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Abstract

Uniquely positioned as sentinel cells constantly exposed to the environment, pulmonary 

macrophages are vital for the maintenance of the lung lining. These cells are responsible for 

the clearance of xenobiotics, pathogen detection and clearance, and homeostatic functions such as 

surfactant recycling. Among the spectrum of phenotypes that may be expressed by macrophages 

in the lung, the pulmonary lipid-laden phenotype is less commonly studied in comparison to its 

circulatory counterpart, the atherosclerotic lesion-associated foam cell, or the acutely activated 

inflammatory macrophage. Herein, we propose that lipid-laden macrophage formation in the lung 

is governed by lipid acquisition, storage, metabolism, and export processes. The cellular balance 

of these four processes is critical to the maintenance of homeostasis and the prevention of aberrant 

signaling that may contribute to lung pathologies. This review aims to examine mechanisms 

and signaling pathways that are involved in lipid-laden macrophage formation and the potential 

consequences of this phenotype in the lung.

1.0 Introduction

Pulmonary macrophages play a critical role in innate immunity through pathogen detection, 

foreign substance clearance, and maintenance of surfactant homeostasis1,2. Due to its 

constant exposure to the environment, the lung is uniquely susceptible to external influence, 

which can alter macrophage function. The lung lining is inherently lipid rich, however, it can 

become hyperlipidemic in response to acute injury. As macrophages are constantly taking 

up lipid through phagocytosis of cells and catabolism of surfactant, this hyperlipidemia can 

promote the formation of lipid-laden cells. Lipid-laden macrophages, commonly referred 

to as “foam cells” have been implicated in the early development of atherosclerotic 

lesions3,4, leading to their extensive study within the vasculature. However, macrophage 

lipid accumulation has the potential to play a role in other organ systems, such as the 

lung, where there is a growing appreciation of a role for cholesterol and lipoproteins in 
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homeostasis and signaling5, and lipid-laden macrophages have also been observed in various 

models of lung injury6,7. The presence of these large, activated cells during injury and their 

subsequent reduction with treatment indicate that they may play a role in the promotion of 

lung injury6. Despite these observations, it is still unclear how lipid-laden macrophages in 

the lung are formed or how their presence affects the inflammatory process. The purpose 

of this review is to examine potential mechanisms involved in lipid-laden macrophage 

formation and to postulate the outcomes of this phenotype in the lung.

2.0 Principles governing lipid-laden macrophage formation

Lipid accumulation in circulating macrophages in the vasculature results in foam cell 

formation4,8–10, which is attributed to the uptake of damaged, oxidized, acetylated or 

otherwise-modified low-density lipoproteins (LDL)8,11. Lipoprotein uptake is facilitated 

through a step-wise process: receptor-mediated uptake, lysosomal processing, esterification, 

and storage in droplets4, all of which if dysregulated or saturated, could contribute to 

excess lipid accumulation in macrophages. Mechanisms to combat excess accumulation 

include lipolysis and subsequent cholesterol efflux from the cell, primarily mediated 

through the ATP-binding cassette (ABC) transporters ABCA1 and ABCG13,12,13. When 

intracellular cholesterol levels accumulate beyond the cellular capacity for handling and 

efflux mechanisms become overwhelmed, free cholesterol is esterified to form cholesterol 

esters (CE) which are stored as lipid droplets in the cytoplasm4,11. Excess CE/lipid 

accumulation results in the formation of lipid droplets and transforms the macrophage 

into a foam cell4. These processes can be summarized by consideration of four basic 

mechanisms that, when aberrant, can lead to lipid accumulation: acquisition, storage, export, 

and metabolism. Critically, intracellular metabolism can operate as a regulator of these 

processes14. Major proteins involved in each of these four mechanisms are summarized in 

Figure 1.

