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Divisively normalized neuronal processing of
uncertain visual feedback for visuomotor learning
Yuto Makino 1,2, Takuji Hayashi 1 & Daichi Nozaki 1✉

When encountering a visual error during a reaching movement, the motor system improves

the motor command for the subsequent trial. This improvement is impaired by visual error

uncertainty, which is considered evidence that the motor system optimally estimates the

error. However, how such statistical computation is accomplished remains unclear. Here, we

propose an alternative scheme implemented with a divisive normalization (DN): the

responses of neuronal elements are normalized by the summed activity of the population.

This scheme assumes that when an uncertain visual error is provided by multiple cursors, the

motor system processes the error conveyed by each cursor and integrates the information

using DN. The DN model reproduced the patterns of learning response to 1-3 cursor errors

and the impairment of learning response with visual error uncertainty. This study provides a

new perspective on how the motor system updates motor commands according to uncertain

visual error information.
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Accurate movements are maintained across trials by the
ability of the motor system to correct movement
according to the difference between the actual and pre-

dicted sensory information (i.e., sensory prediction error)1.
However, sensory information is not always reliable enough
because of the noise inherent in the environment and the nervous
system2. The problem of how the brain updates the motor
command based on such imperfect sensory information has been
investigated by manipulating the degree of uncertainty in the
sensory (primarily visual) feedback for the reaching movements:
the visual cursor was blurred3 or the visual feedback was provided
by a cloud of dots (Fig. 1a)4–6. These previous studies consistently
reported that motor adaptation was impaired when the uncer-
tainty of visual feedback information was increased.

The impairment of motor adaptation was generally explained
by the framework of statistical estimation. According to the idea
of maximum likelihood estimation (MLE), the motor system
optimally estimates the error by combining the observed sensory
information and the sensory information predicted by the motor
command through the forward model1,3,7–9. Thus, as the
uncertainty of actual sensory information increases, the motor
system relies more on sensory prediction, and the resultant
reduction of estimated error leads to impairment of the motor
adaptation3,5 (Fig. 1b). Previous studies have proposed that the
computation of MLE is implemented by the probabilistic popu-
lation coding10–12 by which the activity levels (or gain) of

neurons depend on the uncertainty of the sensory information.
Notably, this scheme assumes the presence of uncertainty of
sensory information. For example, when visual feedback is pro-
vided by a cloud of dots (Fig. 1a), the uncertainty of the feedback
is assumed to be encoded by the statistical dispersion of dots.
However, considering that each dot should convey reliable visual
error information, such statistical encoding is not trivial. A crucial
question is how the uncertainty of visual feedback could emerge
from such reliable outputs from a population of dots.

In this study, we tried to take an alternative approach. We
assumed that all the dots conveyed the visual error information
and that the information was integrated by a divisive normal-
ization mechanism to be used for visuomotor learning. Divisive
normalization has been proposed as a canonical computational
mechanism in neuronal circuits to integrate the outputs from a
population of neurons—the neuronal activity is normalized by
the pooled activities of neurons13,14. This computation explains a
wide range of functions regulating neural responses at an early
stage of sensory coding15–18 and higher-order processes,
including attention19, decision making20,21, or multisensory
integration22,23. Our previous study24 demonstrated that the
motor learning response to visual and proprioceptive perturba-
tions can be explained by divisive normalization, implying that
the computation based on divisive normalization in the
neuronal-circuit level could be reflected in the motor learning
behavior.
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Fig. 1 The divisive normalization (DN) mechanism processing visual prediction errors. a In previous studies, uncertain visual feedback was provided by a
population of dots (cursors). The learning response to such uncertain visual feedback can be evaluated by measuring the movement direction (i.e., the
aftereffect or learning response herein). b According to the maximum likelihood estimation scheme, the motor system estimates the error by combining
the actual visual information with the visual information predicted by the motor command. The more uncertain the visual information, the smaller the
estimated error, which reduces the learning response. c–e Proposed model. c We consider that each cursor conveys different visual error information.
d Each neuronal element encodes the visual error according to the Gaussian tuning function with the maximum operation [φjfj(e)] and transforms the error
information to a motor output [xj(e)]. e In the DN model, the outputs of the elements are normalized by a DN mechanism before being integrated to
produce the learning response.
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The present study examined the possibility that the visuomotor
learning response to uncertain visual feedback can be explained
by the divisive normalization (DN) mechanism. First, we intro-
duced the visuomotor learning model based on DN mechanisms.
Then, we validated the model by examining how the reaching
movement direction was updated in the next trial (i.e., the
aftereffect; we will call it learning response) after single, double, or
triple cursors moving in different directions were concurrently
presented25. Finally, we determined whether the model could
reproduce the previously reported empirical result that the
learning response decreased as the variance of a cloud of dots
increased4,5. Additionally, we determined whether the model
could predict the recently reported result that the degree of
reduction in the learning response with the variance depended on
the mean size of visual error6.

Results
The present study considered the single-trial-adaptation experi-
ment for reaching movements24–28, to investigate the learning
response. The learning response was often quantified by the
changes in reaching movement direction in the next trial after
receiving visual error information (learning response in Fig. 1).
We first introduce the computational model and then describe
the experiments used to validate the model.

DN model. To investigate the influence of visual error uncer-
tainty information on visuomotor adaptation, previous studies
have used a population of dots (i.e., cursors) as a visual cursor and
manipulated the degree of uncertainty by the size of the cursors’
distribution (Fig. 1a). In those studies, the visual error informa-
tion was represented by the mean and variance of the cursors
(e.g., Fig. 1b). The current study used a more mechanistic
approach: we considered that each cursor conveyed different
visual error information (ei) (Fig. 1c), and the information of all
cursors was integrated by a DN mechanism14 to compute the
motor command in the next trial (i.e., learning response).

