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Abstract

Purpose: To demonstrate improvements in the precision of inverse probability-weighted 

estimators by use of auxiliary variables, i.e., determinants of the outcome that are independent 

of treatment, missingness or selection.

Methods: First with simulated data, and then with public data from the National Health and 

Nutrition Examination Survey (NHANES), we estimated the mean of a continuous outcome using 

inverse probability weights to account for informative missingness. We assessed gains in precision 

resulting from the inclusion of auxiliary variables in the model for the weights. We compared the 

performance of robust and nonparametric bootstrap variance estimators in this setting.

Results: We found that the inclusion of auxiliary variables reduced the empirical variance of 

inverse probability-weighted estimators. However, that reduction was not captured in standard 

errors computed using the robust variance estimator, which is widely used in weighted analyses 

due to the non-independence of weighted observations. In contrast, a nonparametric bootstrap 

estimator properly captured the precision gain.

Conclusions: Epidemiologists can leverage auxiliary data to improve the precision of weighted 

estimators by using bootstrap variance estimation, or a closed-form variance estimator that 

properly accounts for the estimation of the weights, in place of the standard robust variance 

estimator.
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Estimators that incorporate inverse probability weights (IPW) are a multi-tool for the 

epidemiologist’s toolbox, offering a unified approach to handling confounding, selection 

bias, and explicit missing data, as well as generalizing study results. First appearing in 

the survey sampling literature, [1] and building on propensity score methods introduced by 

Rosenbaum and Rubin (1983), [2] IPW methods have received a great deal of attention in 

the epidemiologic literature since the development of marginal structural models by Robins, 

Hernán and Brumback (2000) [3-8]. IPW are typically constructed as the inverse probability 

of inclusion in a given group (e.g., the treated group, observed group, or uncensored 

group) conditional on the set of variables needed to block all backdoor paths between 

group membership and the outcome of interest [2,9,10]. However, Brookhart et al. (2006) 

suggest that including additional variables that are unrelated to group membership, but 

related to the outcome, when constructing IPW “will increase the precision of the estimated 

exposure effect without increasing bias” [11]. Such “auxiliary” variables could be useful for 

improving the statistical efficiency of parameter estimates, and have indeed long been used 

to improve precision in analyses that use multiple imputation to handle missing data [12,13].

However, the use of auxiliary variables is rarely reported in analyses involving IPW. One 

reason for the underutilization of auxiliary variables may be widespread use of the standard 

“robust” variance estimator to account for the non-independence of weighted observations 

[4,14]. The robust variance is a conservative approximation of the true variance of a 

weighted estimator, and is easier to estimate because it does not require knowledge of how 

the weights were generated. For this same reason, however – because it ignores the errors 

in the model for the weights – it hides any efficiency gains that can be achieved by using 

auxiliary variables to construct IPW.

In a survey of 411 original investigations published in the American Journal of 
Epidemiology and Epidemiology between January 2019 and December 2020, we found 

that 8% (n = 33) accounted for some type of bias using IPW. Of those, 11 reported using 

the standard robust variance estimator, 8 used a bootstrap estimator, 2 used generalized 

estimating equations with an unstructured covariance matrix, 1 used the expectation-

maximization algorithm, and 11 used an unspecified variance estimator. None reported 

including auxiliary variables in the models used to estimate IPW.

Here, we demonstrate that precision can be gained by including auxiliary variables in IPW, 

but that such gains are lost by use of the standard robust variance estimator. This result has 

been demonstrated in the statistics literature in both observational and randomized settings, 

[15,16] but may be unfamiliar to epidemiologists. By drawing awareness to it, we aim to 

illustrate how epidemiologists can reduce uncertainty around estimates from epidemiologic 

studies through the use of auxiliary data, ultimately leading to better-informed clinical and 

public health decisions.

We demonstrate the inclusion of auxiliary variables in weighted analyses first using 

simulated data, and then using public data from the National Health and Nutrition 

Examination Survey (NHANES). In both cases, we consider a simple scenario in which 

we estimate the mean of a continuous outcome in a setting where a portion of outcomes are 

missing. We use IPW, constructed both with and without an auxiliary variable, to account for 
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missing data. To assess gains in precision resulting from inclusion of the auxiliary variable, 

we apply the standard robust variance estimator and a nonparametric bootstrap variance 

estimator, and compare the estimated standard errors (SEs).

Methods

Simulation study

The aim of our simulation study was to compare the efficiency and confidence interval 

coverage of IPW estimators constructed with and without an auxiliary variable.

