
Article https://doi.org/10.1038/s41467-023-43944-2

Full hardware implementation of
neuromorphic visual system based on
multimodal optoelectronic resistivememory
arrays for versatile image processing

Guangdong Zhou1,7, Jie Li2,7, Qunliang Song 3, Lidan Wang 1, Zhijun Ren1,
Bai Sun 4, Xiaofang Hu1, Wenhua Wang3, Gaobo Xu3, Xiaodie Chen5,
Lan Cheng6, Feichi Zhou 2 & Shukai Duan 1

In-sensor and near-sensor computing are becoming the next-generation
computing paradigm for high-density and low-power sensory processing. To
fulfil a high-density and efficient neuromorphic visual system with fully hier-
archical emulation of the retina and visual cortex, emerging multimodal neu-
romorphic devices for multi-stage processing and a fully hardware-
implemented systemwith versatile image processing functions are still lacking
and highly desirable. Here we demonstrate an emerging multimodal-
multifunctional resistive random-access memory (RRAM) device array based
onmodified silk fibroin protein (MSFP), exhibiting both optoelectronic RRAM
(ORRAM) mode featured by unique negative and positive photoconductance
memory and electrical RRAM (ERRAM) mode featured by analogue resistive
switching. A full hardware implementation of the artificial visual system with
versatile image processing functions is realised for the first time, including
ORRAM mode array for the in-sensor image pre-processing (contrast
enhancement, background denoising, feature extraction) and ERRAM mode
array for near-sensor high-level image recognition, which hugely improves the
integration density, and simply the circuit design and the fabrication and
integration complexity.

In the conventional machine vision system, image sensors are sepa-
rately connected to the memory and processing units by adopting the
von Neumann computing architecture1. Conventional image sensing
usually occurs in the analogue domain, after which the sensory data is
further converted to digital signal through analogue-digital converters

(ADCs), then transferred to the memory and processing units2–4. Thus,
sensory data processing based on the conventional architecture suf-
fers from long-distance communication from sensory units to pro-
cessing units with a limited data transfer rate5. The massive amount of
raw and redundant sensory data conversion and transmission causes
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high energy consumption, high latency, and limited communication
bandwidth, all of which are key issues for the state-of-the-art machine
vision hardware system. Thus, an efficient and highly integrated sen-
sory computing architecture for various intelligent tasks is desirable to
solve the sensory processing efficiency and latency bottlenecks in the
machine vision system6–9.

In contrast, the human visual system including the retina and
visual cortex, outperforms the conventional imagers and machine
vision systems, particularly in unique architecture and processing
schemes with high integration density and energy efficiency9,10. The
retina holds a hierarchical biostructure composed of rod/cone pho-
toreceptors, bipolar cells, amacrine cells, and ganglion cells, which all
play significant roles in visual sensing and pre-processing, such as
photoreception, feature extraction, temporal contrast enhancement,
and denoising, etc.11,12. The pre-processed visual information by the
retina will be further transmitted to the visual cortex for high-level
processing tasks such as learning, memory, inference, and
recognition8,9. This processing scheme of in-retina sensing and pre-
processing and high-level visual information processing in the visual
cortex can effectively reduce the redundant data transfer and con-
version between sensor and processing units, alleviating the latency
and efficiency bottlenecks and further simplifying the hardware design
complexity with a higher integration level7,10.

Inspired by the human visual cortex, neuromorphic visual systems
with in-memory computing architecture have been proposed by
integrating the image sensors with near-sensor resistive random
access memory (RRAM) array-based post-processor, which can
improve the integration density and energy efficiency from a certain
degree through adopting high-density in-memory computing archi-
tecture and shortening the distance between sensing and processing
units13,14. However, the large amount of redundant sensory data col-
lected from the image sensors still brings computing burden and
hardware design complexity to the post-processor based on the
resistive random access memory, which puts higher demands on the
accuracy and processing capability of the RRAM-based in-memory
processing system design.

To further improve the artificial visual system performance,
milestone breakthroughs of in-sensor computing systems have been
demonstrated5–10,13–21. The retina-inspired in-sensor computing devices
such as optoelectronic resistive random accessmemory (ORRAM) that
enable executing in-sensor image pre-processing at the front end are
proposed to emulate the advanced sensing and pre-processing func-
tions in the human retina, allowing for effectively reducing the unne-
cessary sensory data and extracting the feature information, and
further simplifying the hardware complexity and improving the
learning efficiency and accuracy of neural network in the post-
processor6,7,10,13. However, the reported in-sensor image pre-
processing and post-processing are still based on the simulation
instead of the real hardware system demonstration. Moreover, cur-
rently, the ORRAM arrays or phototransistor arrays can only complete
the limited image pre-processing functions, lacking multiple image
pre-processing capabilities and high-level processing capabilities.
Then the two-dimensional material WSe2-based transistor arrays with
tuneable photo responsibility are proposed for the ultrafast machine
vision system with new computing architecture, which can complete
3 × 3 handwritten letter recognition, image encoding, and decoding in
the sensor units9. Although an advanced hardware demonstration
based on the WSe2-based transistor arrays has been realised for such
image processing applications, the multiple subpixels-constituted
one-pixel core in the proposed computing architecture restricts the
image resolution and the complex and flexible image processing
applications. Therefore, the current challenges met in the in-sensor
computing systems based on emerging devices are mainly con-
centrated on the realisation of versatile image processing functions
towards flexible application scenarios, originating from the

restrictions of device functionalities, computing architecture, and
algorithmdesigns6,7,19–21. Thus, the realisation ofmulti-functionalities in
image processing is highly desirable for an advanced visual system
towards practical application. More importantly, a full hardware sys-
tem demonstration that fully emulates the hierarchical processing
architecture in the human visual system, including both the retina and
visual cortex, has not been realised to the best of our knowledge.

