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Abstract 
Background.   Treatment resistance and tumor relapse are the primary causes of mortality in glioblastoma (GBM), 
with intratumoral heterogeneity playing a significant role. Patient-derived cancer organoids have emerged as a 
promising model capable of recapitulating tumor heterogeneity. Our objective was to develop patient-derived 
GBM organoids (PGO) to investigate treatment response and resistance.
Methods.   GBM samples were used to generate PGOs and analyzed using whole-exome sequencing (WES) and 
single-cell karyotype sequencing. PGOs were subjected to temozolomide (TMZ) to assess viability. Bulk RNA 
sequencing was performed before and after TMZ.
Results.   WES analysis on individual PGOs cultured for 3 time points (1–3 months) showed a high inter-organoid 
correlation and retention of genetic variants (range 92.3%–97.7%). Most variants were retained in the PGO compared 
to the tumor (range 58%–90%) and exhibited similar copy number variations. Single-cell karyotype sequencing 
demonstrated preservation of genetic heterogeneity. Single-cell multiplex immunofluorescence showed mainte-
nance of cellular states. TMZ treatment of PGOs showed a differential response, which largely corresponded with 
MGMT promoter methylation. Differentially expressed genes before and after TMZ revealed an upregulation of the 

Patient-derived glioblastoma organoids reflect tumor 
heterogeneity and treatment sensitivity  
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JNK kinase pathway. Notably, the combination treatment of a JNK kinase inhibitor and TMZ demonstrated 
a synergistic effect.
Conclusions.   Overall, these findings demonstrate the robustness of PGOs in retaining the genetic and phe-
notypic heterogeneity in culture and the application of measuring clinically relevant drug responses. These 
data show that PGOs have the potential to be further developed into avatars for personalized adaptive treat-
ment selection and actionable drug target discovery and as a platform to study GBM biology.

Key Points

•	 Patient-derived glioblastoma organoids (PGOs) are stable representatives of the 
patient’s tumor.

•	 PGOs display maintenance of genetic and phenotypic tumor heterogeneity.

•	 PGOs can be used to identify novel treatment options and study treatment-
resistance mechanisms.

Glioblastoma (GBM), grade 4 IDH1/2 wild-type 
astrocytoma, is the most common malignant primary brain 
tumor, with a global incidence of around 3 cases per 100 
000 each year.1 The current standard-of-care treatment was 
established more than 15 years ago and consists of tumor 
resection, followed by chemoradiation and adjuvant che-
motherapy with temozolomide (TMZ).2 However, despite 
this intensive multimodal treatment, the median survival 
of GBM patients remains only 15 months, which stresses 
the need for novel treatment options.1

According to the 2021 World Health Organization classi-
fication, GBM diagnosis is based on a combination of his-
tological and molecular features.3 In daily clinical practice, 
methylguanine methyltransferase (MGMT) gene meth-
ylation is the only available predictive marker. MGMT 
promotor methylation abrogates expression in GBM is 
primarily due to promoter methylation and prevents DNA 
damage repair from alkylating agents, such as TMZ, and is 
therefore associated with a more favorable treatment re-
sponse and greater median overall survival.4

More recently, extensive whole-genome and single-cell 
sequencing of GBM patient samples have identified driver 
mutations in GBM, resulting in novel classifications ac-
cording to the transcriptomic5 and epigenetic characteris-
tics.6 Moreover, intratumoral heterogeneity is frequently 
observed with multiple tumor clones residing in a single 
GBM,7 leading to heterogeneity in clinical subtypes.5,8 
Furthermore, it has been established that GBM cells exist 
in cellular states that recapitulate neural progenitor-like 

(NPC-like), oligodendrocyte-progenitor-like (OPC-like), 
astrocyte-like (AC-like), and mesenchymal-like (MES-like) 
states. These cellular states have also been shown to co-
exist within 1 tumor.9 This extensive molecular and spa-
tial heterogeneity creates multiple subclones that either 
respond or escape therapy to enable the development of 
treatment-refractory recurrent tumors.10 This inter- and 
intratumoral heterogeneity likely underlies the limited clin-
ical effects of current homogenous treatment approaches.

