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Summary

Machine learning is transforming antibody engineering by enabling the generation of drug-

like monoclonal antibodies with unprecedented efficiency. Unsupervised algorithms trained on 

massive and diverse protein sequence datasets facilitate the prediction of panels of antibody 

variants with native-like intrinsic properties (e.g., high stability), greatly reducing the amount 

of subsequent experimentation needed to identify specific candidates that also possess desired 

extrinsic properties (e.g., high affinity). Additionally, supervised algorithms, which are trained 

on deep sequencing datasets obtained after enrichment of in vitro antibody libraries for one 

or more specific extrinsic properties, enable the prediction of antibody variants with desired 

combinations of extrinsic properties without the need for additional screening. Here we review 

recent advances using both machine learning approaches and how they are impacting the field of 

antibody engineering as well as key outstanding challenges and opportunities for these paradigm-

changing methods.
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Machine learning is transforming antibody engineering by efficiently generating drug-like 

antibodies. Unsupervised algorithms trained on large protein datasets enable prediction of 

antibody variants with native-like intrinsic properties, reducing the amount of experimentation 

necessary for identifying candidates with desired extrinsic properties. Supervised algorithms 

trained on deep sequencing datasets enable prediction of antibody variants with favorable extrinsic 

properties without additional screening. We review how both approaches are transforming the field 

of antibody engineering as well as key challenges for these paradigm-changing methods.
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Introduction

In recent years, monoclonal antibodies have become an increasingly successful class of 

therapeutics due to their many attractive molecular and pharmacological properties.1-3 Their 

success has transformed the treatment of many diseases and invigorated efforts to generate 

candidates against some of the most important and challenging targets.4-9 This has led to 

intense interest in generating antibody candidates with both high affinity and potency as 

well as favorable, drug-like biophysical properties. However, current antibody generation 

methods, while powerful, are inherently limited by the need for high-quality antigens, which 

in some cases are difficult to generate, and are commonly limited in their ability to generate 

broad epitope coverage. These and other challenges have motivated the development of 

advanced computational methods for therapeutic antibody development and are increasingly 

being integrated into the development pipeline.10 In addition to improving the accuracy of 

identifying drug-like antibodies, these computational methods offer benefits by reducing the 

need for costly experimentation, affording greater control over the antibody properties, and 

facilitating exploration of much larger antibody diversity.

Therefore, there is substantial interest in the continued development of computational 

methods that guide the design and engineering of therapeutic antibodies. In particular, 

there is growing emphasis on developing methods that facilitate complete de novo 
design of therapeutic antibodies given only a target antigen or epitope. However, this is 

extremely challenging because antibody sequence space is vast and sparsely populated with 

antibodies that possess native-like properties and are suitable for therapeutic applications. 

Encouragingly, substantial progress has been made in this area recently, which is primarily 

due to advances in machine learning. Some of the most powerful advances reported 

recently are those that combine directed evolution, deep sequencing, and machine learning, 

which enable efficient exploration of relevant portions of vast antibody sequence space, 

facilitating the identification and optimization of rare drug-like molecules. In this review, 

we discuss recent advances that improve the development of therapeutic antibodies through 

the combination of machine learning and directed evolution (Figure 1). We first focus of 

unsupervised methods trained on large protein sequence datasets for the identification of 

antibody sequences with native-like (intrinsic) properties that parallel those of drug-like 
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antibodies, such as high stability, to greatly narrow the search for antibody variants that 

also have the desired extrinsic, antigen-specific binding activity. We also review supervised 

machine learning methods trained on deep sequencing data acquired from library sorting 

analysis for the prediction of individual antibody variants with favorable combinations of 

drug-like properties, such as high affinity and stability, without the need for additional 

screening. These methods hold great potential for improving the efficiency and effectiveness 

of therapeutic antibody development.