Data generation

We simulated data according to the causal diagram depicted in Fig. 1 (Panel A). We 

generated continuous variable Y  as normal conditional on covariate X and auxiliary variable 

V . X and V  were generated as independent standard normal variables, associated with Y
by the equation Y = 1 + X + 3V + ϵ, where ϵ was a standard normal random error term. We 

generated an indicator that Y  was missing, M = 1, as a Bernoulli random variable with mean 

p = 1 ∕ (1 + e−log(2)X). Thus, in the simulated data, about half of records were missing Y , and 

Y  was missing at random conditional on X. V  was strongly associated with Y  (explaining 

82% of the variance of Y ), but was not associated with M except through Y .

For the sake of illustration, we simulated datasets of size 200 to obtain relatively large SEs. 

We simulated 2,000 datasets to obtain estimates of confidence interval coverage that are 

reliably within plus or minus 1 percentage point of 95% [17].

Statistical analysis

In each simulated dataset, we fit an intercept-only model to the full data, regardless of 

the value of M. We expect this correct linear model, fit to the full data, to yield unbiased 

estimates with maximum precision, given the data and model. We use the estimates from 

this “full data analysis” as a benchmark for our simulation study. However, because such 

an analysis would be impossible to conduct in a real dataset where a portion of outcomes 

are missing, we also conducted a “complete case” analysis in each simulated dataset, fitting 

an intercept-only linear model to the observed data (i.e., where M = 0). In the complete 

case analysis, we expect biased estimates of the mean of Y (E(Y ) because Y  is not missing 

completely at random (MCAR) [18]. That is, because X is a cause of both Y  and M, the 

mean of Y  in the subset of observations with M = 0 will not equal the mean of Y  in the 

full data with M = {0, 1}. As depicted in Fig. 1 (Panel B), conditioning on M = 0 opens the 

backdoor path between M and Y  through X.

Next, to obtain unbiased estimates of E(Y ) in the presence of missing data that are not 

MCAR, we used IPW [7,19]. IPW account for the bias induced by informative missing data 

by upweighting observations with non-missing Y  to represent observations with missing Y
that share similar values of X. This procedure removes the association between X and M in 

the weighted pseudo-population, thereby blocking the open backdoor path between M and Y
through X, as depicted in Fig. 1 (Panel C). First, we ignored the auxiliary variable V  and fit 
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a standard IPW model in which each observation was weighted by the inverse probability of 

being a complete case conditional only on X: 1
p(M = 0 ∣ X) . Second, we included the auxiliary 

variable V  in the IPW, fitting a model in which each observation was weighted by the inverse 

probability of being a complete case conditional on X and V : 1
p(M = 0 ∣ X, V ) .

We constructed 95% confidence intervals around our estimates of E(Y ), using standard 

closed-form estimators of the variance to obtain SEs. Specifically, for the full data and 

complete case analyses, we used the “naïve” model-based variance estimator; for IPW 

analyses, we used the robust (i.e., Huber-White) variance estimator [14]. In addition to 

the standard closed-form estimators, we also estimated the variance using a nonparametric 

bootstrap procedure [20]. From each of the 2,000 simulated datasets, we resampled the 200 

observations with replacement 1,000 times, and fit all models in each resample to obtain 

estimates of E(Y ). For each model, we used the standard deviation of the 1,000 estimates as 

an estimate of the SE of E(Y ) to calculate a Wald-type 95% CI. Finally, for each estimation 

approach, we calculated the empirical coverage of 95% CIs for E(Y ).

Applied example

The aim of our applied example was to illustrate how auxiliary data can be used to improve 

the precision of epidemiologic estimates. We chose a widely used, publicly available dataset: 

the National Health and Nutrition Examination Survey (NHANES). We sought to estimate 

average exposure to acrylamide, a carcinogenic chemical found in heat-processed foods, 

cigarette smoke, and industrial products, among adult study participants from 2003-2016 

[21]. This time frame was selected to include all NHANES survey waves that measured 

acrylamide concentration: 2003-2004, 2005-2006, 2013-2014, and 2015-2016.

We considered three auxiliary variables in our analysis: current smoking status, sex, and age. 

Acrylamide concentration is 3 to 4 times higher in smokers than in non-smokers, [22] and is 

higher among males and adults aged 20-59 compared with adults older than 59, possibly due 

to occupational exposure [23]. In the 2013-2016 waves of NHANES, acrylamide was only 

measured in a randomly selected subset of participants, so data on acrylamide concentration 

were missing at random by design, and our selected auxiliary variables were not associated 

with missingness.

Participants and measures

Acrylamide concentration (pmoL/G Hb) was measured in all participants aged 3 and older 

from 2003-2006, and in a one-third random sample of participants aged 6 and older from 

2013-2016. Smoking data were collected from all participants aged 20 and older from 

2003-2004 and from all participants aged 12 and older from 2005-2006 and 2013-2016. To 

simplify our example, we restricted our target population to NHANES participants aged 20 

or older, and excluded participants with missing data on current smoking status (n=26), for a 

final analytic sample size of 21,482.
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Statistical analysis

We repeated the complete case, standard IPW, and auxiliary-variable IPW analyses 

described above using the data from NHANES. Because acrylamide concentration was 

missing completely at random conditional on survey wave, we included survey wave as 

an indicator variable in the model for the standard IPW. We additionally included current 

smoking status, male sex, and age >59 as indicator variables in the model for the auxiliary-

variable IPW. For simplicity, we ignored the complex survey design and sampling weights; 

we return to this issue in the Discussion.