Recently, organoid technology has enabled the develop-
ment of in vitro 3-dimensional tissue models derived from 
adult human stem cells. These tissue organoids have been 
shown to retain the key architectural, phenotypic, and ge-
netic characteristics of the primary tissue they are derived 
from11 organoid and have shown to maintain a cellular hi-
erarchy and recapitulate intratumoral heterogeneity.12,13

So far, patient-derived glioblastoma cells have been cul-
tured as spheroids,14 organoids,15–18 and explants13 each 
with their advantages and limitations.14

Here, we provide a detailed molecular and phenotypic 
analysis of 10 patient-derived primary GBM organoids 
(PGOs). We show that PGOs are genetically stable models 
over months of culture and largely retain key GBM driver 
mutations and copy number variations from matched 
patient tissue. Multiplex immunohistochemistry and 
single-cell karyotype sequencing show that PGOs main-
tain genetic and phenotypic intratumoral heterogeneity. 
Finally, we demonstrate the potential of PGOs to test the 
sensitivity to the standard-of-care treatment as well as 

Importance of the Study

Tumor heterogeneity is recognized as one of the major 
determinants of treatment failure and tumor relapse 
in patients with glioblastoma (GBM). Many preclinical 
GBM models have limitations in adequately repre-
senting tumor heterogeneity and key GBM features with 
prognostic significance such as hypoxia. Novel in vitro 
models are needed which recapitulate tumor hetero-
geneity. This study addresses this gap by introducing 

a patient-derived GBM organoid (PGO) model that suc-
cessfully maintains both the genetic and phenotypic 
characteristics of the original tumor. PGOs have signif-
icant translational potential to identify novel actionable 
targets, study mechanisms of primary and secondary 
resistance, and improve understanding of the complex 
biology of GBM including the influence of the tumor 
microenvironment.
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targeted therapies and use PGOs to identify inhibition of 
the JNK pathway as a potential sensitizer to TMZ.

Together, GBM organoids recapitulate key features of 
human GBM composition and treatment response and are 
promising models for discovering novel disease mechan-
isms and actionable targets.

Materials and Methods

Patient Recruitment

The study protocol for collecting and processing tumor 
and blood samples from GBM patients, IDH1/2 wild-type 
astrocytoma grade 4, was approved by the Medical Ethics 
Committee Zuyderland (METC-Z) under study number 
17-T-101. Experiments were registered under clinical trial 
numbers NCT04865315 and NCT04868396. The included 
patients were 18 years or older and were eligible for resec-
tion of a lesion suspect for GBM based on diagnostic mag-
netic resonance imaging. All patients provided informed 
consent prior to surgery. GBM samples were collected 
at Maastricht University Medical Center + (MUMC+) and 
Zuyderland (Heerlen). Following the neurosurgical proce-
dure, tumor tissue was immediately processed. In addi-
tion, a peripheral arterial blood sample was taken during 
surgery. Other samples (1919, 1914, 2012.2, 3565, and 3128) 
were kindly provided by our collaborators.

Tumor Dissociation and Establishment of Primary 
(Organoid) Lines

Blood samples were centrifuged (3000G, 15 min at 4°C), 
after which serum was aspirated. The remaining blood was 
incubated with red blood cell (RBC) lysis buffer (155 mM 
NH4Cl, 10 mM KHCO3, 0.1 mM EDTA in H2O) for 10 min. 
Afterward, the samples were washed with cold phosphate-
buffered saline (PBS) and centrifuged. The remaining white 
blood cells were suspended in a freezing medium (86% 
DMEM, 4% glucose, and 10% DMSO) and stored at −80 °C.

Tumor tissue was macroscopically dissected into approx-
imately 1-mm-diameter pieces and nonviable tissue was re-
moved. Part of the tumor was flash frozen in liquid nitrogen 
and stored. Subsequently, tumor pieces were incubated in 
RBC lysis buffer for 10 min while gently shaking at room 
temperature. After RBC lysis, tumor pieces were suspended 
in RPMI with the Tumor Dissociation Kit (Human, Miltenyi 
Biotec) and incubated at 37°C. During incubation, tumor 
pieces were manually sheared by pipetting. The total incu-
bation time was dependent on the tumor tissue.

After tumor dissociation, tumor cells were filtered (100 
μM) and cultured as organoids (see below) or in reg-
ular culture flasks with and without poly-L-lysine (Sigma-
Aldrich) coating (1:10 dilution in PBS).

