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Abstract

In the last decade, various robotic platforms have been introduced that could support delicate 

retinal surgeries. Concurrently, to provide semantic understanding of the surgical area, recent 

advances have enabled microscope-integrated intraoperative Optical Coherent Tomography 

(iOCT) with high-resolution 3D imaging at near video rate. The combination of robotics and 

semantic understanding enables task autonomy in robotic retinal surgery, such as for subretinal 

injection. This procedure requires precise needle insertion for best treatment outcomes. However, 

merging robotic systems with iOCT introduces new challenges. These include, but are not limited 

to high demands on data processing rates and dynamic registration of these systems during the 

procedure. In this work, we propose a framework for autonomous robotic navigation for subretinal 

injection, based on intelligent real-time processing of iOCT volumes. Our method consists of 

an instrument pose estimation method, an online registration between the robotic and the iOCT 

system, and trajectory planning tailored for navigation to an injection target. We also introduce 

intelligent virtual B-scans, a volume slicing approach for rapid instrument pose estimation, which 

is enabled by Convolutional Neural Networks (CNNs). Our experiments on ex-vivo porcine 

eyes demonstrate the precision and repeatability of the method. Finally, we discuss identified 

challenges in this work and suggest potential solutions to further the development of such systems.
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I. Introduction

Over the past decade, various robotic systems have been introduced to enhance ophthalmic 

surgery [1]-[6]. The utility of such systems is particularly evident in the treatment 

of complex retinal diseases that require delicate navigation and precise positioning of 

instruments, exceeding human capabilities in manual surgery. The treatment of age-related 

macular degeneration (AMD) is an example of a potential motivation to employ precise 

robotic systems. AMD is a disease that in its advanced neovascular stage, is characterized by 

leakage of fluid and blood near the macula. The leakage leads to irreversible damage to the 

retinal cells and loss of vision. AMD is considered the leading cause of visual impairment 

in patients over age 65 in developed countries [7] and is predicted to affect 288 million 

people by 2040 [8]. The current standard of care for AMD is the intravitreous injection of 

anti-VEGF drugs [9]. This requires repeated treatments to delay progression but does not 

lead to a cure.

Novel advancements include but are not limited to, stem cell therapy [10], retinal pigment 

epithelium (RPE) cell transplants [11], and gene editing technology [12]. These may 

eventually offer an efficient treatment of AMD with a single intervention, enabled by precise 

subretinal delivery of the therapeutic agent to the potential space between the photoreceptors 

and the RPE-Bruch’s membrane complex [13]. For this reason, robotic approaches are 

envisioned to precisely guide a microsurgical injection needle into the subretinal space, in 

order to safely deliver a therapeutic payload.

To aid surgical visualization and to reveal retinal layer structures, intraoperative Optical 

Coherence Tomography (iOCT) has been integrated into the surgical setup in the last 

decade. This modality enables 2D and 3D micrometer-resolution imaging of the surgical 

area and can provide video-rate volumetric imaging due to novel advances in scanning 

technology [14], [15]. Studies have shown that iOCT has the potential to enable targeted 

delivery of therapeutic agents into the subretinal space [16]. Prior work has combined iOCT 

imaging with a manually controlled robotic system [17], [18], confirming the advantages 

of employing a robotic system for subretinal injection, such as reduced tremor, higher bleb 

formation and reduction of reflux. In this work, we present a system for autonomous robot 

navigation, which is tailored for the use case of subretinal injection. The contributions of 

this work are as follows: 1) We present a framework that merges a robotic system with 

an iOCT-integrated microscope (Fig. 1), to create a surgeon-in-the-loop workflow (Fig. 2). 

The robot motion is enabled by real-time processing of volumetric iOCT data in an effort 

to navigate a surgical needle to a subretinal injection target chosen by the surgeon. The 

proposed workflow includes data acquisition, visualization, and selection of a target point 

within the acquired volume, followed by automatic volume processing and robot navigation. 

The final trajectory planning and motion is based on an online registration between the 

robotic instrument and the iOCT volume. 2) We introduce a novel concept of intelligent 
virtual B-scans as automatically selected instrument-aligned slices, reducing the complexity 

of the 3D iOCT data. In our framework, this facilitates the integration of convolutional 

neural networks (CNNs) for instrument pose estimation and trajectory planning in real-time. 

