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ABSTRACT Fusaric acid (FA) is a mycotoxin produced by several Fusarium species. 
Burkholderia ambifaria T16 is a rhizosphere bacterium, able to use FA as sole nitrogen, 
carbon, and energy source. By screening a transposon insertional library, combined with 
proteomic analysis, genes and enzymes involved in the microbial degradation of FA were 
identified for the first time. A functional 2-methylcitrate cycle, an anaplerotic pathway 
where propionyl-coenzyme A (CoA) is converted to pyruvate and succinate, was shown 
to be essential for growth in the presence of FA. The proteomic profile of B. ambifaria T16 
showed that more than 50 enzymes (including those belonging to the 2-methylcitrate 
cycle, fatty acid metabolism, valine catabolism, and flavin biosynthesis) were significantly 
more abundant when growing on FA than on citrate. Flavin mononucleotide (FMN)-
dependent luciferases like monooxygenase (LLM) are shown to catalyze the pyridine-ring 
cleavage reaction of several N-heterocyclic compounds. Deletion of a gene encoding a 
predicted LLM enzyme that was highly upregulated during growth on FA, completely 
abolished the capability of B. ambifaria T16 to grow with this mycotoxin as sole nitrogen, 
carbon, and energy source. Re-introduction of the wild type gene was able to restore 
growth. The mentioned gene is part of a gene cluster of unknown function that we 
termed fua, due to its probable role in fusaric acid catabolism. Our results suggest that 
the LLM encoded in the fua cluster catalyzes the pyridine-ring opening reaction during 
FA degradation, and that propionyl-CoA is one of the intermediates of FA catabolism in B. 
ambifaria T16.

IMPORTANCE Fusaric acid (FA) is an important virulence factor produced by several 
Fusarium species. These fungi are responsible for wilt and rot diseases in a diverse range 
of crops. FA is toxic for animals, humans and soil-borne microorganisms. This mycotoxin 
reduces the survival and competition abilities of bacterial species able to antagonize 
Fusarium spp., due to its negative effects on viability and the production of antibiotics 
effective against these fungi. FA biodegradation is not a common characteristic among 
bacteria, and the determinants of FA catabolism have not been identified so far in any 
microorganism. In this study, we identified genes, enzymes, and metabolic pathways 
involved in the degradation of FA in the soil bacterium Burkholderia ambifaria T16. Our 
results provide insights into the catabolism of a pyridine-derivative involved in plant 
pathogenesis by a rhizosphere bacterium.

KEYWORDS Burkholderia ambifaria T16, fusaric acid, two-component flavin-dependent 
monooxygenase, 2-methylcitrate cycle, detoxification, catabolism

F usaric acid (FA, 5-butylpyridine-2-carboxylic acid) is a secondary metabolite 
synthesized by several Fusarium species (e.g., F. oxysporum, F. solani, F. verticillioides, 

F. proliferatum, and F. subglutinans) (1). These fungi are responsible for important wilt 
and rot diseases in a diverse range of crops, including maize, cucurbits, legumes, 
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tomato, onion, potato, and banana (2). Production of FA by different phytopathogenic 
Fusarium spp. has been evaluated in vitro and in planta. In most cases, a positive 
correlation between FA production and virulence was observed (3–8), which has led 
to the consideration of FA as one of the main virulence factors produced by Fusarium 
spp. FA has been described to possess several negative effects on plant cells, including 
reduction in the availability of metals (9), oxidative damage (5, 10, 11), loss of mitochon­
drial membrane potential (5, 12, 13), and a reduction in the content of photosynthetic 
pigments (11, 14).

Management of Fusarium wilt is mainly performed by crop rotation, cover cropping, 
soil disinfection, applying chemical fungicides, and cultivating-resistant varieties (15–
18). However, several important crops do not possess Fusarium wilt-resistant varieties. 
Besides, the use of fungicides contributes to the development of new pathogen races 
that overcome host resistance, negatively impacting the environment.