Derivation and Culture of Primary (Organoid) 
Lines

The organoid derivation protocol and culture medium were 
derived from Hubert et al.17 Tumor cells were suspended in 
Cultrex RGF Basement Membrane Extract (R&D systems), 

and spheres of Cultrex (20 μL of Cultrex/cell suspension) 
were placed in a sterile plastic dish. Organoids were in-
cubated at 37°C for 30 min to set and subsequently trans-
ferred into the medium and cultured on an orbital shaker. 
PGOs were cultured in Neurobasal Medium Complete 
(NBMc), consisting of NBM supplemented with 10 ng/mL 
EGF (R&D systems), 10 ng/mL FGF-2 (R&D systems), B27 
minus vitamin A (Thermo Fisher), L-glutamine, sodium 
pyruvate (Thermo Fisher), antibiotic/antimycotic (Thermo 
Fisher), and amphotericin B (Thermo Fisher).

The frequency of passaging PGOs was highly patient 
specific. For dissociation, PGOs were manually sheared 
using a 1000 μL pipette tip, and placed on ice for 30–60 
min to dissolve the Cultrex. Subsequently, organoids were 
incubated with TripLE (Thermo Fisher) for 10 min at 37°C 
after which they were manually sheared using a narrowed 
glass Pasteur pipette. Cells were resuspended in Cultrex 
and utilized for subsequent organoid culture.

Organoid Embedding and Multiplex 
Immunohistochemistry

Organoids were incubated with pimonidazole (40 mcg/mL) 
for 2 h and with EdU (ThermoFisher EdU Click-iT kit) for 45 
min. Organoids were fixated with 4% paraformaldehyde for 
2 h at room temperature and cryopreserved in OCT. Frozen 
sections were blocked using normal goat serum (5%) for 60 
min. Sections were stained with primary antibodies over-
night (Supplementary Methods) and subsequently with a 
suitable fluorescent secondary antibody and DAPI. Imaging 
was performed on a Leica DMI 4000 microscope.

For multiplex immunohistochemistry, organoids were 
fixated with 10% formalin for 2 h at room temperature. 
After that, organoids were embedded in a 3% agarose gel 
mold and processed for paraffin embedding to be used 
for Multiple Iterative Labeling by Antibody Neodeposition 
(Supplementary Methods).19 In short, tissue slides are 
used for repetitive cycling of immunofluorescent staining. 
Hereafter, single cells were identified to generate digital re-
constructions. Combinations of markers were used to clas-
sify cells as either mesenchymal (MES): CD44+/Vimentin+, 
astrocyte-like (AC): GFAP+, oligodendrocyte-progenitor-like 
(OPC): OLIG2+/PDGFRA + or neural-progenitor-like (NPC): 
Nestin+/CD24+. Tumor cells that did not express any addi-
tional markers are reported as SOX2+. Blank cells are cells that 
do not express any of the tumor-related markers in our panel.

Protein Extraction and Western Blot Analysis

Organoids were manually sheared, washed, and incubated 
with RIPA buffer plus protease inhibitor for 15 min on ice. 
Afterward, the suspension was flash frozen in liquid ni-
trogen and thawed 3 times before centrifuging at 13 000G 
for 15 min. Protein samples were used for Western blot 
analysis as described in Supplementary Methods.

DNA Extraction and Whole-Exome Sequencing 
Analysis

DNA extraction was performed on the original tumor tissue 
(flash frozen after surgery), white blood cells, and cultured 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad152#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad152#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad152#supplementary-data
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organoids. Organoids were cultured for at least 2 months 
and passaged multiple (minimum 3) times. DNA extrac-
tion was performed using the Sigma G1N350 GeneElute 
Mammalian Genomic DNA miniprep according to the 
manufacturer’s protocol.

DNA concentration was measured using Qubit DNA 
Assay Kit in Qubit 2.0 Fluorometer (Life Technologies, CA). 
DNA degradation and contamination were monitored 
on 1% agarose gels. The DNA was processed according 
to manufacturer protocols (Novogene). Bioinformatics 
analysis was performed as described in Supplementary 
Methods.

Single-Cell Karyotype Sequencing

Organoids were dissociated using Accumax (StemCell 
Technologies). Cells were sorted into single cells and 
plated into a 384-well plate. Karyotype single-cell libraries 
were prepared sequenced with a target depth of 16 M 
reads per plate according to local protocol (Single Cell 
Core, Hubrecht Institute Utrecht). The output was used for 
bioinformatics analysis (Supplementary Methods).

