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ABSTRACT
Carcinoembryonic antigen (CEA) is a glycosylated cell surface oncofetal protein involved in adhesion, 
proliferation, and migration that is highly upregulated in multiple carcinomas and has long been 
a promising target for cancer vaccination. This review summarizes the progress to date in the develop-
ment of CEA vaccines, examining both pre-clinical and clinical studies across a variety of vaccine 
platforms that in aggregate, begin to reveal some critical insights. These studies demonstrate the ability 
of CEA vaccines to break immunologic tolerance and elicit CEA-specific immunity, which associates with 
improved clinical outcomes in select individuals. Approaches that have combined replicating viral 
vectors, with heterologous boosting and different adjuvant strategies have been particularly promising 
but, these early clinical trial results will require confirmatory studies. Collectively, these studies suggest 
that clinical efficacy likely depends upon harnessing a potent vaccine combination in an appropriate 
clinical setting to fully realize the potential of CEA vaccination.
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Introduction

CEA association with cancer and function

Carcinoembryonic antigen (CEA) is a 200kD glycoprotein first 
identified in the embryonic endodermal epithelium and was 
initially reported to be detectable in colon cancer cells by Gold 
and Freeman in 1965.1,2 The expression of this protein is 
elevated in various malignancies such as colorectal and medul-
lary thyroid cancer, and a subset of breast, mucinous ovarian, 
gallbladder, pancreas, gastric, and lung cancers. However, it is 
not a definitive marker of a particular site for cancer origin.3,4 

CEA is involved in cellular adhesion and belongs to the immu-
noglobulin family called CEA-related cell adhesion molecules 
(CEACAMs), being designated CEACAM5.5 A variety of stu-
dies have determined that CEA can aid in the adhesion, pro-
liferation, and migration of cells both in vivo and in vitro.6 

CEA also functions in suppressing anoikis, potentially related 
to its endoluminal expression and adherence function, which 
likely aids in tumor pathogenesis.4,7,8 Moreover, CEA is 
a glycophosphatidylinositol- (GPI-) linked membrane- 
anchoring protein exposed to the cell surface that can be 
released,9 allowing for the formation of immune complexes 
with induced antibodies or the ability to neutralize the efficacy 
of therapeutic CEA-specific antibodies.

CEA as a biomarker and target for cancer therapy

Given its elevated expression in cancer and secretion by cancer 
cells, CEA has been extensively investigated as a biomarker for 
multiple cancers, using a variety of different techniques.10 In 
colorectal cancers, persistent elevation of circulating CEA after 

colorectal surgical resection is associated with worse survival.11 

Likewise, metastatic disease in breast and colon cancer is 
indicated by serum titers greater than 20 µg/L.12 Serum CEA 
levels are also used to monitor for disease progression in 
medullary thyroid and colon carcinomas and may be used if 
found to be elevated in other cancers (e.g., non-small cell lung 
cancer).13–15 Thus, while not specific to a particular cancer, 
elevated CEA expression is highly associated with tumor bur-
den for multiple cancers and predictive of clinical outcome, 
thus a potent and validated tumor associated antigen (TAA) 
present in both primary and metastatic cancer cells.4

While not the focus of this review, CEA has also been 
targeted by immunologic but non-vaccine-based approaches. 
Early approaches involved radiolabeled anti-CEA antibody, 
but responses were limited perhaps due to anti-drug antibo-
dies against the chimeric portion of the antibodies.16 The 
antibody drug conjugate tusamitamab ravtansine 
(SAR408701) has reported to medate clinical responses in 
high expressers of CEACAM5 (CEA) in a phase I study17 

and is now in three phase III studies as monotherapy or in 
combination with other anti-cancer therapies in lung cancer 
patients.

CEA as a target for vaccines

Due to its elevated expression on the surface of multiple 
cancers, as well as its clinically predictive value, CEA has 
long been regarded as an excellent target for cancer therapies. 
However, as a TAA, CEA is also expressed in different normal 
tissues throughout the body, and thus, there may possess 
a significant degree of immune tolerance. Furthermore, even 
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if tolerance can be overcome by potent vaccine technologies, 
there is a greater risk that an autoimmune adverse event might 
occur. Hence, the goal is to generate a relevant immune 
response to tumor associated CEA without inducing autoim-
munity. Historically, the goal of CEA-based vaccines has been 
to activate and expand CD8+ CTLs against CEA-bearing can-
cer cells and to this end, a majority of studies have focused on 
CD8+ T cell responses.18,19 Indeed, using genetically engi-
neered murine models that express human CEA, it has been 
demonstrated that vaccines can overcome immune tolerance 
and elicit immune responses against tumors expressing CEA 
without causing bowel toxicity.20,21

Different CEA vaccine platforms

In the history of modern vaccinology, a variety of different 
platforms have been developed, which offer distinct advan-
tages and disadvantages in regard to immunogenicity, off- 
target immune responses, safety, scalability, and ease of pro-
duction. As CEA has been a vaccine target in cancer for several 
decades, a variety of different vaccine platforms have been 
employed to target this antigen, broadly including protein/ 
peptide, DNA, viral vector, dendritic cell, and exosome-based 
vaccines, each with their unique mechanisms and advantages. 
We will describe a number of different vaccine platforms that 
have been employed to target CEA, as well as review the pre- 
clinical and clinical outcomes of these studies.