Machine learning-guided antibody design using unsupervised learning from antibody 
repertoires

A vital component of using directed evolution for therapeutic antibody optimization is the 

selection of amino acid substitutions predicted to improve antibody properties. This includes 

discrete mutations that are evaluated individually as well as sets of mutations that are 

evaluated combinatorially in antibody libraries. There have been substantial advancements 

in this area recently, with many new machine learning methods adapted from the field 

of natural language processing to rapidly analyze expanding protein sequence datasets 

and identify beneficial mutations.11-13 An important concept for many of these methods 

is that the sequences in large sets of naturally evolved proteins can be parameterized by 

unsupervised learning algorithms to predict inherent properties of such proteins (i.e., high 

stability).14,15

One strategy to achieve this goal involves unsupervised or self-supervised machine learning 

algorithms that are trained to learn the construction convention of protein sequences, not 

to predict any property-specific information. Recently, a protein language model was used 

to implement this strategy to affinity mature therapeutic antibodies against several viruses 

using an ensemble of language models trained on broad sets of protein sequences (UniRef50 

and UniRef90), most of which were not antibody sequences.11,16 The resulting models are 

applicable to a wide variety of protein engineering tasks and broadly useful for applications 

in diverse protein therapeutics.16 These models employ deep transformer neural networks, 

trained by masking random amino acid positions in the input sequences and tested by 

evaluating their ability to predict the held-out amino acids at the masked positions (Figure 

2A). The models predict probabilities of mutations, representing the evolutionary likelihoods 

of the mutations based on the assumption that the databases are comprised of evolutionary 

fit protein sequences. Higher prediction probabilities represent higher likelihoods that a 

mutation would be found in an evolutionary fit sequence and therefore a higher likelihood of 

exhibiting native-like properties. For example, one model was benchmarked against nine sets 

of deep sequencing data collected for different levels of extrinsic protein properties (e.g., 

high vs. low levels of β-lactamase activity), which revealed improved or similar ability to 

predict mutations that improved protein functional properties relative to random predictions 

(Figure 2B).11

One compelling aspect of this model is the ability to identify beneficial mutations that 

improve extrinsic protein properties by only predicting and testing small sets of protein 

mutants (e.g., ~10-20 mutants).11 The power of this approach was demonstrated by 

increasing the affinity of antibodies specific for three viruses, namely influenza, Ebola, and 
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SARS-CoV-2. An initial round of in silico screening of single mutations (~10 mutants per 

antibody) revealed many successful mutations that increased antibody affinity (Figure 2C). 

Successful mutations were combined and evaluated in a second round of optimization (~10 

mutants per antibody). The final antibody variants displayed up to a 160-fold improvement 

in binding affinity. Notably, this study demonstrates the impressive capacity of protein 

language models to distill information relevant for optimizing antibody function, despite not 

being trained specifically on antibody repertoires.

Despite impressive results for low-N protein engineering, there is little evidence that these 

predictions of intrinsic fitness levels correlate with experimental measurements of antibody 

extrinsic properties (e.g., affinity). One possible reason for this is that protein language 

models trained on large protein databases are not best suited to represent antibody properties 

such as affinity given the extremely specific paratopes needed to mediate antibody-antigen 

binding and may require antibody-specific language model representations. Such models 

have been developed and validated for the prediction of antibody paratope residues, Fv 

structures, and thermostabilizing mutations,17-20 but they generally do not predict the 

magnitudes of changes expected for the predicted mutations.

However, there has been recent progress in using unsupervised learning to develop models 

for predicting metrics that are directly correlated with measurements of certain extrinsic 

protein properties. One approach for antibody engineering is to train language models 

directly on antibody sequence sets, instead of broad protein sequence sets. Although this 

approach reduces the generalizability of the models, the results are potentially more useful 

for therapeutic antibody development because they enable differentiation of the intraclass 

variability of biophysical properties rather than broad property classification. This ability 

is vital for therapeutic development because small differences in biophysical properties can 

substantially influence the clinical potential of a molecule. In training language models 

on more specific sequence repertoires, this differentiation can be better achieved.13,21,22 

Moreover, in this type of approach, the idea of broad evolutionary fitness from protein 

language models is adapted for specific property fitness of antibodies, the therapeutic 

molecule of interest.

One important concept for this type of model is its generative nature, as the model learns 

the ability to generate antibody sequences that resemble those in the training repertoire. 