Cell Viability Assays, Statistical Analysis, and 
Organoid Treatment Schedules

PGOs were dissociated using TripLE (ThermoFisher) to de-
termine cell viability, and 20–50 K cells were plated in a 
96-well plate. Cells were let to rest for 72 h before the initi-
ation of treatment.

Cells were treated with different concentrations of 
temozolomide (TMZ) (range 0–300 μM) for 5 days. Thirty 
μM TMZ was used as the human equivalent dose as meas-
ured in the cerebrospinal fluids of patients. The culture 
medium, including TMZ, was refreshed every 24 h. After 5 
days of treatment, cells were rested for 48 h before per-
forming CellTiterGlo 3D assay (Promega). CellTiterGlo 3D 
was performed as per the manufacturer’s instructions. 
The luminescent signal was measured using BMG Labtech 
FLUOstar Omega.

Radiotherapy treatment was performed using an X-ray 
cabinet (Philips 225 kV and 10 mA), and cells were irradi-
ated with 2 Gy for either 1 day or 3 consecutive days. 
In addition, concurrent TMZ treatment was performed 
using 15 μM TMZ (human equivalent dose in concurrent 
chemoradiation).

Osimertinib was kindly provided by AstraZeneca. 
Cells were treated for 72 h with different concentrations 
(0–10 μM), after which a CellTiterGlo 3D assay was per-
formed. Protein samples were prepared after culturing 
cells on poly-L-lysine-coated dishes and treated with 5 μM 
Osimertinib or DMSO for 24 h. Western blot analysis was 
performed as described before.

JNK and TMZ Combination Treatments

JNK inhibitor SP600125 was used for combination treatment 
with TMZ at a dose of 5 μM. Cells were treated with either 5 
μM SP600125, 30 μM TMZ (human equivalent dose), or both. 
Additionally, to evaluate synergy scores, PGOs were treated 

with a ranging concentration of TMZ (0, 15.6, 31.25, 62.5, or 
125 µM) with or without a fixed dose of SP600125 (5, 10, or 
15 µM). Cell viability was measured after 7 days with Alamar 
Blue. DMSO was used as a control.

TMZ Resistance and RNA Sequencing Analysis

Organoids were treated with 30 μM TMZ for 5 consecu-
tive days, after which organoids were dissociated, and re-
grown as organoids. After regrowth, TMZ treatment and 
passaging of the organoids were repeated. After the re-
growth following the second TMZ cycle, RNA was extracted 
using Nucleospin RNA (Machery Nagel 740955.250).

Extracted RNA from pre-and post-TMZ treatment PGOs 
was further processed for RNA sequencing by Novogene 
Sequencing. For all samples, the total number of reads 
ranged between 40 and 43 million reads and the per-
centage of mapping was >95% for all samples. In addi-
tion, genes that were upregulated in the TMZ-treated PGOs 
were entered into the DAVID database for gene enrichment 
analysis.20,21

Statistical Analysis

Graphs were generated using GraphPad Prism (v9) by 
normalizing the luminescence counts of the treatment con-
ditions to the vehicle control. For dose–response curves, 
an area under the curve (AUC) was calculated and AUC 
values were compared using an unpaired t-test. For com-
parison of different treatments, the response to treatment, 
as measured by cell viability was compared between pa-
tients using an unpaired t-test. To determine the synergy of 
drug interactions, Bliss scores were computed according 
to the formula Eab = Ea + Eb × (100 − Ea). A Bliss score 
of 10 or higher is considered to represent a synergistic 
interaction.22

Results

In total, 32 patients were included in this study, from which 
long-term organoid cultures were established from 10 pa-
tients (Supplementary Materials 1). The success rate of es-
tablished organoids increased toward the end of the study 
as 5 out of 6 final collected tumors were successfully estab-
lished as PGOs (83% success rate). H&E staining of PGOs 
shows tumor cells with a glial appearance and cell prolif-
eration, as well as areas of necrosis and different morpho-
logical growth patterns. (Figure 1A).