Pulmonary macrophages, in particular resident alveolar macrophages, exist in a lipid-rich 

environment due to the presence of lung surfactants15–17. These cells are critical to 

maintaining lung lipid homeostasis by constantly removing oxidized and damaged lipids, 

such that surfactant functions normally. The high partial pressure of oxygen in the lung 

and high lipid content favors lipid peroxidation and ROS generation; this leads to a 

disproportionate quantity of modified and damaged LDL. Lung injury has the potential 

to increase the quantity of lipids, especially damaged lipids, within the lung lining, which 

increases the load on macrophages to clear these species18–20. Both excessive lipid storage, 

uptake of oxidized lipids, and free cholesterol can result in apoptosis of macrophages, 

adding to the burden on the remaining phagocytic cells in the environment. Excessive 

oxidation and cell death contributes to injury through the release of cytotoxic mediators such 

as damage associated molecular-patterns (DAMPs), including heat shock protein 7221 and 

high mobility group box 1 protein (HMGB1)22, which upregulate downstream inflammatory 

pathways such as NF-κB, stimulate the production of reactive oxygen and nitrogen species 

(RONS), and recruit inflammatory cells11,23. Both oxidized lipids and free cholesterol can 

initiate the pro-inflammatory signaling cascade, however, macrophages can also esterify 

cholesterol, which can transform the cell into a lipid-laden macrophage and potentiate 

persistence and pro-fibrotic signaling24. In the following section, we will describe the 
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mechanisms by which macrophages handle lipids and how dysregulation of these processes 

contributes to lipid-laden macrophage formation, lung injury, and inflammation.

3.0 Cellular processes governing lipid accumulation and function of 

pulmonary macrophages.

3.1 Acquisition of Lipids

The physicochemical properties of lipids, which are determined by their composition and 

size, determine the ability of receptors to bind and transport them into the cell. Indeed, 

whether a particular class of lipid is taken up by scavenger receptors or endocytosed is 

dependent on these properties25–27. Anionic lipids are taken up more efficiently than their 

neutral counterparts28–30, with larger diameter also increasing uptake by macrophages31. 

The lipids of the lung lining, including phosphatidylserine, phosphatidylglycerol, and 

phosphatidylcholine, are negatively charged, making them prone to uptake by alveolar 

macrophages32–34. Thus, one can see that the environment surrounding the alveolar 

macrophage will bias these cells towards lipid uptake and accumulation under physiological 

conditions. However, modified lipid species that may rapidly increase in the context of 

injury, such as oxidized cholesterol products like 7-ketocholesterol and hydroxycholesterol, 

common oxysterols,35–37 have been shown to influence macrophage signaling and 

apoptosis. High concentrations of oxysterols affect cholesterol homeostasis and induce 

cytotoxicity37,38, contributing to injury and inflammation in the lung through activation 

of pro-inflammatory signaling pathways, such as NF-κB39. This indicates that while lipid 

uptake and incorporation of lipid species into comparatively more inert intracellular lipid 

droplets promote cell survival and prolonged signaling, lack of sufficient lipid droplet 

formation leads to cell death and inflammatory signaling.

3.1.1 Receptor-Mediated Lipid Uptake—The scavenger receptor family of cell 

surface proteins are inherently vital to macrophage function recognizing a wide range of 

motifs that include lipids40. As opposed to the classical and singular uptake pathway of 

LDL by the LDLR41, modified sterols, such as oxidized LDL (oxLDL) and acetylated LDL, 

are taken up through a variety of scavenger receptors, which can recognize both native 

and modified lipids14,40,42. Receptors known to regulate lipid uptake include Scavenger 

receptor A (SR-A) I/II43,44, cluster of differentiation 36 (CD36)44–46, scavenger receptor B 

(SR-B) I44,47, cluster of differentiation factor 68 (CD68)47, chemokine (C-X-C motif) ligand 

16 (CXCL16)47, lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1)48,49, and 

cleavage factor polyribonucleotide kinase subunit 1 (CL-P1)47. All of these receptors have 

been reported to bind oxidized sterols, with the majority of oxLDL internalization attributed 

to SR-A and CD3650,51. Uptake through receptors aside from LDLR may circumvent 

negative feedback signaling via sterol regulatory element binding protein-2 (SREBP-2)52, 

leading to excess LDL accumulation and increased cholesterol efflux. As such, macrophage 

scavenger receptor expression significantly contributes to the lipid-laden phenotype.