In our model (Fig. 1d, e), a population of neural units encodes
multiple visual error information e = (e1, e2,…, eN) and
transforms the information into a compensatory motor com-
mand X(e). We assumed that the same units are always recruited
as long as the intended movement direction is identical. The
tuning function of each unit is a Gaussian function with the
maximum operation:

fjðeÞ ¼ max
i

exp �
ðei � φjÞ2

2s2

( )" #
; ð1Þ

where s is the tuning width (22 deg was used in this study
following Kang et al.29) and φj is a preferred direction of the j-th
unit uniformly distributed from −180° to 180° (Fig. 1d).
Formally, this should be a circular function (e.g., von Mises
probability distribution function). Therefore, it should be
interpreted as an approximation that holds only when the ei
and s are relatively small. The max operation in Eq. 1 indicates
that the unit responds only to the cursor closest to the peak of its
tuning function and ignores the other cursors13. Note that this
unit transmits the error information as φj fj(e) (i.e., the fj(e)
contributes as a gain factor). We assume that each unit generates
a compensatory motor command xj(e) in response to the error
information as

xjðeÞ ¼ wφj fjðeÞ; ð2Þ
where w is a positive constant (Fig. 1d), and the motor commands
from all units have been integrated to produce X(e) (In this study,
we defined the sign of the aftereffect to be positive for a positive
error).

Most importantly, we consider that the motor commands from
all units are integrated by a DN mechanism to produce the total
compensatory motor command X(e) as:

XðeÞ ¼
∑M

j¼1xjðeÞ
kM þ∑M

j¼1x
2
j ðeÞ

; ð3Þ

where k is a positive constant (Fig. 1e) and M is the number of
units (M= 3601 was used in this study, but the results were not
affected whenM was large enough). The DN mechanism assumes
that the outputs from the unit are divided (or normalized) by the
summed outputs of units before they are integrated. Thus, unlike
the MLE model, the approach by the DN model does not need
statistical information such as the mean and variance of cursors.
When the DN mechanism is absent (i.e., the second term in the
denominator of Eq. 3 is removed) and e = e (i.e., only one cursor
is presented), X(e) can simply be expressed as (see Methods for
the details):

XðeÞ ¼
ffiffiffiffiffi
2π

p
ws

360k
e; ð4Þ

The linear response with the error size has been commonly
assumed in previous studies30–32, indicating that our formaliza-
tion based on neural units is a natural extension of previous
modeling studies. In addition, Eq. 3 shows that the denominator
contributes to producing the nonlinear dependence of the
learning response on errors. Dividing the denominator of Eq. 3
by k gives

1þ w2

kM
∑
M

j¼1
φ2
j f

2
j ðeÞ; ð5Þ

which implies that, as long as M is fixed, the term w2/k represents
the strength of nonlinearity (the larger value indicates stronger
nonlinearity).

Experiments used to validate the DN model. We performed 3
experiments. Experiment 1 aimed to examine whether the DN
model can capture the pattern of the learning response when
redundant visual error information was imposed by concurrently
presenting 1, 2, or 3 visual cursors25. Experiments 2 and 3 aimed
to examine if the model reproduced the results conventionally
explained by the MLE model, i.e., the learning response decreases
with the level of the uncertainty of visual error.

Experiment 1: Learning response to multiple visual errors. In
experiment 1 (8 participants: 5 men and 3 women), we examined
a single-trial visuomotor adaptation induced by visual perturba-
tion to the cursor(s). Thirty-nine types of perturbations were used
(Fig. 2a). In the single-cursor perturbation condition, the visual
error (e1) was imposed by rotating the cursor’s movement
direction from the target direction (e1= 0°, ±7.5°, ±15°, ±30°, and
±45° [9 types]). In the double-cursor perturbation condition, 2
cursors were moved concurrently in different directions. Each
cursor has different visual errors (e1 and e2 are a combination of
0°, ±15°, ±30°, and ±45° excepting |e1 |= |e2 | , i.e., 7C2 – 3= 18
types). In the triple-cursor perturbation condition, 2 cursors’
errors were fixed (e2= 30° and e3= 45°), and the error of the
remaining cursor was e1=−45°, −30°, −15°, 0°, 15°, and 22.5° (6
types). There were also 6 symmetric patterns of perturbations in
the triple-cursor perturbation condition (e1= 45°, 30°, 15°, 0°,
−15°, and −22.5°; e2=−30°; and e3=−45°). One set of trials
consisted of 4 trials: a perturbation trial (1 of 39 types was
pseudo-randomly chosen) and a probe trial (Fig. 2b) followed by
2 null trials (Fig. 2c). We confirmed that the learning effect was
sufficiently washed out by one probe trial and 2 null trials
(Supplementary Fig. 1).
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During the perturbation and the subsequent probe trials, the
hand trajectories were constrained in a straight line from the start
position to the target using the force-channel method33. We
measured the lateral force against the force channel to measure
the feedback response in the perturbation trial and the learning
response in the probe trials.

Learning response to the single-cursor perturbation condition.
Figure 2d illustrates the evolution of lateral forces against the
force channel during the probe trials for the single-cursor per-
turbation condition. The presence of the learning response was
confirmed as the lateral force in the opposite direction to the
visual error imposed in the perturbation trials. The learning
response was quantified as the sum of lateral forces integrated
over the time interval from the force onset to the time at the
peak handle velocity (i.e., feedforward component; Fig. 2e).

Note that this measure is a proxy of the change in the move-
ment direction normally used to quantify the learning
response24.

The perturbations induced significant learning responses for
the single-cursor perturbation condition (Fig. 2f) (e1= 7.5°, t[7]
= 6.354, p < 0.001; e1= 15°, t[7] = 3.564, p= 0.009; e1= 30°, t[7]
= 6.504, p < 0.001; e1= 45°, t[7] = 3.354, p= 0.012). However,
there were no significant differences between the perturbation
sizes (F[3,21] = 0.783, p= 0.517), indicating that the learning
response did not increase linearly with the size of perturbation
but was saturated6,24–26,34,35. Notably, this saturation of the
learning response with the error size was naturally reproduced by
the DN model because of the normalization effect24. Indeed, the
DN model (Eqs. 1–3) can be well fitted with the learning
responses for the single-cursor perturbation condition. In the case
of single-cursor perturbation, Eq. 3 can be simplified as (see
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Fig. 2 Procedures of experiment 1. a, b Eight participants performed reaching movements towards a front target (distance = 10 cm). In the perturbation
trials (a), the visual perturbation was imposed on the cursor(s). The number of cursors was 1 (left, single-cursor perturbation condition), 2 (middle, double-
cursor perturbation condition), or 3 (right, triple-cursor perturbation condition). In total, there were 39 types of visual perturbations. In the perturbation
trial, the hand trajectory was constrained by the force channel. In the subsequent probe trial (b), the learning responses were measured by the force
exerted against the force channel. c Participants repeated a block consisting of 2 null trials, a perturbation trial, and a probe trial. d The trace of lateral force
exerted against the force channel in the probe trial. e The learning response was evaluated as the force integrated from the force onset (200ms before the
movement onset) to the time of peak velocity. f The experimental result of the learning response for the single-cursor perturbation condition (green line).
The error bars represent the standard error across the participants. The significant learning response was generated in each condition (one sample t-test;
e1= 7.5°, p < 0.001; e1= 15°, p= 0.009; e1= 30°, p < 0.001; e1= 45°, p= 0.012). The divisive normalization model (Eq. 6) was fitted with the learning
responses (black line).
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Methods for the details):

