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Abstract

The integration of multi-omics information (e.g., epigenetics and transcriptomics) can

be useful for interpreting findings from genome-wide association studies (GWAS). It

has been suggested that multi-omics could circumvent or greatly reduce the need to

increase GWAS sample sizes for novel variant discovery. We tested whether incorpo-

rating multi-omics information in earlier and smaller-sized GWAS boosts true-

positive discovery of genes that were later revealed by larger GWAS of the same/

similar traits. We applied 10 different analytic approaches to integrating multi-omics

data from 12 sources (e.g., Genotype-Tissue Expression project) to test whether ear-

lier and smaller GWAS of 4 brain-related traits (alcohol use disorder/problematic

alcohol use, major depression/depression, schizophrenia, and intracranial volume/

brain volume) could detect genes that were revealed by a later and larger GWAS.

Multi-omics data did not reliably identify novel genes in earlier less-powered GWAS

(PPV <0.2; 80% false-positive associations). Machine learning predictions marginally

increased the number of identified novel genes, correctly identifying 1–8 additional

genes, but only for well-powered early GWAS of highly heritable traits

(i.e., intracranial volume and schizophrenia). Although multi-omics, particularly posi-

tional mapping (i.e., fastBAT, MAGMA, and H-MAGMA), can help to prioritize genes

within genome-wide significant loci (PPVs = 0.5–1.0) and translate them into infor-

mation about disease biology, it does not reliably increase novel gene discovery in

brain-related GWAS. To increase power for discovery of novel genes and loci,

increasing sample size is required.

K E YWORD S

genetics, GWAS, human, multi-omics, sample size, transcriptomics

Received: 24 October 2022 Revised: 20 February 2023 Accepted: 13 March 2023

DOI: 10.1111/gbb.12846

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2023 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

Genes, Brain and Behavior. 2023;22:e12846. wileyonlinelibrary.com/journal/gbb 1 of 10

https://doi.org/10.1111/gbb.12846

https://orcid.org/0000-0002-6659-357X
https://orcid.org/0000-0002-8002-7267
https://orcid.org/0000-0003-0745-6046
https://orcid.org/0000-0002-4067-1859
https://orcid.org/0000-0003-0344-9690
https://orcid.org/0000-0002-1430-1045
https://orcid.org/0000-0002-0313-793X
mailto:dbaranger@wustl.edu
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/gbb
https://doi.org/10.1111/gbb.12846


1 | INTRODUCTION

Genome-wide association studies (GWAS) have proven to be a

uniquely effective tool for investigating the genetic architecture of

complex traits, providing insights into the polygenic contributions of

common variants, and yielding replicable genetic signals,1–5 in contrast

to many candidate gene studies. However, for complex genetic traits,

particularly for psychopathology, the number of cases needed for dis-

covery is high, and depends on the heritability, polygenicity, heteroge-

neity, diagnostic accuracy, and prevalence of the trait.3–6

Schizophrenia, a highly heritable disorder, has witnessed linear

increases in GWAS discoveries once a critical threshold was reached5

(e.g., from 7 loci for 17,836 cases7 to 270 loci for 67,390 cases8).

Depression required a much larger sample size to reach the inflection

point.5 Discoveries for substance use disorders have lagged, with evi-

dence of greater polygenicity. Despite hundreds of loci for smoking

behavior phenotypes,9 only 5 genome-wide significant loci have been

identified for nicotine dependence.10 A broad index of problematic

alcohol use2 yielded 29 loci, but findings are still quite limited for

other drugs: only 10 loci for opioid use disorder (31,473 cases)11 and

2 for cannabis use disorder (14,080 cases).12 In parallel to GWAS,

there has been an explosion in multi-omics data (e.g., gene expression,

chromatin structure) which are now available to interrogate GWAS

findings to reveal underlying biology and potential therapeutics.13,14

For some traits, expression data can also be drawn from model organ-

isms in experimentally controlled exposure and behavioral para-

digms.15,16 As greater evidence arises for genome-wide significant

signals to be enriched in regulatory regions, these multi-omics data

have proved to be valuable in gene prioritization and

interpretation.15,16

Some have speculated that multi-omics could serve as a substi-

tute for additional sample size, and “recover” true signal from smaller

GWAS by increasing support for signals that do not meet criteria for

genome-wide significance.17–19 This is an appealing proposition,

because it would reduce the need (and expense) for collection and

phenotyping of larger samples. Some early work using expression-

based methods (e.g., transcriptome-wise association analyses –

TWAS) found that they can identify genes that would eventually

achieve genome-wide significance in subsequent, larger GWAS,20,21

although these studies did not evaluate what proportion of all novel

genes were first identified by TWAS.