CD36 is widely expressed on macrophages and binds various modified or native proteins 

with a particular affinity for oxLDL45,46. It has been found to account for most of 

the CE accumulation in macrophages exposed to oxLDL46, implicating this receptor as 

Stevenson et al. Page 3

Int Immunopharmacol. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



one of particular interest in lipid-laden macrophage formation. Further, CD36 expression 

is not downregulated by the presence of intracellular cholesterol,53 and thus lack of 

feedback regulation may point to this mechanism as a significant contributor to lipid-laden 

macrophage formation. Upregulation of CD36 has been found to be mediated through 

PPAR-γ activation in the presence of oxLDL, increasing its expression through a positive 

feedback loop54,55. Increased expression of uptake transporters without a concomitant 

increase in efflux of lipid-associated material can contribute to the development of a lipid-

laden phenotype in macrophages.

3.2 Lipid Synthesis

The endomembrane, comprised of the endoplasmic reticulum (ER) and the Golgi apparatus, 

constitutes the primary site of lipid synthesis in the cell56 and produces high levels of 

phospholipids57,58. The ER is directly affected by cellular stress, as can occur during 

lung injury, and this can impact lipid accumulation. Intracellular accumulation of free 

cholesterol initiates the ER stress response in macrophages59,60, impacting a host of cellular 

mechanisms, including direct modification of lipid synthesis. Furthermore, macrophage 

functional responses are critically tied to lipid homeostasis, as the fundamental phagocytic 

response of macrophages requires an increase in membrane lipid production to repair cell 

damage and to envelop foreign matter for phagocytosis61,62. Below we will discuss several 

factors involved in lipid synthesis and its regulation.

3.2.1 Fatty Acid Synthase and Acetyl CoA Carboxylase—In the cytoplasm, 

Acetyl CoA Carboxylase 1 (ACC1) converts acetyl-CoA to malonyl-CoA, and in the ER, 

fatty acid synthase (FAS converts acetyl-CoA and malonate to malonyl-CoA63. In addition, 

the acyltransferase family of enzymes is involved in the de novo synthesis of membrane 

lipids. However, more commonly they mediate the modification of acyl chains to generate 

different classes of lipids56,64,65. Enzymes located in the mitochondria and peroxisomes also 

play a role in overall lipogenesis in the cell; however, the ER/Golgi and acyltransferases 

remain the primary drivers.

Cytosolic ACC1 regulates de novo FAS-mediated FA synthesis. However, in contrast to 

other reports of FAS-mediated lipid signaling, the ACC1-FAS pathway of lipogenesis is 

not critical to the macrophage mediated innate immune defenses against Mycobacterium 
tuberculosis infection66. Furthermore, regulation of innate immunity through lipid-mediated 

mechanisms may be pathogen or toxicant-specific, which is consistent with the idea that 

lipid content can alter chemokine response14. Within resident liver macrophages, inhibition 

of ACCs using a phosphorylation mimic results in a switch from pro-inflammatory to 

anti-inflammatory phenotype67. This suggests that the inhibition of lipogenesis may be 

associated with pro-inflammatory signaling.

3.2.2 SREBP Signaling—Sterol regulatory element binding proteins (SREBPs) 

SREBP1 and 2 are critical transcription factors for fatty acid and sterol biosynthesis68–70. 

SREBP-1a is abundantly expressed in macrophages and has been established as one 

link between lipid homeostasis and innate immune response62,71,72. SREBP1 accumulates 

upon acute proand anti-inflammatory activation of macrophages, and the absence of the 
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protein is associated with decreased fatty acid synthesis62,73. For example, SREBP1 is 

transcriptionally regulated by the pro-inflammatory Toll-like receptor 4 (TLR-4)-nuclear 

factor kappa B (NF-κB) pathway in macrophages14,74. During lung injury, saturated 

fatty acid levels increase and act as endogenous TLR-4 ligands to activate SREBP1 

expression and subsequent lipogenesis75,76. Increased lipogenesis within macrophages 

is permissive of inflammatory activation. However, IL-4 stimulation leads to increased 

AKT phosphorylation, STAT6 signaling, and SREBP1-mediated upregulation of fatty acid 

synthesis77, which leads to alternative activation14. In this regard, SREBP1 enhancement 

is required for alternative macrophage activation, whereas SREBP2, is not required. Thus, 

it is possible that SREBP1 potentiation during inflammation may contribute to eventual 

lipid-laden macrophage formation.

