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Quantitatively assessing early detection
strategies for mitigating COVID-19 and
future pandemics

Andrew Bo Liu 1,2 , Daniel Lee2,3, Amogh Prabhav Jalihal1,
William P. Hanage 4 & Michael Springer 1

Researchers and policymakers have proposed systems to detect novel
pathogens earlier than existing surveillance systems by monitoring samples
from hospital patients, wastewater, and air travel, in order to mitigate future
pandemics. How much benefit would such systems offer? We developed,
empirically validated, and mathematically characterized a quantitative model
that simulates disease spread and detection time for any given disease and
detection system. We find that hospital monitoring could have detected
COVID-19 in Wuhan 0.4 weeks earlier than it was actually discovered, at 2,300
cases (standard error: 76 cases) compared to 3,400 (standard error: 161 cases).
Wastewater monitoring would not have accelerated COVID-19 detection in
Wuhan, but provides benefit in smaller catchments and for asymptomatic or
long-incubation diseases like polio orHIV/AIDS. Air travelmonitoring does not
accelerate outbreak detection in most scenarios we evaluated. In sum, early
detection systems can substantially mitigate some future pandemics, but
would not have changed the course of COVID-19.

It has been widely debated which policies, if any, could have mitigated
the health impacts of the initial stages of the COVID-19 pandemic in late
2019 and early 2020 as community transmission became established
and widespread. Early studies compared non-pharmaceutical inter-
ventions (NPIs) such as mobility restrictions1,2, school closures3,4,
voluntary home quarantine5 and testing policies6, and optimized NPI
parameters like testing frequency7, quarantine length8, testing
modality9, test pooling10 and intervention timing and ordering11. While
such NPIs undoubtedly slowed the early spread of COVID-1912 and
previous outbreaks13,14, there has been little investigation of whether a
separate strategy focused on earlier detection of COVID-19 would have
enabledmore successfulmitigation. In theory, earlier detection enables
a response when the outbreak is smaller: thus, resource-intensive
mitigation strategies like test-trace-isolate become less costly, and the
earlier interventions are applied, the larger the number of infections

and deaths that can be delayed until healthcare capacity is increased15.
However, the relevant question is not whether early-detection helps,
but quantitatively, how much of a difference it would make. This
question is especially urgent given current international and national
policy proposals to invest billions of dollars in such systems16,17.

Researchers and policymakers have proposed immediate invest-
ments in systems to continuously monitor for novel pathogens in (i)
patients with infectious symptoms in hospitals and clinics18,19, (ii)
community wastewater treatment plants20,21, and (iii) airplane sewage
or bridge air on international flights22–24, as well as other sites25–29.
These three sites have attracted interest because they have been fre-
quent testing sites in COVID-19: hospitals since the pandemic’s
beginning30, and wastewater (including wastewater at treatment
plants20, within the sewershed31, and locally near individual buildings32)
and air travel more recently33,34 because hospital cases can lag
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community cases35. COVID-19 also spurredmethodological innovation
and characterization of sampling from these sites36, particularly
wastewater37–39. Detecting novel pandemics at these sites has occa-
sionally been piloted21,40 but has not been implemented at scale, in part
because it is unclear if these proposed systems sufficiently expedite
detection of outbreaks. The systems under consideration would use
multiplex testing for conserved nucleic acid sequences of known
pathogen families, exploiting the fact that many past emerging dis-
eases belonged to such families, including SARS-CoV-2 (2019), Ebola
(2013), MERS-CoV (2012), and pandemic flu (2009). Proposed tech-
nologies include multiplex PCR41–44, CRISPR-based multiplex
diagnostics45, and metagenomic sequencing46, possibly implemented
with pooling10.