XðeÞ ¼ 2
ffiffiffiffiffi
2π

p
wse

720kþ ffiffiffi
π

p
w2sðs2 þ 2e2Þ ; ð6Þ

We fit the learning responses X(e) with Eq. 6 to obtain the
unknown parameters w and k (s was fixed at 22°). Figure 2f shows
that the fitted model was able to reproduce the saturation effect
(R2= 0.9542, w = 5.3271 × 10−4, k =7.7806 × 10−7). Data for
Fig. 2 are available in Supplementary Data.

Learning response to double- and triple-cursor perturbation con-
ditions. We used the DN model (Eqs. 1–3) identified by the
learning responses of the single-cursor perturbation condition
(Fig. 2f) to predict the learning responses for the double- and
triple-cursor perturbation conditions. The model predicted that, in
the double-cursor perturbation condition, the learning responses
did not increase by adding another cursor in the same directions
(e2= 15°, 30°, and 45°) (Fig. 3a). In contrast, a substantial impact
was observed in the other perturbation types: the addition of
another cursor moving in the target direction (e2= 0°) reduced the
learning responses, and the addition of another cursor in the
opposite direction (e2=−15°, −30°, and −45°) further decreased
or reversed the learning responses (Fig. 3a).

The empirically observed pattern of the learning response for
the single- and double-cursor perturbation conditions (Fig. 3b)
was in good agreement with the model’s prediction (Fig. 3a)
(R2= 0.9284: This was in contrast to the result of the MLE model
described later [R2=−0.1221]). To quantitatively examine the
similarity, we also characterized the differences among the
perturbation conditions by analyzing the learning responses
averaged over e1= 15°, 30°, and 45° (the inset in Fig. 3c). The
model predicted that the averaged responses were not so different
between the single and e2= 15°, 30°, and 45° (Fig. 3c). However,
they were considerably reduced for e2= 0°, −15°, −30°, and −45°
compared with the single-cursor perturbation condition (Fig. 3c).
The prediction was consistent with the experimental data
(Fig. 3d). Indeed, one-way repeated measures analysis of variance
(ANOVA) indicated that the averaged learning responses
significantly differed between the size of e2 (F[7,49] = 24.828,
p= 4.512 × 10−14); the post hoc test revealed that the learning
response was not significantly changed with the addition of
another cursor in the same direction (e2= 15°, 30°, and 45°,
p > 0.05 by Holm correction), but it significantly decreased with
the addition of cursor perturbation in the opposite direction
(e2=−15°, −30°, and −45°, p < 0.001 by Holm correction) or in
the 0° direction (e2= 0°, p= 0.003 by Holm correction). There
were also significant differences between e2= 0° and e2= 15°
(p= 0.007 by Holm correction), between e2= 0° and 30°
(p < 0.001 by Holm correction), between e2= 0° and e2= 45°
(p= 0.011 by Holm correction), and between e2= 0° and
e2=−30°, − 45° (p < 0.001 by Holm correction).

Figure 3e shows the DN model prediction of how the learning
responses were different between the double-cursor perturbation
conditions (e2= 30° or e2= 45°) and the triple-cursor perturba-
tion conditions (e2= 30° and e3= 45°). The model predicted that
the concurrent presentation of additional 2 cursors (e2= 30° and
e3= 45°) had no significant impact on the learning responses for
the double-cursor perturbation conditions (Fig. 3e). In particular,
the learning responses should overlap between the triple-cursor
condition and the double-cursor condition for e2= 45°. The
experimental results (Fig. 3f) were consistent with this prediction,
although the prediction did not perfectly match the experimental
data (e.g., the difference between the triple-cursor condition and
the double-cursor condition for e2= 30° was not observed). Two-
way repeated measures ANOVA indicated that there was no

significant difference between the learning responses for the
double- and triple-cursor perturbation conditions (e1= 15°, 0°,
−15°: F[2,28] = 0.364, p= 0.701). Data for Fig. 3 are available
in Supplementary Data.

Can the MLE model explain the pattern of learning responses?. A
natural question is if the previously proposed MLE can explain
the learning responses of the double- and triple-cursor pertur-
bation conditions. According to the MLE framework, the motor
system estimates the error by integrating the observed visual
cursor information (observed error) with the information pre-
dicted by the motor command (predicted error) (Fig. 1b).
Assuming that the uncertainty of both information is represented
by a normal distribution, the optimally estimated learning
response x(e) to the observed visual error e should be

xðeÞ ¼ c
σ2p

σ2p þ σ2ðeÞ e; ð7Þ

where σ2p is the variance of predicted error, σ2 eð Þ is the variance of
observed error, and c is a constant. We assumed that σ2 eð Þ
depends on the size of e; otherwise, the nonlinear learning
response to e (Fig. 2f) cannot be reproduced. We also made a
natural assumption that the mean value for the predicted and
observed error are 0 and e, respectively. Considering the previous
studies suggesting that the standard deviation of the signals lin-
early increases with the mean signal intensity36,37, the standard
deviation σ eð Þ can be represented as follows:

σðeÞ ¼ σv þ kvjej ð8Þ
where σv is the standard deviation of visual error when the error
is 0, and kv is a constant. If the same estimation based on the
MLE holds for the multiple cursor condition (when the number
of cursor is N), the learning response can be expressed as fol-
lows:

xðeÞ ¼ c
1
σ2p

þ ∑
N

i¼1

1
σ2ðeiÞ

 !�1

∑
N

i¼1

ei
σ2ðeiÞ

� �
ð9Þ

As in the DN model, we obtained the σ2p and σ2 eð Þ by fitting the
learning response for the single-cursor perturbation condition
with Eqs. 7 and 8, and then predicted the learning responses for
double- and triple-cursor perturbation conditions with Eq. 9.