3.2.3 Mechanistic/mammalian target of rapamycin (mTOR)—mTOR complex 1 

(mTORC1) is involved in lipid metabolism, proliferation, and growth, as its activation 

occurs in times of nutrient abundance and the absence of cellular stress78. The main 

regulatory element of mTORC1 is mTOR itself. mTOR activates SREBP1, and via 

mTORC1 controls the expression of binding proteins to promote lipogenesis and storage. 

Its inhibition has been shown to increase LDL levels in the circulation by diminishing 

cholesterol clearance68. Furthermore, a loss of mTORC function reduces macrophage 

mediated scavenging of LDL and increases efflux, which results in a decrease in lipid 

storage systemically69,79. The importance of mTOR activation within lung macrophages 

appears to be important in metabolic shifts required for activation and signaling in cancer 

models73,80,81, both of which are critical to metabolic functions in lipid-laden macrophages. 

Despite the clear capacity of mTOR to play a role in lipid regulation, its importance in 

lipid-laden macrophage formation within the lung has not been delineated. This may be 

critical within resident alveolar macrophages, which exist in a lipid rich environment and 

thus can be considered to be in a state of nutrient abundance.

4.0 Lipid export in macrophages

4.1 Lysosomal Processing for Export

Prior to export, lipids are processed in lysosome-related organelles known as lamellar 

bodies. Lipids are broken down in the acidic interior compartment, which contains acid 

phosphatase, cathepsin C, and cathepsin H82,83. Lipolysis transforms lipids into free 

cholesterol and fatty acids through the action of lysosomal acid lipase84. Free fatty acids 

can then feed into the FAO metabolic pathway and subsequent mitochondrial metabolism 

or be incorporated as triglycerides into lipid droplets for storage within the cell. In contrast, 

released free cholesterol must be effluxed and chaperoned by lipoproteins, such as high-

density lipoprotein or APOA185 or esterified in the cell to avoid pro-inflammatory signaling, 

cytotoxicity, and cell death85,86 (Figure 2).

4.2 Transporter-mediated efflux

ABC Transporters A1 and G1 are the predominant cholesterol efflux transporters in 

macrophages, known to promote the flow of intracellular stores to extracellular carriers 

such as ApoA-1 or HDL87. The expression of these transporters is controlled by the 
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PPAR-γ/LXR axis88,89. Activation of PPAR-γ in macrophages has been shown to stimulate 

ABCA1 and ABCG1-dependent efflux88,90. Antagonists to these transporters promote lipid-

laden cell formation, while activators of the PPAR-γ/LXR pathways upregulate efflux, 

potentially limiting the formation of lipid-laden cells.

These processes can be opposed by other signaling mechanisms that maintain lipid 

homeostasis in the cell. For example, the nuclear transcription factor LXR is crucial for lipid 

homeostatic signaling in macrophages91,92. Oxysterols ingested by macrophages during 

phagocytosis lead to increased cholesterol and oxysterol loading, inducing LXR signaling 

and increased transcription of ABCA1, ABCG191 and the inducible degrader of the LDL 

receptor (IDOL)93. Transcription of these genes oppose lipid accumulation by increasing 

cholesterol efflux mechanisms and degradation of the LDLR through ubiquitin-mediated 

mechanisms. Although the relevance of the LDLR pathway within the lung lining is 

unknown.

