TABLE 2.
Expression | Dataset | FaceReader | DeepFace | ||||
Nimages | Accuracy | Nimages | Accuracy | ||||
Angry | Chen’s | 19 | 0.895 | 0.647 | 19 | 0.737 | 0.618 |
Tu’s | 15 | 0.333 | 15 | 0.467 | |||
KDEF | 31 | 0.968 | 0.982 | 31 | 0.903 | 0.857 | |
RaFD | 25 | 1.000 | 25 | 0.800 | |||
Happy | Chen’s | 214 | 0.967 | 0.955 | 207 | 0.923 | 0.885 |
Tu’s | 54 | 0.907 | 54 | 0.741 | |||
KDEF | 59 | 1.000 | 1.000 | 59 | 1.000 | 1.000 | |
RaFD | 39 | 1.000 | 39 | 1.000 | |||
Sad | Chen’s | 34 | 0.706 | 0.587 | 34 | 0.441 | 0.478 |
Tu’s | 12 | 0.250 | 12 | 0.583 | |||
KDEF | 20 | 1.000 | 1.000 | 20 | 0.800 | 0.791 | |
RaFD | 23 | 1.000 | 23 | 0.783 | |||
Surprised | Chen’s | 78 | 0.923 | 0.932 | 76 | 0.724 | 0.652 |
Tu’s | 39 | 0.949 | 39 | 0.513 | |||
KDEF | 17 | 1.000 | 1.000 | 17 | 0.882 | 0.682 | |
RaFD | 27 | 1.000 | 27 | 0.556 | |||
Total | Chen | 345 | 0.928 | 0.890 | 336 | 0.818 | 0.765 |
Tu | 120 | 0.783 | 120 | 0.617 | |||
KDEF | 127 | 0.992 | 0.996 | 127 | 0.929 | 0.871 | |
RaFD | 114 | 1.000 | 114 | 0.807 |
The mean accuracies on the two Eastern datasets (i.e., Chen’s and Tu’s) and on the two Western datasets (i.e., KDEF and RaFD) are also presented for comparison. With the agreement criterion of 0.9, DeepFace returned null results for 7 happy faces and 2 surprised faces in Chen’s dataset.