Equations 7 and 8 could reasonably fit the learning responses
for the single cursor condition (Fig. 4a; R2= 0.9983, c= 2.963 ×
105, σv=σp = 122.2, kv=σp = 8.055). The identified MLE model
(Eq. 9) predicted that the learning responses increased and
decreased, respectively, with the additional perturbation to the
same direction (e2= 15°, 30°, 45°) and to the opposite direction
(e2=−15°, −30°, −45°) (Fig. 4b). The MLE model also predicted
that the learning responses for the triple-cursor perturbation
condition exhibited a peculiar modulation pattern with the size of
e1 (Fig. 4c). However, the experimental results (Fig. 3b, f) were
inconsistent with these MLE model’s predictions.

Experiment 2: learning response to uncertain visual feedback.
Since the double- and triple-cursor perturbation conditions were
peculiar from the ecological viewpoint (a cursor split into 2 or 3
pieces), it is still possible that only the MLE model can explain the
learning responses for a more realistic case like when the visual
error information is provided by a cloud of dots3–6. We per-
formed experiment 2 (16 participants: 11 men and 5 women) and
experiment 3 (12 participants: 8 men and 4 women) to examine
whether the DN model could explain the learning responses when
visual feedback (cursors) was provided by a population of cursors.
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As was in experiment 1, the participants repeated the
experimental set consisting of a perturbation trial, a probe trial,
and 2 null trials. In the perturbation trials, 5 cursors were
concurrently displayed (Fig. 5a). In every perturbation trial, the
angles of cursors’ movement direction were randomly drawn
from 1 of 15 different normal distributions (N(μ, σ2); μ= 0°,
±14°, ±40°; σ= 0°, 7°, 20°) (Fig. 5a). The cursor was visible

throughout the movement in experiment 2 (Fig. 5b), whereas the
cursor was only visible after completion of the reaching
movement in experiment 3 (Fig. 5c).

First, we predicted the learning responses for these uncertain
visual error conditions by the DN model (Eqs. 1–3) whose
parameters were identified by fitting the learning responses for
the single-cursor perturbation condition (i.e., σ= 0°) in
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Fig. 3 Learning responses for double- and triple-cursor perturbation conditions in experiment 1. a The divisive normalization (DN) model prediction for
the double-cursor perturbation condition. The parameters of the DN model (Eqs. 1–3) were identified by fitting the learning responses for single
perturbations (Fig. 2f). The learning response for the single-cursor perturbation condition is also displayed (black line). b The experimentally observed
learning responses of the double-cursor perturbation condition in experiment 1 (n= 8). c The influence of an additional cursor (e2) on the learning
response was evaluated as the averaged learning response for e1= 15°, 30°, 45° (inset). d The experimental results of the averaged learning response in
the double-cursor perturbation condition. One-way repeated measures ANOVA revealed that the learning response was significantly changed with the
addition of another cursor in the opposite direction (e2=−15°, p < 0.001 ; e2=−30°, p < 0.001; e1=−45°, p < 0.001 by Holm correction), and in the 0°
direction (e2= 0°, p= 0.003 by Holm correction), but not in the same directions (p= 1.000 by Holm correction). e The DN model prediction for the triple-
cursor perturbation condition compared with that for the double-cursor perturbation condition. f The experimentally observed learning responses for the
triple-cursor perturbation condition. The error bars represent the standard error across the participants.
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experiment 2 (Fig. 6a) with Eq. 6. As was shown in the results in
experiment 1, the fitted DN model captured the modulation of
the learning responses with the error size (Fig. 6a; w =
2.0002 × 10−4, k = 2.1434 × 10−6). This identified DN model
was used to predict the pattern of the learning responses
when uncertainty was introduced to the visual error information
(Fig. 6b). When the visual error size was small (μ= 14°), the

increase in uncertainty decreased the learning responses (Fig. 6b),
which was consistent with the prediction of the conventional
MLE model3,5.

The observed learning responses in experiment 2 were similar
to the pattern predicted by the DN model (Fig. 6c). Two-way
repeated measures ANOVA indicated a significant interaction in
the learning response between μ= 14° and μ= 40° (F[2,28] =
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8.034, p= 0.002). There was a significant simple main effect for
μ= 14° between σ = 0° and σ = 7°, σ = 0°, and σ = 20°, and
between σ = 7° and σ = 20° (p= 0.032, p < 0.001, and p= 0.004,
respectively, by Holm correction). The learning response for σ =
7° decreased by 24.82 ± 8.49% and that for σ = 20° decreased by
53.47 ± 7.44% compared with that for σ = 0°. In contrast, when
μ= 40°, there was a significant simple main effect only between σ
= 7° and σ = 20° (p= 0.046 by Holm correction). The learning
response for σ = 20° decreased by 7.09 ± 17.52% and that for σ =
7° increased by 9.88 ± 13.72% compared with that for σ = 0°.
These characteristics were also evident for the temporal change of
the lateral force against the force channel (Fig. 6d).

Tsay et al.6 recently reported that when the visual error size (μ)
was large, the declining rate of the learning responses with the
visual feedback uncertainty (σ) (relative to the learning response
when σ = 0°) was suppressed. To quantify this effect, we
calculated the declining rate of the learning response for σ = 7°
and σ = 20° relative to that for σ = 0° for each of visual error size
(i.e., μ= 14° μ= 40°) and the ratio between them (Fig. 6e).
Consistent with the finding by Tsay et al.6, the ratio of the
declining rate was significantly smaller than unity for σ = 7°
(t[14]=−2.533, p= 0.024) and σ = 20° (t[14]=−5.447,
p < 0.001) (the black line in Fig. 6e). Notably the ordinary MLE
model (i.e., the model in which the σ(e) in Eq. 7 was a constant)
predicted that the ratio was always 1 irrespective of the visual
feedback uncertainty (the cyan line in Fig. 6e). This was because
the term σ2p=ðσ2p þ σ2Þ in Eq. 7 was not influenced by the mean
size of error (μ). However, the DN model partly reproduced the
decrement of the declining rate with the visual feedback
uncertainty (the magenta line in Fig. 6e). These DN predictions
were not substantially influenced by the number of cursors
(Supplementary Fig. 2).

