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Abstract

Hypoxia chambers have traditionally been used to induce hypoxia in cell cultures. Cellular 

responses to hypoxia can also be mimicked with the use of chemicals such as cobalt chloride 

(CoCl2), which stabilizes hypoxia-inducible factor alpha-subunit proteins. In studies of ocular 

cells using primary cells and cell lines, such as Müller glial cell (MGC) lines, photoreceptor 

cell lines, retinal pigment epithelial (RPE) cell lines and retinoblastoma cell lines oxygen levels 

employed in hypoxia chambers range typically between 0.2% and 5% oxygen. For chemical 

induction of hypoxic response in these cells, the CoCl2 concentrations used typically range from 

100 to 600 μM. Here, we describe simplified protocols for stabilizing cellular hypoxia-inducible 

factor-1α (HIF-1α) in cell culture using either a hypoxia chamber or CoCl2. In addition, we also 

provide a detailed methodology to confirm hypoxia induction by the assessment of protein levels 

of HIF-1α, which accumulates in response to hypoxic conditions. Furthermore, we provide a 

summary of conditions applied in previous studies of ocular cells.
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1. Introduction

Normal oxygen levels in different body tissues vary significantly (McKeown, 2014). The 

term “normoxia” describes the typical oxygen partial pressure of O2 in media surrounding 

cell cultures under atmospheric oxygen conditions, which is 20.9% oxygen in dry air 

(Wenger et al., 2015) and depends on factors such as altitude and humidity (Carreau 

et al., 2011; McKeown, 2014; Wenger et al., 2015). “Hypoxia” describes decreased or 

insufficient oxygen supply to cells, tissues, or organs, compared to physiological conditions 

(Carreau et al., 2011; McKeown, 2014; Wenger et al., 2015). The retina is one of the most 
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metabolically active tissues in the body and requires regular and constant oxygen supply for 

the maintenance of its function (Wangsa-Wirawan and Linsenmeier, 2003).

Conditions such as retinal detachment, diabetes, occlusion of the central retinal artery, 

or thrombosis of the central retinal vein can compromise oxygenation, leading to the 

progression of retinal diseases and cell death (Alder et al., 1997; Curtis et al., 2009; Grimm 

and Willmann, 2012; Kaur et al., 2008; Ross et al., 2022). Retinal detachment (RD) is a 

serious ocular pathology that occurs when the neurosensory retina becomes separated from 

the underlying retinal pigmented epithelium (RPE) and the choroid, the vascular layer that 

provides blood supply and oxygen to the retina. When RD occurs, proper oxygen supply 

to retinal cells is impaired, leading to hypoxia in the affected area (Piccolino et al., 2005). 

Hypoxia, in turn, initiates a sequence of pathological events within the retina, encompassing 

the activation of hypoxia-inducible factor 1-alpha (HIF-1α) and the subsequent upregulation 

of various stress-related genes, promoting inflammation, augmenting reactive oxygen 

species (ROS) production, and leading to photoreceptor degeneration (Campochiaro, 2015; 

Shinojima et al., 2021). In diabetes, for example, chronic hyperglycemia has been shown to 

damage blood vessels in the retina, leading to vascular constriction and reduced oxygen 

delivery, even in very early stages of the disease (Alder et al., 1997). This, in turn, 

prompts the release of vascular endothelial growth factor (VEGF), promoting abnormal 

blood vessel growth (neovascularization) and increased vascular permeability, exacerbating 

retinal damage (Aiello et al., 1994).

In cell culture studies, hypoxia chambers have been used to mimic conditions with 

abnormally limited oxygen supply. A hypoxia chamber provides a controlled environment 

that allows the effects of specific levels of oxygen to be determined. Designed to fit inside 

existing laboratory incubators, this self-contained and sealed chamber helps to maintain 

a hypoxic environment with controlled oxygen levels and a stable temperature. Hypoxic 

conditions are achieved with specific gas mixtures, generally (1%, 5% or 10% oxygen; with 

5% carbon dioxide and the balance nitrogen) (Wu and Yotnda, 2011). In general, oxygen 

concentrations of less than 2% are considered hypoxic, however, normoxic levels must be 

considered when selecting the experimental hypoxic conditions (Rinderknecht et al., 2021). 

