuracy increases linearly as one moves from internal to external

mode, and responses become faster at both ends of the mode spectrum.

Of note, high phasic arousal has been shown to suppress biases in decision-making in

humans and mice across domains [65–67], including biases toward perceptual history [28]

that we implicate in internal mode processing. While the increase in response speed and his-

tory congruence over time (S1 Text) may argue against insufficient training as an alternative

explanation for internal mode processing, it may also be indicative of waning arousal. The

multiple mechanistic mappings to RTs and confidence warrant more direct measures of
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arousal (such as pupil size [28,63–65,67,68], motor behavior [63,68], or neural data [69]) to

better delineate bimodal inference from fluctuations in global modulators of task

performance.

Residual activation of the motor system may provide another contribution to serial biases

in perceptual choices [70]. Such motor-driven priming may lead to errors in randomized psy-

chophysical designs, resembling the phenomenon that we identify as internally biased process-

ing [71]. Moreover, residual activation of the motor system may lead to faster responses and

thus constitutes an alternative explanation for the quadratic relationship of mode with RTs

[70]. The observation of elevated confidence for stronger biases toward internal mode speaks

against the proposition that residual activation of the motor system is the primary driver of

serial choice biases, since strong motor-driven priming should lead to frequent lapses that are

typically associated with reduced confidence [72]. Likewise, perceptual history effects have

repeatedly been replicated in experiments with counterbalanced stimulus–response mappings

[30].

No-response paradigms, in which perceptual decisions are inferred from eye movements

alone, could help to better differentiate perceptual from motor-related effects. Likewise, video

tracking of response behavior and neural recordings from motor- and premotor cortex, which

has recently been released for the IBL database [21], may provide further insight into the rela-

tion of motor behavior to the perceptual phenomenon of between-mode fluctuations.

3.4 Limitations and open questions

Our results suggest bimodal inference as a pervasive aspect of perceptual decision-making in

humans and mice. However, a number of limitations and open questions have to be

considered:

First, this work sought to understand whether fluctuations between internal and external

mode, which we initially observed in an experiment on bistable perception in humans [19],

represent a general phenomenon that occurs across a diverse set of perceptual decision-mak-

ing tasks. Our analysis of the Confidence database [20] therefore collapsed across all available

experiments on binary perceptual decision-making. Individual experiments differed with

respect to the stimuli, the manipulation of difficulty, the timing of trials, and the way responses

were collected but were highly comparable with respect to the central variables of stimulus-

and history-congruence (S1 Fig).

The variability across experiments, which we considered as random effects in all statistical

analyses, enabled us to assess whether bimodal inference represents a general phenomenon in

perceptual decision-making but limited the precision at which we were able to investigate the

relation of mode to behavioral variables such as timing, task difficulty, RT, or confidence. This

issue is partially resolved by our analyses of the IBL database, which replicated our findings in

an experiment that was highly standardized with respect to timing, task difficulty, and behav-

ioral readout [21]. It will be an important task for future research to validate our results on

bimodal inference in a standardized dataset of comparable volume in humans, which is, to our

knowledge, not yet available.

Second, our results point to an attraction of perception toward preceding choices. Previous

work has shown that perceptual decision-making is concurrently affected by both attractive

and repulsive serial biases that operate on distinct timescales and serve complementary func-

tions for sensory processing [27,73,74]: Short-term attraction may serve the decoding of noisy

sensory inputs and increase the stability of perception, whereas long-term repulsion may

enable efficient encoding and sensitivity to change [27]. In the data analyzed here, history

biases tended to be repetitive (Figs 2A, 3A, S6, and S7), and only 2 of the 66 experiments of the
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Confidence database [20] showed significant alternating biases (S1 Fig). However, as we show

in S14 Fig, fluctuations in both alternating and repeating history biases generate overlapping

autocorrelation curves. Our analysis of between-mode fluctuations is therefore not tied exclu-

sively to repeating biases but accommodates alternating biases as well, such that both may lead

to internally biased processing and reduced sensitivity to external sensory information. Future

work could apply our approach to paradigms that boost alternating as opposed to repeating

biases, as this would help to better understand how repetition and alternation are linked in

terms of their computational function and neural implementation [27].

A third open question concerns the computational underpinnings of bimodal inference.

The addition of slow antiphase oscillations to the integration of prior and likelihood represents

an ad hoc modification of a normative Bayesian model of evidence accumulation [51]. While

the bimodal inference model is supported by formal model comparison, the successful predic-

tion of out-of-training variables, and the qualitative reproduction of our empirical data in sim-

ulations from posterior model parameters, it is an important task for future research to test (i)

whether between-mode fluctuations can emerge spontaneously in hierarchical models of

Bayesian inference, (ii) whether modes are continuous [19] or discrete [12], and (iii) whether

bimodal inference can be causally manipulated by experimental variables. We speculate that

between-mode fluctuations may separate the perceptual contribution of internal predictions

and external sensory data in time, creating unambiguous learning signals that benefit inference

about the precision of prior and likelihood, respectively. This proposition should be tested

empirically by relating the phenomenon of bimodal inference to performance in, e.g., reversal

learning, probabilistic reasoning, or metacognition.

A final important avenue for further research on bimodal inference is to elucidate its neuro-

biological underpinnings. Since between-mode fluctuations were found in humans and mice,

future studies can apply noninvasive and invasive neuroimaging and electrophysiology to bet-

ter understand the neural mechanisms that generate ongoing changes in mode in terms of

their neuroanatomy, neurochemistry, and neurocircuitry.

Establishing the neural correlates of externally and internally biased modes will enable exit-

ing opportunities to investigate their role for adaptive perception and decision-making: Causal

interventions via pharmacological challenges, optogenetic manipulations, or (non)invasive

brain stimulation will help to understand whether between-mode fluctuations are implicated

in resolving credit-assignment problems [18,75] or in calibrating metacognition and reality

monitoring [59]. Answers to these questions may provide new insights into the pathophysiol-

ogy of hallucinations and delusions, which have been characterized by an imbalance in the

impact of external versus internal information [56,76,77] and are typically associated with

metacognitive failures and a departure from consensual reality [77].

4. Methods

4.1 Resource availability

4.1.1 Lead contact. Further information and requests for resources should be directed to

and will be fulfilled by the lead contact, Veith Weilnhammer (veith.weilnhammer@gmail.

com).

4.1.2 Materials availability. This study did not generate new unique reagents.

4.2 Experimental model and subject details

4.2.1 Confidence database. We downloaded the human data from the Confidence data-

base [20] on October 21, 2020, limiting our analyses to the category perception. Within this cat-

egory, we selected studies in which participants made binary perceptual decisions between 2
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alternatives. We excluded 2 experiments in which the average perceptual accuracy fell below

50%. After excluding these experiments, our sample consisted of 21.05 million trials obtained

from 4,317 human participants and 66 individual experiments (S1 Table). Out of the 66

included experiments, 62 investigated visual, 1 auditory, 2 proprioceptive, and 1 multimodal

perception. A total of 59 experiments were based on discrimination and 6 on detection, with

one investigating both.