One interesting and sustainable alternative to control Fusarium plant diseases is the 
use of biocontrol agents. However, FA is also harmful for soil-borne microorganisms (19). 
Gram-positive microorganisms (19–21) and mycobacteria (22) were shown to be highly 
sensitive to FA. Fluorescent pseudomonads, conversely, possess high tolerance to this 
mycotoxin (19, 21, 23). However, it was demonstrated that even low FA concentrations 
negatively affect growth rates (23), and the production of some antifungal metabolites 
implicated in the suppression of soil-borne fungal pathogens (24–27). These results 
highlight the important role of FA in the colonization of competitive environments 
by mycotoxigenic fungi (28), as this compound reduces the survival and competition 
abilities of soil microbes. In this context, the search of plant growth-promoting micro­
organisms able to detoxify FA, and the study of the mechanisms involved in mycotoxin 
detoxification, would greatly contribute to the design of novel biocontrol strategies. 
While fungi that are able to convert FA to less phytotoxic intermediates have been 
reported (29–31), the capability to catabolize FA seems to be much rare among soil-
borne microorganisms. Burkholderia ambifaria T16 is a bacterial strain isolated from the 
rhizosphere of barley, able to use FA as the sole carbon, nitrogen, and energy source (32). 
When inoculated into barley seedlings exposed to FA, strain T16 was able to suppress 
the toxic effect of FA on the growth of roots and stems (32). In this study, we employed 
two different experimental approaches to explore FA catabolism in B. ambifaria T16. The 
construction of a mini-Tn5 insertional library, combined with genome-wide proteome 
analyses, allowed us to identify genes, enzymes, and metabolic pathways that support 
bacterial growth on FA.

MATERIALS AND METHODS

Bacterial strains and culture conditions

Bacterial strains used in this work are listed in Table 1. Escherichia coli strains were 
routinely grown in LB medium under aeration at 37°C. B. ambifaria strains were cultivated 
at 32°C in LB medium or M9 minimal medium (33) supplemented with 1 mM MgSO4, 
0.1% (vol/vol) metal trace solution (34), and 0.2% (wt/vol) sodium citrate (M9 + CA), 
0.2% (wt/vol) sodium propionate (M9 + PA) or 450 µg/mL FA (M9 +FA) as carbon 
sources. Solid media were prepared by adding 1.5% (wt/vol) agar. When needed, the 
following antibiotics were added to the culture medium: ampicillin (Amp) 100 µg/mL (E. 
coli), chloramphenicol (Cm) 34 µg/mL (E. coli), trimethoprim (Tmp) 10 µg/mL (E. coli) or 
70 µg/mL (B. ambifaria), kanamycin (Km) 50 µg/mL (E. coli) or 400 µg/mL (B. ambifaria), 
gentamycin (Gm) 10 µg/mL (E. coli), tetracycline (Tc) 20 µg/mL (E. coli) or 200 µg/mL (B. 
ambifaria), and potassium tellurite (Tel) 20 µg/mL (E. coli and B. ambifaria).

To evaluate the growth of B. ambifaria strains with sodium citrate (CA) or sodium 
propionate (PA), an overnight culture in LB broth was inoculated at a 1/100 ratio into 
M9 + CA to prepare the inoculum. The inoculum for M9 + FA was prepared in M9 + 
CA supplemented with 90 µg/mL FA. After overnight growth, cells were centrifuged, 
washed two times with M9 without carbon source, and resuspended in 1 mL of the same 
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TABLE 1 Bacterial strains, plasmids, and oligonucleotides

Strain, plasmid, or oligonu­
cleotide

Relevant genotype or description Reference or source

Bacterial strains
Escherichia coli

CC118 λpir
Cloning host; ∆(ara-leu) araD ∆lacX174 galE galK phoA thiE1 rpsE rpoB (Rifr) argE (Am) recA1; λpir 

lysogen (35)

DH5α λpir
Cloning host; F-endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15 Δ(lacZYA-argF) 

U169; hsdR17(rK
− mK

+)/λpir (36)

HB101
Helper strain; F−λ−hsdS20 (rB−mB−) recA13 leuB6 (Am) araC14 ∆(gpt-proA)62 lacY1 galK2 (Oc) xyl-5 