Herein, an emerging multimodal modified silk fibroin protein
(MSFP)-basedmultimodal resistivememory arrays based full hardware
implemented visual system with versatile image processing functions
is first demonstrated in this work, fully simulating the retina cells to
conduct image pre-processing and the visual cortex to complete high-
level image processing. The novel multimodal MSFP-based memory
exhibits two modes of operations including both analogue optical
resistive switching mode (ORRAM mode) and analogue electrical
resistive switching mode (ERRAM mode). Especially, the device in
ORRAM mode presents unique optically controlled positive photo-
conductancememory (PPM) and negative photoconductancememory
(NPM) effects, which allow the full optical SET and optical RESET
operations and further multiple image pre-processing functions. The
multimodal device allows the integration of image sensing and versa-
tile image pre-processing and high-level processing functions. A full
hardware-implemented neuromorphic visual system was built by
employing two identical multimodal resistive memory arrays with
different operationmodes for the first time. Combinedwith the design
of novel optical convolution algorithms, the front ORRAMmode array
enables in-sensor contrast enhancement, background denoising and
image erasing, and in-sensor convolutional operations for the feature
extraction function. In addition, the post-processor based on the
identical memory array in ERRAMmode can complete the in-memory
image recognition with reduced fabrication and integration com-
plexities. The MSFP-based resistive memory array-based full hardware
implemented neuromorphic system shows promising potential in the
future machine vision system with multi-functionalities, high integra-
tion level, and low power consumption.

Results
Figure 1 shows the schematic diagram of an advanced neuromorphic
vision system based on MSFP-based multimodal resistive memory
arrays with both ORRAM mode for image pre-processing (e.g.
denoising, contrast enhancement, feature extraction, image erasing)
and ERRAM mode for high-level image recognition (e.g. recognition),
simulating the functions of retina cells and visual cortex. In the bio-
logical visual system, the human retina is organised into three nuclear
layers and two synaptic layers, in which bipolar cells that include the
off and on cells as an inner nuclear layer (INL) connect the outer
nuclear layer (ONL, photoreceptors) and the ganglion cell layer
(GCL)11,12. The images are firstly sensed by the ONL and then are pre-
processed by the INL and GCL, and the pre-processed information will
be finally transmitted to the visual cortex layer to complete high-level
processing.

Analogous to the above human visual system, a full hardware-
implemented neuromorphic vision system including two identical
multimodal resistive switching memory arrays in ORRAM mode and
ERRAM mode with the peripheral circuits is constructed, as shown in
Fig. 1. To bemore specific, themultimodal MSFP-basedmemory in the
ORRAM mode can directly respond to the optical signals demon-
strating both continuously tuneable positive photoconductance
memory (PPM) and negative photoconductance memory (NPM) phe-
nomenon according to the light intensity, which enables the imple-
mentation of in-sensor image preprocessing (e.g. image contrast
enhancement, background denoising, feature extraction and image
erasing). The multimodal MSFP-based memory in the ERRAM mode
exhibits electrical analogue resistive switching memory behaviours,
allowing for further high-level processing such as image recognition.
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The novel design and behaviours in the multimodal MSFP-based
memory array allow for simplified array fabrication and circuit design
in the fully hardware-implemented neuromorphic visual system.

A two-terminal multimodal MSFP-based resistive memory with a
cell area of 200μm×200μm and a structure of 35 nm Au/100nm
modified silk fibroin protein (MSFP) switching layer/35 nm Au was
fabricated on the MSFP flexible substrate (Fig. 2a and Supplementary
Fig. 1). The optical image of a 12 × 12 crossbar arraywith an overall area
of 4.6mm×4.6mm is shown in Supplementary Fig. 1a, b. Silk fibroin
protein (SFP) with a specific amino acid series can be chemically
exfoliated from cocoon, showing great potential for the flexible and
biocompatible RRAM device since the hydroxyl bonds and carbon-
oxygen double bonds in amino acid series could provide active reac-
tion sites for hydrogen bond reaction or polymerisation reaction to
form a series of traps for electrical resistive switching22,23. However, the
SFP-based functional films presented today cannot display optically
induced resistive switching features22–25. Therefore, an MSFP thin film
is first developed in this work by introducing polyglycerol-3 (Pg-3) and
5-6-dihydroxyindole (5-6-DHI) with rich hydroxyl bonds and carbon-
oxygen double bonds to the SFP. The additives can easily form strong
hydrogen bonds with the SFP and alter the secondary structures. This
process helps to introduce trap states and light-tuneable secondary
structure changes in the MSFP thin film for both electrical and optical
switching (Supplementary Fig. 2). Figure 2b shows the synthesis route
of the MSFP thin film formed by the hydrogen-bond interaction
between SFP with a dialyzing time of 48 h and the Pg-3 and 5-6-DHI.
TheMSFP thin film shows a denser and smoother surface than the SFP
thin film, showing higher thin film quality (Supplementary Fig. 3). To
further examine the structural change fromSFP toMSFP thin films, the
Fourier transform infrared spectroscopy (FTIR) characterisations are
conducted, which suggest new structures such as –CH2-based chains

formed and no observation of the chemical bond of C–O located at
1165 cm−1 in the MSFP films (Supplementary Fig. 4), indicating that the
change of C–O-based bond groups possibly provide the chemical
reaction sites to form a large number of hydrogen bonds among SFP,
Pg-3 and 5,6-DHI. In addition, the MSFP material holds a higher
dielectric constant (40.62@1MHz) (Supplementary Fig. 5a) and
stronger absorption for visible light than the SFP material (Supple-
mentary Fig. 5b), enabling theMSFP-based electronic devicewith good
electrical and optical resistance tuneability.