4.2.2 IBL database. We downloaded the data from the IBL database [21] on April 28,

2021. We limited our analyses to the basic task, during which mice responded to gratings that

appeared with equal probability in the left or right hemifield. Within each mouse, we excluded

sessions in which perceptual accuracy was below 80% for stimuli presented at a contrast

�50%. After exclusion, our sample consisted of 1.46 million trials trials obtained from N = 165

mice.

4.3 Method details

4.3.1 Variables of interest. Primary variables of interest: We extracted trial-wise data on

the presented stimulus and the associated perceptual decision. Stimulus-congruent choices

were defined by perceptual decisions that matched the presented stimuli. History-congruent

choices were defined by perceptual choices that matched the perceptual choice at the immedi-

ately preceding trial. The dynamic probabilities of stimulus- and history-congruence were

computed in sliding windows of ±5 trials.

The mode of sensory processing was derived by subtracting the dynamic probability of his-

tory-congruence from the dynamic probability of stimulus-congruence, such that positive val-

ues indicate externally oriented processing, whereas negative values indicate internally

oriented processing. When visualizing the relation of the mode of sensory processing to confi-

dence, RTs, or TD (see below), we binned the mode variable in 10% intervals. We excluded

bins that contained less than 0.5% of the total number of available data-points.

Secondary variables of interest: From the Confidence database [20], we furthermore

extracted trial-wise confidence reports and RTs. Out of the 58 experiments that provide infor-

mation on RTs, 46 cued the response by the onset of a response screen or an additional

response cue, whereas 14 allowed participants to response at any time after stimulus onset. If

RTs were available for both the perceptual decision and the confidence report, we only

extracted the RT associated with the perceptual decision. To enable comparability between

studies, we normalized RTs and confidence reports within individual studies using the scale R

function. If not available for a particular study, RTs were treated as missing variables. From

the IBL database [21], we extracted TDs as defined by interval between stimulus onset and

feedback, which represents a coarse measure of RT [21].

Exclusion criteria for individual data points: For nonnormalized data (TDs from the IBL

database [21]; d-prime, meta-dprime, and M-ratio from the Confidence database [20] and

simulated confidence reports), we excluded data points that differed from the median by more

than 3 × MAD [49]. For normalized data (RTs and confidence reports from the Confidence

database [20]), we excluded data points that differed from the mean by more than 3 × SD

(standard deviation).

4.3.2 Control variables. Next to the sequence of presented stimuli, we assessed the auto-

correlation of task difficulty as an alternative explanation for any autocorrelation in stimulus-

and history-congruence. In the Confidence database [20], 21 of the 66 included experiments

used fixed difficulty levels, whereas 45 manipulated difficulty levels within participants. Diffi-

culty was manipulated via noise masks, contrast, luminance, presentation time, stimulus prob-

ability for gabors, dot coherence for random dot kinematograms, difference in elements and
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set size for comparisons of numerosity, difference in clicks for auditory discrimination, tempo-

ral distance for meta-contrast masking, and amount of self-motion for proprioception. We

treated task difficulty as a missing variable for the experiments that fixed it at the participant

level, as this precluded the computation of autocorrelation curves. In analogy to RTs and con-

fidence, difficulty levels were normalized within individual studies. For the IBL database [21],

task difficulty was defined by the contrast of the presented grating.

4.3.3 Autocorrelations. For each participant, trial-wise autocorrelation coefficients were

estimated using the R function acf with a maximum lag defined by the number of trials avail-

able per subject. Autocorrelation coefficients are displayed against the lag (in numbers of trials,

ranging from 1 to 20) relative to the index trial (t = 0; Figs 2B, 2C, 3B, 3C, 4B, and 4C). To

account for spurious autocorrelations that occur due to imbalances in the analyzed variables,

we estimated autocorrelations for randomly permuted data (100 iterations). For group-level

autocorrelations, we computed the differences between the true autocorrelation coefficients

and the mean autocorrelation observed for randomly permuted data and averaged across

participants.

At a given trial, group-level autocorrelation coefficients were considered significant when

linear mixed effects modeling indicated that the difference between real and permuted auto-

correlation coefficients was above 0 at an alpha level of 0.05%. To test whether the autocorrela-

tion of stimulus- and history-congruence remained significant when controlling for task

difficulty and the sequence of presented stimuli, we added the respective autocorrelation as an

additional factor to the linear mixed effects model that computed the group-level statistics (see

also Mixed effects modeling).

To assess autocorrelations at the level of individual participants, we counted the number of

subsequent trials (starting at the first trial after the index trial) for which less than 50% of the

permuted autocorrelation coefficients exceeded the true autocorrelation coefficient. For exam-

ple, a count of 0 indicates that the true autocorrelation coefficients exceeded less than 50% of

the autocorrelation coefficients computed for randomly permuted data at the first trial follow-

ing the index trial. A count of 5 indicates that, for the first 5 trials following the index trial, the

true autocorrelation coefficients exceeded more than 50% of the respective autocorrelation

coefficients for the randomly permuted data; at the sixth trial following the index trial, how-

ever, less than 50% of the autocorrelation coefficients exceeded the respective permuted auto-

correlation coefficients.

4.3.4 Spectral analysis. We used the R function spectrum to compute the spectral densi-

ties for the dynamic probabilities of stimulus- and history-congruence as well as the phase (i.e.,

frequency-specific shift between the 2 time-series ranging from 0 to 2*π) and squared coher-

ence (frequency-specific variable that denotes the degree to which the shift between the 2

time-series in constant, ranging from 0% to 100%). Periodograms were smoothed using modi-

fied Daniell smoothers at a width of 50.

Since the dynamic probabilities of history- and stimulus-congruence were computed using

a sliding windows of ±5 trials (i.e., intervals containing a total of 11 trials), we report the spec-

tral density, coherence, and phase for frequencies below 0.1 1/Ntrials. Spectral densities have 1

value per subject and frequency (data shown in Figs 2D and 3D). To assess the relation

between stimulus- and history-congruence in this frequency range, we report average phase

and average squared coherence for all frequencies below 0.1 1/Ntrials (i.e., 1 value per subject;

data shown in Figs 2E, 2F, 3E, and 3F).

Since the data extracted from the Confidence database [20] consist of a large set of individ-

ual studies that differ with respect to intertrial intervals, we defined the variable frequency in

the dimension of cycles per trial 1/Ntrials rather than cycles per second (Hz). For consistency,

we chose 1/ Ntrials as the unit of frequency for the IBL database [21] as well.
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4.4 Quantification and statistical procedures

All aggregate data are reported and displayed with errorbars as mean ± standard error of the

mean.