mtl-1 thiE1 (35)
Burkholderia ambifaria
T16 Wild type; isolated from the rhizosphere of barley; Tcr (32)
FA2 Derived of T16; prpB::mini-Tn5Tel;Tcr Telr This work
FA3 Derived of T16; mlaD::mini-Tn5Tel; Tcr Telr This work
FA4 Derived of T16; prpR::mini-Tn5Tel; Tcr Telr This work
FA21 Derived of T16; EIB72_16280::mini-Tn5Tel;Tcr Telr This work
FA84 Derived of T16, EIB72_11905::mini-Tn5Tel; Tcr Telr This work
FA90 Derived of T16; EIB72_05180–85::mini-Tn5Tel; Tcr Telr This work
FA91 Derived of T16; prpF::mini-Tn5Tel; Tcr Telr This work
FA92 Derived of T16; prpR::mini-Tn5Tel; Tcr Telr This work
T42 Derived of T16; ΔprpB; Tcr This work
T800 Derived of T16; ΔfuaC; Tcr This work
Mycobacterium
smegmatis mc2 155 High-frequency transformation mutant of M. smegmatis ATCC 607 (37)
Plasmids
pRK600 Helper plasmid used for conjugation; oriRK2 (mob+tra+ ); Cmr (38)
pJMT6 mini-Tn5 delivery plasmid; Ampr Telr (39)
pSEVA612S oriR6K; mob+; lacZα-pUC19/I-SceI; Gmr (40)
pSEVA712S oriR6K; mob+; lacZα-pUC19/I-SceI; Tmpr This work
pSEVAdprpB pSEVA712S carrying a 1.2 kb in-frame deletion fragment of prpB This work
pSEVA228S oriRK2;mob+; xylS; PmI-sceI; Kmr (40)
pSEVA234 oripBBR1; mob+; lacIq-Ptrc; Kmr (40)
pSEVAicl pSEVA234 carrying the icl1gene of M. smegmatis mc2 155 This work

pSEVAprpB
pSEVA234 carrying the prpB gene from
B. ambifaria T16 This work

pSEVA731 oripBBR1; mob+; Tmpr (40)

pSEVAfuaC
pSEVA731 carrying the fuaC gene from
B. ambifaria T16 This work

pGPI-SceI oriR6K; Tmpr; mob+; carries I-SceI cut site (41)
pGPIdfuaC pGPI-SceI carrying a 1.1 kb in frame deletion fragment of fuaC This work
pDAI-SceI oripBBR1; Tcr, mob+, carries the gene encoding I-SceI (41)
Oligonucleotides (5′-> 3′)
ARB2 GGCCACGCGTCGACTAGTAC (42)
ARB6 GGCCACGCGTCGACTAGTACNNNNNNNNNNCGCC (42)
TelBint GTTGGGCTGGCAGTGTCGATCCGCAA (32)
TelBext TTGCGAAGCAGTACCAGCAGGAAT (32)
KilAint CCCATGTTCACGCTTTGTTCTTCCAT (32)
KilAext CAGATTCGACAGCTCGTTGAGGGA (32)
prpB3Bamfor ACGTGGATCCGTGCGAGAAGTGATACCAGTACA This work
prpB3rev GGCTATCACGAATACGAGC This work
prpB5for2 GCTCGTATTCGTGATAGCCCGACAGGTAGACGGCCTTGA This work
prpB5Nherev CTAGCTAGCCCTGCATCACGTCGAAGCC This work
SEVA_marker_rv_U ATTTAAAUACGTAAATCGTAATTATT This work

(Continued on next page)
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medium. These concentrated cell suspensions were used to inoculate Erlenmeyer flasks 
containing M9 with the addition of different carbon sources (CA, PA, or FA) at an initial 
OD at 600 nm (OD600) of 0.05 for M9 + CA and M9 + FA, or 0.1 for M9 + PA. Antibiotics 
and 1 mM IPTG were added to the medium where necessary.

To analyze the growth with FA as the sole nitrogen source, a modified M9 medium 
without NH4Cl, and supplemented with 450 µg/mL FA, 0.2% (wt/vol) citrate, 1 mM 
MgSO4, and 0.1% (vol/vol) metal trace solution, was used.

The MIC of FA was determined after 24 h incubation in M9 + CA, supplemented 
with antibiotics and IPTG where necessary. All cultures were inoculated at an initial 
OD600 = 0.05 from inocula prepared as described above. The MIC was determined as the 
minimum concentration of FA that completely inhibited growth. Growth curves and MIC 
determinations were performed at least in biological triplicates.