In this work, to determine whether early detection of novel
pathogens at these sites could be effective in changing the course of a
pandemic, we first examine whether COVID-19 could have been
detected earlier in Wuhan if systems had been in place in advance to
monitor hospitals, wastewater or air travel. To do this, we develop,
empirically validate, and mathematically characterize a simulation-
basedmodel that predicts the number of cases at the timeof detection
given a detection system and a set of outbreak epidemiological para-
meters. We then use this model and COVID-19 epidemiological
parameters47 to estimate how early COVID-19 would initially have been
detected inWuhan by the three early-detection systems, and compare
this to the actual date ofCOVID-19 detection. Finally, weuseourmodel
to estimate detection times of infectious agents with different epide-
miological properties, such as mpox and polio in recent outbreaks48,49,
to inform pathogen-agnostic surveillance for future pandemics.

Results
Model to estimate earliness of detection
Previous research15 and our analysis (Supplementary text, Figs. S1–4
and Table S1) suggest that earlier COVID-19 lockdowns could have
delayed cases and deaths. Thus, it is critical to understand which early-
detection systems, if any, could have effectively enabled earlier
response. To do this, we built a model that simulates outbreak spread
and earliness of detection for a given outbreak and detection system
(Materials and methods, Supplementary materials). This builds upon
branching process models that have previously been used to model
the spreadofCOVID-1950,51 andother infectious diseases52. A traditional
branching process model starts from an index case and iteratively
simulates each new generation of infections. Our model follows this
pattern, but with each new infection, we also simulate whether the
infected person is detected by the detection system with some prob-
ability (Fig. 1a), and the simulation stops when the number of detected
individuals equals the detection threshold and the detection delay has
passed. Thus, each detection system is characterized by these three
parameters: detection probability, threshold, and delay (Table S2). For
example, in hospital monitoring, an infected individual’s detection
probability is theprobability they are sick enough to enter the hospital,
which is thehospitalization rate (assuming testing has a negligible false
negative rate). In systems that test individuals (hospital and air travel
individual monitoring), the threshold is measured in an absolute
number of cases. In systems that test wastewater (wastewater mon-
itoring), the threshold is measured in terms of outbreak prevalence
becausewastewatermonitoring can only sample a small percentage of
sewage flows, depending on the sampling capacity53; thus, a higher
number of cases is required to trigger detection in a bigger community
(Materials and methods). We gathered literature estimates of detec-
tion system and outbreak parameters (Tables S2 and S3) and validated
wastewater monitoring sensitivity in independent data (Fig. S5 and
Materials and methods, Supplementary materials). We then empiri-
cally validated the model by testing its ability to predict the detection
times for the first COVID-19 outbreaks in 50 US states in 2020. We
gathered the dates of the first COVID-19 case reported by the public

health department of each US state (Table S4) as well as literature
estimates of true (tested and untested) statewide COVID-19 case
counts in early 202054. Using our model, we were able to predict the
number of weeks until travel-based detection in each US state within a
mean absolute error of 0.97 weeks (Figs. S6 and S7). To check the
robustness of our results, we implemented a second, more complex
model with varying reproduction numbers using a Monte Carlo
simulation-based package (EpiNow2 v1.3.555). A list of model assump-
tions can be found in Table S5.

Early detection’s impact on COVID-19 detection in Wuhan
Next, we use our model to examine the detection systems’ ability to
detect the first major COVID-19 outbreak in Wuhan (Fig. 1b and
Table S2). To estimate cases at detection in the actual pandemic, we
used literature estimates of total (tested and untested) COVID-19 case
counts in Wuhan in late 2019 and early 202056. Our model shows that,
on average, hospital monitoring could have detected COVID-19 after
2292 cases (standard error: 76 cases). In reality, the pandemic was
identified after 3413 cases on average (standard error: 161 cases). Thus,
hospital monitoring would have caught the outbreak 1121 cases earlier
(~0.43 weeks earlier), a statistically significant difference with p = 1.9e-
09 and t = −6.3 (df = 141) in a one-sided Welch two-sample t test.
Wastewater monitoring would have lagged detection in the actual
pandemic; it caught the outbreak after 4,575 cases (standard error: 523
cases), or 1162 cases later, on average (p =0.018; t = 2.1; df = 118). We
tested this wastewater prediction empirically by calculating the cases
until COVID-19 wastewater detection in Massachusetts in early 2020,
using literature-estimated Massachusetts COVID-19 cases54 and Mas-
sachusetts wastewater SARS-CoV-2 PCR data57; our model prediction
was consistent with this analysis (Fig. S8). Because we model waste-
water monitoring to detect later in larger communities (Materials and
methods, Supplementarymaterials), theWuhan result is in part due to
Wuhan’s 650,000-person catchments. Wastewater monitoring would
lead status quo detection of COVID-19 in catchments smaller than
480,000 people, well above the global median catchment size of
30,000 people58. Air travel monitoring did not provide any accelera-
tion of detection because of the low probability of simultaneously
traveling and being sick.