4.4.1 Mixed effects modeling. Unless indicated otherwise, we performed group-level

inference using the R packages lmer and afex for linear mixed effects modeling and glmer with

a binomial link function for logistic regression. We compared models based on AIC. To

account for variability between the studies available from the Confidence database [20], mixed

modeling was conducted using random intercepts defined for each study. To account for vari-

ability across experimental session within the IBL database [21], mixed modeling was con-

ducted using random intercepts defined for each individual session. When multiple within-

participant data points were analyzed, we estimated random intercepts for each participant

that were nested within the respective study of the Confidence database [20]. By analogy, for

the IBL database [21], we estimated random intercepts for each session that were nested within

the respective mouse. We report β values referring to the estimates provided by mixed effects

modeling, followed by the respective T statistic (linear models) or z statistic (logistic models).

The effects of stimulus- and history-congruence on RTs and confidence reports (Figs 2–4,

subpanels G-I) were assessed in linear mixed effects models that tested for main effects of both

stimulus- and history-congruence as well as the between-factor interaction. Thus, the signifi-

cance of any effect of history-congruence on RTs and confidence reports was assessed while

controlling for the respective effect of stimulus-congruence (and vice versa).

4.4.2 Psychometric function. We obtained psychometric curves by fitting the following

error function to the behavioral data:

yp ¼ gþ 1 � g � dð Þ∗ erf
sw þ m

t

� �
þ 1

� �
=2 ð8Þ

We used the Broyden–Fletcher–Goldfarb–Shanno algorithm in maximum likelihood esti-

mation [78] to predict individual choices y (outcome A: y = 0; outcome B: y = 1) from the

choice probability yp. In humans, we computed sw by multiplying the inputs s (stimulus A: 0;

outcome B: 1) with the task difficulty Db (binarized across 7 levels):

sw ¼ ðs � 0:5Þ∗Db ð9Þ

In mice, sw was defined by the respective stimulus contrast in the 2 hemifields:

sw ¼ ContrastRight � ContrastLeft ð10Þ

Parameters of the psychometric error function were fitted using the R package optimx [78].

The psychometric error function was defined via the parameters γ (lower lapse; lower

bound = 0, upper bound = 0.5), δ (upper lapse; lower bound = 0, upper bound = 0.5), μ (bias;

lower bound humans = −5; upper bound humans = 5, lower bound mice = −0.5, upper bound

mice = 0.5), and threshold t (lower bound humans = 0.5, upper bound humans = 25; lower

bound mice = 0.01, upper bound mice = 1.5).

4.4.3 Computational modeling. Model definition: Our modeling analysis is an extension

of a model proposed by Glaze and colleagues [51], who defined a normative account of evi-

dence accumulation for decision-making. In this model, trial-wise choices are explained by

applying Bayes theorem to infer moment-by-moment changes in the state of environment

from trial-wise noisy observations across trials.

Following Glaze and colleagues [51], we applied Bayes rule to compute the posterior evi-

dence for the 2 alternative choices (i.e., the log posterior ratio L) from the sensory evidence

available at time point t (i.e., the log likelihood ratio LLR) with the prior probability ψ,
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weighted by the respective precision terms ωLLR and ωψ:

Lt ¼ LLRt∗oLLR þ ctðLt� 1;HÞ∗oc ð11Þ

In the trial-wise design studied here, a transition between the 2 states of the environment

(i.e., the sources generating the noisy observations available to the participant) can occur at

any time. Despite the random nature of the psychophysical paradigms studied here [20,21],

humans and mice showed significant biases toward preceding choices [79] (Figs 2A and 3A).

We thus assumed that the prior probability of the 2 possible outcomes depends on the poste-

rior choice probability at the preceding trial and the hazard rate H assumed by the participant.

Following Glaze and colleagues [51], the prior ψ is thus computed as follows:

ct Lt� 1;Hð Þ ¼ Lt� 1 þ log
1 � H
H
þ expð� Lt� 1Þ

� �

� log
1 � H
H
þ expðLt� 1Þ

� �

ð12Þ

In this model, humans, mice, and simulated agents make perceptual choices based on noisy

observations u. The are computed by applying a sensitivity parameter α to the content of exter-

nal sensory information s. For humans, we defined the input s by the 2 alternative states of the

environment (stimulus A: s = 0; stimulus B: s = 1), which generated the observations u through

a sigmoid function that applied a sensitivity parameter α:

ut ¼
1

1þ expð� a∗ðst � 0:5ÞÞ
ð13Þ

In mice, the inputs s were defined by the respective stimulus contrast in the 2 hemifields:

st ¼ ContrastRight � ContrastLeft ð14Þ

As in humans, we derived the input u by applying a sigmoid function with a sensitivity

parameter α to input s:

ut ¼
1

1þ expð� a∗stÞ
ð15Þ

For humans, mice, and in simulations, the log likelihood ratio LLR was computed from u as

follows:

LLRt ¼ log
ut

1 � ut

� �

ð16Þ

To allow for long-range autocorrelation in stimulus- and history-congruence (Figs 2B and

3B), our modeling approach differed from Glaze and colleagues [51] in that it allowed for sys-

tematic fluctuation in the impact of sensory information (i.e., LLR) and the prior probability of

choices ψ on the posterior probability L. This was achieved by multiplying the log likelihood

ratio and the log prior ratio with coherent antiphase fluctuations according tooLLR ¼

aLLR∗sinðf ∗t þ phaseÞ þ 1 and oc ¼ ac∗sinðf ∗t þ phaseþ pÞ þ 1.

Model fitting: In model fitting, we predicted the trial-wise choices yt (option A: 0; option B:

1) from inputs s. To this end, we minimized the log loss between yt and the choice probability

ypt in the unit interval. ypt was derived from Lt using a sigmoid function defined by the inverse

PLOS BIOLOGY Bimodal inference in humans and mice

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002410 December 8, 2023 23 / 36

https://doi.org/10.1371/journal.pbio.3002410


decision temperature z:

ypt ¼
1

1þ expð� z∗LtÞ
ð17Þ

This allowed us to infer the free parameters H (lower bound = 0, upper bound = 1; human

posterior = 0.45 ± 4.8×10−5; mouse posterior = 0.46 ± 2.97×104), α (lower bound = 0, upper

bound = 5; human posterior = 0.5 ± 1.12×10−4; mouse posterior = 1.06 ± 2.88×10−3), aψ (lower

bound = 0, upper bound = 10; human posterior = 1.44 ± 5.27×10−4; mouse

posterior = 1.71 ± 7.15×10−3), ampLLR (lower bound = 0, upper bound = 10; human

posterior = 0.5 ± 2.02×10−4; mouse posterior = 0.39 ± 1.08×10−3), frequency f (lower

bound = 1/40, upper bound = 1/5; human posterior = 0.11 ± 1.68×10−5; mouse

posterior = 0.11 ± 1.63×10−4), p (lower bound = 0, upper bound = 2*π; human posterior = 2.72

±4.41×10−4; mouse posterior = 2.83 ± 3.95×10−3), and inverse decision temperature z (lower

bound = 1, upper bound = 10; human posterior = 4.63 ± 1.95×10−4; mouse

posterior = 4.82 ± 3.03×10−3) using maximum likelihood estimation with the Broyden–

Fletcher–Goldfarb–Shanno algorithm as implemented in the R function optimx [78] (see

S2 Table for a description of our model parameters).