Construction of a mini-Tn5 mutant library; screening and mapping of 
mini-transposon insertions

To construct a mini-Tn5 insertional library in B. ambifaria T16, plasmid pJMT6 was 
introduced into B. ambifaria by triparental mating as described by Martínez-García et 
al. (43), with the modifications detailed in Simonetti et al. (44). The selection of transcon­
jugants was performed in LB agar plates containing 20 µg/mL of the antibiotics Tel and 
Tc. A total of 8,000 transconjugants were screened for the inability to grow with FA as 
the sole carbon source. Each colony was simultaneously streaked in M9 + CA and M9 + 
FA agar plates, supplemented with the antibiotics Tel and Tc. After incubation at 32°C for 

TABLE 1 Bacterial strains, plasmids, and oligonucleotides (Continued)

Strain, plasmid, or oligonu­
cleotide

Relevant genotype or description Reference or source

SEVA_marker_fw_U ACCGTTGUCCTTTTCCGCGCATAACT This work
TmpR_rv_U ACAACGGUCCAATTAATTATTAACCCTT This work
TmpR_fw_U ATTTAAAUTTGTGTCTCAAAATCTCT This work
PS3 GAACGCTCGGTTGCCGC (40)
PS4 AATGACCCCGAAGCAGGG (40)
P224 GGACAAATCCGCCGCCCT (40)
P225 AGGGCGGCGGATTTGTCC (40)
P226 GCGGCAACCGAGCGTTC (40)
P274 CCTGCTCTGCGAGGCTGG (40)
P291 CCCTGCTTCGGGGTCATT (40)
P292 CCAGCCTCGCAGAGCAGG (40)
prpBcheckfor TGCAGCAGGTGCAGGAAGTG This work
prpBNco2 CATGCCATGGATGAGCAACACGCATCTT This work
prpBdelcheckrv3 CGACGCGTGCGAATACAGGAAC This work
prpBrevXbaI2 TTACTTCTTGCCCTGCGCGAAC This work
luc2EcoRIfw5 GGAATTCGCAGACATCGCCGAAACCTC This work
luc2rv5 CGAGTAGCTATGCCCGACCT This work
luc2fw3 AGGTCGGGCATAGCTACTCGCGCAACAATATCGTCCGCCC This work
luc2BamHIrv3 CGGGATCCACACCGGCATTGACGTGCGT This work
luccheckfw1 AAGCGGGATGCTCGAAGCA This work
luccheckrv1 CAGCAGCTTGTCGCTTTCGA This work
iclfwXbaI GCTCTAGAAGGAGGAAAAACATATGGCAACAATCGAAGCCAAC This work
iclrvHindIII CCCAAGCTTTTTCAGTCCTCCTTGCGGAT This work
prpBfwXbaI GCTCTAGAAGGAGGCCGTTCATGAGCAACA This work
prpBrvHindIII CCCAAGCTTAAAGCGTTCCGGGAACCGT This work
fuaCfwEcoRI GGAATTCCGGCAAGGTCGCGGCATGAA This work
fuaCrvBamHI CGGGATCCACACCGGAGGACCGCTGTTCGA This work
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48 h, colonies unable to grow in M9 + FA were selected. Mapping of mini-Tn5 insertions 
was performed by arbitrary primed PCR (42) as previously described (44).

DNA extraction

Genomic DNA from B. ambifaria T16 was extracted using the DNeasy Blood & Tissue Kit 
(Qiagen, Hilton, Germany), according to the protocol provided by the manufacturer. To 
extract genomic DNA of Mycobacterium smegmatis mc2 155, cells from a fresh plate were 
resuspended in a buffer containing 100 mM NaCl, 10 mM Tris·HCl pH = 8.0, 1 mM EDTA, 
and 1% (vol/vol) Triton X-100. For cell lysis, the suspension was incubated at 95°C for 
20 min and subjected to three thawing-freezing cycles (5 min at –70°C, followed by 5 min 
at 100°C). After centrifugation at 13,000 rpm for 5 min, the supernatant was transferred 
to a new tube, and the DNA was precipitated according to Ausubel et al. (45).