We evaluate the proposed framework by first performing targeted navigation to arbitrary 
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points in the volume and then by performing needle insertions in ex-vivo porcine eyes. 

The results show high accuracy and repeatability, encouraging further iOCT-guided robotic 

vitreoretinal applications. Our results also demonstrate the potential of virtual B-scans for 

real-time volumetric iOCT processing.

II. Related work

Prior work has addressed components of our framework, such as instrument pose estimation, 

OCT B-scan segmentation, and the calibration of an iOCT system to a robotic setup. 

Needle pose estimation from iOCT volumes has been proposed in various works [19]-[21]. 

Such initial works addressing 5-degree-of-freedom (DoF) tool tracking methods were later 

extended to a 6-DoF localization approach [22]. While these methods have shown high 

accuracy in instrument detection and pose estimation, they are limited to tracking the 

needle above the retina and are based on the processing of the entire iOCT volumes. 

This, in turn, poses constraints on the integrated processing algorithms to cope with 

the high data throughput of high-speed iOCT systems. More advanced detection and 

segmentation algorithms are still required to improve the robustness and generalizability 

of such instrument tracking.

With the technical advances in recent years, deep learning approaches for the segmentation 
of OCT B-scans have shown high success rates [23]. Convolutional neural network (CNN) 

architectures have shown promising results for the segmentation of retinal layers [24]. 

Recently, 3D network architectures [25] have been developed and specifically tailored to 

segment whole OCT volumes in the presence of clinical pathology related to AMD. Most 

of these works, however, focus on the segmentation of retinal structures in diagnostic OCT, 

with higher image quality as compared to current iOCT imaging, and do not include surgical 

instruments and their related artifacts, such as shadows obscuring the retinal anatomy or 

mirroring artifacts. To our knowledge, there are only a few works addressing advanced 

instrument segmentation in iOCT imaging, such as the development of a fully convolutional 

network for the instrument segmentation in iOCT B-scans [26] and instrument segmentation 

in axial iOCT projection images used for real-time visualization of 4D iOCT [27]. A 

joint instrument and retinal layer segmentation from iOCT imaging for distance estimation 

between the instrument and selected retinal layers was proposed only recently [28]. Similar 

to dedicated iOCT segmentation algorithms, methods on the calibration of a volumetric 

iOCT and a robotic system are, to date, sparse and limited to expensive 3D instrument 

segmentation [29].

III. Method

A. Overview

In this work, we address the composition of a system that comprises the necessary 

components for robotic navigation based on iOCT, which includes rapid volume processing, 

instrument pose estimation, registration, and trajectory planning. The setup connects a 

robotic system with an iOCT-integrated microscope to meet the real-time requirements of 

intraoperative applications (Fig. 3) while keeping the human in the loop. The designed 

workflow consists of a sequence of steps: first, an iOCT volume is acquired. The required 
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processing and instrument pose estimation is applied, and the volume is visualized (Fig. 

2 (a)). The surgeon then chooses a 3D target point for subretinal injection in the volume. 

Subsequently, a trajectory for navigating to the specified target location is estimated (Fig. 2 

(b)). Upon approval, the command is transmitted to the robot for execution (Fig. 2 (c)). The 

components of our workflow are specifically tailored to the use-case of subretinal injection.

To perform a successful robotic injection, two features need to be extracted from an 

input volume: 1) the needle pose w.r.t the iOCT volume and 2) the optimal trajectory 

to guide the instrument to a selected target point for subretinal injection. While 3D 

learning-based methods show promising results for high-resolution diagnostic OCT, they 

are not yet suitable for real-time 3D analysis. Additionally, because of the non-uniform 

voxel-spacing of the acquired iOCT volumes, conventional 3D CNN-based methods are 

not directly applicable. In our approach, we, therefore, decompose the problem of needle 

pose estimation into two consecutive 2D segmentation tasks. We introduce intelligent virtual 
B-scans to segment only selected regions extracted in a rapid volume-processing step. 

This is further discussed in Sec. III-B and Sec. III-C. Afterward, in Sec. III-D the needle 

pose estimation and the registration between the robot and volume are described. Finally, 

the trajectory for executing the injection at the given 3D target point is calculated and 

transmitted to the robot (Sec. III-E).