Pre-clinical CEA protein and peptide-based vaccines

Initial strategies utilized to elicit immunity against CEA 
involved the use of proteins and CEA-specific peptide vac-
cines. In an early study, Salgaller et al. utilized a baculovirus 
system to express a full-length human CEA (bV-CEA) protein, 
which was recognized by 24 different anti-CEA monoclonal 
antibodies.22 Immunization with bV-CEA using an adjuvant 
consisting of a cationic liposome formulation (DOTAP) led to 
preventative anti-tumor immunity against CEA expressing 
colorectal cancer cells (MC38-CEA-2) in mouse models.23 

Similarly, administration of CpG-ODN with a Tat-CEA fusion 
protein also led to preventative anti-tumor immunity against 
MC38-CEA-2 tumor cells. This study also documented an 
increase in CEA-specific IgG2A responses, as well as CEA- 
specific cytotoxic T-lymphocyte response.24 To enhance CEA 
protein responses, other investigators have utilized exosomal 
delivery from heat stressed CEA+ tumor cells, which led to 
enhanced DC maturation and increased CEA-specific CTL 
response.25 While demonstrating the potential to elicit anti- 
CEA responses, the purification of proteins (or exosomal pre-
parations) imposes limitations that may be circumvented by 
focusing on specific CEA peptide vaccines.

As an alternative to protein-base vaccines, CEA peptides are 
easier to manufacture and have a long safety record in admin-
istration, as well as an ability to specifically target immunodo-
minant epitopes. However, this approach restricts the ability to 
target many epitopes, is often restricted to certain HLA hap-
lotypes (most generally HLA-A2+) and has often been char-
acterized by poor immunogenicity.26 To combat these 
limitations and identify immunogenic epitopes, a study 

conducted by Huarte et al found that selective replacements 
of amino acids were able to enhance the immunogenicity of 
CTL epitopes from CEA when used in peptide-based vaccine 
in HLA-A2Kb-transgenic mice.27 In a subsequent study, 
immunization with an altered HLA A2 restricted peptide epi-
tope of CEA (called CAP-1(6D) (YLSGADLNL, with Asn at 
position 6 replaced by Asp) was found to enhance the induc-
tion and activation of T cells that could recognize the native 
peptide.22–24 This CEA peptide was thought to enhance 
responses by up-regulating the lymphotactin gene, thought to 
aid in T-cell activation.28–31 Additionally, modified CEA ago-
nist and antagonist peptides have also been described, com-
posed of peptides that have mutations to enhance their 
immunogenicity alone or in combination with GM-CSF, IL- 
4, ICAM-1, LFA3, B7.1, B7.2, IFNγ, or TNFα. CEA peptide 
immunogenicity has also been enhanced through the conjuga-
tion to helper peptides or large carrier molecules, such as 
tetanus toxoid, poly-L-lysine, Pseudomonas exotoxin A (US 
Patents US20070048860, US20100209386).

Clinical CEA protein and peptide-based vaccines

Many of the earliest clinical trials of CEA vaccines, involved 
the use of CEA protein and peptide immunization.32 In one 
early Phase I trial, recombinant baculovirus produced human 
CEA was administered either alone or in combination with 
GM-CSF to a group of 18 patients that had colorectal carci-
noma (CRC) without macroscopic disease after surgery. 
Notably, all patients in the GM-CSF group had a strong CEA- 
dose-dependent IgG antibody response and a strong T cell 
response to CEA as compared to only three in the CEA alone 
group that produced a weak antibody response and a weak 
T cell response.33 A dose ranging study of this approach was 
conducted in 24 CRC patients immunized with CEA alone or 
CEA with GM-CSF. This study noted the induction of strong 
anti-CEA specific T cell response in a group that received CEA 
plus GM-CSF and a strong anti- CEA IgG antibody response. 
However, no dose response relationship was noted with CEA 
protein levels. It was noted that high anti-CEA antibody titer 
also led to longer survival.34 Subsequent analysis also revealed 
that CEA-specific IgA responses were cytotoxic and associated 
with a long-term survival benefit.35 These studies have docu-
mented the ability of CEA proteins and peptides, in conjunc-
tion with different adjuvant strategies, to break tolerance and 
elicit CEA-specific adaptive immunity. While some studies 
have also suggested some survival benefits, these have been 
restricted to select patients in early phase trials.

DNA based CEA vaccines

As with protein-based vaccines, DNA vaccines have been 
tested in many settings to induce immunity against CEA. 
Using a transgenic mouse model tolerant to human CEA, 
Luo et al. illustrated that a CEA plasmid vaccine formulated 
into cationic microparticles with GM-CSF could break toler-
ance and elicit CEA-specific anti-tumor responses capable of 
rejecting CEA tumors in 50% of mice.36 Another strategy 
utilized a plasmid encoding a truncated form of CEA fused 
to a tetanus toxoid epitope to improve antigen presentation 
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(pKCEA66), which resulted in stronger IgG1 and cell- 
mediated responses compared to non-modified CEA plasmid 
vaccination. Secondary studies confirmed these findings and 
also demonstrated that boosting plasmid CEA vaccines with 
recombinant CEA immunizations induced a significant 
increase in humoral anti-CEA Ab response in mice.37,38 

These studies also demonstrated that adaptive anti-CEA 
responses were capable of protecting mice against CEA 
tumor growth in preventative vaccine settings.37 In another 
study a plasmid DNA vaccine was designed that expressed 
a triple repeated CEA peptide that was capable of eliciting 
significant induction of anti-CEA antibodies were observed.39 