Construction of plasmids and markerless B. ambifaria deletion mutants

Primers and vectors used in this work are listed in Table 1. Restriction enzymes were 
purchased from New England Biolabs Inc. (Ipswich, USA) or Takara Bio Inc. (Shiga, Japan). 
To construct markerless gene deletions in the genome of B. ambifaria T16 two different 
systems based on the I-SceI endonuclease were used. The deletion of the prpB gene 
was performed by using a suicide vector belonging to the pSEVA (Standard European 
Vector Architecture) database harboring the Tmp selection marker (46). To construct 
this plasmid, named pSEVA712S, a DNA fragment carrying the dihydrofolate reductase 
gene (dhfrI) from E. coli (GenBank accession number X00926.1) conferring Tmp resist­
ance, was cloned into the pSEVA backbone using the uracil excision methodology (47) 
as follows. The pSEVA backbone and the dhfrI gene, were amplified from pSEVA612S 
and from a gBlock Gene Fragment carrying dhfrI (IDT, Cambridge, USA), respectively, 
using Phusion U Hot Start DNA polymerase (Thermo Scientific, Waltham, USA) and 
the primers pairs SEVA_marker_rv_U/SEVA_marker_fw_U or TmpR_rv_U/TmpR_fw_U. 
Fragments were purified with the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel 
GmbH & Co, Düren, Germany). DNA concentrations were measured using NanoDrop 
2000 (Thermo Scientific, Massachusetts, USA). The USER reaction was performed as 
described by Cavaleiro et al. (47), and incubated at 30°C for 30 min, followed by a 
touchdown step of 27 cycles at 37°C (−1°C/cycle) for 2 min. The total reaction was used 
to transform E. coli DH5α chemically competent cells. Transformants were selected in LB 
agar plates containing Tmp and screened for the presence of the Tmpr marker by colony 
PCR using primer pairs PS3 and PS4, One Taq DNA polymerase (New England Biolab 
Inc.), and the protocol provided by the manufacturer. Finally, the pSEVA plasmid carrying 
the Tmpr marker was extracted with the NucleoSpin Plasmid Easy Pure (Macherey-Nagel 
GmbH & Co) and its complete sequence was checked with primers P224, P225, P226, 
PS3, PS4, P274, P291, and P292 in Eurofins Genomics LLC (Ebersberg, Germany). The new 
vector, pSEVA712S, was added to the SEVA database (46).

To delete the prpB gene of B. ambifaria T16, two DNA fragments ≈600 bp flanking the 
prpB gene were amplified with the enzyme Phusion High-Fidelity DNA polymerase (New 
England Biolabs Inc.), using the primers pairsprpB5Nherev/prpB5for2 and prpB3Bam­
for/prpB3rev. The amplified fragments were purified with the Accuprep purification kit 
(Bioneer Corporation, Korea) and 50 ng of each fragment was used in an overlap-PCR 
(48) to obtain the 1.2 kb fragment for in-frame deletion. After purification, the fused 
fragment was cloned in pSEVA712S with the restriction enzymes NheI and BamHI 
to obtain plasmid pSEVAdprpB. This plasmid was introduced into B. ambifaria T16 by 
triparental mating as described by Simonetti et al. (44), with minor modifications. Liquid 
cultures were grown overnight in 2 mL of LB broth supplemented with the correspond­
ing antibiotics. Cells were washed with 10 mM MgSO4 and mixed in a 1:1:1 ratio into 
5 mL of MgSO4 to obtain a final OD600 = 0.05 of each strain. Using a syringe, the mixture 
was concentrated onto a Millipore filter disk, which was placed onto the surface of an LB 
agar plate. After 16 h of incubation at 30°C, the filter was transferred into 1 mL of 10 mM 
MgSO4 and suspended by vortexing. The resulting suspension was serially diluted and 
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plated onto LB agar plates containing Tmp and Tc. Plates were incubated for 48 h at 
30°C. The obtained transconjugants colonies were transferred to a fresh plate contain­
ing antibiotics and the co-integration of pSEVAdprpB into the genome of B. ambifaria 
T16 was evaluated by colony PCR using the primers pairs prpBcheckfor/prpBNco2 and 
prpBdelcheckrv3/prpBrevXbaI2. Co-integrate resolution was achieved by the introduc­
tion of the plasmid pSEVA228S, using the protocol described by Martínez-García and de 
Lorenzo (49). The deletion of the prpB gene was checked by colony PCR using primers 
prpBcheckfor and prpBdelcheckrv3. One of these mutants was selected and named B. 
ambifaria T42 (ΔprpB). Finally, plasmid pSEVA228S was curated from B. ambifaria by 
performing three serial transfers in LB broth without antibiotics, plating serial dilutions in 
LB agar plates and selecting KmS colonies.