These models enable more efficient exploration of desired sequence space compared to 

discriminative models and differ from the broad protein language models that cannot be 

used for de novo generation of antibody sequences. Autoregressive models are one type 

of generative model adapted from the field of natural language processing that can be 

readily applied to protein sequences for feed-forward prediction of amino acids in a given 

sequence. Through this type of training, the model learns sequence construction constraints 

represented in the training repertoire and enables generation of new sequences with the same 

properties conferred by those constraints. Notably, autoregressive, feed-forward modeling 

obviates the need for sequence alignment, which is particularly important for training on 

antibody repertoires with variable sequence lengths. This approach is particularly important 

because antibody sequence alignment is challenging, and it is not possible for diverse 

antibody regions such as HCDR3s, even for such CDRs with same lengths.
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Recently, generative autoregressive modeling was applied to predict highly stable nanobody 

sequences, enabling the production of a library with 1000-fold greater expression than a 

library designed using conventional methods.22 Specifically, a dilated convolutional neural 

network was identified as a promising model architecture for feed-forward prediction 

of amino acids in protein sequences (Figure 3A). The model architecture was first 

benchmarked against previously validated models by training on various protein libraries, 

including nanobodies, growth factors, and enzymes, and then evaluated for predicting 

the effect of mutations on their functional properties, such as protein stability, cellular 

growth, and enzyme activity (Figure 3B). Differences in the probability predictions between 

wild-type and mutant sequences were found to be descriptive of the measured functional 

properties with improved or comparable performance relative to state-of-the-art model 

architectures.23

Next, a naïve nanobody repertoire was deep sequenced and used for unsupervised training 

of a model for predicting novel nanobody sequences with native-like properties.22 A 

key assumption in this study was that the naïve nanobody repertoire was composed of 

stably folded nanobodies, and the determinants of such stability were learned by the 

model. Interestingly, there was a strong correlation between model prediction probabilities 

and nanobody stability measurements for four independent datasets, demonstrating the 

impressive potential of such models to generate novel nanobodies with native-like 

biophysical properties (Figure 3C).

The model was then applied to design a highly stable nanobody library that could be 

enriched for antigen binding.22 The autoregressive model trained on naïve nanobody 

sequences was used to predict over 107 binding loop (complementarity-determining region 

3 or CDR3) sequences that would result in favorable, native-like properties in the context of 

a common nanobody framework. This sequence set was filtered to isolate a diverse set of 

approximately 185,000 CDR3 sequences to be included in the designed library. This library 

was compared to a conventional library that was designed using a position-specific scoring 

matrix (PSSM) created from the hundreds of nanobody sequences in the Protein Data Bank. 

Both libraries were displayed on the surface of yeast for evaluation of expression levels, 

which revealed that the library designed using machine learning was better expressed with 

fewer poorly expressing variants (Figure 3D). The designed (better expressing) library was 

then screened for antigen binding against human serum albumin, identifying a lead variant 

with modest affinity (KD of ~10 μM). Overall, this study demonstrates the power of methods 

that learn from nanobody and related repertoires and parameterize intrinsic fitness features 

that are most relevant for nanobody optimization.

However, this general approach remains limited to native-like antibody properties, such as 

stability, that are represented in naïve antibody repertoire sequences. To develop models 

for directly predicting extrinsic antibody properties such as affinity, a typical approach is 

to train models on large antibody sequence sets that have been experimentally enriched for 

specific properties of interest. This approach was demonstrated in a recent study where deep 

sequencing data from an affinity-matured library was used to train an autoregressive neural 

network to predict binding probabilities.12 A large phage-display library was generated 

for an anti-kynurenine antibody by mutating sites in the heavy chain CDRs. This library 
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was panned against the antigen and deep sequenced after multiple rounds of enrichment. 

Next, a generative autoregressive neural network was trained for feed-forward amino acid 

prediction on a dataset of approximately 1,000 sequences curated from deep sequencing 

data for the enriched library. Millions of antibody sequences were then generated by the 

model, and several of the highly scored antibodies were produced and evaluated for antigen 

binding. Impressively, the predicted probability of binding, which describes the likelihood 

that a given antibody sequence would be present in the enriched library, correlated well 

with continuous measurements of antigen binding (R2 of 0.52). Moreover, the sequences 

generated by the model generally displayed higher affinities than the most enriched clones 

identified by deep sequencing.