The electrical resistive switching behaviours are first studied in
the multimodal Au/MSFP/Au device. Figure 2c presents a tuneable
analogue resistive memory behaviour under both continuous positive
voltage (0→ 1→0V) and negative voltage (0→ −1→0V) sweepings.
The device shows good cyclic endurance and non-volatile memory
with a retention time of over 104 s (Supplementary Fig. 6a, b). The
cumulative probability of the low resistance state (LRS) and high
resistance state (LRS) for 100 different devices suggests good device-
to-device stability under the electrical stimuli (Supplementary Fig. 6c).
The response speed of the device is illustrated in Supplementary Fig. 7,
showing a fast response speed of 10 µs. In comparison with the SFP-
based memory showing digital switching and abrupt set and reset
process (Supplementary Fig. 8a–c), the Au/MSFP/Au memory device
shows an analogue switching behaviour with non-volatile 16multilevel
resistance states as shown in Supplementary Fig. 9. Figure 2d exhibits
the conductance updates with 50 pulses (0.7 V, 50μs) for the long-
term potentiation (LTP) process and another 50 pulses (−0.7V, 50μs)
for the long-term depression (LTD) process. These programmed con-
ductance states after LTP and LTD processes can be well maintained
(Supplementary Fig. 10). These electrically tuneable LTP and LTD
characteristics in the Au/MSFP/Au memory enable further in-memory
computing for image recognition applications.
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Fig. 1 | Neuromorphicvisionchipbasedonmultimodal resistivememory arrays
with ORRAMmode array for in-sensor image preprocessing and ERRAMmode
array forhigh-level image recognition.Anadvancedneuromorphic vision system
basedonMSFP-basedmultimodal resistivememory arrayswith bothORRAMmode
for image pre-processing and ERRAM mode for high-level image recognition,
simulating the functions of retina cells and visual cortex, respectively. In the bio-
logical visual system, the human retina is organised into three nuclear layers and
two synaptic layers, in which bipolar cells that include the off and on cells as an
inner nuclear layer (INL) connect the outer nuclear layer (ONL, photoreceptors)

and the ganglion cell layer (GCL). The images are firstly sensed by theONL and then
are pre-processed by the INL and GCL, and the pre-processed information will be
finally transmitted to the visual cortex layer to complete high-level processing. The
neuromorphic vision chip consists of an ORRAM mode array with NPM and PPM
features for the in-sensor image pre-processing (e.g. contrast enhancement and
background denoising) and in-sensor convolution for feature extraction, and
ERRAM mode array with analogue resistive switching for in-memory high-level
image recognition through convolutional neural network (CNN) operations.
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The analogue electrical switching mechanisms in the device can
be attributed to the space charge limit current (SCLC) mechanism, as
shown in Fig. 2e. Under a positive voltage, the electrons are injected
into the trap sites in the MSFP film causing the resistance transition
from HRS to LRS, while the captured electrons were de-trapped from
the defect sites under negative voltage resulting in the resistance
transition from LRS back to HRS. The analogue resistive memory
behaviours with multiple states are possibly dependent on the ion
doping concentration such as Li+ in the MSFP thin film. A suitable
residual Li+ ion concentration that mainly originated from the dialysis

process of the SFP preparation can introduce defect energy levels in
the MSFP function film, providing suitable trap sites to store the
injected electrons. The SCLC fitting of these continuous I–V curves
illustrates that the conduction mechanism at the voltage sweeping
regions of 0 ~0.05 V and 0.75 ~ 1.0 V are dominated byMott-Gurrey law
while the device conduction mechanism at 0.05 ~ 0.75 V is dominated
by the transition between Ohmic conduction and Mott-Gurrey law
(Supplementary Fig. 11a). According to the threshold voltage (Vt) cor-
responding to the transitions between Mott-Gurrey law-dominated
region and Ohmic conduction-dominated region, dielectric constant
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optical set and reset processes. FTIR spectra peak fittings of the MSFP thin film
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light, respectively, suggesting the light illumination can alter the MSFP secondary
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exhibited obvious NPM and PPM effects when illuminated by the 10–65mW and
80–100mW 405 nm lasers, respectively. The light-related measurements of (f–h)
and (k) are conducted in air ambient with relative humidity of 45% with the light
exposure duration of 2.0 s.
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(εr), and thickness of theMSFP thinfilm (L), the trap concentration (Nt)
can be calculated by the equation of Nt =

2ε0εr
eL2

Vt
24,26–28. The corre-

sponding Nt calculations illustrate that the MSFP-based memory has a
high trap concentration (~3.0 × 1016) at HRS while it has a relatively low
trap concentration at LRS for the 1st I–V sweeping cycle (Supplemen-
tary Fig. 11b). The Nt gradually decreases from ~3.0 × 1016 to ~2.4 × 1016

with the I–V sweeping cycle increasing from 1st to 15th, indicating that
the traps are graduallyfilled by the injected electrons. Therefore, at the
very beginning state, the traps uniformly distribute in the MSFP film
and then being iteratively filled by the injected electrons causing an
analogue resistive switching memory behaviour. To further examine
the trap concentration-based resistive switching memory behaviours,
the MSFP memory devices with different Li+ concentrations and thus
different trapping concentrations are fabricated to further prove the
switching mechanism as shown in Supplementary Fig. 12a–c and
Supplementary Table 1.