4.3 Mechanisms contributing to decreased lipid export.

As the major efflux transporters, the ABC proteins function to promote cholesterol export 

and mitigate lipid accumulation in the cell87. Therefore, dysfunction or reduced expression 

of these transporters can promote lipid accumulation in macrophages. Other factors 

contributing to reduced cholesterol efflux include depletion of cholesterol carrier proteins94, 

such as apolipoprotein A-195, but it is unclear if this mechanism is of consequence in the 

lung.

Gene silencing by non-coding RNAs has been implicated in lipid homeostasis. miR-33 

has been observed to decrease ABCA1 expression while knockdown of miR-33 increases 

reverse cholesterol transport in macrophage foam cells96. miR-33 targets the 3’- untranslated 

region of many genes involved in cholesterol homeostasis, including ABCA197–99. The 

miRNA suppression of ABCA1 and other cholesterol efflux transports could contribute to 

increases in macrophage lipid accumulation.

5.0 Lipid Metabolism in Macrophages

5.1 Lipid Recycling by Macrophages

Within the lung, macrophages are continuously exposed to a lipid-rich environment, 

regardless of injury. They play a significant role in surfactant homeostasis by recycling 

the lipid. Pulmonary surfactant is comprised of primarily phospholipids and neutral lipids, 

the most common of the latter being cholesterol17,100. Alveolar type II (AT2) and Clara 

cells are also highly involved in lipid metabolism, producing lipids critical to surface 

active function101. If not recycled by AT2 cells, surfactant is degraded by alveolar 

macrophages16,101. Alveolar macrophages are thus needed to clear lipids even under normal 

physiological conditions.

5.2 Fatty acid oxidation (FAO)

Fatty acids in the cytosol are enzymatically converted to fatty acid acyl-CoA. Further 

downstream oxidation and energy release occurs within the mitochondria. Carnitine 
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conjugation and transport via carnitine palmitoyl transferase 1 (CPT1) facilitates the 

movement of the fatty acid acyl-CoA into the mitochondria, where carnitine is removed 

by carnitine palmitoyl transferase 2 (CPT2)102. Oxidation of these molecules yields the 

reducing equivalents NADH and FADH2 as well as acetyl-CoA, which is used to generate 

energy throughout the citric acid cycle and the electron transport chain. ACC2, which is 

located in the mitochondrial membrane, regulates FAO by controlling fatty acid uptake to 

the mitochondria via CPT1103.

Reliance on FAO is associated with enhanced cellular lifespan and limits lipid and fatty 

acid accumulation in macrophages102. In contrast, in vivo work has shown that constitutive 

activation of the transferase responsible for long-chain fatty acid import to the mitochondria, 

CPT1, reduces lipid accumulation in the cell105. Furthermore, FAO is induced by STAT6 

and PPAR-γ-co-activator 1β84,106 which are anti-inflammatory mediators, and CPT2 

deletion was shown to impair FAO105,107, oxidative phosphorylation and anti-inflammatory 

activation. Collectively, these data indicate a critical role for FAO in regulating lipid 

accumulation and macrophage phenotype. Products of lipid metabolism, such as free 

fatty acids, triglycerides, diacylglycerides, and ceramides, as well as oxidized lipids, 

influence pro-inflammatory signaling23. High concentrations of oxysterols affect cholesterol 

homeostasis and can induce cytotoxicity37,38, contributing to injury and inflammation in the 

lung.

6.0 Lipid Storage in Macrophages

6.1 Lipid droplet formation

Triglycerides and cholesterol esters are the primary components of lipid droplets, 

encapsulated by a phospholipid membrane, and thus the accumulation of all of these 

components is critical to lipid droplet formation108. Esterification is a critical step 

in mitigating free cholesterol-induced cytotoxicity. The Acyl-coenzyme A cholesterol 

acyltransferase/sterol O acyl transferase (ACAT/Soat) subset of enzymes catalyzes 

cholesterol esterification in macrophages, with two primary isoforms identified as ACAT-1/

Soat1 and ACAT-2/Soat2109–111. ACAT-2/Soat2 is localized to hepatocytes and the intestine, 

whereas ACAT-1/Soat1 is expressed primarily in macrophages and is the principal 

mechanism in lipid droplet formation in this cell type65,112,113. ACAT-1/Soat1 converts 

cholesterol and oleoyl coenzyme A to esterified cholesterol with coenzyme A as a by-

product, contributing to lipid droplet formation109–111. The cholesterol esterification rate can 

be modified via extracellular signaling, as ACAT-1/Soat1 expression can be induced through 

the leptin-JAK/PI3K pathway114 and the insulin-Erk/JNK pathway115,116. Esterification of 

cholesterol by ACAT-1/Soat1 is opposed by the action of neutral cholesterol ester hydrolase 

(nCEH), which releases free cholesterol for export from the cell117.