Other approaches to enhance plasmid vaccine immunogeni-
city have utilized co-injection of plasmids encoding soluble 
B7.1/IgG Fc fusion protein to induce more potent CEA- 
specific immunity.40 This approach was found to augment 
CEA plasmid vaccination to enhance the induction of CD8+ 
T cells and protect against CEA+ cancers.41 Parallel 
approaches to enhance CEA-specific responses have used co- 
expression from plasmids of strong adjuvant cytokines. Most 
notably, co-expression of IL-12 from plasmid vaccination has 
been demonstrated to elicit stronger anti-tumor effects and 
protection from CEA+ lung cancer cells, as well as greater 
CEA-specific antibody and T cell responses. In this study, 
intramuscular injection of these plasmids led to 80% protec-
tion of mice against CEA+ tumor challenge.42 Other studies 
have used co-expression of GM-CSF or recombinant GM-CSF 
with CEA, demonstrating that this combination produced 
better cellular and humoral responses than mice immunized 
with CEA-DNA alone, as well as protection against MC38- 
CEA-2 cells.40 Finally, an advantage to plasmid is the ability to 
utilize homologous boosting strategies as another means to 
enhance responses. In one study, intradermal immunization 
using a CEA expressing plasmid was significantly enhanced by 
homologous late boosting using electroporation of a CEA 
plasmid, leading to a 10-fold increase in CD8+ T cells and 
enhanced CEA-specific IgG responses compared to CEA pro-
tein boosting strategies.43 Additionally, in studies using tar-
geted therapies such as Sunitinib, a multitargeted receptor 
tyrosine kinase inhibitor that decreases T-regs and MDSCs 
and increase INFγ-producing T cells it was found that combi-
nation Sunitinib with a viral vaccine encoding CEA decreased 
the tumor volume in a mouse model.44,45

These CEA encoding DNA vaccines were delivered by 
intramuscular or intradermal injection of large quantities of 
CEA plasmid. In contrast, some studies have utilized oral 
immunization of CEA DNA plasmids using a Salmonella 
typhimurium (SL7207) bacteria carrier. Using transgenic 
CEA mice, investigators have demonstrated that oral admin-
istration of a CEA vaccine (fused with human CD40L) in 
Salmonella was effective in breaking peripheral T cell tolerance 
against human CEA and capable of inducing tumor protective 
immunity against MC38-CEA tumor challenge, associated 
with activation of CD8 T cells and DCs.46,47 The use of 
Salmonella-CEA DNA oral vaccination also demonstrated 
anti-tumor protection against pulmonary CEA+ metastases.47 

Additionally, to improve efficacy of oral vaccines, researchers 
have combined fusion protein of human IL-2 and Fc fragment 
of human IgG1 with oral CEA-based DNA vaccines.48,49 These 

studies utilized boosting with a fusion IL-2 protein to augment 
T cell responses and enhance anti-tumor immunity against 
CEA. Collectively, these studies have documented the potential 
of CEA plasmid vaccines to elicit immunity, although they 
have required additional adjuvant strategies and have typically 
been found to elicit preventative immunity against CEA+ 
cancer, instead of therapeutic treatment against established 
CEA+ tumors.

Clinical studies of DNA-based and RNA-based CEA 
vaccines

In 2002, a Phase I clinical trial evaluated the safety and 
immunogenicity of a DNA vaccine construct consisting of 
CEA and hepatitis B surface antigen in 17 patients with 
metastatic colorectal cancer. While the vaccine was well tol-
erated, 12 patients had progressive disease and five had stable 
disease. CEA-specific antibodies were not observed, but lym-
phoproliferative responses to CEA were detected in 4 of 17 
patients.50 Based on previous pre-clinical studies using 
pKCEA66 (truncated CEA fused with tetanus toxoid), 
a phase I trial was conducted in 10 post-resection colorectal 
cancer patients, which had stage II or III cancers. In this 
study, patients were divided into two groups, receiving three 
cycles of intradermal or intramuscular injections of 
pKCEA66 after receiving systemic chemotherapy and GM- 
CSF treatments. These vaccines were well tolerated and 
encouragingly, 8/10 patients had no evidence of disease 
upon follow-up.51–53 In a similar approach, CEA mRNA 
was produced from plasmids encoding multiple tumor asso-
ciated antigens (MUC1, CEA, Her-2/neu, telomerase, survi-
vin, and MAGE-A1) and injected with GM-CSF in a phase 
I-II study in renal carcinoma patients. This study tested two 
vaccine doses (20ug and 50ug) in 30 patients, finding that 6 
patients in one group and 9 in the higher dose group had 
stable disease with induction of CD4+ and CD8+ T cell 
responses.54 In an exploratory phase I/II trial of an anti- 
CEA DNA fusion-vaccine encoding pDOM-CAP-1 in 
patients with CEA-expressing cancers it was found that the 
vaccine was well tolerated and there was an 86% reduction in 
risk of death.55 In another study of vectored DNA-based 
vaccines it was found that GI-6207, a promising agent 
based on a heat-killed Saccharomyces cerevisiae strain geneti-
cally modified to express CEA was determined to be safe and 
displayed a degree of efficacy in patients with CEA- 
expressing carcinomas.56

Viral CEA vaccine platforms

In contrast to protein, peptide, and DNA/RNA vaccines, 
a large variety of different viral vector vaccines have been 
employed in developing and testing CEA vaccines. In general, 
these viral vectors capitalize on the natural infection machin-
ery of viruses to deliver antigens and stimulate robust immune 
responses, but may have limitations in eliciting off-target vec-
tor-specific effects. This may include a more limited ability to 
use homologous boosting to amplify CEA-specific responses, 
as well as be less amenable to scaling for clinical manufacture. 
However, many of these vectors have been successfully used in 
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the clinical and offer strong potential to elicit CEA-specific 
adaptive immune responses.