All analyses were performed using SAS 9.4 (SAS Institute, Cary, NC). Code to generate the 

simulated data and conduct the analyses is provided in the Appendix.

Results

In our simulated data, the mean of Y  was 1.0 (Table 1). Accordingly, in the “full data” 

analysis, our estimates of E(Y ) had a mean of 1.0. The estimated SEs were distributed 

around mean 0.2, matching the standard deviation of the E(Y ) across simulated datasets (i.e., 

the empirical SE). As expected, the “complete case” analysis yielded biased estimates of 

the mean of Y , with an average estimate of 0.68. We recovered unbiased estimates when 

we estimated E(Y ) using standard IPW conditional on X. These estimates were, however, 

slightly less precise than those from the complete case analysis, with an empirical SE of 

0.36 in the standard IPW analysis compared to 0.34 in the complete case analysis. When 

using IPW conditional on X alone, the average robust and bootstrap estimates of the SE 

were similar to the empirical SE. Adding the auxiliary variable V  to the IPW resulted in 

similarly unbiased estimates of E(Y ). Moreover, upon including V  in the IPW, the empirical 

SE and the average bootstrap SE were each reduced by more than 20%. However, the robust 

SE did not shrink with the addition of V  to the IPW. When V  was included in the IPW, the 

coverage of 95% CIs was conservative when constructed using the robust SE (0.99), and 

nominal when constructed using the bootstrap SE (0.95).

In the data from NHANES, 44% of eligible participants were missing data on acrylamide 

concentration. Missingness was associated with survey wave: 19% of eligible participants 

were missing data on acrylamide concentration from 2003-2004 compared with 10% from 

2005-2006, 71% from 2013-2014, and 70% from 2015-2016. Among complete cases, 

estimated average acrylamide concentration was upwardly biased due to a decrease in 

average acrylamide concentration over time and the higher proportion of participants 

missing data on acrylamide concentration in later waves (Table 2). Using IPW to correct 

for informative missingness, we estimated that average acrylamide concentration was 68.9 

pmoL/G Hb (95% CI: 67.6, 70.2). When we included smoking status, sex, and age as 

auxiliary variables in the weights model, the bootstrap estimate of the SE decreased by 7%, 

from 0.68 to 0.63. This resulted in a slightly narrower estimated confidence interval around 

the estimate obtained using auxiliary-variable IPW compared with standard IPW. However, 

the robust standard error did not reflect the efficiency gain from including auxiliary variables 

in the IPW.
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Discussion

In both our simulation study and our applied example, the standard robust variance estimator 

did not capture the improvement in precision achieved by adding auxiliary variables to an 

inverse probability-weighted model for the mean of a continuous outcome. In contrast, 

bootstrap variance estimation did capture the efficiency gain from including auxiliary 

variables in the IPW. This finding suggests that investigators wishing to improve the 

precision of their estimates can include auxiliary variables when estimating IPW. However, 

they should use alternative variance estimation methods, such as the nonparametric 

bootstrap, or a closed-form variance estimator that properly accounts for the estimation 

of the weights, [24] in place of the widely used robust variance estimator.

Our results are consistent with a prior simulation study by Williamson et al. (2012) [15]. 

Yet, a decade after the publication of their study in Statistics in Medicine, their findings 

remain under-appreciated by epidemiologists. We hope that our simple simulation study 

and applied example will help to amplify and translate their findings into practice. Below, 

we provide some intuition as to why auxiliary variables can improve the precision of 

weighted analyses, why the robust variance estimator hides those precision gains, and why 

the bootstrap variance estimator properly reflects them.

Because auxiliary variables are not causally associated with the exposure, selection, or 

missingness mechanism, including them in the model for the weights does not reduce bias 

due to confounding, selection, or missing data. However, including them in the weights 

model can improve the precision of estimates generated by the analysis model. Why? 

Even if auxiliary variables are not theoretically associated with the exposure, selection, or 

missingness mechanism in the target population, they are likely empirically associated in 

any given sample from that population [11]. That is, chance imbalances among variables 

in any given draw from the population create associations between the auxiliary variable 

and exposure, selection, or missingness, and accounting for those associations increases 

efficiency. The magnitude of the precision gains that can be achieved in practice depends on 

the strength of these chance associations, the relationship between the auxiliary variable and 

the outcome of interest, and the amount of confounding, selection, or missing data.