PGOs display a proliferative rim (EdU+) and hypoxic core 
(pimonidazole), a common feature of GBM (Figure 1B). 
PGOs also express GBM markers Nestin and SOX2 (Figure 
1B). Western blot analysis showed typical perturbations of 
GBM driver genes such as PTEN loss, TP53 overexpression, 
and epidermal growth factor receptor (EGFR) truncation and 
amplification (Figure 1C). The set of PGOs was derived from 
both MGMT-methylated (N = 6) and MGMT-unmethylated 
(N = 4) patients. These data show that our PGOs retain rele-
vant genetic and phenotypic features of GBM and represent 
a heterogeneous group of GBM.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad152#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad152#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad152#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad152#supplementary-data
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Whole-Exome Sequencing Analysis of Patient-
Derived GBM Organoids

Next, we investigated whether genetic variants were 
stable during in vitro expansion of the PGOs. The ge-
netic stability was determined based on variants found in 
465 genes (Supplementary Materials 2), selected based 
on the COSMIC database.23 First, we performed whole-
exome sequencing (WES) on 3 parallel cultured individual 
organoids derived from the same patient (N = 3), which 
showed high inter-organoid correlation (Spearman’s cor-
relation coefficient >0.96 for all 3 samples) (Figure 2A; 
Supplementary Materials 3).PGOs from the same patient 
analyzed at different time points (4, 8, or 12 weeks) in cul-
ture showed most identified variants (range from 92.3% 
to 97.7%) were stable and identified at all time points 
(Figure 2B; Supplementary Materials 4).

To assess whether PGOs genetically resemble their pa-
rental tumor from, we performed WES on the tumor and 

corresponding PGOs. Figure 2D shows variants identified in 
PGOs and tumor tissue in GBM-relevant genes. We observed 
variants in well-known GBM driver genes. These include 
TP53 (6/10), NF1 (3/10), PTEN (1/10), and PIK3R1 (2/10). Copy 
number variants (CNVs) on commonly altered genes in GBM 
also largely corresponded between PGO and tumor (Figure 
2D). This includes EGFR amplification (7/10) and loss of PTEN 
(3/10). The concordance in coding variants between PGOs 
and the parental tumor varied from 58% to 90% (N = 6; Figure 
2C). From 4 patients, insufficient parental tumor material was 
available for WES. The complete list of somatic variants and 
CNVs is reported in Supplementary Materials 5.

Genetic and Phenotypic Intratumoral 
Heterogeneity

We used single-cell KaryoSeq to interrogate GBM heter-
ogeneity in PGOs (N = 7) (Figure 3). All PGOs maintained 
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significant genetic heterogeneity, shown by multiple 
subclones derived from a founder population. In addition, 
known key chromosomal aberrations, such as amplifica-
tion of chromosome 7 (EGFR) and loss of chromosome 10 
(PTEN), were observed.

In addition to genetic heterogeneity, there is a high 
level of phenotypic plasticity where multiple subtypes 
can be present. To address this, we conducted multiplex 
immunohistochemistry on 6 PGOs. Digital reconstructions 
show the heterogeneity of different tumor cell subtypes 
within PGOs (Figure 4A–F). All PGOs showed MES-like cells 
as the most dominant cell population, with different distribu-
tions of the other cell subtypes. Overall, the proportions of the 

different cell types corresponded well between the PGO and 
parental tumor (Figure 4G). In PGO.027, we observed a com-
plete loss of the NPC and OPC cells, which was retained in the 
other PGOs. (Figure 4G). Additionally, we observed marked 
differences in EGFR expression between PGOs showing mo-
lecular heterogeneity between PGOs (Figure 4H).

Drug Sensitivity and Drug Resistance in GBM 
Organoids

The only marker to predict TMZ sensitivity in the clinic, 
MGMT promoter methylation status, was compared be-
tween PGO and parental tumor. When a discrepancy 
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Figure 2.  Genetic characterization of patient-derived GBM organoids (PGOs). (A) Heatmap of variants identified by whole-exome sequencing 
(WES) of 3 individual PGOs derived from the same patient (N = 3). Pearson correlation coefficients are reported between each sample. (B) Venn 
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between MGMT expression on western blot and the clin-
ical data occurred, we used multiplex ligation-dependent 
probe amplification (MLPA) to confirm MGMT-methylation 
status. Overall, MGMT-methylation status was retained in 
all but one patient (Supplementary Materials 6).