Early detection for other diseases: formula and simulation
To make our model easily usable for pathogenic outbreaks beyond
COVID-19, we derived a compact formula that approximates the
model’s simulations. We observed that, without accounting for the
delay of g generations between the threshold case’s infection and
detection, the number of cases until detection, C, is a random variable
that follows a negative binomial distribution by definition: each
infected case is a Bernoulli trial, “success” in that trial occurs when that
case enters the detection system (with a probability we name ptest),
and we count the number of cases until the number of successes
equals the detection threshold d. After accounting for g and the basic
reproduction number R0, we derived a formula approximating the
mean of C when the outbreak starts in a community covered by the
detection system (see Supplementary Text for full derivation):

E C½ �≈ d ×Rg
0

ptest
ð1Þ

We confirmed our formula approximates the simulation model
closely by comparing the detection times predicted by both for all the
detection systems for multiple diseases (Fig. S9). Thus, the formula
allows us to interpret the model and the quantitative relationships
between detection times and various variables: the formula shows that
the number of cases until detection increases linearly with the detec-
tion threshold, increases polynomially with R0 and exponentially with
the delay g as R0

g, and decreases as the fraction of cases being tested
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increases. This formula also makes the model easily usable for detec-
tion systems beyond the ones studied here.

We applied our model to several outbreaks of recent
interest–including COVID-19, mpox (2022), polio (2013–2014), Ebola
(2013–2016) and flu (2009 pandemic)–and found that the detection
systems vary in their success depending on the epidemiological
parameters of the agent (Fig. 2, S10 and S11, and table S3). For example,
in our model hospital monitoring tends to outperform wastewater
monitoring when the hospitalization rate is high, as in the case of
Ebola, but tends to underperform for diseases like polio, in which the
hospitalization rate is low andwhen there is high asymptomatic spread
in the delay from detection to hospitalization. This is consistent with
Eq. (1), as well as previous observations that Ebola was first detected in
hospitals59 and that wastewater monitoring has been more effective
than hospitalmonitoring for detecting polio60.Wastewatermonitoring
performseven better for smaller, 30,000-person catchments (Figs. S12
and S13). We also modeled the status quo detection times for these
outbreaks: the number of cases until these outbreaks were detected in

the status quo, without the proposed detection systems in place. We
found that early-detection systems can catch outbreaks when they are
up to 52% smaller (wastewater for polio) or 110 weeks earlier (hospital
for HIV/AIDS) (Figs. S14–S17). Similar results hold for the more com-
plex model: the relative median detection times of the three systems
remain the same 97% of the time across the five main diseases (29/30
pairwise comparisons) (Fig. S18).

Because future infectious diseases are likely to have different
epidemiological parameters, we generalized the previous analysis and
calculated detection times for many possible diseases spanning the
epidemiological parameter space (Fig. 3 and S19). As expected, hos-
pital monitoring is the best system for diseases with higher hospitali-
zation rates and lower times to hospitalization. For diseases with
higher R0s and times to hospitalization, wastewater monitoring
emerges as the best system more often, because hospital monitoring
has a longer detection delay (mainly the time from infection to hos-
pitalization) than wastewater (mainly the time from infection to fecal
shedding), during which cases grow exponentially with R0. However,
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Fig. 1 | Early detection’s impactonCOVID-19detection inWuhan. a Schematicof
first 20 infections in a simulated run of the detection model. In this run, Person
1 seeds an outbreak in a community covered by a hospital detection system. Each
person infects a number of individuals determined by a draw from a negative
binomial distribution. Each person is then detected by the detection system with
probability ptest (gold) or goes undetected (olive); in the hospital system, ptest