An advantage of the use of a hypoxia chamber/incubator is that it is the most natural system 

to induce cellular hypoxic response, and it permits control of the oxygen fraction in the air 

surrounding the cultures within it (Rinderknecht et al., 2021). However, it has been shown 

that if the media is not pre- equilibrated against air containing the lower fraction of O2, 

it can take up to 24 hours for the average oxygen concentrations in the cell culture media 

to stabilize (Newby et al., 2005). It should also be noted that the partial pressure of O2 at 

the cell surface not only depends upon the fraction is surrounding air, but also the rate of 

diffusion to the cells, which typically depends upon the depth of the culture media (if not 

agitated) and the rate of oxygen consumption of the cells (Al-Ani et al., 2018).

In ocular studies, in addition to the hypoxia incubator/chamber, another commonly 

employed method for simulating hypoxia is using the hypoxia mimetic cobalt chloride 

(CoCl2). Compared to the hypoxia chamber, induction of hypoxia with the use of CoCl2 is 

simple and inexpensive, furthermore, it has the advantage of rapid induction of a cellular 

response that mimics hypoxia following treatment (Rinderknecht et al., 2021). However, 
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this method has disadvantages, including possible toxicity and the fact that it does not fully 

mimic the cellular response to hypoxia, rather, it stabilizes hypoxia-inducible factor alpha 

proteins (HIF-1α and HIF-2α) (Rinderknecht et al., 2021). The precise mechanism by which 

CoCl2 stabilizes HIFs is not proven but is likely to involve replacement of ferrous iron(II) by 

Co2+ in the active site of HIF-prolyl hydroxylase enzymes (a.k.a. prolyl hydroxylase domain 

(PHD) proteins); thus, CoCl2 blocks proline hydroxylation of HIFs, which is the first step in 

their oxygen-induced polyubiquination and degradation by the proteosome (Muñoz-Sánchez 

and Chánez-Cárdenas, 2019). In addition, cobalt may inhibit the reduction of ferric iron 

(Fe3+) to ferrous iron (Fe2+) by ascorbic acid, thus inhibiting PHD activity; and/or Co2+ 

may bind directly to HIF alpha proteins and inhibit their ubiquination (Muñoz-Sánchez 

and Chánez-Cárdenas, 2019). Importantly, the set of genes induced by hypoxia and CoCl2 

treatment may differ, as CoCl2 induction was reported to preferentially activate expression 

of HIF-1α-responsive genes while inhibiting the expression HIF-2α-responsive genes in 

hepatic cancer cells (Befani et al., 2013).

Here, we describe general protocols for inducing hypoxia in cell cultures using the hypoxia 

chamber and CoCl2. In addition, we describe a methodology for assessing protein levels 

of HIF-1α. Furthermore, we provide a summary of conditions applied to previous studies 

considering hypoxia chamber/incubator and CoCl2 in ocular cell cultures.

2. Materials and Supplies

2.1. Materials and Supplies for Hypoxia chamber Protocol

2.1.1. Cell culture incubator

2.1.2. Hypoxia chamber

2.1.3. Pre-equilibrated cell culture media*

2.1.4. Two (2) dishes with identical cell cultures prepared with previously 

equilibrated cell culture media: one will be used as control in the incubator and 

not in the hypoxia chamber (normoxia); and the other will be placed in the hypoxia 

chamber within the incubator

2.1.5. Two (2) petri dishes (100 mm) containing 10 mL of sterile water each.

*Preparation: Pre-equilibrated cell culture media can be prepared in several ways: 1. By 

allowing the culture media to equilibrate under hypoxic conditions in the same hypoxic 

chamber until the media has reached the desired oxygen concentration, measured by a 

dissolved oxygen probe. 2. Alternatively, by allowing the culture media to equilibrate in 

hypoxic conditions in the same hypoxic chamber for at least 24 hours prior to experimental 

setup. 3. By bubbling nitrogen gas through culture medium, for 15 minutes (for an oxygen 

level of approximately 1.5%) to 30 minutes (for an oxygen level near 0%) (Newby et al., 

2005).
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2.2. Materials and Supplies for the use of CoCl2 in stabilizing Hypoxia-Inducible Factor-1α 
levels