Notably, the theoretical diversity of the library generated in this study was over 1017, far 

exceeding the achievable transformation efficiencies, panning diversities, and sequencing 

depths that are possible experimentally.12 This highlights a paradigm shift in antibody 

engineering enabled by machine learning, as comprehensive experimental observation 

of library diversity is unnecessary for accurate model training if sufficient mutational 

diversity is observed in a variety of sequence contexts. Overall, this approach is unique 

from the studies discussed above because it does not employ naïve sequence repertoires 

for unsupervised learning but instead requires experimentation to identify a relevant set 

of sequences enriched for the property of interest. This approach further reduces model 

generality, but achieves the predictive capacity of specific extrinsic properties necessary 

for rapid antibody optimization. This study, along with related ones,11,12,22 highlight the 

many exciting possibilities for further integrating machine learning and directed evolution 

to develop robust, comprehensive approaches for improving generation of highly potent 

antibodies.

Machine learning-guided antibody design using supervised learning from antibody 
libraries

Another valuable use of machine learning for antibody optimization is learning from deep 

sequencing datasets collected at different stages of enrichment of in vitro antibody libraries 

for specific extrinsic properties, such as i) before and after selection for high antigen 

binding or ii) after selection for high and low antigen binding at a terminal stage of 

library sorting. Machine learning has been increasingly applied to analyze these types of 

labeled datasets, which have historically been underutilized to identify optimal antibody 

mutants due to an overreliance on conventional methods such as sequence enrichment ratios 

and frequencies. One notable study using this approach employed a convolutional neural 

network to analyze deep sequencing data with binary labels for high and low antigen 

binding.24 A small sub-library of a therapeutic antibody (trastuzumab) was created by 

mutating the heavy chain CDR3 and displayed on the surface of mammalian cells (Figure 

4A). After two rounds of enrichment for antigen binding, the libraries enriched for high 

and low antigen binding were deep sequenced. The final curated dataset consisted of 

over 20,000 sequences of trastuzumab variants with binary labels describing high and low 

antigen binding. Interestingly, model architectures ranging from simple k-nearest neighbors 

to complex deep learning classification models performed similarly in their ability to 

accurately predict antigen binding.
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The best performing model, a convolutional neural network with high classification accuracy 

(Figure 4B), was next used to predict millions of antigen-specific trastuzumab variants 

for additional analysis of their biophysical properties.24 The variants were ranked via a 

novel developability score that included contributions related to viscosity,25 solubility,26 and 

immunogenicity.27 In total, 55 variants were predicted to be optimized for both affinity 

and developability (Figure 4C).24 Notably, all of the predicted variants exhibited antigen 

binding, with most retaining monovalent affinities (dissociation constants) below 100 nM. 

Ten of the highest affinity variants were further characterized, revealing that five exhibited 

comparable or improved expression titers and all ten exhibited comparable or improved 

thermal stability (Figure 4D). These results illustrate the potential of machine learning to 

improve the analysis of antibody libraries not only for affinity, but also in concert with 

analysis of multiple developability criteria at the same time. Nevertheless, a limitation of 

this study is that most variants (~95%) identified as antigen binders displayed reductions to 

affinity.

For multi-property optimization of antibodies, it is important not only to predict interclass 

difference in properties such as high versus low affinity but also intraclass differences 

such as high versus very high affinity. A recent study addressed this challenge by 

predicting continuous antibody properties based only on simple deep sequencing datasets 

using supervised dimensionality reduction.28 In this work, a clinical-stage antibody 

(emibetuzumab) was optimized to address its high levels of non-specific binding. A large 

sub-library (107 variants) was generated by mutating residues in the heavy chain CDRs 

that were predicted to mediated non-specific binding (Figure 5A).28 However, mutating 

sites in these CDRs was also expected to reduce affinity, highlighting challenges related to 

co-optimizing affinity and non-affinity (non-specific binding) interactions.29

Therefore, the emibetuzumab sub-library displayed on the surface of yeast was sorted for 

high and low levels of binding to antigen and polyspecificity reagents (soluble membrane 

proteins30 and ovalbumin31,32). The enriched libraries were deep sequenced and a relatively 

small dataset of 4,000 sequences were identified and labeled for their high or low levels of 

antigen and non-specific binding.28 Interestingly, relatively simple models, including those 

developed using k-nearest neighbors and linear discriminant analysis (LDA), were able to 

accurately classify both properties. However, classification models are particularly limited 

for co-optimizing multiple antibody properties because they fail to describe the intraclass 

variability. Therefore, the investigators evaluated if models developed for classification 

could also be applied for identifying intraclass differences in antigen and non-specific 

binding. Surprisingly, the LDA models, which project features into a single dimension 