Experiment 3 examined the case in which the visual feedback
was visible only after the movement ended (Fig. 5c). The
endpoint feedback has been more commonly used in previous
studies than the online feedback3,5,6. Although the magnitude of
the learning response for the endpoint feedback condition was
generally smaller than that for the online feedback condition24, a
similar pattern of dependence of learning responses on feedback
uncertainty was observed (Fig. 6f-g). Two-way repeated measures
ANOVA indicated the presence of a significant interaction in the
learning response between μ= 14° and μ= 40° (F[2,18] = 4.188,
p= 0.032). There was a significant simple main effect for μ= 14°
between σ = 0° and σ = 20° (p < 0.001 by Holm correction). In
contrast, there was no significant simple main effect for μ= 40°
(F[2,18] = 3.348, p= 0.058). The DN model (Eqs. 1–3), whose
parameters were obtained by fitting the learning responses for the
single-cursor perturbation condition (Eq. 6) (Fig. 6f; i.e., σ = 0°)
in experiment 3 (Fig. 6g; w = 4.7525 × 10−4, k =2.1102 × 10−6),
could capture the learning response modulation for the endpoint

feedback condition (Fig. 6h). These characteristics were also
evident for the temporal change of the lateral force against the
force channel (Fig. 6i). Furthermore, the ratio of the declining
rate for μ= 14° to that for μ= 40° was smaller than unity for σ =
7° (t[7]=−2.495, p= 0.041), which was consistent with the DN
prediction (Fig. 6j). Data for Fig. 6 are available in Supplementary
Data.

Pattern of the feedback responses. In experiments 1 and 2, the
visual error information was visible throughout the movement,
which induced feedback responses in the perturbation trial. Con-
sidering that a feedback response in the perturbation trial could
serve as a teaching signal for the learning response in the sub-
sequent trial28,38, the pattern of learning responses explained by
the DN model could already be seen in the pattern of the feedback
responses. We examined this possibility by quantifying online
feedback responses as the integrated lateral force over the time
interval to the time at the peak hand velocity for 100ms (Fig. 7a).

Figure 7a illustrates how the feedback responses induced by a
single visual perturbation in the perturbation trials of experiment
1 depended on the visual error size. As compared with the
learning responses (Fig. 2f), the linearity of feedback response
modulated with the size of the error was greater. We fit the data
with the DN model (Eq. 4) for the single-cursor perturbation
condition and obtained the parameters (Fig. 7a; R2= 0.9664, w =
4.0541 × 10−4, k = 9.2642 × 10−5). The greater linearity was
reflected in the smaller value of w2/k (Eq. 5, feedback response:
w2/k = 1.7741 × 10−3, learning response: w2/k = 0.3647). Using
the identified DN model, we predicted the feedback responses for
the double- (Fig. 7b) and triple-cursor perturbation conditions
(Fig. 7c). These predicted patterns were consistent with the
experimentally observed feedback responses (Fig. 7b, c). More-
over, the DN model, fitted with the online responses for the single
cursor condition (i.e., σ = 0°) in experiment 2 (w = 2.3700 ×
10−4, k = 1.2071 × 10−5), could reproduce the modulation
pattern of the online responses induced by uncertain visual
cursors (Fig. 7d). These results suggested that the divisive
normalization pattern could also explain the modulation pattern
of the online feedback response, but the nonlinearity was weaker
for the feedback response than for the learning response. Data for
Fig. 7 are available in Supplementary Data.

Discussion
The motor system maintains accurate movements by constantly
updating the motor command according to the movement error.
A significant problem is how the motor system estimates move-
ment error in the presence of noise and uncertainty in environ-
ments and the central nervous system. Previous studies have
proposed the idea that the motor system optimally estimates the
error by integrating the actual sensory information and the

Fig. 6 The divisive normalization (DN) model predictions and experimental results of experiments 2 and 3. a The experimentally observed learning
responses for no uncertainty conditions (i.e., σ = 0°) (black circles) in experiment 2 (n= 15) and the curve fitted by the DN model (black line). b The DN
model, whose parameter was obtained by fitting the learning responses for no uncertainty conditions (a), was used to predict the change of the learning
response to visual feedback uncertainty when the mean error size is small (μ= 14°, blue line) and large (μ= 40°, red line). c The experimentally observed
learning responses. The significant difference was observed for μ= 14° conditions between σ = 0° and σ = 7°, σ = 0°, and σ = 20°, and between σ = 7°
and σ = 20° (Two-way repeated measure ANOVA; p= 0.032, p < 0.001, and p= 0.004, respectively, by Holm correction), and for μ= 14° conditions only
between σ = 7° and σ = 20° (p= 0.046 by Holm correction). d The lateral force traces in the probe trial. e The ratio of the declining rate of the learning
response with visual feedback uncertainty (the ratio of μ= 14° to μ= 40°) (experimental result, black; the DN model prediction, magenta; the ordinary
MLE model prediction, cyan). The significant difference was observed from the ratio = 1 (one sample t-test: σ = 7°, p= 0.024; σ = 20°, p < 0.001). f–j the
same as panels a–e in experiment 3 (n= 10). h The significant difference was observed for = 14° between σ = 0° and σ = 20° (p < 0.001 by Holm
correction), but no simple main effect for μ= 40° (p= 0.058). In panel j, the data from 2 participants were excluded because the absolute value of the
ratio was extremely large (6 and 20). The significant difference was observed from the ratio = 1 (one sample t-test: σ = 7°, p= 0.041). The error bars
represent the standard error across the participants.
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sensory information predicted by the motor command. This
optimal estimation scheme can clearly explain the well-known
phenomenon that the learning response (i.e., the aftereffect) is
reduced as the uncertainty of visual error feedback increases3,5.

In contrast to the conventional idea, the present study has
proposed a more mechanistic computational scheme. Crucially,
we assume that the uncertain visual error information is pro-
cessed by a DN mechanism14. The proposed DN model captured
the complicated learning response modulation pattern when the
visual error information is provided by a single, double, or triple
cursor (Fig. 3). Furthermore, the DN model could reproduce the
previous results that the learning response decreases with the level
of uncertainty of visual feedback (Fig. 6) without assuming that
the uncertainty of visual error information is represented by the
mean and variance of the cursors’ locations. These results
demonstrated that the DN mechanisms contribute to the pro-
cessing of uncertain and/or redundant visual feedback informa-
tion in the visuomotor learning system.