To date, there have not been empirical tests of whether multi-

omics methods can sift through the nominally significant signals of a

smaller GWAS to pinpoint future true positives, nor of the ratio of

false to true positives from such analyses. Therefore, we tested the

hypothesis that the application of existing omics data and methods to

a smaller-sized GWAS will yield additional “true positive” discoveries

that would be found in the next, larger GWAS. We selected four

brain-related phenotypes for testing: (a) Alcohol use disorder/

Problematic alcohol use (AUD/PAU), representing either diagnostic

alcohol use disorder or an amalgam of diagnostic AUD and a non-

diagnostic screener for problem drinking that is highly correlated with

AUD; (b) Schizophrenia (SCZ), one of the earliest psychiatric disorders

with many genome-wide significant findings that have increased with

increasing sample size, making it an ideal reference trait for this test;

(c) Major depression/depression (MDD/DEP), representing either

diagnostic major depressive disorder or broad depression/mood phe-

notypes that are highly correlated with MDD/DEP, which is more

common and less heritable than SCZ, clinically heterogeneous and

highly polygenic, and in that way similar to AUD/PAU; and

(d) Intracranial volume/brain volume (ICV/BV), a highly heritable phe-

notype, which we selected to assess whether brain-derived omics

data would work in this highly related brain phenotype.

We addressed three primary hypotheses: (a) does incorporation

of multiple omics (multi-omics) sources to annotate the findings of the

smaller GWAS recapitulate genes identified in the subsequent GWAS

of the same or genetically closely-related trait (i.e., genetic correlation

>0.7), while minimizing false positives? (b) If multi-omics data can

recover novel genes, which omics data and methods produce the most

reliable predictions? and (c) does the multivariate consideration of

these different data sources improve prediction? To test these, we

examined sequential pairs of GWAS for each of the 4 traits, where

the latter GWAS that included more subjects increased the number of

genome-wide significant findings. Across analyses, we used genes,

rather than variants, as the unit of discovery, because multi-omics

data are gene-focused. We used a combination of omics data sources

(including cross-species data) and statistical methods to annotate each

GWAS. Key criteria for our analyses were the positive predictive value

(PPV, the proportion of genes identified in a larger GWAS relative to

all genes predicted to be relevant applying omics approaches to the

prior, smaller GWAS), and the sensitivity (the proportion of genes

identified by both the larger and smaller GWAS relative to all genes

identified in the larger GWAS).

2 | METHODS

2.1 | GWAS summary statistics

For each trait, analyses started with summary statistics from the smal-

ler GWAS of the trait. We applied a series of bioinformatic methods

to identify additional genes, and compared the results to a subsequent

GWAS of the trait with a larger sample size. Analyses focused on four

traits: alcohol use disorder/problematic alcohol use (AUD/PAU),1,2

major depressive disorder/depression (MDD/DEP),22,23 schizophrenia

(SCZ),8,24 and intracranial volume/brain volume (ICV/BV).25 See

Table 1 for study details.

2.2 | Post-GWAS multi-omics methods

Eight post-GWAS multi-omics methods (Table 2) were used to iden-

tify genes associated with each trait, based on the results of each

GWAS: the max-SNP p-value,26 MAGMA,27 H-MAGMA,28 fastBAT,29

DEPICT,30 FUSION,21,31 S-MultiXcan,32 and SMR.33 These methods

were selected because they are among the most widely-used and are
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representative of the major method types (i.e., positional: MAGMA,

H-MAGMA, and fastBAT; and expression-based: FUSION, S-Multi-

Xcan, SMR, and DEPICT). These methods were applied to both the

larger and smaller GWAS of each trait. Analyses focused on gene-level

associations, to incorporate information across methods and species.

MAGMA was applied using the FUMA web platform,34 fastBAT,

DEPICT, S-MultiXcan, and SMR were applied using the Complex-

Traits Genetics Virtual Lab.35 Among the multi-omics methods used,

FUSION and S-MultiXcan used RNA expression in the brain from the

GTEx Consortium,36 and SMR used RNA expression in the brain from

PsychENCODE37 and the Brain-eMeta38 study, as well as plasma pro-

tein expression from INTERVAL39 (Table 1B).