The standard robust SE is a simple sandwich SE, a conservative simplification of the 

proper (as in properly accounting for the estimation of the weights) sandwich SE [4,14]. 

Because the robust SE treats the weights as known rather than estimated, it ignores the 

random errors in the model for the weights, and thereby obviates any reduction in those 

errors that is achieved through the inclusion of auxiliary variables. Theory suggests that the 

bootstrap SE would be approximately equivalent to the proper sandwich SE [24]. However, 

perhaps because it is easier to implement, the robust SE appears to be more popular in the 

epidemiological literature than the bootstrap SE. Reticence to include auxiliary variables in 

IPW, when they are available, may be a consequence of widespread use of the robust SE, 

which, due to its conservative nature, hides any variance reduction that can be achieved by 

including auxiliary variables in IPW.
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Unlike the standard robust SE, the nonparametric bootstrap SE appropriately captures the 

reduction in random error achieved by adding auxiliary variables to the model for the IPW 

[15,16]. A related benefit of the bootstrap SE is that it tends to yield confidence intervals 

with correct coverage, whereas the robust SE tends to yield conservative confidence intervals 

(i.e., intervals with greater than 95% coverage), as seen in Table 1 [25]. While the robust 

SE is easily estimated in statistical software and may be appropriate for many weighted 

analyses, investigators should be aware that it does not incorporate variance reductions due 

to the inclusion of auxiliary variables in IPW.

Epidemiologists who rely on data sources like surveys and medical records often have 

access to auxiliary data that are not fundamental to their research question. Rather than 

simply discarding those data, investigators may wish to leverage characteristics that are 

associated with the outcome of interest but not with the exposure, selection, or missingness 

mechanism to improve the precision of their estimates, using the appropriate variance 

estimator. Maximizing the precision of epidemiologic estimates is an important goal 

because reducing uncertainty around answers to questions of public health importance leads 

to better-informed decisions. Methods to improve precision using data that are already 

available should be welcomed and widely adopted by epidemiologists as cost-effective 

alternatives to increasing a study’s sample size. An incremental increase in precision 

achieved through the use of auxiliary data may represent thousands of dollars saved when 

compared to the recruitment and testing of additional participants to achieve the same degree 

of precision.

While bootstrap variance estimation may be too computationally intensive for some practical 

applications, procedures that output the proper sandwich variance estimate are available 

in some software, such as PROC CAUSALTRT in SAS (demonstrated in the Appendix). 

It is worth noting that the inclusion of auxiliary variables in IPW may not be beneficial 

when the analysis must account for a complex survey design. This is because estimation of 

the weights occurs outside of the built-in variance estimators that are available in survey 

analysis packages. We demonstrate this result in the Appendix using the NHANES data and 

the bootstrap variance estimator available in SAS’s PROC SURVEYREG.

As the use of auxiliary variables becomes more widespread, their capacity to improve 

precision should be further explored in a broader range of settings, including in studies 

of rare outcomes, studies with small sample sizes, and other settings where it is difficult 

to obtain precise estimates. The estimation of exposure-outcome associations is another 

important setting in epidemiology, and one which may entail unique considerations for the 

selection of auxiliary variables, such as the inclusion of variables that are effect modifiers 

on the scale of interest, rather than simply predictors of the outcome, in the model for the 

weights.
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Appendix

  SAS Code to Simulate and Analyze Data

  *IPW for Missing Data with an Auxiliary

Variable;xs

  *Simulation Study;

  *Simulate data: M <- X -> Y <- V;

  data a;

  call streaminit(7);

  do j=1 to 2000;

  do i=1 to 200;

  v=rand("normal",0,1); *auxiliary variable;

  x=rand("normal",0,1); *covariate;

  y=1+1*x+3*v+rand("normal",0,1); *outcome;

  m=rand("bernoulli",1/(1+exp(−(0+log(2)*x))));

*indicator that outcome is missing;

  if m then y2=.; else y2=y;

  output;

  end;

  end;

  *Examine simulated data;

  proc means data=a maxdec=3 fw=8;

  title1 "IPW for Missing Data with an

Auxiliary Variable";

  title2 "Data"; run;

  *Draw bootstrap sample;

  proc surveyselect data=a out=boot

(drop=expectedhits numberhits samplingweight

rename=(replicate=k))

  seed=7 method=urs samprate=1 outhits

rep=200 noprint; strata j; run;

  *Append original dataset, setting k=0;

  data a; set a; k=0; run;

  data data.boot; set a boot; run;

  proc delete data=work.boot work.a; run;

  *For each of k bootstrap samples of n=200,

estimate E[Y];

  proc sort data=data.boot; by j k; run;

  ods exclude all; options nonotes; run;

  *Estimate IPMW;

