Skip to main content
. 2023 Dec 7;14:1201145. doi: 10.3389/fpsyg.2023.1201145

TABLE 2.

The mean classification accuracy of each AFERS on faces of the same expression.

Expression Dataset FaceReader DeepFace
Nimages Accuracy Nimages Accuracy
Angry Chen’s 19 0.895 0.647 19 0.737 0.618
Tu’s 15 0.333 15 0.467
KDEF 31 0.968 0.982 31 0.903 0.857
RaFD 25 1.000 25 0.800
Happy Chen’s 214 0.967 0.955 207 0.923 0.885
Tu’s 54 0.907 54 0.741
KDEF 59 1.000 1.000 59 1.000 1.000
RaFD 39 1.000 39 1.000
Sad Chen’s 34 0.706 0.587 34 0.441 0.478
Tu’s 12 0.250 12 0.583
KDEF 20 1.000 1.000 20 0.800 0.791
RaFD 23 1.000 23 0.783
Surprised Chen’s 78 0.923 0.932 76 0.724 0.652
Tu’s 39 0.949 39 0.513
KDEF 17 1.000 1.000 17 0.882 0.682
RaFD 27 1.000 27 0.556
Total Chen 345 0.928 0.890 336 0.818 0.765
Tu 120 0.783 120 0.617
KDEF 127 0.992 0.996 127 0.929 0.871
RaFD 114 1.000 114 0.807

The mean accuracies on the two Eastern datasets (i.e., Chen’s and Tu’s) and on the two Western datasets (i.e., KDEF and RaFD) are also presented for comparison. With the agreement criterion of 0.9, DeepFace returned null results for 7 happy faces and 2 surprised faces in Chen’s dataset.