2.3 | Additional multi-omics data

Additional multi-omics data were drawn from published data sets:

genes differentially expressed in human brain tissue (Table 1C)40–42

TABLE 1 Data sources. (A) Publicly available summary statistics for each trait used in post-GWAS multi-omics analyses. * = Sample size omits
data that is not publicly available. The number of significant risk loci (p < 0.05 � 10�8) was calculated in FUMA, using publicly available summary
statistics. (B) Publicly available data used in post-GWAS multi-omics methods (see Table 2). (C) Published data on genes which are differentially
expressed in the brain, comparing participants with each disorder to controls. (D) Published data on genes which are differentially expressed in
mouse models of each disorder. (E) Published rodent gene set on genes implicated in rodent models of alcohol use.

A: GWAS summary statistics

Trait Study Sample size # Genome-wide risk loci

Alcohol Use Disorder Kranzler et al. 20191 Ncases = 35,105

Ncontrol = 172,697

11

Problematic Alcohol Use Zhou et al. 20202 Neffective = 300,789 29

Major Depressive Disorder Howard et al. 201923 Ncases = 170,756*

Ncontrol = 329,443*

51

Depression Levey et al. 202122 Ncases = 320,212*

Ncontrol = 581,929*

100

Schizophrenia Ripke et al. 201424 Ncases = 36,989

Ncontrol = 113,075

96

Schizophrenia Ripke et al. 20208 Ncases = 67,390

Ncontrol = 161,405

242

Intracranial Volume (UK Biobank only) Jansen et al. 202025 N = 17,062 8

Brain Volume Jansen et al. 202025 N = 47,316 18

B: Post-GWAS multi-omics data sources

Name/type Study Sample size Notes

GTEx – brain RNA GTEx Consortium, 201736 80–154 13 brain regions

PsychEncode – brain RNA Wang et al. 201837 1387 1 region

Brain-eMeta – brain RNA Qi et al., 201838 1194 Meta analysis across regions and samples

INTERVAL – plasma protein levels Sun et al., 201839 3301 -

C: Human post-mortem brain gene expression

Trait Study Case/Control # Brain regions

Alcohol Use Disorder Rao et al., 202040 30/30 4

Major Depressive Disorder Wu et al., 202141 101/96 7

Schizophrenia Collado-Torres et al., 201942 286/265 2

D: Rodent post-mortem brain gene expression

Trait Study # Models # Brain regions

Alcohol Use Disorder (genetic model of binge drinking) Ferguson et al., 201943 1 7

Major Depressive Disorder (chronic stress) Scarpa et al., 202044 3 2

Schizophrenia (developmental disruption) Donegan et al., 202045 3 1

E: Rodent gene set

Trait Study Method -

Alcohol Use Disorder (multiple alcohol outcomes) Huggett et al., 202115 GeneWeaver -
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and genes differentially expressed in brains of mouse models of each