We validated the bimodal inference model in 3 steps: a formal model comparison to

reduced models based on AIC (Figs 1F, 1G, and S9), the prediction of within-training (stimu-

lus- and history-congruence) as well as out-of-training variables (RT and confidence), and a

qualitative reproduction of the empirical data from model simulations based on estimated

parameters (Fig 4).

Model comparison. We assessed the following model space based on AIC:

• The full bimodal inference model (M1; Fig 1F) incorporates the influence of sensory informa-

tion according to the parameter α (likelihood), the integration of evidence across trials

according to the parameter H (prior), antiphase oscillations in between likelihood and prior

precision according to ωLLR and ωψ with parameters aLLR (amplitude likelihood fluctuation),

aψ (amplitude prior fluctuation), f (frequency), and p (phase).

• The likelihood-oscillation-only model (M2; Fig 1G) incorporates the influence of sensory

information according to parameter α (likelihood), the integration of evidence across trials

according to parameter H (prior), oscillations in likelihood precision according to ωLLR with

parameters aLLR (amplitude likelihood fluctuation), f (frequency), and p (phase).

• The prior-oscillation-only model (M3; Fig 1G) incorporates the influence of sensory informa-

tion according to parameter α (likelihood), the integration of evidence across trials accord-

ing to parameter H (prior), oscillations in the prior precision according to ωψ with

parameters aψ (amplitude prior fluctuation), f (frequency), and p (phase). Please note that all

models M1 to M3 lead to shifts in the relative precision of likelihood and prior.

• The normative-evidence-accumulation model (M4; Fig 1G) incorporates the influence of sen-

sory information according to parameter α (likelihood) and the integration of evidence

across trials according to parameter H (prior). There are no additional oscillations. Model

M4 thus corresponds to the model proposed by Glaze and colleagues and captures normative

evidence accumulation in unpredictable environments using a Bayesian update scheme [51].

The comparison against M4 tests the null hypothesis that fluctuations in mode emerge from

a normative Bayesian model without the ad hoc addition of oscillations as in models M1 to

M3.
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• The no-evidence-accumulation model (M5; Fig 1G) incorporates the influence of sensory

information according to parameter α (likelihood). The model lacks integration of evidence

across trials (flat prior) and oscillations. The comparison against M5 tests the null hypothesis

that observers do not use prior information derived from serial dependency in perception.

Prediction of within-training and out-of-training variables. To validate our model, we

correlated individual posterior parameter estimates with the respective conventional variables.

As a sanity check, we tested (i) whether the estimated hazard rate H correlated negatively with

the frequency of history-congruent choices and (ii) whether the estimated sensitivity to sen-

sory information α correlated positively with the frequency of stimulus-congruent choices. In

addition, we tested whether the posterior decision certainty (i.e., the absolute of the log poste-

rior ratio) correlated negatively with RTs and positively with confidence. This allowed us to

assess whether our model could explain aspects of the data it was not fitted to (i.e., RTs and

confidence).

Simulations. Finally, we used simulations (Figs 4 and S10–S13) to show that all model

components, including the antiphase oscillations governed by aψ, aLLR, f, and p, were necessary

for our model to reproduce the characteristics of the empirical data. This enabled us to assess

over- or underfitting in the bimodal inference model and all reduced models M2 to M5. We

used the posterior model parameters observed for humans (H, α, aψ, aLLR, f, p, and z) to define

individual parameters for simulation in 4,317 simulated participants (i.e., equivalent to the

number of human participants). For each participant, the number of simulated trials was

drawn at random between 300 and 700. Inputs s were drawn at random for each trial, such

that the sequence of inputs to the simulation did not contain any systematic seriality. Noisy

observations u were generated by applying the posterior parameter α to inputs s, thus generat-

ing stimulus-congruent choices in 71.36 ± 2.6×10−3% of trials. Choices were simulated based

on the trial-wise choice probabilities yp obtained from our model. Simulated data were ana-

lyzed in analogy to the human and mouse data. As a substitute of subjective confidence, we

computed the absolute of the trial-wise log posterior ratio |L| (i.e., the posterior decision

certainty).

Supporting information

S1 Text. Choice history, general response bias, psychometric functions, and task familiar-

ity. In this supplemental file, we show that internal mode processing is driven by choice history

as opposed to stimulus history, that fluctuations between internal and external mode modulate

perceptual performance beyond the effect of general response biases, that internal mode is

characterized by lower thresholds as well as by history-dependent changes in biases and lapses,

and that internal mode processing can not be reduced to insufficient task familiarity.

(PDF)

S1 Fig. Stimulus- and history-congruence. (A) Stimulus-congruent choices in humans

amounted to 73.46% ± 0.15% of trials and were highly consistent across the experiments

selected from the Confidence database. (B) History-congruent choices in humans amounted

to 52.7% ± 0.12% of trials. In analogy to stimulus-congruence, the prevalence of history-con-

gruence was highly consistent across the experiments selected from the Confidence database.

A percentage of 48.48% of experiments showed significant (p< 0.05) biases toward preceding

choices, whereas 2 of the 66 of the included experiments showed significant repelling biases.

(C) In humans, we found an enhanced impact of perceptual history in participants who were

less sensitive to external sensory information (T(4.3×103) = −14.27, p = 3.78×10−45), suggesting

PLOS BIOLOGY Bimodal inference in humans and mice

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002410 December 8, 2023 25 / 36

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002410.s001
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002410.s002
https://doi.org/10.1371/journal.pbio.3002410


that perception results from the competition of external with internal information. (D) In

analogy to humans, mice that were less sensitive to external sensory information showed

stronger biases toward perceptual history (T(163) = −7.52, p = 3.44×10−12, Pearson correla-

tion).