equals the hospitalization rate. b Estimated cases until COVID-19 detection in the
actual pandemic versus model-simulated cases until detection for proposed
detection systems (box plots indicate median (middle line), 25th, 75th percentile
(box), and points closest to 1.5× interquartile range (whiskers)). Estimates for the

actual pandemic are drawn from ref. 56. Points for proposed detection systems are
simulated case counts from the model (actual pandemic (black), hospital (teal),
wastewater (orange) and air travel (purple)) assuming a Wuhan-sized catchment
(650,000 people). Three, two, and one asterisk(s) signify that the cases upon
detection for the detection system are statistically significantly lower than those in
the actual pandemic at the 0.001, 0.01, and 0.05 levels, respectively, in one-sided t
tests. NS. signifies not statistically significantly lower at p =0.05. P values for sys-
tems detecting earlier than in the actual pandemic are 1.9e-09 (hospital), 0.98
(wastewater) and 1 (air travel). Equivalent weeks until detection are shown on the
right y axis. Each boxplot shows 100 simulations (points).
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this holds mainly for diseases with high probability of fecal shedding
and low hospitalization rate. Air travel monitoring, which did not
performwell in thepreviouslymodeleddiseases (Figs. 1 and2), actually
performed best for a few diseases for which fecal shedding is low
(disadvantaging wastewater monitoring) and the time to hospitaliza-
tion and R0 are too large (disadvantaging hospital monitoring).

Discussion
Our results show that the benefits of early-detection systems vary from
marginal (0.4 weeks earlier for COVID-19) to significant (110 weeks
earlier for HIV/AIDS) (Figs. 1B, 2, and S17). Our detection time model
(Fig. 1a) can be used for many diseases and detection systems,
including other systems beyond this study25,26, by varying the fraction

of the infected population being tested in each system. Some further
points are worth emphasizing. First, early-detection only aids mitiga-
tion if it leads to a coordinated early response. Many factors beyond
detection affect the pace of response, including the economic and
political feasibility of lockdowns, the availability of medicines and
personal protective equipment, andwhether there are pre-determined
policies to be implemented upon detection. Second, when deciding to
invest in these systems, one must consider factors such as cost-
effectiveness and whether the system provides evidence of disease
severity. Although wastewater monitoring gives earlier detection than
hospital monitoring in multiple diseases (Fig. 3a), it does not dis-
criminate between mild and severe disease (although sequencing
could detect lineages known to cause severe illness). In contrast,
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Fig. 2 | Comparison of detection systems for different diseases. a Earliness of
detection for detection systems in cases across infectious diseases (hospital (teal),
wastewater (orange), air travel (purple), and status quo (black)) in a 650,000-
person catchment (box plots indicate median (middle line), 25th, 75th percentile
(box), andpoints closest to 1.5× interquartile range (whiskers)). Each boxplot shows

100 simulations (points). b Earliness of detection for detection systems in weeks
across infectious diseases in a 650,000-person catchment (box plots indicate
median (middle line), 25th, 75th percentile (box), and points closest to 1.5× inter-
quartile range (whiskers)). Each boxplot shows 100 simulations (points).
c Epidemiological parameters of the studied diseases.
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Fig. 3 | Comparison of detection systems across the space of possible diseases
of varying epidemiological parameters. a Average weeks gained over status quo
detection by the proposed detection systems across the epidemiological space of
possible diseases. Within each panel, each uniformly colored cell corresponds to a
specific disease with the hospitalization rate and probability of fecal shedding
indicated on the x and y axes, as well as the R0 and time to hospitalization

(generations) indicated by the panel row and column. The cell has a hue corre-
sponding to the detection system that detects the disease the earliest (hospital
(teal), wastewater (orange) and air travel (purple)) and an intensity corresponding
to the number of weeks gained by the earliest system over status quo detection.
Times are calculated by the derived mathematical approximation in a 650,000-
person catchment.
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hospital monitoring provides evidence that the detected pathogen
produces symptoms that require hospital treatment. Third, our model
is meant to be used now, in advance of future pandemics, and not in
the early months of a novel pandemic, because early-detection sys-
tems must be set up in advance of the next pandemic to be effective.
Because we do not know the epidemiological parameters of the next
pandemic, our study assesses how these systems would perform for a
wide, representative variety of diseases with different epidemiological
parameters, in order to quantify these systems’ benefits in general.