Zalla et al. Page 8

Ann Epidemiol. Author manuscript; available in PMC 2023 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



  proc logistic data=data.boot; by j k; model

m=x; output out=data.ipw p=pi; run;

  data data.ipw (keep=j k i wt1); set data.ipw;

if m=0 then wt1=1/pi; else wt1=0; run;

  proc logistic data=data.boot noprint; by j k;

model m=x v; output out=data.ipwa p=pi; run;

  data data.ipwa (drop=_LEVEL_ pi); set

data.ipwa; if m=0 then wt2=1/pi; else wt2=0;

run;

  proc delete data=data.boot; run;

  proc sort data=data.ipw; by j k i; run; proc

sort data=data.ipwa; by j k i; run;

  data data.boot; merge data.ipw data.ipwa; by

j k i; run;

  proc delete data=data.ipw data.ipwa; run;

  *Full Data;

  proc genmod data=data.boot; model y=; by j

k;

  ods output parameterestimates=m1(keep=j k

parameter estimate stderr); run;

  data m1; length model $32.; set m1; if

parameter="Intercept" then do; model="Full

Data";

  b=estimate; se=stderr;

  lcl=b−1.96*se;

  ucl=b+1.96*se;

  if lcl<=1<=ucl then cover=1; else cover=0;

  output; end;

  keep model j k b se lcl ucl cover;

  run;

*Complete Case;

  proc genmod data=data.boot; model y2=; by j

k;

  ods output parameterestimates=m2(keep=j k

parameter estimate stderr); run;

  data m2; length model $32.; set m2; if

parameter="Intercept" then do; model="Complete

Case";

  b=estimate; se=stderr;

  lcl=b−1.96*se;

  ucl=b+1.96*se;

  if lcl<=1<=ucl then cover=1; else cover=0;

  output; end;

  keep model j k b se lcl ucl cover;
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  run;

  *Standard IPW, Robust SE;

  proc genmod data=data.boot; class i; model

y2=; weight wt1; by j k;

  repeated subject=i/type=ind;

  ods output geeemppest=m3(keep=j k parm

estimate stderr); run;

  data m3; length model $32.; set m3; if

parm="Intercept" then do; model="Standard IPW";

  b=estimate; se=stderr;

  lcl=b−1.96*se;

  ucl=b+1.96*se;

  if lcl<=1<=ucl then cover=1; else cover=0;

  output; end;

  keep model j k b se lcl ucl cover;

  run;

  *IPW with Auxiliary Variable, Robust SE;

  proc genmod data=data.boot; class i; model

y2=; weight wt2; by j k;

  repeated subject=i/type=ind;

  ods output geeemppest=m4(keep=j k parm

estimate stderr); run;

  data m4; length model $32.; set m4; if

parm="Intercept" then do; model="IPW with

Auxiliary Variable";

  b=estimate; se=stderr;

  lcl=b−1.96*se;

  ucl=b+1.96*se;

  if lcl<=1<=ucl then cover=1; else cover=0;

output; end;

  keep model j k b se lcl ucl cover;

  run;

  *IPW with Auxiliary Variable, Proper Sandwich

SE;

  proc causaltrt data=data.boot method=ipw;

  psmodel m=x v;

  model y= / dist=normal;

  by j k;

  ods output CausalEffects=m5;

  run;

  data m5; length model $32.; set m5;

  if Parameter="POM" and Level=0 then do;

model="PROC CAUSALTRT"; b=Estimate; se=stderr;

  lcl=LowerWaldCL;
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  ucl=UpperWaldCL;

  if lcl<1<ucl then cover=1; else cover=0;

output; end;

  keep model j k b se lcl ucl cover;

  run;

  *Stack estimates from all models;

  data m; set m1 m2 m3 m4 m5; run;

  proc delete data=work.m1 work.m2 work.m3

work.m4 work.m5; run;

  *Within jth simulated dataset, obtain BSE

(i.e. SD of E[Y]) across all k>0 bootstrap

samples;

  proc sort data=m; by model j; run;

  proc means data=m fw=8; by model j; where

k>0; var b; output out=bse; run;

  data bse; set bse; if _STAT_="STD" then

output; rename b=bse; drop _TYPE_ _FREQ_

_STAT_; run;

  *Merge BSEs with estimates of E[Y];

  data estimates; set m; where k=0; run;

  proc sort data=estimates; by model j; run;

proc sort data=bse; by model j; run;

  data boot_out; merge estimates bse; by model

j; run;

  *Calculate 95% CI and coverage using BSE;

  data boot_out; set boot_out;

  lcl_b=b−1.96*bse;

  ucl_b=b+1.96*bse;

  if lcl_b<=1<=ucl_b then cover_b=1; else

cover_b=0;

  run;

  ods exclude none;