6.1.1. Triglycerides in lipid droplet formation and turnover—In addition to 

esterified products, triglycerides can form the core of intracellular lipid droplets. ER-

associated transferase enzymes acyl-CoA:diacylglycerol acyl transferase-1 (DGAT-1) and 

acylCoA:diacylglycerol acyl transferase-2 (DGAT-2) participate in triglyceride synthesis 

from diacylglycerol and acyl-CoA derived from FAs118. Conversely, triglycerides are 
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liberated back to diacylglycerol and acyl-CoA through various lipases found in the 

cytoplasm119. Triglycerides may also be broken down within macrophages through lipase 

activity in the autophagosome120. Thus, the dynamic balance between triglyceride formation 

and breakdown is a key regulator of lipid droplet formation in macrophages.

6.2 Lipid droplet signaling

Lipid droplets, comprised of the neutral lipids triacylglycerol and CE108,121, have enzymes 

localized on their surface that regulate various pathways such as triacylglycerol synthesis 

and rates of their own accumulation and degradation122,123. Because lipid droplets store 

many different lipid types, their release can result in them directly acting as or being 

converted to signaling molecules121,122. The breakdown of triacylglycerol and CE results 

in free fatty acid formation, which can bind many cell surface and intracellular receptors 

that are stimulators of inflammatory signaling122,124–126. Notably, free fatty acids are able 

to bind and activate intra- or extracellular G-protein coupled receptors (GCPRs), toll-like 

receptors (TLRs), PPARs, and NF-κB, all of which are highly involved in macrophage 

regulation, signaling, and phenotype, potentially contributing to the pathophysiological 

conditions present in the lung during injury122,124–126.

Additionally, lipid droplet formation may also impact cell signaling by removing substrates 

necessary for bioactive, pro-inflammatory lipid signaling. By acting as a repository for fatty 

acids, cholesterol, and other species, lipid droplet formation reduces the capacity for the 

formation of lipid peroxidation, preventing pro-inflammatory signaling122,127. Though this 

may help to prevent or lessen oxidative damage in the lung, the excessive accumulation 

of lipids within macrophages will alter lipid droplet metabolism and the function of lipid 

droplet-associated proteins122,128. As such, it is proposed that accumulation of lipid droplets 

in macrophages bias the cell towards reliance on FAO and oxidative phosphorylation 

rather than glycolysis. This has the potential to negatively affect macrophage function, 

as macrophages will persist, taking on a pro-resolution phenotype rather than undergoing 

homeostatic turnover and cell death which could lead to long-term signaling effects such 

as fibrosis. Similar dysfunction has been observed in dendritic cells, where lipid droplets 

prevent proper antigen presentation and chaperone-mediated autophagy128–131, drastically 

altering cell function through fundamental metabolic mechanisms.

7.0 Conclusions

As reviewed here, lipid-laden macrophage formation has been observed in a variety of 

pathophysiologies, such as atherosclerosis, but knowledge is lacking as to their role in lung 

pathology. Recently, there has been considerable interest in the pulmonary macrophage and 

its heterogeneous roles in lung injury1. In this review, we have focused on the mechanisms 

that can lead to the formation of lipid-laden macrophages, or “foam cells”, as these cells 

seem to have their own unique roles. It appears that these cells may limit acute activation 

and bias the injury response to repair, as well as significantly altering phagocytosis and 

surfactant recycling1. When considering lipid-laden macrophage formation, there are four 

main processes to consider: lipid import, metabolism, storage, and export. The balance 

between these processes is critical to maintaining normal macrophage function under 
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homeostatic conditions. However, these four processes are influenced and altered by 

signaling, genetic factors, and – vital in the case of injury – the tissue microenvironment132. 