to maximize classification accuracy, were also able to describe the intraclass variability, 

as judged by strong correlations between the model projections and continuous binding 

measurements (Figure 5B). More complicated models, such as neural networks, only 

modestly improved the predictions, suggesting that the effects of the CDR mutations on 

antigen and non-specific binding were largely additive. Finally, the LDA models enabled 

the co-optimization of emibetuzumab by directly predicting co-optimized variants along 

the Pareto frontier (Figure 5C). The model predictions were also strongly correlated with 

antigen and non-specific binding for IgGs, revealing that the datasets collected using Fab 

fragments enabled generation of models that extend to full-length antibodies.
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While these results demonstrated the ability to predict the impact of in-library mutations 

observed in the training sets on both antigen and non-specific binding, they cannot be 

extrapolated to novel mutations unseen during training.28 Therefore, the investigators 

evaluated if models could be developed for predicting emibetuzumab antigen and non-

specific binding that generalize to novel mutational space. To do this, it was necessary to 

change the feature sets used for model training from those that simply encode the observed 

mutations at the mutated heavy chain CDR sites to those that reflect the entire VH domain. 

The investigators evaluated conventional feature sets based on physicochemical properties 

of VH domains (e.g., charge and hydrophobicity) as well as more abstract features, 

referred to as deep learning (UniRep) features, extracted from protein language models.33 

Notably, the antigen and non-specific binding models developed with deep learning 

features were best at generalizing to novel mutational space and enabled identification 

of co-optimized emibetuzumab mutants with superior properties relative to those isolated 

from the initial library. These findings demonstrate the potential of new computational 

methods for generating better antibody descriptors that lead to more accurate machine 

learning predictions of antibody properties, which is especially important for overcoming 

strong tradeoffs between different antibody properties. This study also highlights that the 

power of relatively simple linear models for predicting protein properties based on analyzing 

large combinatorial protein spaces up to several millions of sequences. This illustrates 

another paradigm shift for therapeutic antibody optimization, suggesting that the scale at 

which library-screening data is frequently acquired does not typically necessitate complex 

(non-linear) analysis methods.34,35

Conclusions

Much progress has been made in recent years using machine learning to simplify complex 

antibody engineering. However, there remains a great need for further improvements in the 

efficiency and accuracy of predictions of optimized antibody variants. The combination of 

unsupervised and supervised machine learning methods is particularly compelling13,34,36,37 

and holds great promise for increasing the efficiency and success of antibody engineering 

efforts. Hybrid or semi-supervised methods are expected to enable better design of both 

specific antibody variants and entire libraries that sample the drug-like antibody sequence 

space. This is particularly important for addressing challenging problems that require 

co-optimization of several antibody properties, including those related to antigen-binding 

properties (e.g., affinity, epitope and species cross-reactivity) as well as those related to 

in vitro (stability, self-association) and in vivo (pharmacokinetics, non-specific binding) 

properties.

Another important future direction for machine learning-guided antibody engineering 

is the prediction of antibody epitopes, which is important for targeting pre-selected 

epitopes of known functional significance and achieving broad epitope coverage when the 

functional significance of different epitopes is unknown.38 Predicting antibody epitopes 

requires prediction of both the antibody and antigen structures, as well as antibody/antigen 

docking.39,40 Alphafold excels at antigen structure prediction,41,42 but it is suboptimal for 

predicting the structures of antibody CDRs, such as HCDR3, which is being addressed by 

other methods19,43 and will need to be further improved in the future. Most importantly, 
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future studies need to improve antibody/antigen docking, building on important progress to 

date,40,44,45 to reliably predict antibody epitopes, which remains one of the greatest needs in 

the field.

There are two additional future directions that will be particularly important to the field. 

One is the lack of large datasets relevant to many important antibody engineering problems. 