In addition to the analogue electrical resistive switching char-
acteristics, the multimodal resistive memory exhibits fully optical-
controlled resistive switching behaviours, corresponding to the
ORRAMoperationmode. Taking theHRSunder dark as the initial state,
the MSFP-based memory can be optically operated to higher resis-
tance states by the 405 nm laser with the light intensities from 70 to
100mW that corresponds to the positive photoconductive memory
(PPM) effect, and also be optically operated to low resistance states by
the 405 nm laser with the light intensities from 10 to 60mW that
corresponds to the negative photoconductive memory (NPM) effects
(Fig. 2f). Before the light illumination, a voltage sweeping from 0 to
0.2 V is applied to the device under dark, corresponding to the dark
resistance state. When the 405 nm light is illuminated with the
intensity increased from 70 to 100mW, the device resistance under-
goes a continuous transition from the dark resistance state to lower
resistance states with the increased light intensity, demonstrating the
PPM effect. It is worth noting that the tuneable resistance states are
non-volatile, which can be retained even after the removal of the light
stimuli. Then the 405 nm light stimuli with a light intensity of 60mW
can switch off the device back from the lower resistance state to the
original dark resistance state, corresponding to the optical RESET
process. More importantly, the 405 nm light stimuli with increased
intensities from 10 ~ 60mW can further trigger the continuous resis-
tance transitions from the dark resistance state to even higher resis-
tance states, demonstrating the NPM effects, as shown in Fig. 2f.
Different from the previously reported ORRAM devices with uni-
directionally optical switching10,13,19, the MSFP-based memory can be
bidirectionally optical switched ON and OFF with both tuneable NPM
and PPM effects, which are significant for building in-sensor pre-pro-
cessing units. This optically PPM and NPM switching presents good
cycle-to-cycle and device-to-device stabilities (Supplementary
Fig. 13a, b).

The optical switching behaviours are possibly related to the
optically induced secondary structure change in the MSFP thin films.
To further reveal the dynamics of the optical switching characteristics,
the MSFP’s secondary structures before and after the light illumina-
tions with different intensities are analysed through Fourier transform
infrared spectroscopy (FTIR) as shown in Supplementary Fig. 4, which
reveals the chemical bond vibrations (i.e., –OH, –C=O,C=C, C–OH) and
the detailed information for the secondary structures in the first amide
region. The FTIR results of the MSFP film before the light illumination
are illustrated in Supplementary Fig. 4. The protein secondary struc-
tures that consist of the side-chain (s-c), random-coil (r-c), alpha-helix
(a-h), beta-sheet (β-s), and beta-turn (β-t) were quantised in the first
amide region. The concentrations of s-c, r-c, a-h, β-s, and β-t secondary
structures in the MSFP film are 8.39%, 53.09%, 14.06%, 10.75%, and
13.17%, respectively (Supplementary Table 2). For comparison, the
quantification results of SFP thin film in the amide first region illustrate
that themole ratios of s-c, r-c, a-h, β-s, and β-t secondary structures are

4.88%, 35.81%, 24.3%, 18.03%, and 16.98% in the SFP thin film (Supple-
mentary Fig. 14a). It proves that the hydrogen-bond interaction
between the SFP and the Pg-3/5-6-DHI to form the MSFP thin film can
alter the protein secondary structures24,25.

Interestingly, these secondary structures in the MSFP film can be
modulated by light intensities. After the MSFP film was exposed to
80mW UV light, the mole ratio of β-s obviously increased by 11.70%
while the r-c, a-h, and β-t decreased by 9.86%, 24.0%, and 5.77%,
respectively (Fig. 2g). When the light intensity changes from 80 to
40mW, the mole ratio of the β-s decreases from 59.30% to 55.76%
while the mole ratio of β-t increases from 12.41% to 14.51% (Fig. 2h),
causing the NPM effect. The optically induced PPM effect can be
mainly due to the increased concentration of beta-sheet (β-s) with
layer-by-layer structures that contribute to higher conductivity, while
the optically induced NPM effect can be attributed to the increased
beta-turn (β-t) or other non-layered structures that contribute to a
lower conductivity29–31, as shown in Fig. 2i. Therefore, the increase in
the β-s structure (contributing to higher conductivity), along with the
decrease in the β-t (contributing to higher conductivity), is possibly
responsible for the PPMeffect observed in theAu/MSFP/Aumemory. It
can also be noted that when the UV light intensity changes to 60mW,
themole ratios of the β-s and β-t secondary structures increase by 2.7%
and 29.15%, corresponding to an enhanced NPM effect (Supplemen-
tary Fig. 14b). The comparisons of the changes in these secondary
structures under the light illumination with different light intensities
(40, 60, and 80mW) are shown in Supplementary Table 3. The effects
of differentMSFP film thicknesses and device areas on the optical PPM
and NPM switching are also investigated as shown in Supplemen-
tary Fig. 15.

To further verify the relationships between the device con-
ductance and light intensity during NPM and PPM processes, current-
sensor atomic force microscope (CS-AFM) measurements were con-
ducted on the MSFP/Au sample under the 405 nm light illumination
with different intensities (Fig. 2j). As shown in Fig. 2k, the sensor cur-
rent mapping represents the conductance levels of the MSFP film
within a scanning area of 500 × 500nm2. The produced sensor current
can be real-timemonitored by a constant read voltage of 0.1 V applied
to the Pt electrode (Au electrode is grounded) under the light illumi-
nation. Under dark, the sensing current was detected around ~0.01 nA
in the selected area of the MSFP film, indicating the HRS. After the
illumination of 80mW light, an obvious local sensing current
increasing that uniformly distributed in the MSPF thin film was
observed in the same selected MSFP film region. With the light inten-
sity increased from 80 to 100mW, the local sensing current in the
same region displayed an orderly enhancing tendency over the whole
scanning area of the thin film, corresponding to the PPM effect in the
device. After that, the MSFP thin film was exposed to a 10mW light
illumination, and the sensing current was largely suppressed and
decreased from ~3.5 to ~0.8 nA, indicating the NPM effect. The NPM
effect was further enhanced with the increased light intensity from 15
to 65mW, presenting a continuously decreased current.

To systematically investigate the optically induced PPM and NPM
effects, the detailed light-dosage-dependent optical switching char-
acteristics are demonstrated in Fig. 3a. Figure 3a shows the photo-
induced potentiation (PPM effect) and photoinduced depression
(NPM effect) as a function of light pulse number. The photoinduced
potentiation process was obtained by applying 50 light pulses
(405 nm, 80mW, 200ms) followed by another 50 light pulses
(405 nm, 40mW, 200ms) for the photoinduced depression process,
illustrating a full optically induced analogue switching behaviour in the
device. The optically tuneable PPMandNPMplasticity transitions from
short-term plasticity (STP) to long-term plasticity (LTP) can be
achieved in themultimodalMSFP-baseddevicewithORRAMoperation
mode. A paired pulse (pulse width of 100ms, pulse interval of 100ms)
with the light intensity varying from 70 to 100mW was applied to the
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device, indicating the PPM short-term plasticity (STP) feature (Fig. 3b).
Similarly, the device displays the NPM STP feature under a series of
paired-pulse stimulations (pulse width of 100ms, pulse interval
of 100ms) with light intensity varying from 10 to 60mW (Fig. 3c). All
photoconductance states were read out by 0.1 V.