These results can inform ongoing international and national pol-
icy debates about which policies are needed to mitigate future pan-
demics. In the wake of COVID-19, the World Health Organization
Intergovernmental Negotiating Body is actively negotiating a new
treaty on international pandemic preparedness which updates the
International Health Regulations (2005). Drafts of this treaty highlight
“early warning and alert systems” as key measures16. Similarly, the
presidential administration of the United States has proposed invest-
ing $5.3 billion over 7 to 10 years in early warning and real-time mon-
itoring systems, including in hospitals and wastewater17. In this study,
we have assessed detection systems’ detection times and have devel-
oped amodel to assess current and futuredetection systemproposals.
Along with additional cost-effectiveness analysis and technical pilots21,
these results can help inform which detection systems are most
effective and thus worth funding in pandemic preparedness efforts.

Methods
Description of model predicting cases at detection
Our branching process-based model predicts the cumulative number
of cases at the time of detection for a given detection system and
outbreak. It follows the approach of branching process simulation
models used previously tomodel the spread of COVID-1950,51 and other
infectious diseases52, but with the main added step of simulating each
infected person’s chance of being detected by the detection system.
The values for parameters for detection systems can be found in
Table S2. The values for epidemiological parameters for outbreaks (R0,
serial interval, dispersion, hospitalization rate, and time to hospitali-
zation) can be found in Fig. 2 and Table S3. As in previousmodels52, we
assume the offspring distribution (the number of secondary cases
infected by each primary case) is negative binomial with mean R0.

We generally follow past detection system proposals19,21 to deter-
mine the implementation details of each system in our model. Our
model assumes the following. In hospital monitoring, hospitals would
test for high-priority pathogen families (e.g., coronaviruses) in patients
presenting with severe infectious symptoms in hospital emergency
departments19. Similarly, in wastewater monitoring, governments
would test for pathogens in city wastewater treatment plants daily, and
monitor for high and increasing levels of high-priority pathogen
families21. In air travel monitoring, we model testing of individual
symptomatic passengers (differs from proposals to monitor airplane
sewage22 or bridge air) on incoming international flights for the same
pathogens. The parameters of these systems are shown in Table S2.

Our model also accounts for different delays involved in different
detection systems. For example, if the 500th case of a COVID-19-like
outbreak triggers the detection threshold in both the hospital and
wastewater monitoring systems, because of the significant delay from
infection to hospitalization compared to the delay from infection to
fecal shedding, thewastewater systemwould catch theoutbreak earlier.

In systems that test individuals (hospital and air travel individual
monitoring), the threshold ismeasured in an absolutenumberof cases.
In systems that test wastewater (community and air travel wastewater
monitoring), the threshold or sensitivity is measured in prevalence
(cases as a percentage of the population)53,61,62. To predict the number
of cases and time to detection, we need to convert this percentage
back to a number of cases, so the wastewater detection time depends
on the catchment population size.

To estimate wastewater sensitivity measured in prevalence, we
used data from53. This study conducted PCR testing for SARS-CoV-2
1687 longitudinal wastewater samples from 353 sampling locations in
40 US states in early 2020, and synced these with publicly reported
local daily new COVID-19 case counts. This enables us to estimate a
distribution of the wastewater sensitivity: the lowest case count
required to trigger positive detection in wastewater. Of the 353 sam-
pling locations, 47 had both SARS-CoV-2-positive and negative sam-
ples such that local case counts on days of positive samples were all
higher than those on days of negative samples. We thus knew each
sampling location’s sensitivity is between themaximumof case counts
on negative sample days and the minimum of case counts on positive
sample days. We took the midpoint of this maximum andminimum as
the location’s sensitivity; this gave us 47 local sensitivities. We fitted
this to a log-normal distribution, yielding a median of 2.5 daily new
cases per 100,000 people. As expected, this distribution is similarly
shaped but slightly left-shifted from the distribution in Fig. 2b of ref. 53
(median 3.7 per 100,000), because the latter distribution is an upper
bound of the former.