Much of the available high-quality data is controlled by biopharmaceutical companies, and 

increased efforts to generate and share experimental data is critical to further advance the 

impact of machine learning on antibody engineering. The other key future direction is the 

need to make it simpler for non-experts, especially for scientists from biological fields, to 

develop and use emerging machine learning methods. Reducing the barriers of entry to 

scientists interested in developing and using these exciting methods is expected to usher 

in a new era of antibody engineering that enables generation of drug-like antibodies with 

unprecedented efficiency.
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Figure 1. Overview of machine learning and directed evolution methods that are being used in 
concert to simplify complex antibody engineering tasks.
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Figure 2. General protein language model identifies mutations that increase antibody affinity.
(A) Self-supervised deep transformer neural networks learn the intrinsic fitness of protein 

sequences and can predict mutations that increase their fitness. These intrinsic fitness 

predictions are hypothesized to reflect intrinsic properties of diverse proteins, including 

antibodies, and can be used in their optimization. (B) Benchmarking of the neural 

networks on nine high-throughput scanning mutagenesis datasets revealed improved 

or comparable predictions of single mutations that improved intrinsic properties over 

background predictions. (C) Mutations with higher predicted intrinsic fitness were identified 

and introduced to five anti-viral antibodies, resulting in higher affinities in several cases. In 

Round 1 of optimization, single mutations were evaluated. In Round 2 of optimization, 

combinations of successful mutations from Round 1 were evaluated. In (B), ADRB2 

is adrenoreceptor beta 2, β-la. is β-lactamase, Env is envelope glycoprotein, Ha is 

hemagglutinin, infA is translation initiation factor 1, MAPK1 is mitogen-activated protein 

kinase 1, and PafA is phosphate-irrepressible alkaline phosphatase. Moreover, in (B), the 

p-values are <0.05 (*), <0.01 (**) and <0.001 (***). This figure is adapted from a previous 

publication.11
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Figure 3. Autoregressive neural network accurately predicts stable nanobody variants and 
libraries.
(A) Autoregressive modeling uses feed-forward amino-acid prediction to parameterize the 

evolutionary likelihood of sequences. (B) Benchmarking prediction probabilities against 35 

high-throughput scanning mutagenesis datasets revealed improved or comparable predictive 

capacity relative to state-of-the-art (DeepSequence23) and baseline (hidden Markov model) 

methods. (C) An autoregressive model trained on a naïve nanobody repertoire facilitated 

accurate prediction of nanobody thermal stability for four benchmark datasets. (D) The 

model was used to design a library of highly stable nanobody sequences, and the resulting 

properties of the designed library were superior to those of a conventionally designed 

library. The conventional library, designed by position-specific scoring matrix analysis 

of nanobody databases, exhibited lower expression than the library designed using the 

autoregressive model. This figure is adapted from a previous publication.22
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Figure 4. Convolutional neural network predicts levels of antigen binding and identifies highly 
developable variants of a therapeutic antibody.
(A) A library of trastuzumab variants with mutations in heavy chain CDR3 was displayed 

on the surface of mammalian cells and sorted for high and low levels of antigen binding. 

The enriched libraries were deep sequenced, and a neural network was trained to predict 

sequences with high antigen binding. The predicted antibody sequences were further filtered 

for favorable developability (viscosity,25 solubility,26 and immunogenicity27) properties to 

identify drug-like sequences. (B) The resulting neural network was highly accurate with an 

AUC of 0.91. (C) Several (55) variants predicted with high antigen binding were produced 

and evaluated, and all of them displayed antigen-specific binding. (D-E) The ten highest 

affinity trastuzumab variants were further characterized in terms of their (D) expression 

titers after expansion of hybridoma cells and (E) thermal stabilities. In (E), Tm1 is the first 

unfolding transition and Tonset is the onset of thermal melting temperature. This figure is 

adapted from a previous publication.24
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Figure 5. Linear models trained only on binary deep sequencing data predict continuous 
properties of a therapeutic antibody.
(A) A library of Fab variants of a therapeutic antibody (emibetuzumab) with mutations 

in its heavy chain CDRs was displayed on the surface of yeast and sorted for high 

and low levels of antigen (hepatocyte growth factor receptor, also known as c-MET) 

and non-specific binding. The enriched libraries were deep sequenced, and simple (linear 

discriminant analysis or LDA) and more complex (neural network) models were trained to 

classify antibody sequences for high and low levels of each property. (B) High classification 

accuracy was observed for the LDA models for both properties. Additionally, the LDA 

model projections were found to correlate with continuous measurements for both antigen 

and non-specific binding. (C) Co-optimized antibody mutants were identified along the 

Pareto frontier. These predictions were confirmed experimentally for soluble IgGs, leading 

to the identification of several (16) emibetuzumab variants with increased antigen and 

reduced non-specific binding. This figure is adapted from a previous publication.28
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