PGOs were treated with TMZ and mainly showed resistance 
at lower concentrations (15 and 30 μM) except for 2 MGMT-
methylated PGOs (Figure 5A). AUC values of drug–response 
curves were analyzed and both 3565 and PGO.021 were sta-
tistically significantly more sensitive toward TMZ compared 
to other PGOs (P < .0001). PGO.009 was the most resistant 
PGO also compared to PGO.023 (P = .008), 3128 (P = .046), 
and 1914 (P = .002). None of the other PGOs were significantly 
different from the others. All MGMT-unmethylated PGOs 
were resistant to TMZ and only showed decreased cell via-
bility at high concentrations (100 and 300 μM). The only sta-
tistically significant difference that was found was between 
PGO.007 and 2012.2 (P = .007). Next, PGOs were exposed 
to a clinically relevant 30-μM concentration. As suspected, 
MGMT-methylated PGOs responded more favorably when 
compared to MGMT-unmethylated PGOs. Only 1 MGMT-
unmethylated PGO showed a significant decrease in cell 
viability. Two MGMT-methylated PGOs did not show a sub-
stantial reduction, whereas the other patients did (Figure 5B).

Moreover, PGOs were treated with concurrent 
chemoradiation, and overall patients showed low 

sensitivity toward this standard of care (Figure 5C). This 
was concordant with the clinical patient outcome as most 
patients showed progression of disease immediately 
after completing their first-line treatment (Supplementary 
Materials 1). Next, we investigated whether PGOs would re-
spond to treatments that target commonly mutated genes. 
As a proof of principle, osimertinib, a third-generation 
tyrosine-kinase inhibitor targeting EGFR shown to cross the 
blood–brain barrier (BBB),24 was tested on PGOs. Previous 
preclinical research showed osimertinib to be effective in 
EGFRvIII positive GBM25 as well as EGFR-negative GBM.26 
AUC values of the dose–response curves were analyzed 
(Figure 5D). 1919 was the most sensitive PGO, which was 
also statistically significant compared to 3128, PGO.009, 
and PGO.030 (P < .0001), as well as 3565 (P = .003). 3565 
was the second most sensitive, which was also significant 
when compared to the other PGOs (vs. PGO.009: P = .018; 
vs. PGO.030: P = .0005, and vs 3128: P < .0001). 3128 was 
significantly more resistant when compared to PGO.009 
(P = .03) and PGO.030 (P = .014). Osimertinib blocked the 
phosphorylation of EGFR (not shown) and downstream 
pERK/MEK signaling, with concomitant upregulation of ap-
optosis marker cleaved PARP (Figure 5E).

In addition, GBM patients invariably develop resistance 
to TMZ after which no relevant treatment options exist. We, 
therefore, asked whether we could use PGOs to identify 

Phylogenetic trees of single-cell karyotype sequencing of PGOs
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Figure 3.  Phylogenetic trees derived from single-cell karyotype sequencing for different patient-derived glioblastoma (GBM) organoids (PGOs; 
N = 7). Losses and gains of (parts of) chromosomes are reported in the figure.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad152#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad152#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad152#supplementary-data
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novel treatment-resistance mechanisms to TMZ. PGOs 
were treated with 2 cycles of TMZ (30 μM), and bulk RNA 
sequencing was performed before and after treatment 
(Figure 6A). Gene-set enrichment analysis was conducted 
(Supplementary Materials 7) which reported a trend for 
negative enrichment for multiple pathways. The only trend 
for enrichment after TMZ treatment was found for mitotic 
spindle. Differential gene expression and pathway analysis 
showed the JNK-kinase pathway as the top hit upregulated 
after TMZ treatment (P-value <.05). To test whether inter-
fering in the JNK pathway would increase TMZ sensitivity, 
PGOs were treated with the JNK inhibitor SP600125 and/
or TMZ. In 4 out of 5 PGOs tested, the combined treatment 
was more effective (Figure 6B).