Vaccinia backbone CEA vaccines

In 1992, one of the first viral vector CEA vaccines was 
developed using a modified vaccinia backbone (New York 
strain), which had been used as a smallpox vaccine in 
humans. Vaccination with rV (NYC)-CEA was found to 
protect against CEA tumor implantation and suppress the 
growth of established CEA expressing tumors in mice.57 

This vaccine was also found to elicit responses against CEA 
in nonhuman primates, as well as demonstrate an accep-
table safety profile. Moreover, these vectors have also been 
utilized to generate CEA cancer cell vaccines, which proved 
to be more immune-stimulatory in comparison to retro-
viral vectors.58,59 These studies led to a Phase I clinical trial 
I 1995 using a recombinant vaccinia-CEA in metastatic 
cancer patients.60 While no clinical anti-tumor effects 
were reported, cytolytic CEA-specific T cells were 
expanded after vaccination in contrast to an inability to 
expand these cells in pre-immunized PBMCs, suggesting 
that vaccination was able to overcome some forms of 
immune tolerance to expand CEA-specific T cell popula-
tions in patients.60

ALVAC backbone CEA vaccines

A potential drawback in using vaccinia vectors is their 
documented immunogenicity which limits their serial 
boosting capacity. In contrast, the attenuated canary pox 
recombinant vector, ALVAC, only replicates in avian cells 
and expresses transgene products for 14 to 21 d, without 
infecting other cells.18,19,59 In 1997, an ALVAC-CEA vector 
was developed and demonstrated to have antitumor activ-
ity in immune competent mice.61 Based on these results, 
a Phase I dose escalation trial of ALVAC-CEA was 
initiated of patients with advanced cancers with CEA 
serum levels >10 ng/ml or having a positive CEA tumor 
by IHC. The study incorporated three ALVAC-CEA injec-
tion (spaced 4 weeks apart) and did not record any adverse 
toxicities.18 While only one patient displayed normalization 
of CEA levels without disease progression for 15 months, 
all patients (regardless of dose level) showed increased CTL 
precursor frequencies. As this trial demonstrated safety but 
did not demonstrate significant antitumor activity, a dual 
gene vector ALVAC (expressing CEA and B7.1) was devel-
oped to enhance anti-tumor responses. This vaccine was 
used in a clinical study of 39 patients with advanced or 
metastatic CEA+ carcinomas.59 These patients all received 
four total intradermal ALVAC-CEA-B7.1 injection of 4.5 ×  
108 pfu (every 2 weeks) with stable disease patients (at 8  
weeks) given boosts at 4 weeks. Patients with stable disease 
at 8 weeks were given boost injections every 4 weeks and 
reevaluated subsequently every 8 weeks. The treatment did 
not elicit adverse events and 8 of 30 (~27%) patients had 
stable disease, while 17 of 30 (~57%) patients had declines 
in serum CEA. However, the majority of patients 

eventually experienced rising serum CEA levels and immu-
nologic responses were found to be less likely in patients 
with chemotherapy pretreatment, suggesting that vaccine 
needed to be used in patients with minimal disease.59

Adenoviral backbone CEA vaccines

Other well-developed viral vaccine systems are based on 
adenoviral vectors, which allow for strong transgene 
expression with immune stimulation to target different 
cancer antigens. In early studies, 1st generation [E1, E3-] 
adenoviral serotype 5 (Ad5) vectors were developed and 
demonstrated the ability to simulate immunity against 
CEA in mouse models.62,63 Given the ubiquitous nature 
of immunity against this serotype in humans, other groups 
have developed CEA adenoviral vectors based on 
a chimpanzee serotype 3,64 as well as 2nd generation ade-
noviral vectors [E1, E2b-, E3-] that permit the induction of 
CEA immunity, despite the presence of preexisting Ad5 
immunity.65 This vector was utilized in an escalating dose 
Phase I/II clinical trial where CEA-specific T cell responses 
were induced in the majority of patients (~61%), without 
an impact from preexisting immunity against Ad5.66 As 
another means to enhance CEA-specific immune 
responses, adenoviral CEA expression was modified by 
fusion to exosomal targeting sequences to traffic CEA to 
lysosomes, which resulted in enhanced CEA-specific T cell 
responses in pre-clinical models.67 Other approaches have 
used CEA fusion with the minimized domain of tetanus 
toxin fragment C (Ad/CEA-DOM) or the B subunit of the 
heat-labile enterotoxin (Ad/CEA-LTB) to enhance CEA- 
specific CTL responses and anti-tumor action after adeno-
viral vaccination.68,69 Finally, other studies have combined 
Ad-CEA vaccines with anti-PD1 immune checkpoint inhi-
bitors, suggesting a potential clinical path forward in the 
use of CEA vaccines in advanced immunosuppressive 
cancers.70

Adeno-associated viral vector vaccines

Recombinant adeno-associated virus vector (rAAV) may be 
a promising vaccine vector as compared to adenoviral, lenti-
viral, and retroviral vectors due to rAAV not integrating into 
host genome and its anti-oncogenic properties against human 
papillomavirus (HPV)-induced carcinogenesis.71–73 In one 
study, effective delivery of CEA through rAAV with GM-CSF 
adjuvant helped improve immune infiltrates into vaccine site 
and helped provide antigen-specific anti-tumor response.5 In 
another study, co-administration of TLR agonists and AAV2 
encoding CEA led to antitumor response against MC38 cells in 
mice with colon cancer.74 In a phase I trial, patients were 
administered CTLs that had been activated by DCs that had 
previously been transduced with AAV2 vectors carrying CEA. 
These patients had failed to response to standard treatment. In 
the 25 patients, 2 showed partial remission, 10 showed stable 
diseases, and 13 had progressive disease, with a resulting mean 
progression-free survival of 3.1 months.75
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Anti-idiotype antibody-based vaccines