(TIFF)

S2 Fig. Controlling for task difficulty and external stimulation. In this study, we found

highly significant autocorrelations of stimulus- and history-congruence in humans as well as

in mice, while controlling for task difficulty and the sequence of external stimulation. Here, we

confirm that the autocorrelations of stimulus- and history-congruence were not a trivial conse-

quence of the experimental design or the addition of task difficulty and external stimulation as

control variables in the computation of group-level autocorrelations. (A) In humans, task diffi-

culty (in green) showed a significant autocorrelation starting at the fifth trial (upper panel,

dots at the bottom indicate intercepts 6¼ 0 in trial-wise linear mixed effects modeling at

p< 0.05). When controlling for task difficulty only, linear mixed effects modeling indicated a

significant autocorrelation of stimulus-congruence (in red) for the first 3 consecutive trials

(middle panel). Around 20% of trials within the displayed time window remained significantly

autocorrelated. The autocorrelation of history-congruence (in blue) remained significant for

the first 11 consecutive trials (64% significantly autocorrelated trials within the displayed time

window). At the level of individual participants, the autocorrelation of task difficulty exceeded

the respective autocorrelation of randomly permuted within a lag of 21.66 ± 8.37×10−3 trials

(lower panel). (B) In humans, the sequence of external stimulation (i.e., which of the 2 binary

outcomes was supported by the presented stimuli; depicted in green) was negatively autocorre-

lated for 1 trial. When controlling for the autocorrelation of external stimulation only, stimu-

lus-congruence remained significantly autocorrelated for 22 consecutive trials (88% of trials

within the displayed time window; lower panel) and history-congruence remained signifi-

cantly autocorrelated for 20 consecutive trials (84% of trials within the displayed time win-

dow). At the level of individual participants, the autocorrelation of external stimulation

exceeded the respective autocorrelation of randomly permuted within a lag of 2.94 ± 4.4×10−3

consecutive trials (lower panel). (C) In mice, task difficulty showed a significant autocorrela-

tion for the first 25 consecutive trials (upper panel). When controlling only for task difficulty,

linear mixed effects modeling indicated a significant autocorrelation of stimulus-congruence

for the first 36 consecutive trials (middle panel). In total, 100% of trials within the displayed

time window remained significantly autocorrelated. The autocorrelation of history-congru-

ence remained significant for the first 8 consecutive trials, with 84% significantly autocorre-

lated trials within the displayed time window. At the level of individual mice, autocorrelation

coefficients for difficulty were elevated above randomly permuted data within a lag of

15.13 ± 0.19 consecutive trials (lower panel). (D) In mice, the sequence of external stimulation

(i.e., which of the 2 binary outcomes was supported by the presented stimuli) was negatively

autocorrelated for 11 consecutive trials (upper panel). When controlling only for the autocor-

relation of external stimulation, stimulus-congruence remained significantly autocorrelated

for 86 consecutive trials (100% of trials within the displayed time window; middle) and his-

tory-congruence remained significantly autocorrelated for 8 consecutive trials (84% of trials

within the displayed time window). At the level of individual mice, autocorrelation coefficients

for external stimulation were elevated above randomly permuted data within a lag of

2.53 ± 9.8×10−3 consecutive trials (lower panel).

(TIFF)

S3 Fig. Reproducing group-level autocorrelations using logistic regression. (A) As an alter-

native to group-level autocorrelation coefficients, we used trial-wise logistic regression to
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quantify serial dependencies in stimulus- and history-congruence. This analysis predicted

stimulus- and history-congruence at the index trial (trial t = 0, vertical line) based on stimulus-

and history-congruence at the 100 preceding trials. Mirroring the shape of the group-level

autocorrelations, trial-wise regression coefficients (depicted as mean ± SEM, dots mark trials

with regression weights significantly greater than 0 at p< 0.05) increased toward the index

trial t = 0 for the human data. (B) Following our results in human data, regression coefficients

that predicted history-congruence at the index trial (trial t = 0, vertical line) increased expo-

nentially for trials closer to the index trial in mice. In contrast to history-congruence, stimu-

lus-congruence showed a negative regression weight (or autocorrelation coefficient; Fig 3B) at

trial −2. This was due to the experimental design (see also the autocorrelations of difficulty and

external stimulation in S2 Fig): When mice made errors at easy trials (contrast� 50%), the

upcoming stimulus was shown at the same spatial location and at high contrast. This increased

the probability of stimulus-congruent perceptual choices after stimulus-incongruent percep-

tual choices at easy trials, thereby creating a negative regression weight (or autocorrelation

coefficient) of stimulus-congruence at trial −2.

(TIFF)

S4 Fig. History-congruence in logistic regression. (A) To ensure that perceptual history

played a significant role in perception despite the ongoing stream of external information, we

tested whether human perceptual decision-making was better explained by the combination of

external and internal information or, alternatively, by external information alone. To this end,

we compared AIC between logistic regression models that predicted trial-wise perceptual

responses either by both current external sensory information and the preceding percept or by

external sensory information alone (values above 0 indicate a superiority of the full model).

With high consistency across the experiments selected from the Confidence Database, this

model comparison confirmed that perceptual history contributed significantly to perception

(difference in AIC = 8.07 ± 0.53, T(57.22) = 4.1, p = 1.31×10−4). (B) Participant-wise regression

coefficients amount to 0.18 ± 0.02 for the effect of perceptual history and 2.51 ± 0.03 for exter-

nal sensory stimulation. (C) In mice, an AIC-based model comparison indicated that percep-

tion was better explained by logistic regression models that predicted trial-wise perceptual

responses based on both current external sensory information and the preceding percept (dif-

ference in AIC = 88.62 ± 8.57, T(164) = −10.34, p = 1.29×10−19). (D) In mice, individual

regression coefficients amounted to 0.42 ± 0.02 for the effect of perceptual history and

6.91 ± 0.21 for external sensory stimulation.

(TIFF)

S5 Fig. Correcting for general response biases. Here, we ask whether the autocorrelation of

history-congruence (as shown in Figs 2–3C) may be driven by general response biases (i.e., a

general propensity to choose one of the 2 possible outcomes more frequently than the alterna-

tive). To this end, we generated sequences of 100 perceptual choices with general response

biases ranging from 60% to 90% for 1,000 simulated participants each. We then computed the

autocorrelation of history-congruence for these simulated data. Crucially, we used the correc-

tion procedure that is applied to the autocorrelation curves shown in this manuscript: All

reported autocorrelation coefficients are computed relative to the average autocorrelation

coefficients obtained for 100 iterations of randomly permuted trial sequences. The above simu-

lation show that this correction procedure removes any potential contribution of general

response biases to the autocorrelation of history-congruence. This indicates that the autocorre-

lation of history-congruence (as shown in Figs 2–3C) is not driven by general response biases

that were present in the empirical data at a level of 58.71% ± 0.22% in humans and 54.6% ±
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0.3% in mice.