The STP to LTP transitions for both PPM and NPM occurred when
the light pulse number was further increased. The left of Fig. 3d shows

the PPM effect and conductance potentiation with the increased light
pulse number and an increased light intensity ranging from 70 to
100mW (pulse number for each light intensity is 50). The PPM effect
presents a growth trend with the pulse number under a higher light
intensity. Overall, the conductance is increased with the light intensity
level. The right of Fig. 3d demonstrates the non-volatile retention
properties of the memorised states after the removal of the pulse
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Fig. 3 | Light tuneable NPM and PPM effects and synaptic characteristics.
a Optically induced potentiation and depression processes under the continuous
80mW, 200ms light pulses and 40mW, 200ms light pulses, respectively.b, c PPM
and NPM STP triggered by pair pulses with light intensities ranging from 10 to
60mW and 70 to 100mW, respectively. d The PPM effect with LTP features under
the increased pulse number and the varied light intensities ranging from 70 to
100mW. eTheNPMeffectwith LTP features under the increasedpulse number and

the varied light intensities ranging from 10 to 60mW. All photoconductance states
were read out by 0.1 V. f Demonstration of the image contrast enhancement and
denoising through the simultaneous NMP and PPM effects, and image erasing
through NPM effects. g A “fish” image was sensed, denoised and enhanced in situ a
12 × 12 MSFP-based multimodal memory crossbar array. The memorised and pre-
processing image in the array can be further erased by light illumination.
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sequence with 50 pulses at each light intensity (70, 75, 80, 82, 85, 87,
89, 90, 95, 100mW). Thediscretephotoconductance states canbewell
maintained after turning off the light stimuli, demonstrating the non-
volatile multiple photoconductance states. The left of Fig. 3e presents
the NPM effect and conductance depression with the increased pulse
number at the different light intensities ranging from 10 to 60mW
(pulse number for each light intensity is 200). The device current
presents a continuously decreasing trend with the increased pulse
number and the light intensity. The right of Fig. 3e shows the retention
of the conductance state after the removal of the pulse sequence with
200 pulses at each light intensity (10, 15, 25, 40 and 60mW). After the
removal of the light stimuli, the multiple conductance states can be
well maintained. The effect of the electrical switching on the optical
switching is also investigated, as shown in Supplementary Fig. 16. The
comparison of our device in both optical switching and electrical
switching with the devices based on other materials is shown in Sup-
plementary Table 4.

The unique light intensity-dependent PPM and NPM effect
observed inour device inORRAMmode arehighly desirable for further
in-sensor image preprocessing applications, enabling high integration
levels and avoiding the complex processing circuits and analogue-
digital converters (ADCs) between separate sensors and processing
units. The in-sensor image pre-processing functions based on the PPM
and NPM effects, including the image contrast enhancement, noise
reduction, and image erasing, are schematically shown in Fig. 3f. A
“fish” pattern with background noise is mapped on the 12 × 12 MSFP-
basedmemory crossbar array, outputting the responsive currents. The
image mapping process is illustrated in Supplementary Fig. 17.

When the images are input into the array, the body pattern pixels
with higher light intensities were enhanced through the PPM effect
while the background pixels with lower light intensities were reversely
suppressed by the NPM effect, resulting in the enlarged pixel signal
ratio between the body pattern pixels and the background pixels. With
the increased epochs (increased pulse number), the contrast is con-
tinuously enhanced (Supplementary Fig. 18), leading to an enhanced
contrast of ~33 after 25 epochs. By comparison, the input image shows
a light intensity ratio of ~5 between the background pixel and body
pattern pixel. Therefore, a ~6 times contrast enhancement is obtained
after the image preprocessing based on the ORRAM mode array
(Fig. 3g). Therefore, the body pattern is enhanced by correspondingly
smoothing the background noise. After completing the image pre-
processing, the MSFP-based memory crossbar array could be erased
by the light through the NPM effect by applying 25 light pulses of
40mW and 200ms, allowing for the next round of image sensing and
processing (Fig. 3g).

Owing to the novel multimodal resistive switching characteristics
including the non-volatile and analogue PPM andNPMoptical resistive
switching and electrical resistive switching in the multimodal resistive
memory, a full hardware neuromorphic system containing both image
pre-processing (contrast enhancement/background denoising, image
erasing, and feature extraction) and high-level image recognition was
built and realised for versatile in-sensor image processing applications
through flexible algorithm deployment for the first time. This sensing-
memory-computing integrated architecture based on novel optical/
electricalMSFP-basedmemory arrays can not only reduce the frequent
data transfer between the conventional sensor unit and the post-
processor but also reduce the circuit complexity and memory fabri-
cation complexity with largely improved high hardware integration
density7,10,19.

As shown in Fig. 4a, the neuromorphic vision hardware system is
composed of an MSFP-based memory array operating in ORRAM
mode, an identical MSFP-memory array operating in ERRAM mode,
and the peripheral control circuits, in which the ORRAM operation
mode is for in-sensor convolutional operation for image feature
extractions and other image pre-processing including image contrast

enhancement/background denoising and image erasing as discussed
in Fig. 3f, g, while the ERRAMmode is for the further in-memory post-
processing such as image recognition (Fig. 4a). The photo of theMSFP-
based multimodal-multifunction neuromorphic vision sensing hard-
ware system is shown in Fig. 4b. The image preprocessing algorithms
and a convolutional neural network (CNN) are deployed on the hard-
ware system. The 12 × 12 ORRAM array executes the image pre-
processing of contrast enhancement and background denoising and
performs the first-layer optical convolutional operation in CNN for
image feature extraction. The ERRAM mode array is employed to
complete one convolution layer and fully connected layer computa-
tions in the CNN. Other network operations, such as max pooling
layers and ReLU activation function layers, are executed within the
ARM core.