Anti-idiotype antibodies have also been used to induce TAA- 
specific humoral responses. In one study a monoclonal anti-Id 
antibody named 3H1 that mimics a specific epitope of human 
CEA was developed. When used as a tumor vaccine against 
CEA in murine cancer models it showed high titers of anti- 
CEA antibodies and protection of mice against MC38-CEA 
cells. Additionally, when CpG oligodeoxynucleotides (CpG- 
ODN) were used as an adjuvant, stronger anti-tumor 
responses were noted.76–78

In another study, a mouse anti-Id antibody was produced 
that mimics CEA. While this antibody did not display striking 
immunogenicity, modified of this antibody (patent: 
US200502– 22392) allowed for strong induction of CEA- 
specific immunity79 Additionally, a fusion protein composed 
of a single chain variable fragment of an anti-Id antibody 
mimicking an epitope specific for human CEA (scFv6G6.C4) 
and mGMCSF were observed to overcome tolerance in CEA- 
transgenic mice. In C57BL/6 mice that were immunized with 
fusion protein there was a stronger anti-CEA antibody 
response to both scFv6G6.C4 and CEA than mice immunized 
with scFv6G6.C4 alone.80 In a similar manner another group 
developed an anti-Id scFv isolated from an anti-Id monoclonal 
antibody (6.C4) that mimicked CEA. This scFv mimicked CEA 
and was able to stimulate a humoral response against CEA in 
BALB/c mice.81 In another study when Tetanus Toxin 
Fragment C (FrC) was added as an adjuvant, it led to preven-
tion of tumor growth in mice challenged by MC38-CEA 
cells.82 The same group also tested IFN-γ and GM-CSF were 
as adjuvants. Addition of IFN-γ led to higher CD4+ and CD8+ 
responses and 80% of mice immunized with vaccine plus 
adjuvant did not develop tumors or delayed growth of 
tumors.83 In another study, scFv6.C4 expressing plasmid vec-
tor (uP/PS-scFv6.C4) was used in mice expressing CEA 
coupled with electroporation. Mice immunized with the uP 
empty vector died within 40 d, but uP/PS-scFv6.C4 vaccinated 
mice (40%) remained free of tumor for more than 100 d.84

Self-replicating RNA CEA vaccines

Another vector system that promises to enhance immune 
responses through a combination of replication and homolo-
gous boosting potential is that of self-replicating RNA 
vaccines.85 In this platform, positive strand RNA viruses act 
as the template where the structural protein genes are replaced 
with genes of interest, while structural proteins provided in 
trans (not packaged into the replicon) create single cycle viral 
replicon particles (VRPs). Alphaviruses such as Venezuelan 
Equine Encephalitis (VEE) serve as the vector for these 
VRPs.85 Using a VRP-CEA, a dose escalation phase I clinical 
trial was performed in 28 patients with advanced CEA+ can-
cers (Stage III and IV) that demonstrated an ability to induce 
clinically relevant CEA-specific T cell and antibody responses, 
in spite of elevated levels of T regulatory cells.86 Notably, long- 
term follow-up of patients vaccinated with these vectors (med-
ian time >10 y) revealed that all patients demonstrated the 
presence of CEA-specific humoral immunity with 10/12 
(with Stage III CEA+ cancers) having an increase in CD8+ 

effector memory T cell responses. While ~17% of Stage IV 
CEA+ patients were alive at 5 y, all patients with Stage III 
cancer were alive. While a limited number of patients, CEA- 
specific vaccination demonstrated some potential clinical ben-
efit, especially in advanced cancers that have not metastasized. 
To potentially enhance these responses, IL-12 was included in 
VRP-CEA vaccines, which were tested pre-clinically to assess 
the potential anti-tumor effect.87 These studies demonstrated 
the induction of CEA-specific immunity was enhanced by 
local IL-12 expression, as well as anti-tumor efficacy.

CEA vaccine combinations

Given the lack of efficacy with single vaccinations, hetero-
logous boosting using different backbone CEA vaccines has 
also been tested. In a pre-clinical study demonstrating het-
erologous boosting, a CEA expressing DNA prime vaccine 
was combined with an adenoviral-boosting vaccine to docu-
ment enhanced immunity against CEA+ prostate cancer cell 
challenge, with reduced tumor growth and prolonged survi-
val compared to immunization with a single modality.88 In 
another study, a rV-CEA viral vaccine prime was followed by 
CEA protein immunization that led to enhanced immunity 
and anti-tumor activity in mice, greater than either vaccine 
alone.64 Many other approaches have used heterologous vac-
cine combinations to stimulate CEA immunity. In one early 
study, an rV-CEA priming vaccine was successfully boosted 
by ALVAC-CEA to elicit a nearly 4 times greater CEA- 
specific lymphoproliferation response and anti-tumor 
responses, against MC38-CEA tumor challenges in mice.61 