Next, we titrated different concentrations of JNK in-
hibitor (5, 10, and 15 μM) with different concentrations 
of TMZ (15–125 μM) and measured viability 11 days after 
the start of treatment (Figure 6C). A Bliss score was cal-
culated and a Bliss score of above 10 after treatment with 
different concentrations SP600125 and TMZ confirms a 
synergistic interaction. We observed strong synergistic 
interactions at different dose levels (Figure 6D) that dif-
fered between PGO (Supplemental Figure 8A). The most 
synergistic combinations were 15.6 or 125 µM TMZ with 
5 µM SP600125, and 62.5 µM TMZ combined with 5, 10, 
or 15 µM SP600125. However, the combination treat-
ment of 31.25 µM of TMZ with 5 or 10 µM SP600125 was 
not synergistic. Remarkably, each patient-derived GBM 
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organoid line shows different optimal concentrations 
of TMZ and/or SP600125 (Supplementary Figure 8B). 
Interestingly, Kaplan–Meier analysis in the TCGA data-
base shows a lower overall and progression-free sur-
vival for patients with high JNK expression, suggesting 
its role as an adverse prognostic factor (Supplementary 
Materials 9A). Consistently, JNK expression is also 
significantly higher in GBM than in normal brain 
(Supplemental Materials 9B).

Discussion

Here we describe the generation and validation of a GBM 
organoid model from patient-derived GBM cells. Overall, 
we showed that PGOs are genetically stable tumor cell 
models that maintain clinically relevant markers, such 
as MGMT-methylation status, somatic gene variants, 
CNVs, and exhibit phenotypic and genetic intratumoral 
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heterogeneity. Furthermore, we demonstrate that PGOs 
can be used to identify actionable targets to enhance sensi-
tivity to standard-of-care chemotherapy.

For most PGOs, there was substantial concordance be-
tween somatic variants and CNVs found between PGOs 
and the parental tumor, though not for all. One explanation 
is that tumor tissue and tissue for organoid generation are 
from distinct tumor regions. Hence not all subclones are 
likely to be represented in the material used for organoid 
derivation due to intratumoral heterogeneity. Moreover, 

the presence of stromal nontumor cells in the tumor biop-
sies, used for sequencing, may yield an underrepresenta-
tion of mutated and amplified GBM driver genes compared 
to the PGO which has also been observed by others.27,28 
Whether the low concordance in some PGOs is due to 
sampling error, stromal contamination, or the inability of 
specific tumor cell clones to grow in vitro requires further 
investigation.

We observed that PGOs preserved genetic and phe-
notypic heterogeneity at the single-cell level. Using 
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Figure 6.  Changes in patient-derived glioblastoma (GBM) organoid (PGO) gene expression upon temozolomide (TMZ) treatment. (A) Volcano 
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single-cell karyotype sequencing, we showed the existence 
of multiple subclones within PGOs while representing well-
known GBM chromosomal alterations.1,3 To our knowledge, 
no previous study investigated chromosomal aneuploidy 
in PGOs. Furthermore, we show phenotypic heterogeneity 
within the PGOs using multiplex immunohistochemistry. 
Remarkably, PGOs maintained different cellular states after 
prolonged in vitro culture. Overall, the distribution of the 
different cell types corresponded well between PGO and 
parental tumor with the exception of 1 case with a com-
plete loss of NPC and OPC cells. The reasons why some 
PGOs lose certain states while others maintain them are 
of interest and need to be understood at present. Culture 
medium and organoid growth methods may contribute to 
transcriptomic changes not reflective of the in vivo tumor 
microenvironment (TME) and promote the outgrowth or 
loss of specific subclones, which might also be patient spe-
cific as no variability was consistent among all PGOs.

To functionally test PGOs, we performed cell viability 
assays. Importantly, all but 1 patient retained the MGMT-
methylation status. We showed that at a clinically relevant 
dosage, most PGOs respond as expected based on their 
MGMT-methylation status. Interestingly, PGO.023 did not 
show any response while being MGMT-methylated. This 
sample was taken from a patient with a TMZ pretreated 
recurrent GBM and harbored an MSH6 mutation, a well-
known mechanism of TMZ resistance.29 Similarly, PGO.009 
showed little response to TMZ despite the corresponding 
patient being classified as MGMT-methylated. Additional 
analysis of this PGO revealed the organoid to be MGMT-
unmethylated. This discrepancy in MGMT-methylation 
status could be due to intratumoral heterogeneity of 
MGMT expression in the parental tumor.30 This indicates 
that regional sampling bias also influences PGO composi-
tion, which should be considered.