To delete the fuaC gene, DNA regions located upstream and downstream of the gene 
were amplified with the primers pairs luc2Ecofw5/luc2rv5 and luc2fw3/luc2BamHIrv3, 
respectively. Both fragments were fused using primers luc2Ecofw5 and luc2BamHIrv3. 
After digestion with EcoRI and BamHI, the obtained 1,127 bp fragment for in-frame 
deletion was ligated into pSEVA712S. It was not possible to obtain co-integrate clones 
using this construct, and plasmid pGPI-SceI was used for generating the fuaC deletion 
instead. Therefore, the 1,127 bp fragment was sub-cloned into pGPI-SceI using EcoRI 
and XbaI, and the resulting plasmid, pGPIdfuaC, was introduced into B. ambifaria T16 by 
triparental mating. The integration of pGPIdfuaC into the genome of B. ambifaria T16 was 
checked with primers pairs luccheckfw1/luc2BamHIrv3 and luc2Ecofw5/luccheckrv1. The 
co-integrate was resolved by the introduction of plasmid pDAI-SceI. Transconjugants 
were screened for the loss of Tmp resistance, and TmpS clones were subjected to 
colony-PCR with primers luccheckfw1 and luccheckrv1 in order to verify the deletion 
of the fuaC gene in the genome of B. ambifaria. One of these double-crossover mutants 
was selected and named B. ambifaria T800. Finally, curation of pDAI-SceI was performed 
as described by Flannagan et al. (41).

To construct plasmid pSEVAicl bearing the icl1 gene (encoding the enzyme isocitrate 
lyase from M. smegmatis mc2 155) under the lacIq-Ptrc inducible promoter, the gene 
was amplified using primers iclfwXba and iclrvHindIII, digested and ligated into the 
expression plasmid pSEVA234. To obtain the plasmid pSEVAprpB, the prpB gene of B. 
ambifaria T16 was amplified with primers prpBfwXbaI and prpBrvHindIII, digested and 
ligated into pSEVA234. Finally, complementation of the fuaC deletion was performed 
with plasmid pSEVAfuaC. In this case, a 1,475 bp fragment, which includes the fuaC 
coding sequence of B. ambifaria T16 and its promoter region, was amplified with the 
primer pair fuaCfwEcoRI/fuaCrvBamHI, digested and ligated into pSEVA731.

FA toxicity assay using barley seedlings

Barley seeds were surface-disinfected with 0.2% (vol/vol) NaClO, submerged in sterile 
deionized water for 1.5 h and placed inside a humid chamber for 24 h to allow germina­
tion. The effect of FA on the growth of barley seedlings was evaluated as described by 
Simonetti et al. (32) using M9, M9 + FA, and cell-free supernatants from stationary phase 
cultures of B. ambifaria strains cultivated in M9 + FA.

Identification of differentially induced proteins during growth with FA as the 
sole carbon source

Three independent cultures of B. ambifaria T16 were cultivated in M9 + CA and M9 + 
FA to an OD600 ≈ 0.7. Cells were harvested at 4°C, washed with ice-cold 10 mM Tris·HCl 
pH = 7.5, resuspended in Lysis Buffer (10 mM Tris·HCl pH = 7.5, 1 mM PMSF, 100 µg/mL 
lysozyme, 1 mM DMSO, and 1 mM EDTA), and mechanically disrupted using glass beads. 
The obtained protein extracts were lyophilized, and subjected to trypsin digestion and 
clean-up using the iST 8 × kit (PreOmics GmbH, Martinsried, Germany), and the protocol 
provided by the manufacturer. Protein samples were analyzed by LC-MS as described 
elsewhere (50).
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MaxQuant 2.1.2.0 was used to identify and quantify the proteins by LFQ with the 
following parameters: Database NCBI_Burkholderia_ambifaria_RQYA01.1_20220630; MS 
tol, 10 ppm; MS/MS tol, 20 ppm Da; Peptide FDR, 0.1; Protein FDR, 0.01 Min. peptide 
Length, 7; Variable modifications, Oxidation (M); Fixed modifications, Carbamidomethyl 
(C); Peptides for protein quantitation, razor and unique; Min. peptides, 1; Min. ratio count, 
2. The quantitative protein abundance data (MaxQuant LFQ values) were analyzed by 
performing an adjusted two-sample t test as described in Perseus (51). P values lower 
than 0.05 were considered significant. Finally, the proteomic data were uploaded in the 
pathway genome database (PGDB) of B. ambifaria T16 previously constructed (52), by 
using the Omics module of the Pathway Tool software v. 25 (53).