This approach was subsequently employed clinically in 
a Phase I trial of 18 patients with CEA+ carcinomas.89 In 
this trail, all patients received a priming dose of rV-CEA with 
half patients receiving boosting doses (3 immunizations at 
4-week intervals) of ALVAC-CEA. No toxicities were 
observed and greater induction of CEA-specific T cell fre-
quencies were observed in the boosting group, although no 
objective antitumor responses were observed.89 This trial was 
then expanded into a Phase I/II trial by adding GM-CSF and 
IL-2 to the vaccine combination.90 While only nine patients 
were enrolled, those that received GM-CSF (but not GM-CSF 
+IL-2) demonstrated significantly higher T cell counts in 
comparisons to those that had also received IL-2.90 To 
further improve responses, additional immune stimulatory 
genes were incorporated into these vaccines, such as B7.1, 
ICAM-1, and LFA-3 (known as TRICOM) to enhance T cell 
co-stimulation.91 Pre-clinical studies using rV-CEA- 
TRICOM and a replication-defective avipox (rF-CEA- 
TRICOM) found that TRICOM vector elicited enhanced 
CEA-specific T cell responses, while the addition of GM- 
CSF and IL-2 enhanced anti-tumor efficacy in pre-clinical 
models.92 Based on these studies, a Phase I clinical trial was 
initiated using rV-CEA-TRICOM and rF-CEA-TRICOM 
vectors in 56 patients with a variety of CEA+ tumors. 
Patients were randomized to eight different groups to assess 
different vector boosting combinations with or without GM- 
CSF. The vaccines were well tolerated, although one patient 
experienced abdominal pain that required hospitalization. 
A majority of patients had CEA-specific T cell responses 
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over baseline, although several had evidence of these 
responses prior to vaccination. Notably, in 40% of patients 
had stable disease with ~ 25% having prolonged stable disease 
(>6 months) and 1 patient having a complete pathologic 
response.93 In another phase I clinical trial evaluating the 
combination of GM-CSF and IFN-α with the novel anti- 
CEA vaccines (rV-CEA(6D)-TRICOM and rF-CEA(6D)- 
TRICOM) it was found that stable disease was observed in 
24% of patients and no partial responses. Overall survival was 
significantly increased with the addition of IFN-α-2b to the 
treatment regimen.94 Other studies have included additional 
targets in combination with CEA, such as mucin-1 (MUC-1), 
in identical rV/rF-CEA/MUC-1 vector95 to improve anti- 
tumor immune targeting or have incorporated Brachyury 
and MUC-1 into vaccines, alongside CEA.96,97 Likewise, stan-
dard-of-care modalities such as chemotherapy or T cell aug-
menting strategies, such as PD-1/PD-L1 blockade have also 
been utilized to enhance CEA vaccine efficacy in early clinical 
trials.98 In a study conducted in metastatic colorectal cancer 
(mCRC) patients with MMR proficient tumors that do not 
respond to immune checkpoint inhibition, it was found that 
a combination of avelumab (Av) + CEA-targeted adenoviral 
vaccine (Ad5) + standard of care (SOC) mFOLFOX6 + beva-
cizumab had synergistic anti-tumor activity.98,99

Dendritic cell vaccines

A different CEA vaccine strategy has employed ex vivo- 
generated dendritic cells (DCs), professional antigen present-
ing cells, loaded with CEA before re-infusion as a cellular 
vaccine. In early studies, DCs were pulsed with a CEA-Hsp70- 
like protein 1 (CEA-Hsp70L1) fusion protein ex vivo which 
promoted DC maturation and induction of CTLs after infu-
sion in to mice.100–102 Other studies have delivered mRNA into 
DCs encoding a different CEA fusion protein (CRT-TAT- 
CEA) to enhance CEA-specific immunity.103 Immunization 
with these DCs enhanced CD4 and CD8 T cell responses and 
suppressed MC38-CEA engraftment and tumor growth.104 

CEA mRNA transduction of DCs was utilized in a Phase II 
study that demonstrated the induction of CEA-specific immu-
nity, although progression of disease occurred in the majority 
of patients.105 CEA epitopes were also used to pulse DCs in 
combination in combination with a monoclonal antibody 3H1 
to improve CD4+ T-helper and CTL responses against MC38- 
CEA tumor cells.106 In addition to protein, peptide and mRNA 
pulsing strategies, viral vectors have also been used to trans-
duce DCs ex vivo as a cellular vaccine. In initial studies, DCs 
were transduced with recombinant adenoviral vectors (Ad- 
CEA), which led to activation of CEA-specific T cells and 
suppressed MC38-CEA tumor growth.107 Improving upon 
this strategy, Ad vectors encoding a combination of CEA, GM- 
CSF, and IL-12 or survivin (SVV) also generated potent CEA- 
specific immunity that translated into significantly more 
impactful anti-tumor responses.108 Clinical studies have also 
utilized DCs transduced with different viral vectors. Using rV- 
CEA, DCs were transduced and delivered in combination with 
a Treg depletion strategy in a Phase II clinical trial that demon-
strated enhanced CEA-specific immunity in combination 
treatment groups.109 In another study using mouse induced 

pluripotent stem cell (iPSC)-derived dendritic cells (miPSDCs) 
transduced with full-length CEA cDNA it was observed that 
there was strong cytotoxic activity against CEA-positive target 
cells in a CEA transgenic mouse model. This strategy was 
observed to overcome the weaknesses of previous DC-based 
vaccine strategies with regard to sufficient numbers.110 While 
DC vaccines have further demonstrated the potential of CEA- 
based vaccines, the challenge of producing personalized DCs 
in a clinical setting may limit their widespread utilization, 
especially in light of more robust RNA-based vaccine 
platforms.

Nanoparticle based delivery system of vaccines

Nanoparticles have the ability to modulate immune responses 
and heighten protective immunity and hence represent 
a promising adjuvant as well as a delivery system.111–113 

Similarly, exosomes which are a class of bi-layered membrane 
vesicles that are present in blood, saliva, and breast milk can be 
used as vaccine candidates due to their stability, vascular perme-
ability, biodistribution, and solubility.114 In colorectal cancer 
patients it has been speculated that extraction of exosomes from 
effusions and activation of immune responses by exosomes pro-
duced in ascites (Aex) might be a source of therapeutic interven-
tion. Aex has been observed to activate CD8+ CTLs and possibly 
induce antitumor immunity to CEA. Exosomes generated by 
heat-stressed CEA-positive tumor cells were found to initiate 
and increase an HLA-A *0201-restricted and CEA-specific CTL 
response.115 Additionally, when Aex was co-administered with 
GM-CSF better CEA-specific CTL responses and HLA-A *0201 
restriction was observed as compared to Aex alone.116,117