  *Print summary of estimates;

  proc means data=boot_out n mean std stderr

maxdec=3 fw=8; where model="Full Data"; var b

se lcl ucl cover bse lcl_b ucl_b cover_b;

  title2 "Full Data (Bootstrap SE) Summary";

run;

  proc means data=boot_out n mean std stderr

maxdec=3 fw=8; where model="Complete Case";

var b se lcl ucl cover bse lcl_b ucl_b cover_b;

  title2 "Complete Case (Bootstrap SE)

Summary"; run;

  proc means data=boot_out n mean std stderr
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maxdec=3 fw=8; where model="Standard IPW"; var

b se lcl ucl cover bse lcl_b ucl_b cover_b;

  title2 "Standard IPW (Bootstrap SE) Summary";

run;

  proc means data=boot_out n mean std stderr

maxdec=3 fw=8; where model="IPW with Auxiliary

Variable"; var b se lcl ucl cover bse lcl_b

ucl_b cover_b;

  title2 "IPW with Auxiliary Variable

(Bootstrap SE) Summary"; run;

  proc means data=boot_out n mean std stderr

maxdec=3 fw=8; where model="PROC CAUSALTRT";

var b se lcl ucl cover bse lcl_b ucl_b cover_b;

  title2 "PROC CAUSALTRT (Bootstrap SE)

Summary"; run;

  *IPW for Missing Data with an Auxiliary

Variable;

  *Applied Example using Data from NHANES;

  *Estimate mean concentration of acrylamide,

a probable carcinogen found in industrial

products, cigarette smoke, and foods cooked at

high temperatures;

  *Acrylamide concentration was measured in all

participants ages 3+ in NHANES waves 2003-2004

and 2005-2006 and in a one-third random sample

ages 6+ in waves 2013-2014 and 2015-2016;

  *Read in data;

  %macro import(dataset=);

  libname &dataset. xport "&data.\&dataset..xpt";

  proc copy in=&dataset. out=data; run;

  proc contents data=data.&dataset.; run;

  proc sort data=data.&dataset.; by seqn; run;

  %mend;

  %import(dataset=DEMO_C);

  %import(dataset=DEMO_D);

  %import(dataset=DEMO_H);

  %import(dataset=DEMO_I);

  %import(dataset=L06AGE_C);

  %import(dataset=AMDGYD_D);

  %import(dataset=AMDGYD_H);

  %import(dataset=AMDGYD_I);

  %import(dataset=SMQ_C);

  %import(dataset=SMQ_D);

  %import(dataset=SMQ_H);
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  %import(dataset=SMQ_I);

  data nhanes0304; merge data.DEMO_C

data.L06AGE_C data.SMQ_C; by SEQN; run;

  data nhanes0506; merge data.DEMO_D

data.AMDGYD_D data.SMQ_D; by SEQN; run;

  data nhanes1314; merge data.DEMO_H

data.AMDGYD_H data.SMQ_H; by SEQN; run;

  data nhanes1516; merge data.DEMO_I

data.AMDGYD_I data.SMQ_I; by SEQN; run;

  data nhanes (keep=SEQN SDDSRVYR RIDSTATR

RIAGENDR RIDAGEYR SMQ040 LBD: LBX: WT: SDM: smkr

male over59 eligible svywt m);

  set nhanes0304 nhanes0506 nhanes1314

nhanes1516;

  *Indicator of current smoking status;

  if SMQ040 in(1,2) then smkr=1; else if

SMQ040=3 or SMQ020=2 then smkr=0;

  *Indicator of male sex;

  if RIAGENDR=1 then male=1; if RIAGENDR=2

then male=0;

  *Categorize age as 0-59 or >=60;

  if RIDAGEYR<60 then over59=0; if

RIDAGEYR>=60 then over59=1;

  *Indicator of missing acrylamide

concentration;

  if LBXACR=. then m=1; else m=0;

  *Use 1/3 random sample weights for waves

2013-2014 and 2015-2016;

  if WTSA2YR ne . then svywt=WTSA2YR; else

svywt=WTMEC2YR;

  *Restrict target population to ages 20+ since

smoking data only collected from individuals

aged 20+ from 2003-2004;

  *Exclude if missing smoking status;

  if RIDAGEYR>=20 and smkr ne . then

eligible=1; else eligible=0;

  run;

  proc contents data=nhanes; run;

  *Examine missing data on smoking status;

  proc freq data=nhanes; tables smkr; where

RIDAGEYR>=20; run;

  *Analytic sample size;

  proc freq data=nhanes; tables eligible; run;

  proc freq data=nhanes; tables
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eligible*SDDSRVYR / nopercent norow; run;

  ***Examine associations among variables;

  *Total n/% missing acrylamide concentration;

  proc means data=nhanes n nmiss; var LBXACR;

where eligible; run;

  *Missing acrylamide concentration is

associated with survey wave;

  proc sort data=nhanes; by SDDSRVYR; run;

  proc means data=nhanes n nmiss; var LBXACR;

by SDDSRVYR; where eligible; run;