Firstly, for the ORRAMmode array, image contrast enhancement/
background denoising is performed according to the NPM and PPM
operations in the ORRAMmode array. Utilising PPM and NPM effects,
the body pattern pixels in the input image represented by relatively
higher brightness are enhanced by the PPM while the background
pixels with relatively lower brightness are suppressed by the NPM
effect, Therefore, a contrast-enhanced image with smoothed back-
ground noise can be obtained (Fig. 4d, e). Additionally, the ORRAM
array can also implement the in-sensor convolutional operation for
image feature extraction (Fig. 4d). A novel optical convolution algo-
rithm deployed on the ORRAM array, as shown in Fig. 4c, is proposed
for in-sensor convolution. Each cell in the ORRAM mode array corre-
sponds to one pixel in the input image. The ORRAM mode array can
firstly sense and store the image information in the photoconductance
represented using Gml (Gml,m = 1, 2, 3…n; l = 1, 2, 3…n). For the optical
convolution process, a reconfigurable 3 × 3 convolution kernel is first
mapped into three reading voltages (V11, V12, V13) at the temporal
domain (T1, T2, T3), which is then input into the ORRAMmodememory
array for convolutional operations with the stored photoconductance.
The output currents for every column at T1, T2 and T3 are defined to be
I11, I12, I13; I21, I22, I23; and I31, I32, I33, respectively. The photoconductance
(Gml), reading voltage (Vkm), and current (Ikl) at each ORRAM array
columnobey theOhm’s law. For each columnof thememory array, the
summation current obeys Kirchhoff’s law. Therefore, the relationship
of the summation current for each column, read voltage, and photo-
conductance can be described as follows:

Ikl =
X3

m= 1

VkmGml ð1Þ

In this approach, a convolution kernel is divided into T1, T2, and T3
segments. The current summation at T1 is first collected and stored in
the ARM core, followed by the current summation at T2 and T3. Then
new output currents are extracted from a specific current group (I11,
I22, I33; I12, I23, I34; I13, I24, I33…) as follows:

Iout�k,l = Ik,l + Ik + 1,l + 1 + Ik + 2,l + 2 ð2Þ

The employment of the novel optical convolutional operation in
the ORRAM array offers a 75% reduction in time complexity compared
to the traditional convolution operation method based on RRAM32.

The convolution kernel adopted here for feature extraction is [[1/
9,1/9,1/9], [1/9,1/9,1/9], [1/9,1/9,1/9]]. The feature size of the convolu-
tion kernel is 1 × 3 × 3 × 3 (depth ×weight ×weight × batch). For the
hardware implementation, the convolution core is converted into
voltage pulses and input into the ORRAM mode array through DACs.
The output currents are then converted into analogue voltages
through TIA, which are further converted into digital signals by ADCs
and then read by ARM core master control. After the optical con-
volutional operation, a feature size of 12 × 12 × 3 is obtained, which
further becomes 6 × 6 × 3 after the ReLu activation function and 2 × 2
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Fig. 4 | Fully hardware implementation of the neuromorphic visual system
based on themultimodal resistivememory arrays withORRAMmode array for
in-sensor pre-processing and the ERRAMmode array for near-sensorhigh-level
processing. a Architecture of the fully hardware-implemented neuromorphic
visual system composed of an ORRAM mode array, an ERRAM mode array, a
memory array peripheral control system and an STM32 system. b Photo of the fully
hardware-implemented neuromorphic visual system. c In-sensor convolution
operation executed in theORRAMmode array.dDemonstration of in-sensor image
feature extraction through in-sensor convolution operation and image erasing
through NPM effects in the ORRAM mode array. e Demonstrations of in-sensor
image denoising and contrast enhancement through PPM and NPM effects in the

ORRAM mode array. f Convolution implementation in the ERRAM mode array.
Confusionmatrices of the classifications of “bear”, “fish”, and “butterfly” images (g)
before and (h) after 50 training epochs, yielding an accuracy of 97.3%. i The con-
ductancedistributions (weightmaps) in the ERRAMarray under the initial state and
different training epochs. j Comparison of the image recognition results with and
without the ORRAM mode array for pre-processing. k Comparison of the image
recognition results implemented through hardware and simulation. l Image
recognition capability of the full hardware-implemented visual system. The images
of the bear, fish, and butterfly were labelled by the digit of 0, 1, and 2, respectively.
These images can be recognised by our neuromorphic visual system with high
accuracies.

Article https://doi.org/10.1038/s41467-023-43944-2

Nature Communications |         (2023) 14:8489 8



maximum pooling operation executed in the ARM core. This newly
generated feature will be further input into the ERRAM mode array-
based post-processor for CNN-based image recognition.

The post-processor is composed of the identical ERRAM mode
crossbar array that is aimed at high-level image processing by imple-
menting the CNN algorithm (Fig. 4f). The extracted features by the
ORRAM mode array are cached in the ARM core and then sent to the
ERRAM mode array for convolution operation. Before being sent into
the ERRAM mode array, 3 × 3 patterns in the image are sequentially
flattened into column vectors. Considering the influence of inter-
connect resistance, the first three rows of the memory array in the
12 × 12 ERRAM mode array are not operated. The first six columns of
the last nine rows in the ERRAM are adopted for three different con-
volution cores, and the last six columns are employed as a single-layer
perceptron classification network with nine input and three output
neurons. The output current of the different neurons can be given by
the following equation:

IN =
X9

m= 1

XmW
N
m =

X9

m= 1

Vm GN +
m � GN�

m

� �
= I +N � I�N ð3Þ

Where Xm represents the value of input data which can be mapped to
Vm, and WN

m denotes the weight of the neural network. The weight is
represented using a pair of differential conductances GN +

m and GN�
m .