RESULTS

Transposon mutagenesis and mapping of mini-Tn5 insertion sites in mutants 
unable to grow with FA as the sole carbon and energy source

With the aim to find genes involved in FA catabolism and FA tolerance in B. ambifaria 
T16, two different experimental approaches were used. First, we constructed a mini-Tn5 
insertional library to select mutants unable to grow in M9 + FA. After plating and 
incubation, eight clones from the insertional library were unable to grow on FA as carbon 
source. The coordinates of the mini-Tn5 insertions and the genes interrupted by the 
transposon in these mutants are shown in Table 2. In four of these insertional mutants (B. 
ambifaria FA2, B. ambifaria FA4, B. ambifaria FA91, and B. ambifaria FA92), the transposon 
insertion mapped in different genes encoding components of the 2-methylcitrate cycle 
(2-MCC; Table 2 and Fig. 1A). The 2-MCC is an anaplerotic pathway widely distributed 
among bacteria and fungi, where propionyl-coenzyme A (CoA) is converted to pyruvate 
and succinate. In B. ambifaria T16, the prp locus comprises the prpR gene, encoding the 
σ54-dependent transcriptional activator of the prp genes (54), and four structural genes, 
prpB, prpC, acnD, and prpF, encoding the enzymes involved in propionyl-CoA metabolism 
(Fig. 1A and B).

In B. ambifaria FA3, the mini-Tn5 cassette interrupted the gene EIB72_01775, encod­
ing the outer membrane lipid asymmetry maintenance protein MlaD. MlaD is part of the 
highly conserved Mla (maintenance of lipid asymmetry) system (56), involved in the 
maintenance of outer membrane lipid asymmetry in Gram-negative bacteria.

TABLE 2 Location of mini-Tn5 Tel insertions in B. ambifaria mutants unable to grow with FA as the sole carbon and energy source

Mutant Interrupted gene (GenBank Locus Tag) 

(strand)a

Gene Putative functionb Coordinates of 

insertion (scaffold)c

B. ambifaria FA2 EIB72_27350 (−) prpB

2-methylisocitrate lyase 236678

(scaffold 9)

B. ambifaria FA3 EIB72_01775 (+) mlaD

Outer membrane lipid asymmetry 

maintenance protein

88315

(scaffold 2)

B. ambifaria FA4 EIB72_27355 (+) prpR

Propionate catabolism operon regulatory 

protein

238068

(scaffold 9)

B. ambifaria FA21 EIB72_16280 (+)

Acyl-CoA dehydrogenase 115004

(scaffold 6)

B. ambifaria FA84 EIB72_11905 (+)

Phosphoenolpyruvate carboxylase 214877

(scaffold 4)

B. ambifaria

FA90 Intergenic region EIB72_05180–85

- 592108

(scaffold 3)

B. ambifaria FA91 EIB72_27335 (−) prpF

2-methylaconitate isomerase 232072

(scaffold 9)

B. ambifaria FA92 EIB72_27355 (+) prpR

Propionate catabolism operon regulatory 

protein

238495

(scaffold 9)
aThe sign + or − refers to the DNA strand encoding the gene.
bPredicted functions are based on the annotation of B. ambifaria T16 genome using the RAST server (55).
cGenomes coordinates in B. ambifaria T16 genome (GenBank accession number RQYA00000000).
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In B. ambifaria FA21, the mini-Tn5 mapped in locus EIB72_16280. This gene is 
predicted to encode an acyl-CoA dehydrogenase. In B. ambifaria FA84, the transposon 
interrupted gene EIB72_11905, which encodes the enzyme phosphoenolpyruvate 
carboxylase (PEPC). In close proximity to EIB72_11905, genes predicted to be involved in 
the transport and catabolism of aromatic compounds were found. Finally, the mutant B. 
ambifaria FA90 bears a mini-Tn5 insertion in an intergenic region between two genes 
encoding enzymes involved in RNA processing, degradation, and modification (RNase 
E/G family endoribonuclease and RluA family pseudouridine synthase) (57, 58).

Tolerance to FA and ability to grow on FA as the sole nitrogen source in B. 
ambifaria insertional mutants