The optimal estimation (or MLE) model predicts that the
learning response should decrease as the uncertainty of visual
error information increases (Eq. 7). However, this model implies
that the learning response linearly increases with the visual error
size. Thus, additional mechanisms need to be introduced to
explain the saturation of the leaning response to the large
error6,24–26,35 (Fig. 2f). Marko et al.26 assumed that the reduction
of the learning response to the larger visual error size reflects the
inherent neuronal response in the cerebellum39. Wei & Körding35

proposed that the motor system evaluates the relevance of visual
error according to the dissociation between the visual and pro-
prioceptive information. When there is a greater dissociation (i.e.,
smaller relevance), the motor system relies less on the visual
error, leading to the reduction of the learning response. The
present study also explored another possibility of the MLE model

by considering that the uncertainty of visual error information
increases with the visual error size (i.e., signal-dependent
noise36,37,40 (Eq. 8). In contrast to these ideas, the DN model
can naturally reproduce the saturation effect owing to the nor-
malization effect (i.e., the denominator of Eq. 3) without intro-
ducing additional mechanisms. Moreover, as discussed in the
next section, the aforementioned optimal estimation schemes
described cannot reproduce the learning response patterns in the
double- and triple-cursor perturbation conditions.

DN provides a mechanism for processing multiple visual
feedback information without presuming the statistical property
of visual feedback. We tried to validate the mechanism by
examining the learning responses in the simplest case in which 2
visual cursors were concurrently provided. The DN model
identified by the data of the single-cursor perturbation condition
(Fig. 2f) predicted several characteristic patterns (Fig. 3a). When a
cursor moving in a direction is accompanied by another cursor
moving in the opposite direction or in the 0° direction, the
learning response should be reduced. In contrast, when another
cursor moves in the same direction, the learning responses are
largely unaffected. These predictions were consistent with the
experimental result (Fig. 3b). This sub-additivity is a hallmark of
the integration of sensory information by divisive
normalization22,23. We also demonstrated that the experimentally
observed patterns are similar to the predicted pattern for the
triple-cursor perturbation condition (Fig. 3e, f).

In contrast, according to the idea of the MLE model, the visual
error information provided by multiple cursors is optimally
integrated under the assumption that the visual information of
each cursor has uncertainty. We modified the MLE model by
including the signal-dependent noise property (Eq. 8), which is
necessary to reproduce the saturation of the learning response in
the single-cursor perturbation condition. After fitting the data
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with the modified MLE model (Eqs. 7–8; Fig. 4a). We predicted
the learning responses for double- and triple-cursor perturbation
conditions by Eq. 9 (Fig. 4b, c). The MLE model predicted that
the additional cursor changed the learning responses according to
the size of additional error (Fig. 4b). The MLE model also pre-
dicted that the learning response for the triple-cursor perturba-
tion condition was considerably greater than that for the double-
cursor perturbation condition (Fig. 4c). However, changes in the
learning response by additional cursor(s) were not observed
(Fig. 3b and f). These inconsistencies between the prediction and
experimental results suggest that the MLE is unlikely to be a
general mechanism to compute the learning response based on
the visual error information.

In the double and triple cursor conditions for experiment 1, the
participants perceived that the cursor split into 2 or 3 pieces,
which was different from the situation when visual feedback was
provided with some uncertainties (e.g., a cloud of dots). A crucial
problem is whether the DN model can reproduce the well-known
phenomenon that the learning response decreases with the level
of visual error uncertainty, which was previously explained by
the MLE model3,5. Using the DN model, we predicted the
learning responses when 5 dots whose movement directions were
sampled from normal distribution were concurrently displayed.
The DN model predicted the decrease in the learning response
with the variance when the mean error size was small (μ = 14°)
(Fig. 6b, g), and the experimental results validated this prediction
(Fig. 6c, h). Thus, the DN model can reproduce the learning
response pattern not only for double and triple cursor conditions
but also for a noisy cursor condition without any contradiction.
Notably, in the DN model’s framework, the motor system does
not require any a priori information on the mean and variance of
the population of dots. It merely encodes the error information
conveyed by individual dot and integrates the information. Thus,
the DN model provides a mechanistic framework to perform
computations similar to the optimal estimation.

Importantly, the DN model provided an additional prediction
when the mean size was large (μ = 40°). According to the MLE
model, the level of reduction of the learning responses did not
depend on the mean size. Yet, the DN model predicted that the
level of reduction was smaller for the larger mean size (Fig. 6b, g).
Indeed, the experimental results supported the prediction by the
DN model (Fig. 6c, h). Recently, similar results were reported
when the uncertainty of visual feedback was manipulated6 or
when the adaptation was tested for low vision participants41. The
authors tried to explain the result by assuming that the dis-
tribution of dots is truncated below a certain threshold due to the
inherent saturation property of the learning response (i.e., the
learning response remains almost unchanged to the error beyond
the threshold level). However, it should be noted that their
scheme was also based on the MLE model combined with the
saturation effect. The DN model is superior in that it can explain
the saturation effect and the integration of multiple error infor-
mation in a unified framework.

In experiments 1 and 2, the visual cursor was visible
throughout the movements in the perturbation trials. Although
we instructed the participants not to respond explicitly to the
visual error, the visual error implicitly elicits the feedback
response42,43. According to the feedback error learning
hypothesis38, the feedback motor command is used as a teaching
signal for the motor command in the subsequent trial. Indeed, a
previous study demonstrated that the learning response in the
probe trial is similar to the feedback response in the perturbation
trial28.

The experimental result demonstrated that the DN property in
the learning response was unlikely to be derived from the DN
property in the feedback response. First, the response patterns

were considerably different between the learning response and the
feedback response: the feedback response pattern exhibited
greater linearity as reflected by the smaller w2/k value (i.e., the
normalization effect was weaker, see Eq. 5) (Fig. 3 versus Fig. 7).
Thus, even if the learning response is produced by the feedback
response as proposed by the feedback error learning hypothesis,
the DN mechanism could contribute in the neuronal processes
transforming the feedback response to the learning response.
Second, even when the feedback response was absent (i.e.,
experiment 3: the endpoint feedback condition), the learning
response still demonstrated the DN property (Fig. 6e–h), clearly
demonstrating that the DN property in the learning response
could be generated independently of the feedback response.
Further studies are necessary to clarify how the motor system uses
the online and endpoint visual errors to generate the learning
response and how the interaction causes the DN property in the
learning response.