(TIFF)

S6 Fig. Full and history-conditioned psychometric functions across modes in humans. (A)

Here, we show average psychometric functions for the full dataset (upper panel) and condi-

tioned on perceptual history (yt−1 = 1 and yt−1 = 0; middle and lower panel) across modes

(green line) and for internal mode (blue line) and external mode (red line) separately. (B)

Across the full dataset, biases μ were distributed around 0 (β0 = 7.37×10−3 ± 0.09, T(36.8) =

0.08, p = 0.94; upper panel), with larger absolute biases |μ| for internal as compared to external

mode (β0 = −0.62 ± 0.07, T(45.62) = −8.38, p = 8.59×10−11; controlling for differences in lapses

and thresholds). When conditioned on perceptual history, we observed negative biases for yt−1

= 0 (β0 = 0.56 ± 0.12, T(43.39) = 4.6, p = 3.64×10−5; middle panel) and positive biases for yt−1 =

1 (β0 = 0.56 ± 0.12, T(43.39) = 4.6, p = 3.64×10−5; lower panel). (C) Lapse rates were higher in

internal mode as compared to external mode (β0 = −0.05 ± 5.73×10−3, T(47.03) = −9.11,

p = 5.94×10−12; controlling for differences in biases and thresholds; see upper panel and sub-

plot D). Importantly, the between-mode difference in lapses depended on perceptual history:

We found no significant difference in lower lapses γ for yt−1 = 0 (β0 = 0.01 ± 7.77×10−3, T

(33.1) = 1.61, p = 0.12; middle panel), but a significant difference for yt−1 = 1 (β0 = −0.11 ± 0.01,

T(40.11) = −9.59, p = 6.14×10−12; lower panel). (D) Conversely, higher lapses δ were signifi-

cantly increased for yt−1 = 0 (β0 = −0.1 ± 9.58×10−3, T(36.87) = −10.16, p = 3.06×10−12; middle

panel), but not for yt−1 = 1 (β0 = 0.01 ± 7.74×10−3, T(33.66) = 1.58, p = 0.12; lower panel). (E)

The thresholds t were larger in internal as compared to external mode (β0 = −1.77 ± 0.25, T

(50.45) = −7.14, p = 3.48×10−9; controlling for differences in biases and lapses) and were not

modulated by perceptual history (β0 = 0.04 ± 0.06, T(2.97×103) = 0.73, p = 0.47).

(TIFF)

S7 Fig. Full and history-conditioned psychometric functions across modes in mice. (A)

Here, we show average psychometric functions for the full IBL dataset (upper panel) and con-

ditioned on perceptual history (yt−1 = 1 and yt−1 = 0; middle and lower panel) across modes

(green line) and for internal mode (blue line) and external mode (red line) separately. (B)

Across the full dataset, biases μ were distributed around 0 (T(164) = 0.39, p = 0.69; upper

panel), with larger absolute biases |μ| for internal as compared to external mode (β0 =

−0.18 ± 0.03, T = −6.38, p = 1.77×10−9; controlling for differences in lapses and thresholds).

When conditioned on perceptual history, we observed negative biases for yt−1 = 0 (T(164) =

-1.99, p = 0.05; middle panel) and positive biases for yt−1 = 1 (T(164) = 1.91, p = 0.06; lower

panel). (C) Lapse rates were higher in internal as compared to external mode (β0 =

−0.11 ± 4.39×10−3, T = −2.48, p = 4.91×10−57; controlling for differences in biases and thresh-

olds; upper panel, see subplot D). For yt−1 = 1, the difference between internal and external

mode was more pronounced for lower lapses γ (T(164) = −18.24, p = 2.68×10−41) as compared

to higher lapses δ (see subplot D). In mice, lower lapses γ were significantly elevated during

internal mode irrespective of the preceding perceptual choice (middle panel: lower lapses γ for

yt−1 = 0; T(164) = −2.5, p = 0.01, lower panel: lower lapses γ for yt−1 = 1; T(164) = −32.44,

p = 2.92×10−73). (D) For yt−1 = 0, the difference between internal and external mode was more

pronounced for higher lapses δ (T(164) = 21.44, p = 1.93×10−49; see subplot C). Higher lapses

were significantly elevated during internal mode irrespective of the preceding perceptual

choice (middle panel: higher lapses δ for yt−1 = 0; T(164) = −28.29, p = 5.62×10−65 lower panel:

higher lapses δ for yt−1 = 1; T(164) = −2.65, p = 8.91×10−3). (E) Thresholds t were higher in

internal as compared to external mode (β0 = −0.28 ± 0.04, T = −7.26, p = 1.53×10−11; control-

ling for differences in biases and lapses) and were not modulated by perceptual history (T(164)
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= 0.94, p = 0.35).

(TIFF)

S8 Fig. History-/stimulus-congruence and TDs during training of the basic task. Here, we

depict the progression of history- and stimulus-congruence (depicted in blue and red, respec-

tively; left panel) as well as TDs (in green; right panel) across training sessions in mice that

achieved proficiency (i.e., stimulus-congruence� 80%) in the basic task of the IBL dataset. We

found that both history-congruent perceptual choices (β = 0.13 ± 4.67×10−3, T(8.4×103) =

27.04, p = 1.96×10−154) and stimulus-congruent perceptual choices (β = 0.34 ± 7.13×10−3, T

(8.51×103) = 47.66, p< 2.2×10−308) became more frequent with training. As in humans, mice

showed shorter TDs with increased exposure to the task (β = −22.14 ± 17.06, T(1.14×103) =

−1.3, p< 2.2×10−308).

(TIFF)

S9 Fig. Comparison of the bimodal inference model against reduced control models. (A)

Group-level AIC. The bimodal inference model (M1) achieved the lowest AIC across the full

model space (AIC1 = 8.16×104 in humans and 4.24×104 in mice). Model M2 (AIC2 = 9.76×104

in humans and 4.91×104 in mice) and Model M3 (AIC3 = 1.19×105 in humans and 5.95×104 in

mice) incorporated only oscillations of either likelihood or prior precision. Model M4 (AIC4 =

1.69×105 in humans and 9.12×104 in mice) lacked any oscillations of likelihood and prior pre-

cision and corresponded to the normative model proposed by Glaze and colleagues [51]. In

model M5 (AIC4 = 2.01×105 in humans and 1.13×105 in mice), we furthermore removed the

integration of information across trials, such that perception depended only in incoming sen-

sory information. (B) Subject-level AIC. Here, we show the distribution of AIC values at the

subject level. AIC for the bimodal inference model tended to be smaller than AIC for the com-

parator models (statistical comparison to the second-best model M2 in humans: β =

−1.71 ± 0.19, T(8.57×103) = −8.85, p = 1.06×10−18; mice: T(1.57×103) = -3.08, p = 2.12×10−3).

(TIFF)

S10 Fig. Reduced control model M2: Only oscillation of the likelihood. When simulating

data for the likelihood-oscillation-only model, we removed the oscillation from the prior term

by setting the amplitude aψ to 0. Simulated data thus depended only on the participant-wise

estimates for hazard rate H, amplitude aLLR, frequency f, phase p, and inverse decision temper-

ature z. (A) Similar to the full model M1 (Figs 1F and 4), simulated perceptual choices were

stimulus-congruent in 71.97% ± 0.17% of trials (in red). History-congruent amounted to

50.76% ± 0.07% of trials (in blue). As in the full model, the likelihood-oscillation-only model

showed a significant bias toward perceptual history T(4.32×103) = 10.29, p = 1.54×10−24; upper

panel). Similarly, history-congruent choices were more frequent at error trials (T(4.32×103) =