disorder43–45 (Table 1D). For AUD/PAU, data came from alcohol-

naïve mice from a line bred for binge-drinking-like behavior, High

Drinking in the Dark mice.43 Results from 7 tissues were integrated

using an aggregated Cauchy association test,46 which is also used by

the FUSION TWAS method to integrate across tissues.31 An addi-

tional list of genes from rodent studies enriched for the heritability of

alcohol use disorder was included as an additional method.15

MDD/DEP associated genes came from a study examining differen-

tially expressed genes in two brain tissues across three mouse chronic

stress models.44 Results within each model were similarly combined

across tissues using an aggregated Cauchy association test. As results

were only reported for nominally significant genes, precluding a meta-

analysis combining models, the minimum p-value across the three

models was assigned as a gene-level p-value. SCZ-associated genes

came from a study examining differentially expressed genes in one

brain tissue across three mouse models of developmental disrup-

tion.45 Results were combined across models using Fisher's combined

probability test.47

2.4 | Predictive value of significant genes

Multi-omics methods were applied to statistics-level data from the

smaller GWAS. Genes identified by each multi-omics method were

defined as those surviving false discovery rate correction within each

method. Genes that were either not measured in a data source

(e.g., RNA expression was too low to measure), or unreported

(i.e., some data sources only reported genes that were at least

nominally-significant) were marked as showing no association for that

source. Analyses for novel gene discovery examined genes that were

not proximal to a genome-wide significant locus in the smaller GWAS

but were identified by individual multi-omics methods or combinations

of methods. These analyses tested whether these genes were identi-

fied as genome-wide significant in the larger GWAS. Analyses for pri-

oritization examined genes identified by proximity to a genome-wide

significant locus in the smaller GWAS. These analyses tested if these

genes were more likely to be identified as genome-wide significant in

the larger GWAS if they were also identified by individual multi-omics

methods or combinations of methods. For each trait, the target set of

genes was defined as genes close (i.e., ± 10 kb) to a genome-wide sig-

nificant locus (p < 5 � 10�8) in the larger of the two paired GWAS.

Supplemental post-hoc analyses expanded the target set of genes to

those within ±20, ±50, and ±100 kb.

Two primary performance metrics were used, the positive predic-

tive value (PPV) and sensitivity.48 The PPV, which ranges from 0–1,

reflects the probability that a positive prediction reflects a true genetic

signal (i.e., the ratio of the true positive rate to the sum of the true and

false positive rates). PPV reflects what proportion of target genes

identified in the later, larger, GWAS, are genes predicted to be rele-

vant using omics approaches in the prior, smaller GWAS. For example,

a PPV of 0.75 would mean that 75% of the genes identified by multi-

omics data in the smaller GWAS are positionally significant in the

larger GWAS. Sensitivity, which also ranges from 0–1, reflects the pro-

portion of the positionally significant genes in the larger GWAS cap-

tured by the test (the ratio of the true positive rate to the sum of the

true positive and false negative rates). That is, of the genes positionally

identified in the later, larger, GWAS, what proportion are found using

multi-omics data in the prior, smaller, GWAS? For example, a sensitiv-

ity of 0.5 would mean that multi-omics identified 50% of all the posi-

tionally significant genes in the later GWAS. Thus, an ideal test would

have both a high PPV and a high sensitivity (i.e., the test captures the

majority of the significant genes in the larger GWAS, with very few

incorrect predictions). A test with a high PPV and low sensitivity mis-

ses the majority of the significant genes in the larger GWAS, but the

few that are identified are mostly correct predictions. Conversely, a

test with high sensitivity and a low PPV captures the majority of the

significant genes in the larger GWAS, but at the cost of a high number

of incorrect predictions. All analyses were conducted in R49 and per-

formance metrics were computed using the epiR package.48

2.5 | Multivariate machine learning gene
prioritization

2.5.1 | Training procedure

As the predictions of individual methods are not perfectly correlated

(Figure S1), and methods may only partially contribute to prediction

(i.e., may need to be weighted), a multivariate combination of methods

might improve performance. Models were trained, using only the ear-

lier GWAS, to predict which genes were positionally linked to

genome-wide significant SNPs using data from multi-omics methods.

TABLE 2 Post-GWAS multi-omics methods. Methods used to
augment GWAS summary statistics and identify gene-level
associations.

Method Description

SNP-based Gene is assigned the p-value of the most significant

SNP within 10 kb of its boundaries.26

MAGMA Set-based analysis, regression-based p-values.27

H-MAGMA Incorporates chromatin interaction profiles for gene

boundaries28 .

fastBAT Fast set-based analysis, simulation-based p-values.29

DEPICT Predicts gene function to prioritize the most likely

causal genes.30

FUSION Transcriptome-wide association study (TWAS) using

GTEx gene expression to impute gene expression.

Integrates across multiple tissues using an

aggregated Cauchy association test.21,31

S-MultiXcan Transcriptome-wide association study (TWAS) using

GTEx gene expression to impute gene expression.

Integrates across multiple tissues using multivariate

regression.32

SMR Summary mendelian randomization. Tests for

mediation of genetic effects by gene or protein

expression, using Brain-eMeta, PsychEncode, and

INTERVAL.33
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Summary data in the smaller GWAS were split into a training and test-

ing component. We estimated PPV and sensitivity using the hold-out

(testing) set, and then subsequently in the larger future GWAS. For

example, in MDD/DEP, ML models were trained using half the chro-

mosomes from Howard et al.23 These models were then tested in the

remaining chromosomes of Howard et al., which yielded a predicted

probability of how likely a gene is to be proximal to a genome-wide

significant locus, based on multi-omics data. A probability threshold

was selected by examining PPV and sensitivity distributions in How-

ard et al. We then took the genes which surpassed the identified

threshold and assessed the PPV and sensitivity of those predictions in

the larger Levey et al.22 GWAS.