  *Missing acrylamide concentration is not

associated with current smoking status,

age>=60, or male sex;

  proc freq data=nhanes; tables m*(smkr over59

male) / missing norow nopercent; where eligible;

run;

  *Mean acrylamide concentration is associated

with survey wave (higher concentrations in

earlier waves);

  proc sort data=nhanes; by SDDSRVYR; run;

  proc means data=nhanes n nmiss mean; var

LBXACR; where eligible; by SDDSRVYR; run;

  *Mean acrylamide concentration is strongly

associated with smoking status (higher

concentrations among smokers);

  proc sort data=nhanes; by smkr; run;

  proc means data=nhanes n nmiss mean; var

LBXACR; where eligible; by smkr; run;

  *Mean acrylamide concentration is associated

with age (higher concentrations among adults

under 60);

  proc sort data=nhanes; by over59; run;

  proc means data=nhanes n nmiss mean; var

LBXACR; where eligible; by over59; run;

  *Mean acrylamide concentration is associated

with sex (higher concentrations among males);

  proc sort data=nhanes; by male; run;

  proc means data=nhanes n nmiss mean; var

LBXACR; where eligible; by male; run;

  *Draw bootstrap sample;

  proc delete data=work.boot; run;

  proc surveyselect data=nhanes out=boot

seed=7 method=urs samprate=1 outhits rep=1000

noprint; run;
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  data boot; set boot; rename replicate=k; drop

NumberHits; run;

  *Append original dataset, setting k=0;

  data nhanes; set nhanes; k=0; run;

  data data.boot; set nhanes boot; run;

  *Estimate IPMW;

  proc logistic data=data.boot;

  by k;

  where eligible;

  class SDDSRVYR;

  model m=SDDSRVYR;

  output out=ipw(keep=k seqn m pi) p=pi;

  run;

  data ipw; set ipw; if m=0 then wt1=1/pi;

else wt1=0; run;

  proc means data=ipw n sum mean; var wt1; by

k; run;

  *Estimate IPMW+Auxiliary Variable;

  proc logistic data=data.boot;

  by k;

  where eligible;

  class SDDSRVYR;

  model m=SDDSRVYR smkr male over59;

  output out=ipwa(keep=k seqn m pi) p=pi;

  run;

  data ipwa; set ipwa; if m=0 then wt2=1/pi;

else wt2=0; run;

  proc means data=ipwa n sum mean; var wt2; by

k; run;

  proc sort data=data.boot; by k seqn; run;

proc sort data=ipw; by k seqn; run; proc sort

data=ipwa; by k seqn; run;

  data weighted;

  merge data.boot ipw ipwa;

  by k seqn;

  ipmwt1=svywt*wt1;

  ipmwt2=svywt*wt2;

  run;

  proc means data=weighted; var svywt ipmwt1

ipmwt2; where eligible; run;

  *Estimate mean acrylamide concentration

(pmol/g Hb);

  *First, ignore the complex survey design;

  *Complete Case;
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  proc genmod data=weighted;

  by k;

  where eligible;

  model LBXACR=;

  ods output parameterestimates=cc(keep=k

parameter estimate stderr);

  run;

  data cc; length model $32.; set cc; if

parameter="Intercept" then do;

  model="Complete Case"; b=estimate;

se=stderr;

  lcl=b−1.96*se;

  ucl=b+1.96*se;

  output; end;

  keep model k b se lcl ucl;

  run;

  *Standard IPW, Robust SE;

  proc genmod data=weighted;

  by k;

  where eligible;

  class seqn;

  model LBXACR=;

  weight wt1;

  repeated subject=seqn/type=ind;

  ods output geeemppest=ipmw(keep=k parm

estimate stderr); run;

  data ipmw; length model $32.; set ipmw; if

parm="Intercept" then do;

  model="Standard IPW"; b=estimate; se=stderr;

  lcl=b−1.96*se;

  ucl=b+1.96*se;

  output; end;

  keep model k b se lcl ucl;

  run;

  *IPW + Auxiliary Variable, Robust SE;

  proc genmod data=weighted;

  by k;

  where eligible;

  class seqn;

  model LBXACR=;

  weight wt2;

  repeated subject=seqn/type=ind;

  ods output geeemppest=ipmwa(keep=k parm

estimate stderr); run;
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  data ipmwa; length model $32.; set ipmwa; if

parm="Intercept" then do;

  model="IPW + AV"; b=estimate; se=stderr;

  lcl=b−1.96*se;

  ucl=b+1.96*se;

  output; end;

  keep model k b se lcl ucl;

  run;

  *Stack estimates from all models;

  data m; set cc ipmw ipmwa; run;