The Vm and Gm denote the read voltage applied to the MSFP memory
cell and the corresponding conduction value, respectively. IN is the
differential result current between two columns, I +N and I�N . The result
of the convolution calculation is denoted as IN.

The convolution operation is executed with a kernel of
3 × 3 × 3 × 1, resulting in anoutput feature size of 6 × 6 × 1. Similar to the
previous activation and pooling operations, the 6 × 6 × 1 feature is
reduced to a feature size of 3 × 3 × 1. The 9 feature values are input into
a 9 × 3 fully connected layer to conduct classification training in the
ERRAMmodearray-basedpost-processor (Supplementary Fig. 19). The
corresponding outputs are activated by the SoftMax function to gen-
erate an identified probability output. It can be noted that the above
activation, pooling, and update calculations are conducted in the ARM
core with all weights quantised by 3 bits. The stochastic gradient
descent (SGD) optimisation algorithm and the cross-entropy loss
function are used in the CNN operation33–36. The inexact gradient
update algorithm was employed to conduct the online training33. The
overall hardware system working flow is described in the “Method”
part and Supplementary Note 7.

A demonstration of the image pre-processing and post-
processing based on the ORRAM mode and ERRAM mode array
hardware is illustrated in Fig. 4a. For the first step, an optical illumi-
nation of 60mWwas employed to clear the background signals in the
array through the NPM effect. Then a “bear” image with background
noise is input into the ORRAM array, outputting the “bear” image with
enhanced contrast and smoothed background noise through ORRAM
PPM and NPM effects (Fig. 4d). Moreover, the feature of the “bear”
image can be extracted through the in-sensor convolutional operation.
After that, the features of the “bear” can be re-cleared with light illu-
mination through the NPM effect. To further demonstrate the cap-
ability of image pre-processing, “butterfly” and “fish” images are
orderly input the ORRAM array according to the above steps (input
image→ output image results→ image erasing), showing the reliable in-
sensor pre-processing (Fig. 4e). To further prove the feasibility of the
ORRAM hardware in pre-processing large image size, the MNIST
handwritten digit image was tested through simulation based on the
ORRAM array performances, showing a good capability in image
denoising, contrast enhancement, and feature extraction (Supple-
mentary Fig. 20). Figure 4g, h demonstrates the image recognition
results based on the ERRAM mode array-based post-processor. To
perform image recognition tasks, three separate training datasets

consisting of 1000 images each are established for the patterns of
“bear”, “fish”, and “butterfly”. The confusion matrices of the classifi-
cations of “bear”, “fish”, and “butterfly” images before and after 50
training epochs are shown in Fig. 4g, h yielding an accuracy of 97.3%.
Figure 4i depicts the conductance distributions (weight maps) of the
12 × 12 MSFP memory array during the training. After initialisation, the
12 × 12 MSFP memory array is in a completely random state. As the
training epochs increase, the accuracy of network recognition also
improves. The conductance distributions for five different training
epochs (network accuracies) are presented as shown in Fig. 4i. This
result also suggests the good programming capability of the MSFP
memory array. To demonstrate this point, a series of voltage pulses
were randomly input into the ERRAMmodememory crossbar array to
evaluate the weight tuning capability (Supplementary Fig. 21a). The
ERRAMs can be cyclically and repeatedly programmed into different
conductive states, as shown in Supplementary Fig. 21b, c. To further
demonstrate the convolutional capabilities of the ERRAM array,
higher-resolution images are tested. Supplementary Fig. 21d presents
the image blurring result of the “MNIST handwritten digit” image after
the convolution operation.

Figure 4j, k illustrates the image recognition results of our hard-
ware system with and without ORRAM mode memory-based pre-pro-
cessing, respectively. For the hardware system recognition results, it
can be noted that an accuracy of 97.3% can be obtained after 6 training
epochs with ORRAM mode array-based preprocessing while a fluc-
tuant accuracy of 95% can be achieved after 25 training epochswithout
ORRAM mode array-based preprocessing (Fig. 4j). The training effi-
ciency of the CNN with ORRAM mode preprocessing is obviously
higher than that without ORRAM mode pre-processing. Software
simulation was conducted to prove the accuracy and effectiveness of
our hardware system, showing similar recognition results (Fig. 4k). In
this way, the ERRAM array-based hardware can well-recognise the
image of “bear”, “fish”, and “butterfly” that was respectively labelled as
digit 0, 1, and 2 via the operating CNN algorithm (Fig. 4l). The results of
the whole hardware system indicate that the multimodal-
multifunction MSFP-based memory hardware system has the cap-
abilities to mimic the retina cells’ function to conduct image pre-
processing as well as to simulate the visual cortex to operate high-level
image processing. By comparison, this multimodal array-based visual
system shows promising potential for future in-sensing neuromorphic
computing systems, exhibiting system advantages in terms of inte-
gration density and power efficiency compared with the state-of-the-
art systems (Supplementary Tables 5 and 6).

We demonstrated a fully MSFP memory-implemented neuro-
morphic machine vision system inspired by a human visual system for
high-efficiency image processing. An MSFP-based memory crossbar
array with the ORRAM mode displays the NPM effect under light
intensity varying from 10 to 60mW and the PPM effect under light
intensity varying from 70 to 100mW, enabling the ORRAM mode
arrays to faithfully mimic the functions of retina cells to conduct the
high-efficiency image preprocessing such as contrast enhancement,
feature extraction, and denoising. The developed MSFP-based mem-
ory crossbar array under the ERRAM mode presents tuneable, stable
and analogue resistive switching memory behaviours, endowing the
hardware system with high capability to complete high-level image
processing such as image recognition. The hardware system imple-
mented with the ORRAMmode array and ERRAMmode array exhibits
high image recognition accuracy of 97.3%.