Discussion

To date, there have been no therapeutic cancer vaccines target-
ing CEA that have received US marketing approval from the 
FDA. For example, a Phase III trial investigating PANVAC- 
CEA in pancreatic cancer was initiated in 2006 (NCT00088660), 
but this trial did not reach its endpoint and its results remain 
unpublished.118,119 These comprehensive investigations (sum-
marized in Tables 1 and 2), spanning both pre-clinical and 
clinical realms, have explored diverse modalities and combina-
tions in the realm of CEA vaccines. They also reveal the com-
plexities of CEA as a vaccine target. Although overexpressed on 
tumors, CEA is a self-antigen to which there could be tolerance; 
however, numerous clinical studies have demonstrated that 
tolerance to this antigen can be broken, albeit the magnitude 
of these responses may be suboptimal.

As a cell surface antigen, CEA can be targeted by both 
T cell and B cell responses, although its secretion could mute 
immunologic responses elicited by antibody targeting. 
Importantly, although various studies have documented 
a contribution from CEA in multiple biological processes, 
its precise role and importance in cancer continues to lack 
clarity. If the CEA contribution to cancer is limited, it 
suggests that successful CEA vaccines could lead to immune 
editing without a significant clinical benefit. On the contrary, 
if CEA significantly influences cancer development, effective 
CEA vaccines could become pivotal in triggering a robust 
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anti-tumor immune response. While investigations of CEA 
vaccines have yet to result in FDA approvals, they have 
yielded valuable and pivotal insights that may pave the way 
for future progress in CEA vaccines and cancer vaccines in 
general (Tables 1 and 2).

One salient insight is the profound difference in various 
vaccine platforms ability to elicit CEA-specific immune 
responses, with many vaccines requiring additional boosting 
or immune modulation. While there have been few head-to- 
head comparison studies, the ability of protein and peptide 

Table 1. CEA vaccine studies in mice.

Mouse Model Effector cells Effect on mice Ref

Protein based vaccines-preclinical trials
bV-CEA/DOTAP MC38-CEA-2 cells in C57BL/6 mice Antibodies and 

T-cells
Protection from tumor challenge (70% 

of mice)

23

CpG-ODN plus Tat-CEA fusion protein MC38-CEA-2 cells in C57BL/6 mice CTLs and IgG Prolongation of survival time (70% of 
mice), reduction of tumor volume 
(100% of mice)

24

CEA+/HS-Exo HLA-A2.1/Kb transgenic mice CTLs No effect 25

DNA based vaccines alone-preclinical trials
Prime (hCEA/DNA)-boost (GM-CSF/DNA) MC38-CEA in CEA-tg C57BL/6 mice CTLs Reduced tumor volume (50%) 36

hCEA/DNA (pKCEA66 plasmid encoding 
a truncated hCEA form)

SCID mice with spleen cells from immunized 
d C57BL/6 mice and inoculated with hCEA 
expressing cells.

IgG, IFN-γ, T cell 
responses, NK 
cells

Suppression of tumor growth (60%) 37,120

hCEA/DNA (pCD40LT-CEA) MC38-CEA in CEA-tg C57BL/6J mice CTLs and DCs Rejection of tumor challenge (50%) 46

hCEA/DNA (pCMV-CEA) plus IL-12/DNA 
(VR-IL-12)

CEA/LLC* cells in C57BL/6 mice Antibodies, CTLs 
and IFN-γ

Suppression of tumor growth (80%) 42

hCEA/DNA (pCMV-CEA) plus IL-12/DNA (VR-IL 
-12) membrane bound

CEA/LLC* cells in C57BL/6 mice Antibodies, CTLs 
and IFN-γ

Reduction of tumor incidence (40%) 121

Recombinant vector-based vaccines-preclinical trials
ALVAC-CEA MC38-CEA cells in C57BL/6 mice CD4+ T cells, IgG, 

IFN-γ,IL-5
Suppression of tumor growth (100%) 122

Ad5 [E1-, E2b-]-CEA MC38-CEA-2 cells in C57BL/6 mice IFN-γ and IL-2 Regression of tumor growth (100% of 
mice)

65

Prime (rV/-CEA/TRICOM)-boost (yeast-CEA) LL2-CEA tumor cells in CEA tg mice CTLs Reduction in pulmonary metastasis 123

rV-CEA/TRICOM plus GM-CSF and IL-2 MC38-CEA cells in CEA tg mice CTLs Prolongation of survival time (83% of 
mice)

92

Table 2. CEA vaccine studies in humans.

Phase of 
study Number of patients and cancer type Effect on humans Ref

DNA based vaccines alone+immunostimulants-clinical trials
Single/repetitive administration of CEA 

DNA vaccine
I 17 patients with Stage IV colorectal cancer CEA lymphoproliferative responses (4/ 

17 patients)

50

CEA66 DNA immunization I 10 patients with Stage II-III colorectal cancer No clinical signs of autoimmunity 53

MRNA encoding MUC1, CEA, Her-2/neu, 
telomerase, survivin, MAGE-A1

I and II Phase I study of 14 patients and Phase II study of 16 patients 
with Stage IV renal carcinoma

CD4+ and CD8+ T cell responses 54

Protein and peptide-based vaccines-clinical trials
Multi-antigen mixed vaccine plus GM- 

CSF and IL-2
II 42 patients with Stage IV Breast cancer Significant increase of lymphocyte 

proliferative responses

124

rCEA alone or associated with GM-CSF I 24 patients with Stage I-II-III colorectal cancer Long lasting anti-CEA specific T cell and 
IgG antibody response in GM-CSF 
group