B. Axial Projection Image

As proposed in [27], axial projection maps, generated by applying an operation on the iOCT 

A-scans of the volume, can result in feature maps with strong visual cues for locating an 

instrument in the volume. Leveraging the instrument shadowing generated by attenuation 

of the emitted iOCT spectrum at the needle surface, we apply an operation on the A-scans 

to highlight the needle footprint on the generated projection image. According to [27], we 

name this image the Axial Projection Image, which can be defined as:

PAxial = ⊗
Z

V[…, i] (1)

where V is the original volume and ⊗ is an operator. We choose ⊗ to be the mean operator, 
as it has shown promising results in our experiments. Visual examples of the generated 

projection images can be seen in Figure 4.

By employing a CNN-based approach to segment the instrument in the 2D projection, all A-

scans containing the instrument can be identified in the volume. Alike [27], we train a U-Net 

[30] with ResNet18 [31] backbone for the segmentation with Binary Cross Entropy Loss on 

our custom dataset, dsaxial (Sec. IV). Examples of the predicted instrument segmentation and 

the corresponding ground-truth in our test set are shown in Fig. 5.

During inference, we filter the pixels with high confidence and fit a 2D line to them using 

Huber Regressor [32]. During our experiments, we chose a confidence value based on the 

highest 1% output probabilities. We name the rotation of this line as θz (Fig. 6 (c)), as this 

value encodes the needle rotation w.r.t. the volume’s Z-axis. The needle tip position in this 

image also provides tx and ty, defining the needle tip translation in volume X and Y axes, 

being defined as the coordinates of the extremum point on the line.
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C. Intelligent Virtual B-scan

The location of each B-scan in the volume can be identified by the conventional plane 

equation in 3D space, (P0, n ), where P0 is a 3D point on the plane and n  is the plane normal 

vector. Hence, the plane formulation of each of the B-scans acquired from the microscope 

can be written as:

(P0 : (0, i × ξ, 0), n : j ) (2)

where ξ is the spacing in Y-axis, i is the index of the specific B-scan and j  the unit vector 

in Y-axis. Contrary, we define virtual B-scan, as an arbitrary plane in the original iOCT 

volume. Instead of extracting the B-scan cross-sections provided by the iOCT scanning 

pattern from the volume, a plane equation can define any arbitrary volume slicing. We call 

a slicing intelligent if the plane is automatically selected based on a semantic understanding 

of the surgical scene and the application, in order to create an optimized representation 

of complex data. The pixel intensities of this slice are composed by interpolating the 

voxel intensities adjacent to the virtual plane. In our example, we use the instrument line 

parameters θz, tx and ty from III-B to define a tool-aligned intelligent virtual B-scan as:

((tx, ty, ⋅ ), 〈sin θz, cos θz, 0〉) (3)

which provides a plane aligned with the needle. The tool-aligned slicing can therefore be 

generated by interpolation of the adjacent iOCT A-scans, identified by the line in Sec. III-B 

(Fig. 6). While in general, for the composition of the intelligent virtual B-scan, a trilinear or 

more complex interpolation method could be chosen to generate a visually appealing cross-

section, we employ a linear interpolation scheme to reduce the computational complexity.

This tool-aligned intelligent virtual B-scan, allows the estimation of the axial instrument 

rotation Ry and the instrument tip coordinate in the volume Z-axis, tz. To identify the 

needle, Inner Limiting Membrane (ILM), and RPE layers, we subsequently employ a second 

segmentation network. Using our custom dataset, dsbscan (see Sec. IV), we train a U-Net 

style network with ResNet18 backbone, using a combination of Cross Entropy Loss and 

Focal Loss for the joint segmentation of retinal layers and surgical instrument, as proposed 

by [28]. The segmentation network was additionally pre-trained on synthetic iOCT data 

generated by the method described in [33]. Examples of the virtual B-scans and the obtained 

segmentations are illustrated in Fig. 7.