Methods
MSFP synthesis
A cocoon of the practical silkworm strain LiangGuang-No.2 (LG-2) was
boiled in 0.02M NaCO3 solution for 30min to move the sericin and
then washed with deionized water to remove the residual NaCO3.
Therefore, the silk fibroin protein (SFP) cellulose was obtained after
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degumming techniques. The silk fibroin protein cellulose was dis-
solved into 9.3M lithium bromide (LiBr) solution at 60 °C for 3 h and
then dialysed for 36, 48, or 72 h to obtain SFP precursor solution. The
precursor solution was freeze-drying to obtain SFP solid to reserve its
properties.

A 0.028 g freeze-drying SFP, 0. 0025 g Pg-3, and 0.0025 g 5, 6-DHI
were orderly dissolved into 2ml deionized water, ultrasonically pro-
cessed for 30 s, and statically processed for 45min to prepare a
modified silk fibroin protein (MSFP) precursor that was presented
black colour. A flexible MSFP substrate could be synthesised after this
black precursor thermal processing at 97 °C for 3 h.

MSFP-based memory array fabrication
The MSFP-based memory device was prepared using radio frequency
(RF) magnetron sputtering and spin coating techniques. Au bottom
electrode (BE)wasdeposited on substrates by the sputteringunder the
condition of 0.8 Pa Ar, 15W, and 35 s. A ~5 nm Pt film as an adhesion
layer between Au BE and substrates was considered. The MSFP-based
precursor solutionwas spin-coated on theAuBE thatwasprocessedby
plasma treatment for 60 s at 70W. Au top electrode (TE) was fabri-
cated by the sputtering under Ar atmosphere with a working pressure
of 0.8 Pa and power of 15W for 20 s. Thus, a multimodal memory
device with an Au/MSFP/Au sandwich structure was developed.

A shadow mask with 12 strip gaps was employed to prepare the
TEs and BEs. For the first step, the steelmaskwas covered on theMSFP
substrate or quartz substrate, after which the Pt and Au film were
deposited to fabricate the BEs by sputtering under an atmospherewith
a working pressure of 0.8 Pa and power of 15W for 35 s. The MSFP
switching layer was prepared by spin-coating at 4500 rpm for 30 s at
room temperature. Similar to the BEs processing, the TEs were fabri-
cated by the sputtering at the same condition. After removing the steel
mask, an MSFP-based memory crossbar array could be developed.

Optoelectrical measurement and characterisation
A photoelectric integrated test platform including semiconductor
analyser (B1500A, Keysight), laser (colbot, 405 nm, 0 ~ 100mW) with
pulse modulation units, oscilloscope (UNI-T, UPO7072Z), and probe
station (Lakeshore, TTPX) was employed for the photoelectric mea-
surements. The image patterns that irradiate to the MSFP-based
crossbar array were determined by the masks with certain patterns.

The morphology, dielectric property, UV ultraviolet spectra, and
infrared spectra were performed using field emission scanning elec-
tron microscopy (FE-SEM, 7100), impedance analyser, UV-vis spec-
trometer (SHIMADZU, UV-2700i) and Fourier transform infrared
spectrometer (FTIR, Nicolet iS50), respectively. Secondary structures
of the SFP andMSFP in the amide I regionwere obtained from the FTIR
spectra peak-fitting by the software of peakfitv-4.2.

Control system
The whole control system is composed of upper computer,
STM32 system board and customised PCB board. The test script is
written in Python. The upper computer sends test instructions to
STM32 through serial communication to control the DAC on a custo-
mised PCB board to output voltage of different amplitude, ADC to
collect voltage value, and switch the channel of the multiplexer. The
36-channel 16-bit DACs are integrated on the test board, among which
each DAC can control its voltage value independently. The 24-channel
16bits ADC is integrated. The 24-channel ADC can be collected at the
same time to ensure the synchronisation of the collected voltage. The
customised PCB board has 24 TIAs of different ranges to adapt to the
conversion of different levels of current into voltage values. All mul-
tiplexers are analogue multiplexers. Digital signals control different
port switching. On-board multi-channel regulated power supply
module to ensure that it can provide enough low-ripple positive and

negative power supply for the whole system and improve the stability
of the system.

Hardware system workflow
A complete CNN neural network consists of one layer of ORRAM
convolution, max pooling, ReLU activation function, one layer of
ERRAM convolution, max pooling, ReLU activation function, and one
fully connected layer. For the full hardware implementation, the
ORRAM array first perceives image information, and then for the in-
sensor convolution operation for image feature extraction. The values
of the convolution kernels, ranging from −1 to 1, are mapped to a
voltage range of −0.2 V to 0.2 V generated by the DAC and then input
into the ORRAM array. The TIA on the column acts as a virtual ground,
converting the incoming current into voltage, which is further col-
lected and converted into a digital signal by the ADC. A 2 × 2 max-
pooling operation and ReLU activation function are performed within
the ARM core based on these extracted features. Subsequently, these
features are further input into ERRAM for convolution and fully con-
nected layer computations. Due to the ReLU activation function, all
feature values become positive. When the features are input into the
ERRAM array, all feature values are normalised to the range of 0 to 1,
and then mapped to the voltage range of 0 to 0.2V. These normalised
feature values are converted into voltage pulses using the DAC and are
input into the ERRAM. The convolution operation is performed first,
with the TIAs on the columns acting as virtual grounds, collecting the
currents on the columns and converting them back into voltages.
Afterwards, a 2 × 2 max-pooling operation and ReLU activation func-
tion are executed within the ARM core. Finally, the processed feature
values are input into the ERRAM “fully connected layer” to perform
classification and output the results.

Data availability
The data that support the plots within this paper are available from the
corresponding author upon reasonable request.

Code availability
The simulation codes used for this study are available from the cor-
responding author upon reasonable request.
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