2.5.2 | ML algorithms

GWAS of psychiatric disorders and brain-related traits are currently

only powered to find small proportions of variants associated with

these traits. Standard ML classifiers may thus not be appropriate, as

these methods perform best when data are evenly balanced

(i.e., when 50% of genes are significant). Therefore, we used a combi-

nation of up-sampling, bootstrapping, bagging, and ensemble learning

in two algorithms. Missing data across methods was handled with a

median impute (bagimpute and K-means impute were unreliable due

to high missingness). The first method was AdaBoosting50; a tree

ensemble method that was originally developed to predict rare out-

comes.51 AdaBoosted trees were bagged with up-sampling minority

cases. The second method was model-average neural network

(ANN)52; a series of simple functions which attempt to capture pat-

terns in the data. The model ANN averages across many runs to

develop a prediction. An ensemble prediction was then generated by

averaging the predictions from the two approaches. All machine learn-

ing models were trained with 3-fold cross-validation with up-sampling

of genes containing GWAS-significant SNPs. This cross-validation and

training steps were repeated 10 times (bootstrapping with replace-

ment), increasing the proportion of genes containing GWAS-

significant SNPs in the training data.

Finally, we determined feature importance to identify which

multi-omics methods most contributed to gene identification. For

ANN, an ROC curve was generated for each variable using sensitivity

and specificity, and the probabilities were cut off at a series of (ran-

dom) points. Using the trapezoidal rule, the area under the ROC was

calculated for each multi-omics method and used as a measure of fea-

ture importance.53 When using AdaBoost we used tree-specific fea-

ture importance, computed by summing how much the model

improved each time it used a multi-omics method.54

3 | RESULTS

Correlations between gene sets identified by different multi-omics

approaches were quite low (median = 0.12, range = 0–0.7;

Figure S1). Related methods identified more similar gene sets, though

correlations remained moderate (positional: median = 0.4,

range = 0.27 to 0.63; expression-based: median = 0.38, range = 0.22

to 0.72). Genes identified by methods using GWAS summary statistics

showed low overlap with genes identified by post-mortem gene

expression studies in humans and rodents and with rodent-based

gene set analyses (range = �0.01 to 0.02).

For novel gene discovery (i.e., genes that are distal from GWAS

significant loci in the smaller GWAS, but proximal to significant loci in

the larger GWAS; Figure 1), no method achieved a PPV greater than

0.2 for any trait (i.e., 80% of genes identified by multi-omics were not

proximal to a genome-wide significant locus in the larger GWAS) with

the exception of fastBAT for AUD/PAU, which correctly identified a

single gene (ADH1A), yielding a PPV of 1.0 (Figure 1A). Similarly, when

examining genes identified by multiple methods, none surpassed a

PPV of 0.22 for any trait (Figure 1B). Performance improved only a lit-

tle in post-hoc analyses that broadened the definition of ‘proximal’ in
the larger GWAS to genes that are within 20 kb, 50 kb, or 100 kb of a

significant locus (Figure S2), but the average performance of individual

methods did not surpass a PPV of 0.12 and the average performance

when methods were combined did not surpass a PPV of 0.25.

For gene prioritization (i.e., genes that are proximal to GWAS sig-

nificant loci in the smaller GWAS; Figure 2), genes that were identified

both by proximity to a genome-wide significant locus and by multi-

omics were more likely to be significant in the larger GWAS than

genes only identified by a genome-wide significant locus (Figure 2A).

However, no method had both a high PPV and a high sensitivity for

any trait. Expression-based methods had a slightly higher PPV than

position-based methods, but position-based methods attained a much

greater sensitivity for all traits. Analyses examining agreement

between methods found that genes identified by a larger number of

methods (regardless of the specific method) had a higher PPV across

all traits, although with a lower sensitivity (Figure 2B). That is, when

more methods agreed, the gene was more likely to be positionally sig-

nificant in the larger GWAS. However, the low sensitivity indicates

that this approach misses the majority of findings in the larger GWAS.