9.71, p = 4.6×10−22; lower panel). (B) In the likelihood-oscillation-only model, we observed

that the autocorrelation coefficients for history-congruence were reduced below the autocorre-

lation coefficients of stimulus-congruence. This is an approximately 5-fold reduction relative

to the empirical results observed in humans (Fig 2B), where the autocorrelation of history-con-

gruence was above the autocorrelation of stimulus-congruence. Moreover, in the reduced

model shown here, the number of consecutive trials that showed significant autocorrelation of

history-congruence was reduced to 11. (C) In the likelihood-oscillation-only model, the num-

ber of consecutive trials at which true autocorrelation coefficients exceeded the autocorrelation

coefficients for randomly permuted data did not differ with respect to stimulus-congruence

(2.62 ± 1.39×10−3 trials; T(4.32×103) = 1.85, p = 0.06) but decreased with respect to history-

congruence (2.4 ± 8.45×10−4 trials; T(4.32×103) = −15.26, p = 3.11×10−51) relative to the full

model. (D) In the likelihood-oscillation-only model, the smoothed probabilities of stimulus-
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and history-congruence (sliding windows of ±5 trials) fluctuated as a scale-invariant process

with a 1/f power law, i.e., at power densities that were inversely proportional to the frequency

(power * 1/fβ; stimulus-congruence: β = −0.81 ± 1.17×10−3, T(1.92×105) = −688.65,

p< 2.2×10−308; history-congruence: β = −0.79 ± 1.14×10−3, T(1.92×105) = −698.13,

p< 2.2×10−308). (E) In the likelihood-oscillation-only model, the distribution of phase shift

between fluctuations in simulated stimulus- and history-congruence peaked at half a cycle (π
denoted by dotted line). In contrast to the full model, the dynamic probabilities of simulated

stimulus- and history-congruence were positively correlated (β = 2.7×10−3 ± 7.6×10−4, T

(2.02×106) = 3.55, p = 3.8×10−4). (F) In the likelihood-oscillation-only model, the average

squared coherence between fluctuations in simulated stimulus- and history-congruence (black

dotted line) was reduced in comparison to the full model (T(3.51×103) = −4.56, p = 5.27×10−6)

and amounted to 3.43 ± 1.02×10−3%. (G) Similar to the full bimodal inference model, confi-

dence simulated from the likelihood-oscillation-only model was enhanced for stimulus-con-

gruent choices (β = 0.03 ± 1.42×10−4, T(2.1×106) = 191.78, p< 2.2×10−308) and history-

congruent choices (β = 9.1×10−3 ± 1.25×10−4, T(2.1×106) = 72.51, p< 2.2×10−308). (H) In the

likelihood-oscillation-only model, the positive quadratic relationship between the mode of

perceptual processing and confidence was markedly reduced in comparison to the full model

(β2 =0.34 ± 0.1, T(2.1×106) = 3.49, p = 4.78×10−4). The horizontal and vertical dotted lines

indicate minimum posterior certainty and the associated mode, respectively.

(TIFF)

S11 Fig. Reduced control model M3: Only oscillation of the prior. When simulating data for

the prior-oscillation-only model, we removed the oscillation from the prior term by setting the

amplitude aLLR to 0. Simulated data thus depended only on the participant-wise estimates for

hazard rate H, amplitude aψ, frequency f, phase p, and inverse decision temperature z. (A) Sim-

ilar to the full model (Figs 1F and 4), simulated perceptual choices were stimulus-congruent in

71.97% ± 0.17% of trials (in red). History-congruent amounted to 52.1% ± 0.11% of trials (in

blue). As in the full model, the prior-oscillation-only showed a significant bias toward percep-

tual history T(4.32×103) = 18.34, p = 1.98×10−72; upper panel). Similarly, history-congruent

choices were more frequent at error trials (T(4.31×103) = 12.35, p = 1.88×10−34; lower panel).

(B) In the prior-oscillation-only model, we did not observe any significant positive autocorre-

lation of stimulus-congruence, whereas the autocorrelation of history-congruence was pre-

served. (C) In the prior-oscillation-only model, the number of consecutive trials at which true

autocorrelation coefficients exceeded the autocorrelation coefficients for randomly permuted

data did was decreased with respect to stimulus-congruence relative to the full model

(1.8 ± 1.01×10−3 trials; T(4.31×103) = −6.48, p = 1.03×10−10) but did not differ from the full

model with respect to history-congruence (4.25 ± 1.84×10−3 trials; T(4.32×103) = 0.07,

p = 0.95). (D) In the prior-oscillation-only model, the smoothed probabilities of stimulus- and

history-congruence (sliding windows of ±5 trials) fluctuated as a scale-invariant process with a

1/f power law, i.e., at power densities that were inversely proportional to the frequency

(power * 1/fβ; stimulus-congruence: β = −0.78 ± 1.11×10−3, T(1.92×105) = −706.62,

p< 2.2×10−308; history-congruence: β = −0.83 ± 1.27×10−3, T(1.92×105) = −651.6,

p< 2.2×10−308). (E) In the prior-oscillation-only model, the distribution of phase shift

between fluctuations in simulated stimulus- and history-congruence peaked at half a cycle (π
denoted by dotted line). Similar to the full model, the dynamic probabilities of simulated stim-

ulus- and history-congruence were anticorrelated (β = −0.03 ± 8.61×10−4, T(2.12×106) =

−34.03, p = 8.17×10−254). (F) In the prior-oscillation-only model, the average squared coher-

ence between fluctuations in simulated stimulus- and history-congruence (black dotted line)

was reduced in comparison to the full model (T(3.54×103) = −3.22, p = 1.28×10−3) and
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amounted to 3.52 ± 1.04×10−3%. (G) Similar to the full bimodal inference model, confidence

simulated from the prior-oscillation-only model was enhanced for stimulus-congruent choices

(β = 0.02 ± 1.44×10−4, T(2.03×106) = 128.53, p< 2.2×10−308) and history-congruent choices (β
= 0.01 ± 1.26×10−4, T(2.03×106) = 88.24, p< 2.2×10−308). (H) In contrast to the full bimodal

inference model, the prior-oscillation-only model did not yield a positive quadratic relation-

ship between the mode of perceptual processing and confidence (β2 = −0.17 ± 0.1, T(2.04×106)

= −1.66, p = 0.1). The horizontal and vertical dotted lines indicate minimum posterior cer-

tainty and the associated mode, respectively.

(TIFF)

S12 Fig. Reduced control model M4: Normative evidence accumulation. When simulating

data for the normative-evidence-accumulation model, we removed the oscillation from the likeli-

hood and prior terms by setting the amplitudes aLLR and aψ to 0. Simulated data thus depended

only on the participant-wise estimates for hazard rate H and inverse decision temperature z. (A)

Similar to the full model (Figs 1F and 4), simulated perceptual choices were stimulus-congruent

in 71.97% ± 0.17% of trials (in red). History-congruent amounted to 50.73% ± 0.07% of trials

(in blue). As in the full model, the no-oscillation model showed a significant bias toward percep-

tual history T(4.32×103) = 9.94, p = 4.88×10−23; upper panel). Similarly, history-congruent

choices were more frequent at error trials (T(4.31×103) = 10.59, p = 7.02×10−26; lower panel).