Additionally, we investigated whether PGOs could be 
used for drug screening. As a proof of principle, we set out 
to use a tyrosine-kinase inhibitor of EGFR (Osimertinib), 
which can cross the BBB. The PGO with the highest pro-
tein expression of EGFR (1919) was also the most sensitive. 
However, EGFR protein expression did not predict treatment 
sensitivity overall. The second most sensitive patient (3565) 
does not show any EGFR expression; however, it does show 
a clear increase in apoptosis protein cleaved PARP. All in all, 
these experiments show the potential of PGOs to be used 
for drug screening, contribute to identifying novel treatment 
options, and improve patient stratification.

We identified the JNK pathway as differentially ex-
pressed in TMZ-treated versus untreated PGOs and con-
firmed that JNK inhibition synergizes with TMZ treatment 
to reduce cell viability. The JNK pathway is highly active 
in the central nervous system (`) and is implicated in the 
response of the CNS to injury. JNK pathway activity cor-
relates to GBM aggressiveness, infiltration, and progres-
sion.31 In GBM, it has been demonstrated that JNK kinase 
signaling is important for maintaining stemness32 and 
inhibition of either isoform JNK1 or JNK2 can diminish 
stemness of glioma stem cells.33 JNK expression is also no-
tably increased in GBM compared to healthy brain tissue. 
Previous studies in GBM confirm that inhibition of the JNK 
pathway sensitizes cells to TMZ treatment.34,35 JNK kinase 
has not been reported to be involved in TMZ resistance; 

however, a previous study comparing primary and recur-
rent GBM also reported enrichment of JNK family mem-
bers36 This supports future research into the efficacy of JNK 
inhibition in recurrent GBM as a possible mechanism for 
regaining TMZ sensitivity or delaying progression. These 
findings show the potential of PGOs to study treatment-
resistance mechanisms; however, whether the changes 
that occur after treatment in a PGO reflect the changes in 
vivo are subject to future research including PGOs derived 
from recurrent GBM.

Our GBM organoid model has particular strengths as a 
novel preclinical model to study GBM. First, PGOs can be 
propagated for a long time, bio-banked, and successfully 
regrown. Additionally, we have shown that GBM organoids 
can be used for multiple purposes, including studying ge-
netic and phenotypic characteristics, performing drug 
screens, and identifying treatment-resistance mechan-
isms. The strengths of this study include the direct compar-
ison between patient material, clinical features, and GBM 
organoids and the spatial and single-cell analysis to show 
the maintenance of tumor heterogeneity, one of the most 
important additive values of cancer organoids.

This study also has its limitations. First of all, the time 
it takes to establish GBM organoids is currently too long 
to be able to use them as patient avatars. Moreover, the 
absence of the TME, including stromal cells, immune cells, 
endothelial cells, and a brain extracellular matrix, is an ob-
vious shortcoming of the current methods. The TME is also 
known to influence treatment effectiveness in GBM and 
therefore results from tumor cell-only models might not 
be representative of the actual in vivo response.37 The next 
step in optimizing the GBM organoid mode can be done 
by using co-culture systems38 to include specific parts of 
the TME within the organoids. The potential of this has 
been shown, both in GBM organoids as in different cancer 
types. Immune cells were either retained by preserving 
the original tissue architecture16 or co-culturing lymph 
node cells39 or peripheral blood mononuclear cells.38 
Additionally, co-culture systems of patient-derived GBM 
cells together with human embryonic stem-cell-derived ce-
rebral organoids have been developed to mimic invasion 
and GBM–brain cell interaction.40 Differences in treatment 
response between different patients could also be due to 
gender-specific differences, which have proven to be an 
important determinant in patient outcome.41

Importantly, single-cell genetic analysis of the parental 
tumor was not available to compare to the single-cell data 
of PGOs. Therefore, whether the intratumoral genetic heter-
ogeneity observed in PGOs is similar to that of its parental 
tumor remains debatable. Additionally, the concordance of 
genetic makeup in PGOs compared to their parental tumor 
still has a large variance. These limitations also reflect that 
in their current state, PGOs are not yet suited to be used as 
direct patient avatars. However, given that GBM organoids 
maintain genetic and phenotypic heterogeneity, we still 
believe they form a superior model to traditional cell cul-
ture methods.

In conclusion, PGOs provide a genetically stable model 
that represents the genetic makeup of the tumor it was 
derived from and maintains genetic and phenotypic het-
erogeneity. Additionally, GBM organoids can be used for 
drug screening, understanding treatment sensitivity and 
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resistance mechanisms, and maybe developed further for 
patient stratification.
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