Across both novel gene discovery and gene prioritization ana-

lyses, genes identified by more methods in the smaller GWAS tended

to have a higher -log10(p) value in the larger GWAS and similarly

tended to be identified by more methods in the larger GWAS

(Supplemental Results; Figures S3 & S4). Supplemental analyses exam-

ined performance across all possible combinations of multi-omics

methods, as well as for different definitions of a ‘significant’ gene in

the larger GWAS. No combination performed best across all traits,

and the pattern of associations for different definitions of ‘significant’
(i.e., p < 5 � 10�6 or identified by multi-omics in the larger GWAS)

remained similar (Supplemental Results; Figures S5 & S6).

3.1 | Machine learning

Model predictions are probability scores (i.e., the probability that a

gene contains a genome-wide significant SNP, based on multi-omics).

The performance (PPV and sensitivity) of different cut-offs was evalu-

ated in the hold-out data from the smaller GWAS (Figure S7). A proba-

bility cut-off of 75% was selected for AdaBoost, 90% for the model-
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F IGURE 1 Multi-omics cannot reliably identify true-positive novel genes. Genes that are not proximal to a GWAS-significant locus but are
identified by multi-omics methods in the smaller GWAS are not likely to contain a GWAS-significant locus in the larger GWAS. (A) The positive
predictive value and sensitivity for each method, and for all methods combined (Any). (B) Performance for increasing agreement between multi-
omics methods. (C) Performance of machine-learning (ML) in the larger GWAS (ML was trained in the smaller GWAS). Points represent the
estimates, while horizonal bars reflect the 95% CI. AUD/PAU = Alcohol use disorder/Problematic alcohol use; MDD/DEP = Major depressive
disorder/Depression; SCZ = Schizophrenia; ICV/BV = Intracranial volume/Brain volume.

F IGURE 2 Multi-omics is useful for prioritization of GWAS-significant genes. Genes that are proximal to a GWAS-significant locus and are
identified by multi-omics methods in the smaller GWAS are likely to contain a GWAS-significant locus in the larger GWAS. (A) The positive
predictive value and sensitivity for each method, and for all methods combined (Any). ‘SNP-only’ = the gene is proximal to a GWAS-significant
locus, but is not identified by multi-omics. (B) Performance for increasing agreement between multi-omics methods. (C) Performance of machine-
learning (ML) in the larger GWAS (ML was trained in the smaller GWAS). Points represent the estimates, while horizonal bars reflect the 95%
CI. AUD/PAU = Alcohol use disorder/Problematic alcohol use; MDD/DEP = Major depressive disorder/Depression; SCZ = Schizophrenia;
ICV/BV = Intracranial volume/Brain volume.
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average neural net, and 50% for the ensemble of the two. The perfor-

mance of each gene set was then assessed in the later, larger GWAS

(Table S1). ML performance in the held-out data from the smaller

GWAS was moderately reflective of performance in the larger GWAS

(Figure S8 A & B), with the exception of AUD/PAU. Novel gene dis-

covery (Figure 1C) was the most successful for Schizophrenia

(PPV = 0.67), though only a minority of novel genes were found (sen-

sitivity = 0.066; i.e., 8 genes). Similarly, for ICV/BV, one of the three

identified genes was significant. Novel gene discovery in AUD/PAU

and MDD/DEP did not surpass a PPV of 0.1. AdaBoost attained mod-

erate performance for gene prioritization across all traits

(PPV = 0.48–0.75, sensitivity = 0.42–0.88; Figure 2C). While the

average neural net had a higher PPV for SCZ (0.8), this was at the cost

of much lower sensitivity (0.28). Examination of variable importance

scores revealed that fastBAT, MAGMA, and H-MAGMA were the pri-

mary contributors to prediction across models and methods (Figure 3).

DEPICT also attained a comparable level of importance for AUD/PAU

in the average neural net and for MDD/DEP in AdaBoost. In general,

gene expression methods were the least informative predictors.

4 | DISCUSSION

GWAS have provided unique insights into the genetic architecture of

complex traits. Their informativeness, particularly for complex and

heterogeneous traits, is dependent on sample size. Because increasing

GWAS sample size is arduous and expensive, there is a natural desire

to identify additional sources of data that may increase signal within

existing GWAS data. In particular, it has been hypothesized that aug-

menting GWAS with various kinds of omics data (e.g., transcriptomics

and data from non-human animal models) may boost signals within

existing less powered GWAS to circumvent the need for additional

sample size. That hypothesis has not previously been rigorously

tested. Here we report that for 4 different complex traits, applying

omics data by a variety of approaches to an existing smaller GWAS

does not reliably detect novel genes that are later discovered by a

subsequent GWAS. Increasing GWAS sample size is a requirement to

increase the statistical power for discovery of novel genes.