Similar to III-B, we fit a line to the segmented needle pixels with high confidence. We name 

the rotation of this line θy (Fig. 6 (d)) since it provides the needle Ry. Furthermore, tz can 

also be estimated from the innermost segmented point on the line. Having Rz, Ry, tx, ty, and tz

calculated, the 5-DoF needle pose can be formulated as:

R = Rz(θz)Ry(θy)Rx( ⋅ ) (4)

assuming yaw, pitch and roll rotation around the Z, Y and X axes. Hence, we obtain the 

following rotation matrix:
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R =
cos θz

sin θz

0

−sin θz

cos θz

0

0
0
1

cos θy

0
−sin θy

0
1
0

sin θy

0
cos θy

I3 (5)

In this case, the rotation around the X-axis (roll) can be neglected due to the needle 

symmetry in this case. For the tooltip position, we obtain the following:

t = [tx, ty, tz] (6)

D. Robot to Volume Registration

In iOCT-guided interventions, the surgeon can dynamically adjust the scanning area. 

Therefore, pre-operational calibration is not valid as the scanning region is updated, and 

a dynamic online registration between the robotic system and the iOCT volume is preferred. 

In our case, the Z-axis of the robot base and iOCT Z directions are aligned, being parallel to 

the A-scan direction of the iOCT system. To estimate the transformation between the robot 

and volume, it is therefore sufficient to estimate the transformation of one of the other two 

axes. As the injection needle is rigidly mounted on the robot, the robot axes can be defined 

as:

vz = − k , vy = 〈sin θz, cos θz, 0〉, vx = vy × vz (7)

Given these vectors, any translation vector, Tv, in the volume coordinate system can be 

transformed into a translation vector in the robot coordinate system as:

C =
∣
vx

∣

∣
vy

∣

∣
vz

∣
(8)

T r = C−1T v (9)

Eq. 8 transforms the translation vectors in the next step from iOCT volume coordinates to 

robot coordinates.

E. Trajectory Planning

We define insertion line, similar to [34], which is a 3D line through the target point, V , and 

parallel to the needle. In order to execute a successful insertion, from the time of contact 

between the tissue and tool, the needle needs to follow this line to reach the target point and 

perform a successful injection. We decouple the trajectory into two parts: a) tA , a translation 

to align the needle with the insertion line and b) tB , a translation along the insertion line 

until the target point V  is reached.
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There are multiple possibilities to define tA  and tB . However, in order to avoid tissue damage 

while applying tA , we apply these constraints on tA  and tB :

tA + tB = V − T needle,
tB ‖ rneedle,

∠( tA , k ) = π
2

(10)

We calculate point J as the intersection of plane (Tneedle, k ) and the insertion line. Thereafter, 

tA = J − Tneedle and tB = V − J, as illustrated in Fig. III-E.

To formulate these equations, only the intelligent virtual B-scan described in Sec. III-C 

containing the needle and a second virtual B-scan, which contains the needle after applying 

tA, are required. The second virtual B-scan can be identified as (V , 〈sin θz, cos θz, 0〉)). Since 

in our iOCT system, the cross-sections include different refractive indices along the A-scans 

when the emitted iOCT spectrum traverses different media, the acquired points need to be 

compensated for the displacements in Z-axis [35]. We leverage the segmented ILM and RPE 

layer boundaries from the second virtual B-scan to correct the axial spacing by applying the 

appropriate refractive index to each region since the A-scan fixation only applies to the step 

tB.

IV. Materials

For our experiments, we used a setup consisting of Steady Hand Eye Robot [6] and a Leica 
Proveo 8 With EnFocus OCT Imaging System (Fig. 3). Both robot and microscope are 

connected to a workstation with LAN connections through a network switch, establishing 

the communication between all components. The microscope was pre-calibrated, aligning 

the iOCT beam to the surgeon’s view and the video signal to the iOCT scanning area. To 

acquire the iOCT datasets for our experiments and network training, we collected B-scans, 

each composed of 1000 A-scans with an axial resolution of 1024 pixels each. Each volume 

was collected at a squared scanning area of 2.5mm × 2.5mm at a scanning depth of 3.38mm, 

containing 100 linearly acquired B-scans. This setup for the iOCT volumes provides a voxel 

spacing of (2.5μm, 25μm, 3μm). For dsaxial in Sec. III-B, we have created a dataset of Axial 

Projection Images from 100 iOCT volumes, as shown in Fig. 5. While acquiring the iOCT 

volumes from the microscope during inference time, some B-scans are not successfully 

transmitted due to network connection issues. This can decrease the instrument segmentation 

performance because the missing B-scans generate a similar effect in the Axial Projection 

Image as the needle shadowing. In this order, we randomly omit some of the B-scans during 

training. For the dsbscan described in Sec. III-C, we have collected a custom dataset with 