To use this distribution in our model, in each simulation run, we
first randomlydrew awastewater sensitivity from this distribution, and
thenweneeded to convert this reported incidence i to the true (reported
and unreported) number of cases shedding fecally into public waste-
water systemsup to the timeofwastewater detection.We converted as
follows. Let dayT be the day onwhich the incidence i is reported. First,
we assumed the wastewater SARS-CoV-2 level on day T is proportional
to the number of COVID-19 cases who are fecally shedding on day T,
which we estimate as the number of fecal shedders infected 2 days
before, given the dominant peak in fecal shedding on day 2 of
infection61. We infer the number of fecal shedders infected on day T-2
from the incidence as follows. To account for underreporting, we first
estimate a true daily incidence of 5.7× i with symptom onset on day T,
based on estimates of the ratio of true (dated by symptom onset) to
reported (dated by reporting date) COVID-19 cases in theUnited States
in early 202054. (This study’s abstract reports true cases are 5–50×
reported ones, but this refers to the early March 1–April 4, 2020,
period. We calculated the factor of 5.7 from the study’s data when we
use the fuller March 1-May 16 period, which overlaps better with the
February-June 2020 period in53 and reflects less underreporting as the
pandemic developed and testing capacity increased. We calculated
this underreporting factor as an average of state-level underreporting
factors, weighted by frequency of each state among the wastewater
samples in ref. 53.) Finally, wemultiply by (a) the fraction of cases who
shed fecally (0.563) and (b) the fraction of people connected to central
sewage (0.8 in the US64, which is the area fromwhich the53 threshold is
derived). This gives us the one-time prevalence of cases p who con-
tribute to the wastewater SARS-CoV-2 level on day T. For a given
catchment with population c, this one-time number of cases is cp, and
we estimate the cumulative number of fecal shedders up to this time as
P0

t =T
cp
Rt=7
0

≈
R T
t =0R

t=7
0 dt, where T = logRt=7

0
cpð Þ is the number of days for

the daily exponential outbreak incidence curve to grow from 1 to
cp cases.

To check this estimate, we identified studies that compared
wastewater and hospital COVID-19 trends20,53 found that trends in
wastewater SARS-CoV-2 values led trends in hospital admissions by 1-4
days in New Haven (catchment size 2e +05). We estimate that waste-
water detection would lead hospital detection of COVID-19 in New
Haven by −0.8 to 3weeks (90%CI). This is consistent with the 1-4d lead
estimate from20. Similarly53, found that trends in wastewater led those
in clinical data by 4 days inMassachusetts (catchment size 2,300,000).
Their clinical data are dated by date of reporting rather than sample
gathering; assuming that hospital admissions are 5 days ahead of tests
by date of reporting20, thenwastewater is 5d-4d = 1 day behindhospital
admissions. We estimate that wastewater detection would lead
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hospital detection of COVID-19 inMassachusetts by −4 to −0.09weeks
(90% CI). This is consistent with the 1-day lag estimate from53.

Validation of model in US states
We gathered two sources of data for each state: dates of COVID-19
detection and COVID-19 case counts in early 2020. For the former, we
searched media reports and US state public health press releases to
determine the dates of the first COVID-19 case reported in each US
state. Sources for each state’s detection date are listed in Table S4. We
were able to identify such dates for all 50 states.

For the latter, we used literature estimates of true (tested and
untested) COVID-19 case counts, which incorporate COVID-19 mor-
tality data to deal with variation in testing capacity among states54. We
received a time series of weekly symptomatic COVID-19 case estimates
forMarch 1-May 10, 2020 and divided by a symptomatic rate of 0.55 to
get an estimate of total (symptomatic and asymptomatic) cases47. We
specifically used estimates from the adjusted mMAP (mortality max-
imum a posteriori) method because54 had mMAP estimates for all
50 states, whereas other methods from the same study were missing
estimates for various states.We fit an exponential curve of case counts
in each state to extrapolate cases back to January 2020. In the data we
received, all states had case data for all weeks from March 1–May
10, 2020.