34

Combined vaccination
PANVAC-V followed by 3 

administrations with PANVAC-F
I 10 patients with Stage IV Pancreatic cancer Antibody responses against vaccinia 

virus in all patients

95

Recombinant Vector-based vaccines
ALVAC-CEA I 8 patients with Stage IV colon carcinoma CTL responses to CEA 125

ALVAC-CEA B7.1 alone or with GM-CSF I 30 patients with Stage IV Colorectal, breast, pancreas, 
appendix, esophagus, gallbladder, lung, thyroid cancer

Increases CEA-specific T cell response 
increase in vaccine alone group

59

ALVAC-CEA-B7.1 I 18 patients with Stage IV CEA-expressing adenocarcinomas CEA-specific precursor T cells increase 
(3 SD patients)

126

CEA/TRICOM I 12 patients with Stage I gastrointestinal cancer No post-treatment increases in CEA- 
specific T cells

127

MV-CEA I 21 patients with Stage IV ovarian cancer Dose-dependent CEA elevation in 
peritoneal fluid and serum

128

rV-CEA(6D)-TRICOM I 58 patients with Stage IV Colorectal, lung, breast, thyroid, 
unknown primary, ovary, gastrointestinal

Enhanced CEA-specific T cell responses 
in most of the patients

93

DC based vaccines
CAP-1 pulsed PBL I 19 patients with stage IV colorectal, breast, ovarian, 

pancreatic cancer
Pleomorphic infiltrates in DC injection 

sites (3 patients)

101

CAP1-6D DCs I 12 patients with stage IV or recurrent colorectal and lung 
cancer

CD4+ and CD8+ T lymphocyte 
responses

129
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vaccines to elicit CEA-specific T cell and B cell responses is 
more modest in comparison to many viral vectors, while 
DNA-based vaccines have also been suboptimal in eliciting 
adaptive immunity. Of the different viral platforms, those 
that can replicate or be boosted appear better able to elicit 
CEA-specific immunity and anti-tumor efficacy, both in pre- 
clinical models and in more challenging clinical settings.

A second critical insight, is in the ability of optimized CEA 
vaccine strategies to break immune tolerance. There is much 
debate surrounding the antigen-specific nature of successful 
immunity against cancer, particularly that involving CD8+ 
T cell responses and the use of PD-1/PD-L1 immune check-
point inhibition. Some evidence suggests that many of these 
responses are to mutated neoantigens, while other evidence 
suggests the primacy of responses to non-mutated antigens. 
While research on CEA vaccination hardly resolves this 
debate, it does demonstrate that immunity can be elicited 
and detected against self-antigens, which can associate with 
anti-tumor responses. Critically, there has been no evidence of 
profound induction of autoimmunity in the setting of vaccina-
tion against a self-antigen, thus mitigating safety concerns that 
surround the use of vaccines with TAAs. Both pre-clinical and 
clinical studies have yet to identify any evidence of toxicity or 
autoimmunity, which mirrors some pre-clinical studies that 
effective immunity against non-mutated tumor antigens may 
be possible without eliciting adverse pathologies. However, the 
role of post-translational modifications in antigen targeting 
remains unknown, which may allow for more tumor- 
selective immunity without engagement of nonmalignant tis-
sues for identical antigens that are differentially modified.

A third insight is the ability of heterologous vaccination and 
additional immune modulation to enhance cancer vaccines. 
This can take many forms, such as the co-expression of cyto-
kines, alteration of CEA antigens, or co-expression of immune 
modulators that all allow for more effective induction of CEA- 
specific immunity. This will be essential in counteracting the 
immune suppressive microenvironment encountered in 
advanced cancers and be beneficial in cancer vaccines, pro-
vided these modulations do not trigger adverse immune 
reactions.

Finally, these studies suggest that the advanced or early state 
of cancer may have a critical impact in the efficacy of CEA 
vaccination and cancer vaccines in general. Multiple pre- 
clinical studies have demonstrated the potent impact of CEA 
vaccines in preventing the implantation of CEA+ cancers, but 
have revealed that they are less effective against established 
cancers. Likewise, clinical studies in metastatic and advanced 
CEA+ malignancies have revealed improved outcomes in set-
tings where tumors are resected and disease burden is mini-
mal, likely reflecting a less advanced immune suppressive state 
as well as offering a smaller cancer cell population that may be 
more sensitive to immune pressures elicited by vaccination. 
This suggests that future cancer vaccine strategies may be 
employed after surgical resection to prevent the outgrowth of 
cancer or in patients at a higher risk of relapse in combination 
with maintenance therapies.

While effective CEA vaccines are not a current reality, the 
broad body of work on immunologically targeting CEA has 
led to critical insights in how to improve CEA vaccines, as 

well as new insights into oncoimmunology. The recent suc-
cess of vaccines in taming the SAR-CoV-2 and development 
of new modalities promises further approaches that may 
build upon previous efforts to produce more effective CEA 
vaccines. As CEA is widely expressed across different can-
cers, highly expressed on tumors, can be targeted by both 
T cell and B cells, as well as easily measured, it remains 
a compelling clinical target for vaccination. Critically, past 
studies have documented an ability of CEA vaccination to 
break tolerance against this target and elicit anti-tumor 
responses in tolerant settings. Thus, while CEA vaccines 
are unlikely to become a stand-alone therapy, 
a combination of CEA vaccination with appropriate adju-
vant strategies, especially those using immune checkpoint 
blockcade, have the strong potential to allow for the elim-
ination of cancer recurrence. These strategies may also pro-
vide an immunologic buttress for standard therapeutic 
approaches, thus engaging and involving immunity against 
cancers more effectively than current immune checkpoint 
blockade strategies.
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