300 images, 2.5mm × 3.8mm, using a NanoFil NF36BV 36 Gauge Bevealed Needle and 

an ICSI MIC-SI-0 Micropipette, above and inserted into ex-vivo pig eye retinas, in absence 

and presence of vitreous. We have only collected B-scans which were obtained from the 

microscope directly while having the B-scans aligned with the needle. We will make both 

datasets publicly available soon.
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All of the CNN networks were trained using Pytorch 1.10.1 framework, using NVIDIA 

RTX 2080Ti. The datasets were labeled by two biomedical engineering experts using 

ImFusionLabels (ImFusion GmbH, Munich, Germany). The acquired iOCT volumes are 

visualized on the workstation via custom rendering plugins integrated in the ImFusionSuite1 

framework. (ImFusion GmbH, Munich, Germany).

To correct the pixel spacing resulting from deflection in Sec. III-E, we used nair = 1, nvitreous 

= 1.38 and ntissue = 1.38, as suggested by the microscope manufacturer, during open-sky 

ex-vivo porcine eye experiments.

V. Experiments and Results

A. Inference Rate

With inference on an NVIDIA GeForce RTX 2080Ti, for the step of intelligent virtual 
B-scan composition and segmentation with needle pose estimation, we measured an average 

inference time of 0.232 ± 0.008 seconds (step a in workflow Fig. 2), and 0.188 ± 0.009 

seconds for trajectory planning (step b). We measured 5.45 ± 0.80 seconds for the robot 

to perform the needle insertion (step c), averaged over 10 insertions in randomly selected 

positions. With an average image acquisition time of 7.69 ± 0.27 seconds, this step has 

shown to be the most time-consuming step, as our microscopic system has not been 

specifically designed for integration in a robotic setup.

B. System Accuracy

We individually evaluated the precision of the robot, the precision of the system in 

the absence of tissue, and the precision of autonomously navigating to an injection 

target in the retina, using the needles described in Sec. IV. We have not reported the 

accuracy of the segmentation models individually since the performance of these networks 

has been evaluated and discussed for similar use cases in the referenced works. Two 

biomedical engineering experts independently marked the tool tip locations in all the 

volumes to generate a reliable ground truth position. To measure the accuracy of the 

robot’s translational movement, we moved each robot axis about 500μm for 10 times and 

measured the Euclidean distance of the needle tip in the iOCT volume before and after 

each movement. The result proves an accuracy of 5 ± 2μm for each of the axes of the 

robot. To measure the precision of autonomous robot navigation, we first performed 10 

trials of navigating to a target location without retinal contact. Afterward, we performed 

10 autonomous needle insertions into the retinal tissue and chose a random target point in 

proximity to the RPE. For these experiments, we used ex-vivo porcine eyes in an open-sky 

setup without removing the vitreous gel. For all trials, we measured the Euclidean distance 

of the needle tip’s final position to the target point. For the 10 trials without retina insertion, 

we measured a mean error of 24 ± 5μm, while for navigation to a target inside the retina, we 

measured an average error of 32 ± 4μm. The error distribution for both trials is illustrated in 

Fig. 9.

1 https://www.imfusion.de 
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VI. Discussion and future work

In this work, we introduced an approach for autonomous robot navigation based on 

volumetric iOCT tailored for subretinal injection. We have proposed an end-to-end 

framework that integrates a robotic platform as well as an iOCT system while keeping the 

surgeon in the loop. Our experiments on ex-vivo porcine eyes show promising results with 

errors close to the precision that is required for targeting the anatomical area for subretinal 

injection [13]. The comparison to our experiments in air suggests that tissue and instrument 

deformations need to be investigated in future works.

In this paper, we introduce intelligent virtual B-scan composition to reduce the complexity 

of the scene and focus the processing on the relevant structures of the volume. Such 

representations not only allow rapid estimation of the instrument pose but may also be 

displayed to the surgeon to verify the processing algorithms, which in turn could accelerate 

the acceptance of autonomous systems. During our experiments, we used a straight needle. 