The present study firstly demonstrated that the DN mechanism
accounts for the motor adaptation to redundant and/or uncertain
visual information. Do these behavioral results reflect the way of
neuronal processing for visuomotor adaptation? Alvarado et al.44

recorded the activity of neurons in the superior colliculus
responding to visual (unisensory neurons) or both visual and
auditory information (multisensory neurons). When 2 visual
stimuli are provided concurrently, the authors found that the
responses for >60% of neurons are smaller than the summation of
responses evoked by individual visual stimulus. Such a sub-
additive response is one of the signatures of the DN integration
mechanism14,22,23. Several other studies have also reported that
the DN mechanism successfully accounts for the response of V1
neurons to multiple visual stimuli16,45,46. Thus, the DN
mechanism is ubiquitous for the neuronal processing of visual
information. To our knowledge, no previous studies have inves-
tigated if the neurons in the cerebellum, which is responsible for
motor learning, have a similar integration mechanism. However,
the complex spikes of the Purkinje cell, which is thought to
encode the error signal47, did not increase with the visual error
size but decreased as the visual error size became greater26,39.
Such a nonlinear response could reflect that the activity of Pur-
kinje cells also follows the DN mechanism, which needs to be
confirmed in future studies.

In summary, we demonstrated the possibility that the visuo-
motor learning system processes visual error information by a
divisive normalization mechanism. Differently from the con-
ventionally proposed optimal estimation mechanism, the DN
mechanism does not assume the statistical property of the
uncertainty in the visual feedback (the distribution of cursors).
Instead, the DN mechanism assumes that the visual error infor-
mation conveyed by each cursor is integrated to determine the
learning response. This mechanism was able to explain the
learning responses when 1, 2, or 3 cursors were concurrently
displayed. Furthermore, it reproduced the well-known phenom-
enon that the learning response decreased with the level of
uncertainty in the visual feedback. Considering the explanatory
power, the proposed idea provides a novel view of how the motor
learning system updates the motor command according to the
visual error information.

Methods
General experimental procedures. Thirty-six right-handed par-
ticipants (24 men and 12 women aged 20–35 years) volunteered
for the 3 experiments. Before the experiments started, we
explained the experimental procedures, and written informed
consent was obtained from all participants. The Office for Life
Science Research Ethics and Safety of the University of Tokyo
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approved the experiments. All ethical regulations relevant to
human research participants were followed.

The participants performed reaching movements with their
right hand holding the handle of a manipulandum (KINARM
End-point Lab, Kinarm, Kingston, Canada). A horizontal screen
was set above the handle to display a start position and a target
(5 mm in diameter), and a white cursor (experiments 1 and 2:
5 mm in diameter, experiment 3: 2.5 mm in diameter) indicating
the handle position. This screen prevented the participants from
directly seeing their arm and handle. To reduce unnecessary
movement, the wrist joint was constrained by a brace and the
participants’ bodies were fixed to a chair by belts.

The green target was displayed at a certain distance (experi-
ment 1: 10 cm; experiments 2 and 3: 15 cm) away from the start
position in the straight-ahead direction. A few seconds after the
participants held the handle into the start position, the target
color turned to magenta, which signaled “go.” The participants
were asked to move the handle of the KINARM robot toward the
target as smoothly and as straight as possible and not to use any
explicit strategy even when the cursor was perturbed. The cursor
was always visible in experiments 1 and 2, whereas the cursor was
visible only after completion of the reaching movement in
experiment 3. To maintain a constant velocity across the trials,
the warning message (“fast” or “slow”) appeared at the end of
each trial when the peak velocity of the handle was too fast
(>450 mm/s) or too slow (<250 mm/s). The participants main-
tained the handle at the end position until the robot automatically
returned the handle to the start position (~1.5 seconds). Before
each experiment, the participants practiced 50 standard reaching
movements to achieve stable movements at the appropriate
distance and in the range of appropriate velocities.

Experiment 1: Influence of presenting multiple cursors. In experi-
ment 1 (8 participants: 5 men and 3 women), we examined a
single-trial visuomotor adaptation induced by visual perturbation
to the cursor(s). Thirty-nine types of perturbations were used
(Fig. 2a). In the single-cursor perturbation condition, the visual
error (e1) was imposed by rotating the cursor’s movement
direction from the target direction (e1= 0°, ±7.5°, ±15°, ±30°, and
±45° [9 types]). In the double-cursor perturbation condition, 2
different cursors were moved synchronously in different direc-
tions. Each cursor has different visual errors (e1 and e2 are a
combination of 0°, ±15°, ±30°, and ±45° excepting |e1 |= | e2 | i.e.,
7C2 − 3= 18 types). In the triple-cursor perturbation condition, 2
cursors’ errors were fixed (e2= 30° and e3= 45°) and the error of
the remaining cursor was e1=−45°, −30°, −15°, 0°, 15°, and
22.5° (6 types). There were also 6 symmetric patterns of pertur-
bations in the triple-cursor perturbation condition (e1= 45°, 30°,
15°, 0°, −15°, and −22.5°; e2=−30°; e3=−45°).

During the perturbation (Fig. 2a) and the subsequent probe
trials (Fig. 2b), the hand trajectories were constrained along the
straight line between the start position and the target by using the
force channel33 implemented by a virtual spring (6000 N/m) and
dumper (100 N/(m/s)). There were two reasons why we used the
force channel instead of measuring the ordinary movement
direction. First, this procedure, which combined multiple visual
rotations and the force channel, enabled us to completely control
the size of the visual error without introducing the proprioceptive
error in the perturbation trial (Fig. 2a). Secondly, the force output
is more sensitive for the changes in the motor command, as the
movement direction is influenced by biomechanical factors such
as the inertia and viscosity of the limb.

One set of trials consisted of 4 trials (Fig. 2c): a perturbation
trial (1 of 39 perturbation types was pseudo-randomly chosen),
probe trial, and 2 null trials without the force channel to wash out
the adaptation effects. After 50 practice trials, one cycle was

repeated 9 times for 39 perturbation types, for a total of 1404
trials (4 trials/cycle ⨯ 9 cycles ⨯ 39 perturbations).