These processes and their regulation are summarized in Figure 2. In this way the formation 

of a lipid-laden macrophage can be considered as being dependent upon the balance between 

acquisition and synthesis with export and metabolism.

Distinct from other tissue environments in which foam cells have been characterized, 

the pulmonary environment is heavily lipid laden at normal physiological levels, as 

approximately 90% of the lung lining fluid is comprised of phospholipid133. In addition 

to their role in innate immunity, macrophages contribute significantly to the regulation of 

lung function and work of breathing through the catabolism of surfactant. With this role 

in the consistent turnover of lipid species, it is significant that pulmonary macrophages 

do not become inherently lipid laden under homeostatic conditions. It is proposed that the 

accumulation of lipid-laden macrophages in the lung is significant in lung pathophysiology, 

especially in the context of lung injury and inflammation. This phenotypic change may 

reduce the capacity of the lung to sufficiently resolve injury. The accumulation of lipids 

in macrophages has the potential to prolong the life of the cell134, likely due to the 

reliance on FAO and anti-inflammatory phenotypic switching. These cells may be persistent 

and contribute to chronic signaling, promoting the transition to fibrosis rather than injury 

resolution24. Increased cellular persistence, aberrant signaling, and maintenance of a pro-

fibrotic phenotype stand out as the most significant potential consequences of lipid-laden 

cell formation in the context of lung injury. Thus, limiting the formation of lipid-laden 

macrophages in lung pathologies may be an advantageous proposition from a translational 

standpoint. Though any of the four processes may be a feasible target for pharmacological 

development, we propose that targeting the excess lipid storage may be the most viable 

and least disruptive to normal macrophage processes. With a limited storage capacity, 

macrophages exposed to excess lipids would become susceptible to cell death via the 

cytotoxic effects of sterols84. Limiting excess lipid accumulation and restoring macrophage 

homeostasis in the context of injury may also have significant effects on the phenotypic 

differentiation of both resident and recruited cells.

The formation and persistence of lipid-laden macrophages in the lung have the capacity to 

impact the spectrum of inflammation and resolution in virtually all pulmonary pathologies. 

For example, the prevalence of lipid-laden macrophages may prime these cells towards the 

use of FAO due to substrate availability rather than glycolysis, which may ultimately impair 

macrophage function in various pathologies (Fig 3). More research is needed to assess how 

inhibition of lipid accumulation in the lung specifically may represent a pharmacological 

target in lung injury and disease. Additionally, there are many outstanding questions 

regarding the formation, prevalence, composition, and significance of this phenotype in 

experimental animal models and in human pulmonary insult and disease. It would be 

most pertinent to document the occurrence or lack of lipid-laden macrophages in lung 

pathologies, as well as interrogate the mechanism leading to their formation, as it may be 

that regulating key proteins in lipid and cholesterol handling are differential within and 

among lung pathologies.
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From the various gatekeepers of lipid-laden macrophages presented within, there are many 

potential therapeutic targets to prevent the formation of this cell phenotype in the lung. It 

is of note that many of these, such as limiting scavenger receptor expression and activity135 

have been explored in the context of other disease states like atherosclerosis. However, 

altering receptor uptake in pulmonary macrophages inherently blunts their phagocytic 

capacity, pointing to this strategy as ineffectual in this organ-specific context. Activation 

of the LXR signaling pathway leads to the inhibition of enzymes directly catalyzing lipid 

droplet storage such as the DGAT or ACAT enzymes. This may present as a logical target 

to inhibit lipid-laden cell formation, however, macrophage-specific targeting of LXR in the 

lung remains challenging. The use of mi-RNA knockdown, such as with the investigation of 

miR27 for the prevention of atherosclerosis136 may eventually useful. Ultimately, there are 

inherent risks in immunomodulation as well as in the practical application of the strategies, 

limiting the discussion of viable therapeutic targets at this time. More detailed research 

into the formation of pulmonary-specific lipid-laden macrophages is necessary to understand 

their role in lung pathologies.
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Highlights

• Lipid-laden macrophages are observed in the lung in vivo following 

pulmonary injury, and this phenotype may significantly contribute to 

pulmonary pathologies.