2.2.1. Cobalt (II) chloride hexahydrate, suitable for cell culture. Synonyms: 

Cobaltous chloride hexahydrate, Cobalt (II) chloride hexahydrate. Formula: CoCl2 

· 6H2O. CAS Number: 7791-13-1. Molecular Weight: 237.93. Soluble in water (100 

mg/mL) (Sigma-Aldrich)

2.2.2. Cell culture media

2.2.3. Cell culture incubator

2.2.4. Prepare one culture without the use of CoCl2 to be used as a control.

2.3. Materials and Supplies for the detection of Hypoxia-Inducible Factor-1α (HIF-1α) as a 
marker of hypoxia

2.3.1. 3-(N-Morpholino)propane sulfonic acid (MOPS)

2.3.2. Ethylene glycol tetraacetic acid (EGTA)

2.3.3. Ethylenediaminetetraacetic acid (EDTA)

2.3.4. Triton x-100

2.3.5. Protease inhibitor mini tablet; ThermoFisher Scientific, Cat #PIA32955

2.3.6. 10x Tris Buffered Saline

2.3.7. Tween-20

2.3.8. Bovine Serum Albumin (BSA)

2.3.9. Human/Mouse/Rat HIF-1 alpha/HIF-1A Antibody; (1:1000) R&D Systems, 

Cat #MAB15362.

2.3.10. Anti-mouse IgG HRP-linked; (1:8000); GE healthcare Lifesciences, Cat# 

NA931

2.3.11. Chemiluminescent substrate solution (suggested: SuperSignal West Dura, 

ThermoFisher)

3. Detailed Methods

3.1. Detailed methods for the use of the Hypoxia chamber

3.1.1. Open the hypoxia chamber, remove lid and trays, and check integrity of the 

O-ring

3.1.2. Add 2 petri dishes (100 mm) containing 10 mL of sterile water to the chamber 

base, for maintaining humidity in the chamber.

3.1.3. Place the chamber tray in the chamber and ensure that trays are properly seated 

in the base.

3.1.4. Place the cell culture dish containing cells into the chamber
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3.1.5. Place the lid on the chamber and secure by pushing down

3.1.6. Close the chamber ring clamp, ensuring a hermetic closure of the chamber

3.1.7. Connect the inlet port of the tubing to the hypoxic gas tank, containing the 

desired hypoxic gas mix (e.g., 1% oxygen, 5% carbon dioxide, balance nitrogen)

3.1.8. Open both the inlet and outlet tubing clamps

3.1.9. Open gas cylinder valve to flush the chamber

3.1.10. Adjust the working output pressure gauge to 2 in mmHg pressure using the 

pressure adjuster knob, allow the gasflow chamber to completely purge the chamber 

for ≥8 minutes

3.1.11. Turn off gas flow

3.1.12. Quickly close tubing clamp 1

3.1.13. Quickly close tubing clamp 2

3.1.14. Disconnect the chamber from the gas tank.

Of note, normoxic levels must be considered when selecting the experimental hypoxic 

conditions. For ocular cells, refer to Table 1 for previously studied conditions.

The pre-equilibration time required for the cell culture medium to reach the desired hypoxic 

oxygen concentration depends on both the volume of the medium and the target oxygen 

level. In this experimental protocol, we employ an initial 8-minute hypoxic air purge, 

followed by a 24-hour period for the pre-equilibration of the cell culture medium before 

commencing the experiments. Cells were cultured in 4 mL of medium, in 60 mm petri 

dishes.

Sampling should be performed as quickly as possible, and after sampling or manipulation, 

the chamber must be re-gassed to restore the desired hypoxic conditions. Allow the chamber 

to re-equilibrate before further experiments. Modifications to this protocol should be verified 

by confirming HIF-1α stabilization, as described in item 3.3. Protocol for the detection of 

Hypoxia-Inducible Factor-1α (HIF-1α) as a marker of hypoxia. It is crucial to maintain 

consistent hypoxic conditions throughout the cell culture experiments to obtain accurate and 

reproducible results.