However, when using a bent needle or other micro-surgical tools, where the instrument 

cannot be captured by a single 2D plane, multiple cross-sections could be extracted and 

a similar method with modifications on Sec. III-B and Sec. III-C could be employed. To 

understand the feasibility of such an end-to-end system, we restricted the robot control for 

our open-sky experiments and only applied translational movements. In a realistic scenario, 

rotations around the remote center of motion (RCM) need to be applied to minimize the 

force on the sclera. However, our method can be adapted to integrate RCM-based rotations 

by adjusting tA in Sec. III-E, with a series of translational and rotational movements. In a 

surgical scenario, patient breathing and instrument navigation can lead to significant retinal 

motion, therefore a higher volume acquisition rate in state-of-the-art swept-source iOCT 

systems can facilitate the integration of temporal registration, which in turn can be used to 

track the target point and update the trajectory accordingly. Another possible extension is 

dynamically aligning the iOCT scanning area with the generated tool-aligned B-scans and 

hence, adjusting the iOCT scanning pattern to only acquire selected B-scans, which will 

increase the overall inference speed of our end-to-end system. Currently, we have not yet 

optimized the inference times of our network, since the current bottleneck of our system 

is the acquisition and transmission of the iOCT volumes. However, previous works [27], 

[28], [36] have shown that network inference times for iOCT segmentation can be drastically 

improved using kernel optimization and tensor fusion strategies. Additionally, to further 

improve the real-time capability of such systems, the communication between the iOCT and 

robotic system may be optimized using faster communication protocols. In future works, we 

will consider the segmented ILM and RPE to safely navigate the instrument, using real-time 

processing as proposed by [28], to avoid harming RPE and cells of the neuroretina. We 

chose a fixed speed for the robot during trajectory execution. However, the navigation speed 

could be optimized by adopting a higher speed for movement without tissue contact during 

tA and a dynamic speed for tB to ensure effective tissue insertion.

VII. Conclusion

In this paper, we proposed an end-to-end framework for robotic subretinal injections and 

have designed a workflow with the surgeon in the loop, which is also adaptable to future 
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extensions. We proposed a fast processing method for volumetric iOCT data to automate the 

navigation of the robot. Despite current hardware limitations for real-time scan acquisition, 

we have shown our method is capable of real-time processing, solving the 3D instrument 

pose estimation by relaxing it to two separate 2D segmentation tasks. This step is mainly 

enabled by the composition of intelligent virtual B-scans. Our method forms a base for many 

future works based on volumetric iOCT processing and can provide a real-time approach for 

similar tasks, which involve 3D pose estimation and trajectory planning for robotic retinal 

surgery.
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Fig. 1. 
Overview of the proposed system, consisting of an iOCT Microscope (a), which is used 

for volume acquisition and data transmission to the computation unit(b). All the necessary 

computations are applied and transmitted to the robot (c) to execute the injection. The B-

scans slices acquired by the microscope are shown in (e) and (d) illustrates the microscopic 

view of the scene.
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Fig. 2. 
The proposed workflow follows volume processing and visualization (a), planning (b), and 

execution (c) stages.
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Fig. 3. 
Setup overview. (a) Steady-Hand Eye-robot. (b) Leica iOCT-integrated Microscope. (c) 

Ex-vivo pig eye.
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Fig. 4. 
Applying an operation on the A-scans of the volume to create Axial Projection Image.
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Fig. 5. 
Performance of the Axial Image Segmentation model on the test set. Shown ground truths 

include the augmentations.
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Fig. 6. 
The method of the intelligent virtual B-scan generation. (a) Original volume. (b) Axial 

Projection Image, generated with a mean operation. (c) Fitted line on the segmentation result 

for estimating the virtual B-scan parameters. (d) Intelligent virtual B-scan, generated from 

interpolation between adjacent A-Scans.
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Fig. 7. 
Example of the B-scan Segmentation model on the test data. Yellow color represents the 

needle, red represents ILM layer, and blue, the RPE layer.
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Fig. 8. 
Steps of trajectory calculations. (a) Original volume with the target point, needle, injection 

line, tA and tB (b) Visualization of the volume, needle, and target point after applying tA

(c) Side view of previous step (d) Side view of the volume, needle and target point after 

applying tB
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Fig. 9. 
Final performance of the injection process. The chart shows the Euclidean distance between 

the needle tip and the target point in two different environments. The number of sample 

points is not sufficient for accurate distribution estimation. However, it is still insightful to 

understand the consistency and accuracy of the method.
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