We used ourmodel to predict the weeks until detection in each US
state (y axis in Fig. S6). Because most US states detected their first case
by travel (Table S4), we modeled a travel-based detection system
similarly to how we modeled the aforementioned detection systems.
We simulated a growing stream of imported travel cases (R0i cases for
the ith generation and global R0 = 2.5), and as for the other detection
systems, we simulated infection and detection steps for each genera-
tion, except thatwe only allowed travel-associated cases to bedetected.
We assumed that the state COVID-19 outbreaks had the same values for
all epidemiological parameters except for R0, which we allowed to vary
by state to account for state-specific conditions. We obtained state-
specific R0 values from ref. 65. The values for shared parameters were
obtained from literature (Table S3).Weusedadetectiondelayof 12days
(5-day incubation period47 plus 7-day test and reporting turnaround in
early 2020 in the US66) because many first cases were detected follow-
ing symptoms. The only parameter we were unable to precisely esti-
mate from literaturewas the probability of a travel case being detected.
We noted that this rate was at most the COVID-19 symptomatic rate
(0.5547) and at least the hospitalization rate (0.0347): in the highest-
detecting scenario, every symptomatic case would volunteer to be
tested; in the lowest-detecting scenario, only hospitalized travel cases
would get flagged for testing. So we chose a rate of 0.1, near the two
rates’ geometricmean. The predicted detection time for each state (the
y-value reported in Fig. S6) was the mean of 100 simulations.

We compared these predictions to ground truth estimates in each
state (x axis in Fig. S6). These ground truth estimates were calculated
by summing the aforementioned weekly case counts from the first
week of January 2020 until the date of detection in that state (Fig. S7).

Early detection’s impact on COVID-19 detection in Wuhan
We used our model to examine whether the early-detection systems
could have detected COVID-19 earlier than in the actual pandemic. To
do this, we used two data sources: (1) literature estimates of total
(tested and untested) COVID-19 case counts in late 2019 and early
202056 and (2) simulation output from our model. We then used (1) to
calculate the cumulative number of cases when COVID-19 was actually
detected, and compared this to results from (2).

For (1), we chose to use estimates from56, which quantifies both
the time of SARS-CoV-2 introduction into humans and the time series
of cases following said introduction. These estimates are based on
phylodynamic rootingmethods applied to SARS-CoV-2 sequence data,
combined with epidemic simulations and accounting for

epidemiological data on the first known cases of COVID-19. These
estimates improve upon previous attempts to time SARS-CoV-2’s
introduction into humans, which are solely based on phylodynamic
rooting methods to quantify the time to the most recent common
ancestor of SARS-CoV-2 sequences67.

As instructed by56, we utilized ‘BEAST.-
primary.IH.Dec10_16.linB.Dec15_25.linA.cumulativeInfections.timedGE-
MF_combined.stats.pickle’ from GitHub68 to obtain the distribution of
daily case counts. Based on the fact that there were at least six COVID-
19-related hospitalizations by 2019-12-2969, we narrowed the distribu-
tion to those epidemic simulations with the top 25 percent of hospi-
talizations and case counts. We simulated 100 draws from this
distribution, and then took the number of cases on 2019-12-29 in each
simulation to get 100 values for the distribution of cumulative cases at
detection in the actual pandemic (‘Actual pandemic’boxplot in Fig. 1B).
We chose 2019-12-29 as the date that COVID-19 was detected in the
actual pandemic, because this was the date of the first report of an
outbreak of pneumonia cases to health authorities in Wuhan70.