3.2. Detailed methods for the use of CoCl2 in stabilizing Hypoxia Inducible Factor1-α 
levels

3.2.1. Estimate the final cell culture volume needed

3.2.2. Prepare a 23.793 mM stock solution immediately before use (5.6611 mg/mL) 

in sterile PBS

3.2.3. Transfer the appropriate volume of stock solution directly to the complete cell 

culture media to obtain the desired concentration*, adjust according to final desired 

volume. Refer to table 2 for dilution examples

3.2.4. Plate cells accordingly and transfer cells into regular cell culture incubator.
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Of note, when using CoCl2 for the first time, test a range of concentrations to establish 

non-toxic working concentrations for your cell type and experimental conditions, as this 

reagent has been demonstrated to reduce cell viability in concentrations as low as 300 μM 

(Fung et al., 2016; Kuehn et al., 2017; Rodriguez et al., 2021). For ocular cells, employed 

concentrations typically fall within the range of 50–600 μM. Refer to Table 3 for previously 

studied conditions in specific cell types.

3.3. Protocol for the detection of Hypoxia-Inducible Factor-1α (HIF-1α) as a marker of 
hypoxia

3.3.1. Solutions

3.3.1.1. Cell lysis buffer

• Transfer 9.56 mL of Ultrapure water into a 15 mL falcon tube

• Add 200 μL of 1M MOPS

• Add 40 μL of 500 mM EGTA

• Add 100 μL of 0.5 M EDTA

• Add 100 μL of 10% Triton x-100

• Add 1 Thermo Scientific protease inhibitor mini tablet (PIA32955)

• Keep solution on ice during experimental use

• This solution can be aliquoted and stored at −20°C

3.3.1.2. TBS-T

• 100 mL 10x Tris Buffered Saline (TBS)

• 900 mL ultrapure water

• 1 mL Tween-20

3.3.1.3. Blocking buffer

• Weigh 2.5 g of BSA (Bovine Serum Albumin) and transfer into appropriate 50 

mL flask

• Add TBS-T solution as described above for a final 50 mL volume

• Mix well

• Maintain refrigerated

3.3.2. Procedure

3.3.2.1. Remove samples from incubator and quickly lyse cells in a solution 

containing 20 mM MOPS, 2 mM EGTA, 5 mM EDTA, 1% Triton-X-100, 1 mM 

DTT and protease inhibitors, maintaining samples on ice

3.3.2.2. Centrifuge cell lysates at 16,000 × g in for 10 minutes at 4°C
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3.3.2.3. Measure protein concentration in supernatant using preferred methodology 

(suggested: RC DC Protein Assay Kit, Bio-Rad)

3.3.2.4. Add appropriate volume of preferred loading dye. Keep at room temperature 

for 25–30 minutes. Suggested loading die: 2x Laemmli Sample Buffer (# 1610737)

3.3.2.5. Load equal amounts of protein (suggested: 20 μg) from each sample into the 

wells of a 4% to 15%. SDS-PAGE gel and proceed with electrophoresis for protein 

separation

3.3.2.6. Transfer the protein from gel to a polyvinylidene fluoride membrane

3.3.2.7. Block membrane for 1 hour in Blocking buffer

3.3.2.8. Incubate the membrane overnight with appropriate dilution of the primary 

antibody (HIF 1-α) in blocking solution. Suggested antibody: Human/Mouse/Rat 

HIF-1 alpha/HIF-1A Antibody; (1:1000) R&D Systems, Cat #MAB1536

3.3.2.9. Wash the membrane three times for 5–10 minutes each in TBS-T solution

3.3.2.10. Incubate the membrane with appropriate dilution (suggested 1:8000) of 

the secondary antibody in blocking solution. Suggested antibody: Anti-mouse IgG 

HRP-linked; (1:8000); GE healthcare Lifesciences, Cat# NA931

3.3.2.11. Wash the membrane three times for 5–10 minutes each in TBS-T solution

3.3.2.12. Add preferred chemiluminescent substrate solution (suggested: SuperSignal 

West Dura, ThermoFisher)