Specifically, we tested whether applying multi-omics to gene

identification in the smaller GWAS could identify genes that will

become significant in a later, larger GWAS of the same trait. We

applied eight post-GWAS multi-omics methods and 2 multivariate

machine learning approaches, leveraging both human and model

organism omics data, to four different complex traits. No single

method or combination of methods achieved both a high PPV and

sensitivity when “predicting” novel signals in a larger subsequent

GWAS (Figure 1). This is particularly striking for positional methods,

where prior expectations were high that “omics” might be helpful:

most genes enriched for nominally significant loci did not contain a

genome-wide significant hit within the larger sample. Similarly, while

early work evaluating expression-based methods suggested that they

could be used to identify genes that would contain significant loci in a

future, larger GWAS,20,21 this was not the case for the four traits eval-

uated here. While machine learning out-performed individual methods

and even linear combinations of methods, it only correctly identified

an additional 1–8 genes, and only for highly heritable traits with an

already well-powered smaller GWAS (SCZ and ICV/BV). This observa-

tion converges with related work evaluating methods for SNP and

locus annotation,13,14,55 which concluded that such methods can only

marginally increase the number of true-positive observations. Simi-

larly, prior work examining positional gene-based methods in a simu-

lated trait with relatively few causal SNPs (n = 602) observed a

tradeoff between sensitivity and specificity,56 which is also seen here.

Overall, multi-omics data for novel gene discovery incur either a high

false-negative burden (i.e., they miss many novel discoveries) or a high

false-positive burden (i.e., they have many findings which are not

F IGURE 3 Machine learning variable
importance. (A) Average neural net
variable importance using the area-under
the ROC method. The maximum possible
importance is ‘1.0’. (B) Tree-based
importance in AdaBoost. The maximum
possible importance is ‘100’.
AUD/PAU = Alcohol use disorder/
Problematic alcohol use;
MDD/DEP = Major depressive disorder/
Depression; SCZ = Schizophrenia;
ICV/BV = Intracranial volume/Brain
volume.
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found when the sample size increases), and are thus cannot serve as a

replacement for larger discovery samples.

The application of multi-omics does aid in prioritizing already

GWAS-significant genes in the smaller GWAS; those that are also pri-

oritized by multi-omics were more likely to replicate in the larger

GWAS (Figure 2). However, the number of agreeing methods neces-

sary to attain a good PPV (i.e., PPV > = 0.9) differed for each trait

(between 4 and 10), and no single method or combination of methods

performed the best across all traits (Figure 2, Figure S5). Here,

machine learning (ML) performed similarly to the best-performing

individual and combinations of methods. Broadly, these results sup-

port current practices in the field, wherein associations that are

GWAS-significant and robust across multi-omics methods are given

the greatest credence, and suggest that further development of ML

approaches to post-GWAS multi-omics integration may be a fruitful

avenue for prioritization within loci.57

Despite the variation in performance of individual methods, posi-

tional methods (i.e., fastBAT, MAGMA, and H-MAGMA) were fre-

quently among the top performers of multi-omics methods in both

the individual and multivariate ML analyses, for both novel gene dis-

covery and gene prioritization. These achieved a comparable PPV to

expression-based methods, with superior sensitivity. Positional

methods were also the top ranked by both machine learning algo-

rithms (with the exception of MDD/DEP analyses with AdaBoost,

where fastBAT was second to DEPICT; Figure 3). However, while

positional methods are computational, expression-based methods rely

on the power and accuracy of external datasets (e.g., GTEx; Table 1)

and will likely improve with larger sample sizes.