• This phenotype is proposed to form due to the imbalance between lipid 

acquisition, metabolism, storage, and export.

• The complex interplay between metabolism and storage of lipids are 

discussed as they pertain to disease progression.

• Herein, we discuss critical regulators and signaling pathways that may play a 

role in the formation of lipid-laden macrophages in the lung.

• The consequences of lipid-laden macrophage formation within the context of 

pulmonary inflammation are considered.
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Figure 1. 
Balance between lipid acquisition, export, metabolism, and storage in pulmonary 

macrophages are the primary processes that prevent the development of a lipid-laden 

phenotype. Dysregulation or imbalance of these processes leading to the excess storage 

of lipid are the most significant when considering the development of this cell phenotype 

and potential therapeutic intervention in the lung.
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Figure 2. Cellular processes governing lipid accumulation in alveolar macrophages.
Macrophages acquire lipids and cholesterol through a variety of receptors including SR-

A, LOX-1, LDLR and CD36. These cells also acquire lipid through de novo fatty acid 

synthesis. FACS conjugates free Co-A to the molecule, allowing for the conversion of the 

fatty acyl CoA to acyl carnitine, which can then be transported across the mitochondria 

membrane by CAT. CPT2 converts acyl carnitine back to fatty acyl CoA which can then be 

oxidized and feed into the CAC. NADH, FADH2, and GTP produced from glycolysis/CAC 

are oxidized and the resulting electrons flow through the complexes of the electron 

transport chain, creating a protein gradient that drives ATP synthase to produce usable 

energy for the cell in the form of ATP. Upregulated storage of lipids in the macrophage 

drive sterol-sensitive signaling pathways, some of which oppose lipid accumulation. LXR 

signaling induces the transcription of cholesterol efflux transporters like ABCG1 and 

ABCA1 to promote lipid homeostasis within the cell, similar to PPARα-mediated reduction 

in triglyceride levels. PPARγ signaling increases glucose metabolism and upregulates 

the expression of CD36, promoting the uptake of lipids in the macrophage and, along 

with STAT6, also induces FAO. Contributing to increased substrate availability for FAO, 

NFκB controls the transcription of pro-inflammatory genes and contributes to macrophage 

signaling, including activation of SREBP1 which promotes lipogenesis, a process also 

controlled by mTOR signaling. Importantly, the cell must also have mechanisms to store 

lipid to be oxidized at a later time for energy and to counteract free cholesterol-induced 

cytotoxicity, thus storage of these molecules is vitally important. Free cholesterol is 

esterified by ACAT-1, forming CE, the critical reaction leading to lipid droplet formation 
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in the macrophage. This action is opposed by nCEH which releases free cholesterol for 

export for loading onto various apolipoprotein carriers.
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Figure 3. 
Persistence of lipid laden macrophages in the lung may lead to dampened inflammation 

and fibrotic change. Due to excess lipid accumulation in macrophages of this phenotype, 

it is proposed that there is significant reliance on fatty acid oxidation (FAO) rather than 

glycolysis which is typical of an acute inflammatory response. Increased reliance on 

these processes is represented by red boxes. The downstream effects of these changes are 

proposed to bias towards chronic activation, which may ultimately lead to an inadequate 

inflammatory response upon stimulation, priming the lung for susceptibility to infection 

and persistent injury. Furthermore, this may impair the phagocytic capacity of the 

macrophage, leading to both ineffective inflammation and poor surfactant catabolism (pale 

blue box), further negatively impacting lung function. Persistence of this phenotype may 

also contribute to persistence of this traditionally “anti-inflammatory phenotype,” leading to 

pro-fibrotic signaling and collagen deposition in the lung (purple box), leading to fibrosis or 

other restrictive lung diseases.
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