3.3.2.13. Acquire image

4. Potential Pitfalls and Trouble Shooting

When hypoxia chamber is being used, cell culture media needs to be pre-equilibrated 

before the start of the experiment, as it may take up to 24 hours for the media to reach 

hypoxic levels (Newby et al., 2005). Variability in oxygenation levels at the beginning of 

the experiment may compromise the reproducibility of results. In addition, reoxygenation 

of cell cultures may occur immediately if the O-ring is compromised, and upon opening 

of the hypoxia chamber, thus, it is imperative that the chamber remains sealed throughout 

the duration of the study and opened only at the collection time. If a time-course study 

is being conducted, the use of additional chambers will be necessary. Ideally, an oxygen 

analyzer or indicator should be placed in the hypoxia chamber to monitor the maintenance 

of hypoxic conditions, such as Forensics Detectors, Model: FD-90A-O2. Sample collection 

should occur as quickly as possible, and samples should be denatured promptly, as oxygen 

sensing may continue to occur even in the cell lysates (Wenger et al., 2015).

If CoCl2 is used to stabilize hypoxia-inducible factor alpha proteins (HIF-1α and HIF-2α), 

a range of concentrations should be tested to establish an effective and non-toxic working 

concentration for your cell type (Rinderknecht et al., 2021). In addition, it is important to 

note that CoCl2 does not entirely mimic cellular response to hypoxia, thus, caution should be 

employed when interpreting the results.
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Figure 1. 
Hypoxia chamber parts (1) Chamber lid; (2) Ring clamp; (3) O-ring; (4) Chamber tray; 

(5) Petri dishes containing sterile water; (6) Inlet tubing with clamp; (7) Outlet tubing with 

clamp.
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Figure 2. 
Schematic protocol for the use of the hypoxia chamber. (1) Open the hypoxia chamber; (2) 

Add petri dishes containing of sterile water to the chamber base; (3) Identify the correct 

position of the chamber tray; (4) Add the chamber tray, making sure it is secured in place; 

(5) Add the cell cultureware containing one of the twin cultures in the chamber; (6) Add 

the chamber lid; (7) Close the chamber ring clamp, ensuring a hermetical closure of the 

chamber; (8) Connect the chamber to the hypoxic gas tank; (9) Open first tubing clamp; 

(10) Open second tubing clamp; (11) Open gas cylinder valve to flush the chamber; (12) 

Adjust the working output pressure gauge to 2 in.Hg pressure using the pressure adjuster 

knob, allowing the chamber to purge for 8 minutes; (13) Turn off gas flow; (14) Quickly 

close tubing clamp 1; (15) Quickly close tubing clamp 2; (16) Disconnect the chamber from 

the gas tank.
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Figure 3. 
Western blot of HIF-1α protein in mouse immortalized cone photoreceptor cell line 661W, 

after 24 hours of incubation in hypoxia chamber (5%Carbon dioxide, 1%Oxygen, balance 

Nitrogen).
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Table 1.

Summary of studies employing low oxygen levels for evaluating optical cells.

Cell/tissue type Species % Oxygen Reference

661W cell line Mouse 0.2% (Kiessling et al., 2022)

661W cell line Mouse 0.5% (Tsui et al., 2013)

661W cell line Mouse 1% (Inoue et al., 2014; Kunimi et al., 2021; Kunimi et al., 2019; N Li 
et al., 2019; N Li et al., 2020; X Liu et al., 2020b; Shelby et al., 
2015; Y Sun et al., 2021; Sweigard et al., 2015; Xu et al., 2019)

661W cell line Mouse 3% (Produit-Zengaffinen et al., 2016)

661W cell line Mouse 5% (J Liu et al., 2020a)

Astrocytes Human 1% (Mense et al., 2006)

Astrocytes Rat <0.7% (Watkins et al., 2013)

Fetal retinal pigment epithelial cells (hfRPE) Human 1% (H Wang et al., 2011)

Fetal retinal pigmented epithelial cells (RPE), 
F-0202

Human 1% (Udono et al., 2001)

induced pluripotent stem cell (iPSC)-derived 
RPE cells (iRPEs) iPSC-RPE

Human 4% (Peters et al., 2022)

Müller cells Rat <0.7% (Watkins et al., 2013)

Müller cells Mouse 1% (N Li et al., 2019; N Li et al., 2020)

Müller glial cell (MGC) line MIO-M1 Human 0%# (Saint-Geniez et al., 2013)