Experiments 2 and 3: Influence of visual error uncertainty.
Experiment 2 (16 participants: 11 men and 5 women) and
experiment 3 (12 participants: 8 men and 4 women) were per-
formed to verify whether our DN model could predict the effect
of visual feedback uncertainty (a population of cursors) on the
learning responses. As was in experiment 1, the participants
repeated the experimental set consisting of a perturbation trial,
probe trial, and 2 null trials. In the perturbation trials, 5 cursors
were concurrently displayed (Fig. 5a). In every perturbation trial,
the angles of cursors’ movement direction were randomly drawn
from 1 of 15 normal distributions (N(μ, σ2); μ= 0°, ±14°, ±40°;
σ= 0°, 7°, 20°) (Fig. 5a). One cycle for 15 distributions was
repeated 12 times, resulting in the participants performing a total
of 720 trials (4 trials/cycle ⨯ 12 cycles ⨯ 15 distributions). The
cursor was always visible (Fig. 5b) in experiment 2, whereas the
cursor was only visible after completion of the reaching move-
ment (Fig. 5c) in experiment 3. Three participants were excluded
from the analysis because the learning responses were not clearly
observed in the single-cursor perturbation condition (1 partici-
pant and 2 participants for experiments 2 and 3, respectively).

Data analysis. The position and force data of the handle were
sampled at a rate of 1000 Hz and filtered by the 4th-order zero-
lag Butterworth filter with a cut-off frequency of 10 Hz. The
velocity of the handle was obtained by numerically differ-
entiating the position of the handle. The movement onset was
determined as the time when the handle velocity reached 5% of
the peak velocity. We quantified the learning response in the
probe trials as the lateral force impulse (the summation of lateral
force over the time interval from the movement onset – 200 ms
to the time at the peak handle velocity) (Fig. 2e). We also
quantified the feedback response in the perturbation trials as the
sum of the lateral force over the time interval from the time at
the peak velocity – 100 ms to the time at the peak handle
velocity (Fig. 7a). We integrated the lateral force up to the time
at the peak velocity, because we focused on only the implicit
component of both responses.

In experiment 1, we collapsed the data of the lateral forces to the
perturbations ±e1 in the single perturbation condition. We also
collapsed the data for (e1, e2) and (-e1, -e2) (e.g., (15°, −30°) and
(−15°, 30°)) in the double-cursor perturbation condition and the
lateral force data for (e1, 30°, 45°) and (-e1, −30°, −45°) in the triple-
cursor perturbation condition. In experiments 2 and 3, we collapsed
the data of the lateral forces to the perturbation ± μ for each of σ2.

Data exclusion. We excluded the data from the analysis by the
following criteria. The lateral force data was discarded when the
peak handle movement velocity for either perturbation or probe
trial was outside the included range (<250 mm/s or >450 mm/s
for experiment 1, <250 mm/s or >500 mm/s for experiment 2 and
3). We also excluded the data when the participants did not stop
the movement clearly after the movement offset. The proportion
of the excluded cycle was 9% (experiment 1), 2.8% (experiment
2), and 5.5% (experiment 3).

Model validation and prediction. To examine the validity of the
DN model, we first fit the learning response data of the single
cursor condition (experiment 1) with Eq. 6. The data fitting was
performed to the data averaged across participants in this study.
Then, using the identified parameters w and k, we predicted the
possible pattern of learning responses for the double- and triple-
cursor perturbation conditions (experiment 1) with the DN
model (Eqs. 1–3).
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We also fitted the learning responses of the conditions with
σ= 0° in experiment 2 or 3 by Eq. 6 and then used the identified
DN model (Eqs. 1–3) to predict how the learning responses were
influenced when 5 cursors were concurrently presented. To
examine whether the DN model could also capture the
modulation pattern of the online feedback response, we followed
the same procedure with the feedback responses in experiments 1
and 2 (Note that the feedback response was not induced in
experiment 3, because the cursor was not visible during the
movement).

Previous studies have proposed an MLE model to explain the
effect of visual information uncertainty on the magnitude of the
learning response (Eq. 7). The standard MLE model, however,
cannot explain the saturation of learning responses with the
visual error size. To reproduce the saturation effect, we assumed
that the visual error signal has the characteristic of signal-
dependent noise (Eq. 8): the standard deviation of the visual error
linearly increases with the visual error size36,37 (refer to Wei &
Körding (2009)35 for another approach). We fit the learning
responses of the single-cursor perturbation condition (experiment
1) with the MLE model and identified the parameters (Eqs. 7–8).
Then, we predicted the possible pattern of learning responses for
the double- and triple-cursor perturbation conditions using Eq. 9.

Statistics and reproducibility. One-sample t-tests were used to test
whether the significant learning response for the single cursor
condition in experiment 1 was elicited (Fig. 2f) and whether the ratio
of the declining rate was different from 1 (Fig. 6e, j). One-way
repeated measures ANOVA was used to test the effect of the
additional second cursor on average learning responses (Fig. 3d). If
the main effect was significant, a post-hoc test was performed to
determine which additional cursor caused the significant effect.
Two-way repeated measures ANOVA was used to test the effect of
visual feedback uncertainty and mean visual error size on the
learning response (Fig. 6c, h) and the feedback response. When there
was a significant interaction between these factors, a simple main
effect of visual feedback uncertainty was evaluated for each mean
visual error size. The level of statistical significance was p < 0.05.

Analytical solution of learning response to the single-cursor per-
turbation. In this section, we explain how Eqs. 4 and 6 can be
obtained from Eqs. 1–3 for the single-cursor perturbation condition
(i.e., when e is a scalar). We assume that the preferred directions are
uniformly distributed from −180° to 180°. The term ∑M

j¼1xjðeÞ in
the numerator of Eq. 3 is rewritten as ∑M

j¼1wφj fjðeÞΔφ=ðΔφÞ, where
Δφ ¼ 360=M. Since ∑M

j¼1φj fj eð ÞΔφ can be expressed as
R
φ exp

�ðe� φÞ2=ð2s2Þ� �
dφ ¼ ffiffiffiffiffi

2π
p

se, ∑M
j¼1xjðeÞ ¼

ffiffiffiffiffi
2π

p
Mwse=360.

Similarly, the term ∑M
j¼1x

2
j ðeÞ in the denominator of Eq. 3 can be

expressed as
ffiffiffi
π

p
sMw2ðs2=2þ e2Þ=360 using the relation

R
φ2 exp

�ðe� φÞ2=s2� �
dφ ¼ ffiffiffi

π
p

sðs2=2þ e2Þ. Replacing ∑M
j¼1xjðeÞ and

∑M
j¼1x

2
j ðeÞ in Eq. 3 with the obtained expressions gives Eqs. 4 and 6.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The source Matlab data that support the findings of this study and the programming
codes to analyze the data are available in Zenodo with “https://doi.org/10.5281/zenodo.
8343357”, and raw experimental data is available from the corresponding author upon
reasonable request. Data for the figures is provided in Supplementary Material
(Supplementary Data).
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