(B) In the normative-evidence-accumulation model, we did not find significant autocorrela-

tions for stimulus-congruence. Likewise, we did not observe any autocorrelation of history-con-

gruence beyond the first 3 consecutive trials. (C) In the normative-evidence-accumulation

model, the number of consecutive trials at which true autocorrelation coefficients exceeded the

autocorrelation coefficients for randomly permuted data decreased with respect to both stimu-

lus-congruence (1.8 ± 1.59×10−3 trials; T(4.31×103) = −5.21, p = 2×10−7) and history-congru-

ence (2.18 ± 5.48×10−4 trials; T(4.32×103) = −17.1, p = 1.75×10−63) relative to the full model.

(D) In the normative-evidence-accumulation model, the smoothed probabilities of stimulus-

and history-congruence (sliding windows of ±5 trials) fluctuated as a scale-invariant process

with a 1/f power law, i.e., at power densities that were inversely proportional to the frequency

(power* 1/fβ; stimulus-congruence: β = −0.78 ± 1.1×10−3, T(1.92×105) = −706.93,

p< 2.2×10−308; history-congruence: β = −0.79 ± 1.12×10−3, T(1.92×105) = −702.46,

p< 2.2×10−308). (E) In the normative-evidence-accumulation model, the distribution of phase

shift between fluctuations in simulated stimulus- and history-congruence peaked at half a cycle

(π denoted by dotted line). In contrast to the full model, the dynamic probabilities of simulated

stimulus- and history-congruence were positively correlated (β = 4.3×10−3 ± 7.97×10−4, T

(1.98×106) = 5.4, p = 6.59×10−8). (F) In the normative-evidence-accumulation model, the aver-

age squared coherence between fluctuations in simulated stimulus- and history-congruence

(black dotted line) was reduced in comparison to the full model (T(3.52×103) = −6.27,

p = 3.97×10−10) and amounted to 3.26 ± 8.88×10−4%. (G) Similar to the full bimodal inference

model, confidence simulated from the no-oscillation model was enhanced for stimulus-congru-

ent choices (β = 0.01 ± 1.05×10−4, T(2.1×106) = 139.17, p< 2.2×10−308) and history-congruent

choices (β = 8.05×10−3 ± 9.2×10−5, T(2.1×106) = 85.74, p< 2.2×10−308). (H) In the normative-

evidence-accumulation model, the positive quadratic relationship between the mode of percep-

tual processing and confidence was markedly reduced in comparison to the full model (β =

0.14 ± 0.07, T(2.1×106) = 1.95, p = 0.05). The horizontal and vertical dotted lines indicate mini-

mum posterior certainty and the associated mode, respectively.

(TIFF)

S13 Fig. Reduced control model M5: No accumulation of information across trials. When

simulating data for the no-evidence-accumulation model, we removed the accumulation of
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information across trials by setting the hazard rate H to 0.5. Simulated data thus depended

only on the participant-wise estimates for the amplitudes aLLR/ψ, frequency f, phase p, and

inverse decision temperature z. (A) Similar to the full model (Figs 1F and 4), simulated percep-

tual choices were stimulus-congruent in 72.14% ± 0.17% of trials (in red). History-congruent

amounted to 49.89% ± 0.03% of trials (in blue). In contrast to the full model, the no-accumula-

tion model showed a significant bias against perceptual history T(4.32×103) = −3.28,

p = 1.06×10−3; upper panel). In contrast to the full model, there was no difference in the fre-

quency of history-congruent choices between correct and error trials (T(4.31×103) = 0.76,

p = 0.44; lower panel). (B) In the no-evidence-accumulation model, we found no significant

autocorrelation of history-congruence beyond the first trial, whereas the autocorrelation of

stimulus-congruence was preserved. (C) In the no-evidence-accumulation model, the number

of consecutive trials at which true autocorrelation coefficients exceeded the autocorrelation

coefficients for randomly permuted data increased with respect to stimulus-congruence

(2.83 ± 1.49×10−3 trials; T(4.31×103) = 3.45, p = 5.73×10−4) and decreased with respect to his-

tory-congruence (1.85 ± 3.49×10−4 trials; T(4.32×103) = −19.37, p = 3.49×10−80) relative to the

full model. (D) In the no-evidence-accumulation model, the smoothed probabilities of stimu-

lus- and history-congruence (sliding windows of ±5 trials) fluctuated as a scale-invariant pro-

cess with a 1/f power law, i.e., at power densities that were inversely proportional to the

frequency (power * 1/fβ; stimulus-congruence: β = −0.82 ± 1.2×10−3, T(1.92×105) = −681.98,

p< 2.2×10−308; history-congruence: β = −0.78 ± 1.11×10−3, T(1.92×105) = −706.57,

p< 2.2×10−308). (E) In the no-evidence-accumulation model, the distribution of phase shift

between fluctuations in simulated stimulus- and history-congruence peaked at half a cycle (π
denoted by dotted line). In contrast to the full model, the dynamic probabilities of simulated

stimulus- and history-congruence were not significantly anticorrelated (β = 6.39×10−4 ±
7.22×10−4, T(8.89×105) = 0.89, p = 0.38). (F) In the no-evidence-accumulation model, the aver-

age squared coherence between fluctuations in simulated stimulus- and history-congruence

(black dotted line) was reduced in comparison to the full model (T(3.56×103) = −9.96,

p = 4.63×10−23) and amounted to 2.8 ± 7.29×10−4%. (G) Similar to the full bimodal inference

model, confidence simulated from the no-evidence-accumulation model was enhanced for

stimulus-congruent choices (β = 0.01±9.4×10−5, T(2.11×106) = 158.1, p< 2.2×10−308). In con-

trast to the full bimodal inference model, history-congruent choices were not characterized by

enhanced confidence (β = 8.78×10−5 ± 8.21×10−5, T(2.11×106) = 1.07, p = 0.29). (H) In the no-

evidence-accumulation model, the positive quadratic relationship between the mode of per-

ceptual processing and confidence was markedly reduced in comparison to the full model (β2

= 0.19 ± 0.06, T(2.11×106) = 3, p = 2.69×10−3). The horizontal and vertical dotted lines indicate

minimum posterior certainty and the associated mode, respectively.

(TIFF)

S14 Fig. Autocorrelation of history-congruence of alternating and repeating biases. Here,

we simulate the autocorrelation of history-congruence in 103 synthetic participants. In the

repeating regime (blue), history-congruence fluctuated between 50% and 80% (blue) in inter-

leaved blocks (10 blocks per condition with a random duration between 15 and 30 trials). In

the alternation regime (red), history-congruence fluctuated between 50% and 20%. The result-

ing autocorrelation curves for history-congruence overlap, indicating that our analysis is able

to accommodate both repeating and alternating biases.

(TIFF)

S1 Table. Studies extracted from the Confidence database (downloaded from https://osf.

io/s46pr/).

(PDF)
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S2 Table. Explanation of model parameters.

(PDF)
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