Müller glial cell (MGC) line MIO-M1 Human 1% (Subirada et al., 2022; Y Sun et al., 2021)

Retina (cultured) Monkey 0%* (Nakajima et al., 2006)

Retina (cultured) Rat 0%* (Tamada et al., 2002)

Retinal endothelial cells (HRECs) Human 0.2% (Klee et al., 2020)

Retinal Ganglion Cell (RGC) - Primary Rat 5% (Chen et al., 2007; Yamagishi and Aihara, 2014; Yamagishi et al., 
2011)

Retinal microvascular endothelial cells (RMEC) Rat <0.7% (Watkins et al., 2013)

Retinal pigment epithelial (RPE) cell line 
ARPE-19

Human 0%* (Xie et al., 2021; Zheng et al., 2016)

Retinal pigment epithelial (RPE) cell line 
ARPE-19

Human 0.2% (Klee et al., 2020)

Retinal pigment epithelial (RPE) cell line 
ARPE-19

Human <0.25% (Zhou et al., 2018)

Retinal pigment epithelial (RPE) cell line 
ARPE-19

Human 0.5% (Harned et al., 2014; Sradhanjali et al., 2017; M Sun et al., 2022)

Retinal pigment epithelial (RPE) cell line 
ARPE-19

Human 1% (Arjamaa et al., 2017; Dougherty et al., 2008; Hwang et al., 
2020; Kunimi et al., 2019; Shoda et al., 2020; Takei et al., 2017; 
Tang et al., 2022; Udono et al., 2001; Yoon et al., 2014; J Zhang 

et al., 2015; Zhu et al., 2022)

Retinal pigment epithelial (RPE) cell line 
ARPE-19

Human 2% (Golan et al., 2014)

Retinal pigment epithelial (RPE) cell line 
ARPE-19

Human 3% (Forooghian et al., 2007; Henning et al., 2022)

Retinal pigment epithelial (RPE) cell line D407 Human 1% (Feng et al., 2020; NN Liu et al., 2015; Tang et al., 2022; Udono 
et al., 2001)

Retinal pigment epithelial (RPE) cell line 
HRPEpiC

Human 0.2% (Klee et al., 2020)
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Cell/tissue type Species % Oxygen Reference

Retinal pigment epithelial (RPE) cell line 
hTERT RPE1

Human 1% (Menegakis et al., 2021; Yamamoto et al., 2021)

Retinal pigmented epithelial cells (RPE) Human 1% (Buczek-Thomas et al., 2019; Fuchshofer et al., 2009; Hollborn 
et al., 2018; Kernt et al., 2012; Ma et al., 2012; Rosen et al., 

2015; P Zhang et al., 2009)

Retinal pigmented epithelial cells (RPE) Human 3% (Kurihara et al., 2016)

Retinal pigmented epithelial cells (RPE) Monkey ≤1% (Nakajima et al., 2017)

Retinal pigmented epithelial cells (RPE) Mouse 3% (Kurihara et al., 2016)

Retinal pigmented epithelial cells (RPE) Porcine 2% (Touhami et al., 2022)

Retinal pigmented epithelial cells (RPE) Rat <0.7% (Watkins et al., 2013)

Retinal Cell Line (R28) Rat 0.2% (Y Yang et al., 2022)

Retinoblastoma cell lines (Y79 and Weri-Rb1) Human 0.5% (Sradhanjali et al., 2017)

Retinoblastoma cell lines (Y79 and Weri-Rb1) Human 1% (Q Yang et al., 2017)

*
Treatment described as 95% N2 and 5% CO2

#
Treatment described as complete deprivation of oxygen or anoxia
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Table 2.

Examples of 23.793 mM CoCl2 stock solution dilutions into 10 mL of cell culture media.

Desired final CoCl2 concentration (μM) Stock Volume (μL) Stock concentration Final cell culture media volume

50 21.01

23.793 mM 10 mL

100 42.03

200 84.06

250 105.07

300 126.09

350 147.10

400 168.12

500 210.15

600 252.18
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Table 3.

Summary of studies employing cobalt chloride to induce hypoxia in optical cells.