For (2), we ran our model for COVID-19 (see Table S3 for the
epidemiological parameters used) and all three detection systems
(100 simulations for each system). For each detection system, this gave
us the estimatednumber of casesuntil thedetectionofCOVID-19 if that
system had been in place at the start of the pandemic.We assumed the
system was present in the community in which COVID-19 originated.
We compared each system to the actual pandemic, and determined
that detection could have occurred earlier with the system if there was
a statistically significant difference in cases until detection between the
actual pandemic and the simulated world with the system (Fig. 1b).
Statistical significance was assessed by a 1-sided t test in which the
alternative hypothesis was that the detection systemperformedbetter.

We could empirically test our model predictions for the cases
until wastewater detection by using literature-estimated total
COVID-19 cases in Massachusetts54 and Massachusetts wastewater
SARS-CoV-2 data57 in early 2020. We aimed to use these to estimate
the cases until COVID-19 wastewater detection in Massachusetts in
early 2020, but because Massachusetts wastewater sampling for
COVID-19 started only after the Massachusetts outbreak was
underway, wastewater samples were positive for SARS-CoV-2 on
the first day of testing, so this first day of testing was later than
when wastewater detection could have caught SARS-CoV-2 if was-
tewater detection had been in place in advance. Thus, we could
only calculate an upper bound on the true cases until detection. We
utilized the wastewater time series from the Massachusetts Water
Resources Authority (MWRA) website and synced it with the
COVID-19 case count time series (Fig. S8). We multiplied the Mas-
sachusetts statewide cases by 0.33 (equal to 2,300,000/
6,900,000) because the MWRA data covers 2,300,000 people, out
of 6,900,000 people in Massachusetts in 2020. We then summed
these case counts up to the date of apparent wastewater detection
to get an upper bound for cases at detection, and checked whether
our model prediction was consistent with this bound.

Simulated versus mathematically approximate detection times
We compared the model simulations of cases until detection with our
derivedmathematical formula, Eq. (1) (Fig. S9). The points in Fig. S9 are
the same as in Fig. 2a. The dashed lines are generated by plugging
values into Eq. (1) for each detection system: we plugged in the
detection threshold, detection probability, outbreakR0, and detection
delay (measured in number of generations, i.e., serial intervals) for d,
ptest , R0, and g, respectively.

Comparison of detection systems for different diseases
We applied our model to several outbreaks of recent interest: COVID-
19, mpox (2022), polio (2013–2014), Ebola (2013–2016) and flu (2009
pandemic) (Fig. 2a). Because of the lack of data on the number of cases
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at the time of detection in previous outbreaks (except for the COVID-
19 data used in Fig. 1b), we used our model to estimate status quo
detection times for the outbreaks. Because many recent outbreaks
have been detected in healthcare settings59,69,71,72, we assumed status
quo detection was similar to hospital monitoring, except with a lower
detection probability per case (ptest) to reflect that symptomatic cases
are less likely to be tested for a panel of diseases without the proposed
systematic, proactive testing scheme. The per-case detection prob-
ability for status quo was set to 0.67 times that of hospital monitoring
to match our modeled status quo detection times for COVID-19 with
those estimated independently by ref. 56 (Fig. 1b).

Software
Analyses and figures were generated by code at https://github.com/
abliu/early-detection/releases as well as tidyverse (v1.3.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Detection time data are available at https://github.com/abliu/early-
detection/releases. Estimated COVID-19 case counts in late 2019 and
early 2020 are available from Pekar et al.56 (https://github.com/sars-
cov-2-origins/multi-introduction), and the US wastewater threshold
data are from Wu et al.53 (https://www.sciencedirect.com/science/
article/pii/S0043135421005984?via%3Dihub#sec0019). In the supple-
mentary analyses, the Massachusetts Water Resources Authority was-
tewater data are from https://www.mwra.com/biobot/biobotdata.htm,
national COVID-19 case counts in early 2020 are from the Johns Hop-
kins Center for Systems Science and Engineering 2023 (https://github.
com/CSSEGISandData/COVID-19), and US state COVID-19 case counts
in early 2020 are from Lu et al.54 (https://journals.plos.org/
ploscompbiol/article?id=10.1371/journal.pcbi.1008994).

Code availability
Code is available at https://github.com/abliu/early-detection/
releases73.
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