Analyses defined the significance of each gene in each GWAS as

the p-value of the most-significant proximal (within 10 kb) SNP. This

definition was selected as an efficient method that permits explora-

tion of different p-value cut-offs (i.e., Bonferroni vs. FDR;

Figures S3 & S6). However, it is an imperfect approach, as many sig-

nificant SNPs are not proximal to a protein-coding region58,59 and sig-

nificant cis-acting loci may be further than 10 kb from a gene's

boundaries. Indeed, this was a major impetus for the development of

the expression-based multi-omics methods used here.21,28 Therefore,

we conducted two follow-up analyses: first, post-hoc analyses

expanded the proximal region to 20, 50, and 100 kb (Figure S2); sec-

ond, we tested whether multi-omics could identify genes that would

be Bonferroni-significant in a similar multi-omics analysis of the larger

GWAS (Figure S9). While the performance of expression-based

methods improved in both cases, position-based methods still had

better performance, both for novel gene discovery and for gene prior-

itization. This suggests that the superiority of position-based methods

is not due to our definition of a gene's significance.

Across analyses, the success of multi-omics approaches appeared

largely to depend on trait heritability and GWAS power. Analyses

were the most successful in SCZ (the best-powered GWAS), attaining

the largest PPV and sensitivity. However, despite a relatively large

sample size, analyses were largely the least successful in MDD/DEP

(the trait with the lowest SNP-based heritability). AUD/PAU was an

occasional exception to this general pattern, wherein PPV greatly

increased for each additional agreeing method for gene prioritization

(Figure 2). Substance use disorders are unique among psychiatric dis-

orders, because there are a few large-effect loci mapping to

substance-specific receptors and metabolic pathways.60,61 The

increase in AUD/PAU PPV likely reflects the relatively large effect size

of genes in these pathways, and indeed it largely included genes impli-

cated in alcohol metabolism (i.e., ADH1B, ADH5, and ADH7).61 How-

ever, these results more broadly suggest that multi-omics will be the

least able to successfully prioritize findings and to identify novel asso-

ciations in traits where it would be the most useful (i.e., where GWAS

are particularly underpowered and no loci of large effect are evident).

We note some limitations of the present study. We tested four

different traits that are quite different, to cover a range of trait charac-

teristics, but we cannot exclude that some other traits might respond

more or less successfully to the integration of omics data. Analyses

focused on trait associations at the gene level, rather than individual

SNPs.18 This enabled the additional integration of multi-omics data

that did not use GWAS information, including results from post mor-

tem studies of gene expression in patients and rodent models, and a

gene-set for AUD/PAU that integrates information from a variety of

rodent data sources.15 These methods were uniformly the least infor-

mative across all analyses. However, data from post-mortem studies

of MDD/DEP and SCZ, and the AUD/PAU rodent gene set, had a

moderate PPV and low sensitivity for gene prioritization. We note that

we did not systematically query the literature to derive comprehen-

sive gene-sets for all traits. Indeed, the AUD/PAU rodent gene set,

which was derived from a systematic review of the literature,15

achieved a higher PPV and sensitivity for AUD/PAU than data from

individual studies of rodent models did for their respective traits. The

gene-level focus reflects an additional weakness of the omics-

integration approach, in that it could lead to improved knowledge of

biology without narrowing down the identity of causal loci in human

populations. Thus, while recent related studies using locus-level ana-

lyses yielded similar findings,18 we cannot rule out that alternative

methods could have led to stronger results. Also, analyses only used

GWAS from European samples. Recent work suggests that gene-level

findings from expression-based methods may be more replicable

across ancestries than SNP-level effects.62 Thus, expression-based

methods may have superior performance in contexts that could not

be evaluated in the present study, owing to the lack of well-powered

GWAS for brain-related traits in non-European samples. The smaller

GWAS were subsets of the subsequent larger GWAS. This should

have favorably biased the tests, but nevertheless they did not perform

well. Lastly, larger GWAS achieved a greater sample size in part by

broadening the trait definition (i.e., AUD was expanded to PAU, MDD

to DEP, and ICV to BV). While this may have contributed to the poor

performance of multi-omics in some of these traits, it does not explain

the poor performance in SCZ, the best-powered of the smaller GWAS,

which did not use proxy-phenotypes in the larger GWAS.

5 | CONCLUSIONS

The present results demonstrate that multi-omics are not a replace-

ment for increasing GWAS sample size. Instead, results support the
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use of multi-omics as methods for prioritizing genes within GWAS-

significant loci. Underpowered traits (e.g., cannabis use disorder12)

will require much larger sample sizes before even prioritization will

be possible. We view the combination of larger GWAS sample sizes

and multi-omics method advancements as likely the most fruitful

avenue for identifying multiple plausible causal loci for brain-related

traits.
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