Cell type Species Dose Reference

661W cell line Mouse 200 μM (Kunimi et al., 2019; Lee et al., 2020)

661W cell line Mouse 300 μM (Rodriguez et al., 2021)

Endothelial cells Human 150 μM (Jiang et al., 2021)

Müller cells Rabbit 250 mM (Lu et al., 2013)

Müller cells Rat 500 μM (X Zhang et al., 2012)

Müller glial cell line MIO-M1 Human 250 μM (Ahmad et al., 2021)

Müller glial cell line MIO-M1 Human 300 μM (Abu El-Asrar et al., 2021)

Müller glial cell line MIO-M1 Human 75 μM - 500 μM (Subirada et al., 2022)

Retina Mouse 200 μM (Y Wang et al., 2017)

Retina Porcine 300 μM (Mueller-Buehl et al., 2021 ; Tsai et al., 2020)

Retinal endothelial cells (HRECs) Human 200 μM (Long et al., 2019)

Retinal Ganglion Cell (RGC) - Primary Rat 100 μM (Youale et al., 2022)

Retinal microvascular endothelial cells (HRMECs) Human 300 μM (Abu El-Asrar et al., 2022)

Retinal Müller glial cells Human 300 μM (Abu El-Asrar et al., 2022)

Retinal pigmented epithelial cells (RPE) Human 100 μM (Ma et al., 2012)

Retinal pigmented epithelial cells (RPE) Human 100 – 350 μM (Alivand et al., 2016; Alivand et al., 2017)

Retinal pigmented epithelial cells (RPE) Human 150 μM (Hollborn et al., 2018; Rosen et al., 2015)

Retinal pigmented epithelial cells (RPE) Human 200 μM (ZX Zhang et al., 2011)

Retinal pigmented epithelial cells (RPE) Human 8 mM, 12 mM (Cheng et al., 2019)

Retinal pigmented epithelial cells (RPE) Mouse 200 μM (YQ Wang et al., 2010)

Retinal pigment epithelial (RPE) cell line ARPE-19 Human 10 – 1000 μM (Guerra et al., 2021)

Retinal pigment epithelial (RPE) cell line ARPE-19 Human 50 – 300 μM (Y Wang et al., 2016)

Retinal pigment epithelial (RPE) cell line ARPE-19 Human 100 μM (Du et al., 2013; Hwang et al., 2020; Sant et al., 2018)

Retinal pigment epithelial (RPE) cell line ARPE-19 Human 100 – 1000 μM (Chang et al., 2017)

Retinal pigment epithelial (RPE) cell line ARPE-19 Human 150 μM (Alzhrani et al., 2017; Lai et al., 2017; Veltmann et al., 
2016)

Retinal pigment epithelial (RPE) cell line ARPE-19 Human 200 μM (Bahrami et al., 2019; Ibuki et al., 2020 ; Kunimi et al., 
2019; Shoda et al., 2020; Takei et al., 2017; H Zhang et 
al., 2020; Y Zhang et al., 2018; Zhao et al., 2015; Zhu et 

al., 2016)

Retinal pigment epithelial (RPE) cell line ARPE-19 Human 200 – 800 μM (Gu et al., 2021)

Retinal pigment epithelial (RPE) cell line ARPE-19 Human 300 μM (Zheng et al., 2016)

Retinal pigment epithelial (RPE) cell line ARPE-19 Human 600 μM (Zhou et al., 2018)

Retinal pigment epithelial (RPE) cell line ARPE-19 Human 600 μM (KR Li et al., 2013)

Retinal pigment epithelial (RPE) cell line ARPE-19 Human 8 mM (Cheng et al., 2019)

Retinal pigment epithelial (RPE) cell line hTERT 
RPE1

Human 25 – 75 μg/mL (Qiao et al., 2021)

Retinal pigment epithelial (RPE) cell line hTERT 
RPE1

Human 75 μg/mL (Qiao et al., 2021)
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Cell type Species Dose Reference

Retinal Cell Line (R28) Human 0.5 mM (Thakur et al., 2021)

Retinoblastoma cell lines (Y79 and Weri-Rb1) Human 50 – 400 μM (Q Yang et al., 2017)

Retinoblastoma cell lines (Y79 and Weri-Rb1) Human 100 – 300 μM (Sradhanjali et al., 2017)
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