  *Obtain BSE (i.e. SD of E[Y]) across all k>0

bootstrap samples;

  proc sort data=m; by model; run;

  proc means data=m fw=8; by model; where k>0;

var b; output out=bse; run;

  data bse; set bse; if _STAT_="STD" then

output; rename b=bse; drop _TYPE_ _FREQ_

_STAT_; run;

  *Merge BSEs with estimates of E[Y];

  data estimates; set m; where k=0; run;

  proc sort data=estimates; by model; run; proc

sort data=bse; by model; run;

  data boot_out; merge estimates bse; by model;

run;

  *Calculate 95% CI using BSE;

  data boot_out;

  length proc $32.;

  set boot_out;

  lcl_b=b−1.96*bse;

  ucl_b=b+1.96*bse;

  proc="GENMOD";

  run;

  *Now take into account the complex survey

design;

  proc sort data=data.boot; by k seqn; run;

proc sort data=ipw; by k seqn; run; proc sort

data=ipwa; by k seqn; run;

  data weighted2; merge data.boot ipw ipwa; by

k seqn; run;

  proc means data=weighted2; var wt1 wt2; where

eligible; run;

  *Complete Case;

  proc surveyreg data=weighted2;

  by k;
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  domain eligible;

  weight svywt;

  strata SDMVSTRA;

  cluster SDMVPSU;

  model LBXACR=;

  ods output parameterestimates=cc2; run;

  data cc2; length model $32.; set cc2;

  where eligible;

  if parameter="Intercept" then do;

  model="Complete Case"; b=estimate;

se=stderr;

  lcl=b−1.96*se;

  ucl=b+1.96*se;

  output; end;

  keep model k b se lcl ucl;

  run;

  *IPMW;

  proc surveyreg data=weighted2;

  by k;

  domain eligible;

  weight ipmwt1;

  strata SDMVSTRA;

  cluster SDMVPSU;

  model LBXACR=;

  ods output parameterestimates=ipmw2; run;

  data ipmw2; length model $32.; set ipmw2;

  where eligible;

  if parameter="Intercept" then do;

  model="Standard IPW"; b=estimate; se=stderr;

  lcl=b−1.96*se;

  ucl=b+1.96*se;

  output; end;

  keep model k b se lcl ucl;

  run;

  *IPMW + Auxiliary Variable;

  proc surveyreg data=weighted2;

  by k;

  domain eligible;

  weight ipmwt2;

  strata SDMVSTRA;

  cluster SDMVPSU;

  model LBXACR=;

  ods output parameterestimates=ipmwa2; run;

  data ipmwa2; length model $32.; set ipmwa2;
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  where eligible;

  if parameter="Intercept" then do;

  model="IPW + AV"; b=estimate; se=stderr;

  lcl=b−1.96*se;

  ucl=b+1.96*se;

  output; end;

  keep model k b se lcl ucl;

  run;

  /*IPMW + Auxiliary Variable - Bootstrap

Variance Estimation;

  *This bootstrap variance estimator does

not approximate the proper sandwich variance

estimator because estimation of the weights

occurs outside of the bootstrap;

  proc surveyreg data=weighted2

varmethod=bootstrap;

  by k;

  domain eligible;

  weight ipmwt2;

  strata SDMVSTRA;

  cluster SDMVPSU;

  model LBXACR=;

  ods output parameterestimates=ipmwa_bs; run;

  data ipmwa_bs; length model $32.; set

ipmwa_bs; if parm="Intercept" then do;

  model="IPW + AV, Bootstrap"; b=estimate;

se=stderr;

  lcl=b−1.96*se;

  ucl=b+1.96*se;

  output; end;

  keep model k b se lcl ucl;

  run;*/

  *Stack estimates from all models;

  data m2; set cc2 ipmw2 ipmwa2 /*ipmwa_bs*/;

run;

  *Obtain BSE (i.e. SD of E[Y]) across all k>0

bootstrap samples;

  proc sort data=m2; by model; run;

  proc means data=m2 fw=8; by model; where

k>0; var b; output out=bse2; run;

  data bse2; set bse2; if _STAT_="STD" then

output; rename b=bse; drop _TYPE_ _FREQ_

_STAT_; run;

  *Merge BSEs with estimates of E[Y];
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  data estimates2; set m2; where k=0; run;

  proc sort data=estimates2; by model; run;

proc sort data=bse2; by model; run;

  data boot_out2; merge estimates2 bse2; by

model; run;

  *Calculate 95% CI using BSE;

  data boot_out2;

  length proc $32.;

  set boot_out;

  lcl_b=b−1.96*bse;

  ucl_b=b+1.96*bse;

  proc="SURVEYREG";

  run;

  *Print all estimates;

  data data.boot_1000; set boot_out boot_out2;

run;

  proc print data=data.boot_1000; var proc

model b se lcl ucl bse lcl_b ucl_b; run;
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Fig. 1. 
Causal diagram depicting the relationships between variables in the simulation study.
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