As mentioned above, FA is toxic to different types of cells and negatively affects diverse 
cellular functions. Therefore, the growth impairment observed with FA as the sole carbon 
and energy source in the insertional mutants could be attributed to the inactivation of 
a gene involved in FA catabolism or a gene required to tolerate the exposure to this 
mycotoxin. For that reason, the MIC of FA was determined in cultures of the wild-type 
strain (B. ambifaria T16) and the insertional mutants. Table 3 shows that two insertional 
mutants, B. ambifaria FA2 (prpB::mini-Tn5Tel) and B. ambifaria FA3 (mlaD::mini-Tn5Tel), 
were more sensitive to the presence of FA in the growth medium than the wild-type 
strain. While B. ambifaria T16 showed a MIC of 1,600 µg/mL, the MIC obtained for 
B. ambifaria FA2 and FA3 was 200 µg/mL In the remaining insertional mutants, the 
tolerance to FA was similar to that obtained for the wild-type strain (Table 3). Next, we 
decided to analyze the growth of the insertional mutants with FA as the sole nitrogen 
source. With this purpose in mind, the strains were cultivated in a modified M9 mini­
mal medium without the addition of NH4Cl, supplemented with 0.2% (wt/vol) citrate 
(carbon source) and 450 µg/mL FA (carbon source and sole nitrogen source) (32). Only 
B. ambifaria FA84, which possesses a mini-Tn5 insertion in a gene predicted to encode 
PEPC, was able to reach an OD600 similar to the wild-type strain (Table 3). As expected, B. 
ambifaria FA2 and FA3 were unable to grow with 450 µg/mL FA as sole nitrogen source. 
This result is in agreement with the FA MIC values obtained for these mutants (Table 
3). Another strain unable to grow with FA as nitrogen source was B. ambifaria FA21. 

FIG 1 (A) Genomic organization of the prp locus in B. ambifaria T16 and localization of mini-Tn5 insertions in the mutants B. 

ambifaria FA2, FA4, FA92, and FA91. Genes are represented by arrows and black inverted triangles represent the localization of 

the mini-Tn5 insertions in each mutant. (B) 2-Methylcitrate cycle in B. ambifaria T16. Enzymes are shaded in gray rectangles. 

PrpC: methylcitrate synthase, AcnD: methylcitrate dehydratase, PrpF: methylaconitate cis-trans isomerase, AcnB: aconitase, 

PrpB: methylisocitrate lyase. The AcnB enzyme is not encoded in the prp locus.

Full-Length Text Applied and Environmental Microbiology

December 2023  Volume 89  Issue 12 10.1128/aem.00630-23 8

https://doi.org/10.1128/aem.00630-23


This strain possesses a mini-Tn5 insertion in EIB72_16280, which encodes a predicted 
acyl-CoA dehydrogenase. The cell densities of the remaining mutants were lower than 
those of the wild-type, indicating that the transposon insertions, not only completely 
prevent growth with FA as sole carbon source, but also negatively affect the capability to 
grow with FA as the sole nitrogen source.

Construction of a B. ambifaria prpB deletion mutant and evaluation of its 
ability to grow on FA

The results obtained with the insertional mutants pointed to an important role of the 
2-MCC in the capability to grow with FA as the sole carbon source. To provide genetic 
evidence supporting this phenotype, the gene prpB, encoding methylisocitrate lyase (the 
last enzyme of the 2-MCC; Fig. 1), was deleted. The B. ambifaria ΔprpB strain obtained 
was named B. ambifaria T42. In agreement with the results obtained with all the mutants 
with insertions in the prp locus, B. ambifaria T42 was also unable to grow in M9 + FA. 
Furthermore, the prpB deletion also negatively affected the tolerance to FA (Table 4), as 
the MIC obtained for this strain was 400 µg/mL, much lower than the value obtained for 
the wild-type strain (1,600 µg/mL) (Table 3).

Then, we decided to perform two different complementation tests, one by introduc­
ing the prpB gene of B. ambifaria T16, and the other by introducing a gene from 
a different bacterial species encoding an enzyme with methylisocitrate lyase activity 
into the ΔprpB mutant. This functional complementation was performed with the icl1 
gene of M. smegmatis mc2 155. This gene was chosen because it encodes an enzyme 
with reported isocitrate lyase and methylisocitrate lyase activities (59). The prpB and 
icl1 genes were separately cloned in an inducible expression plasmid and introduced 
into B. ambifaria T42. Table 4 indicates that the introduction of plasmids pSEVAicl and 

TABLE 3 MICs of FA and capability to grow with FA as carbon and nitrogen source for B. ambifaria T16 (wt) and mini-Tn5 insertional mutants

B. ambifaria strain MIC FA (µg/mL) Growth with FA as carbon source Growth with FA as nitrogen source
Final OD600

a

T16 (wild type) 1,600 + 1.26 ± 0.27
FA2 (prpB::mini-Tn5Tel) 200 - 0.11 ± 0.05
FA3 (mlaD::mini-Tn5Tel) 200 - 0.05 ± 0.01
FA4 (prpR::mini-Tn5Tel) 1,600 - 0.65 ± 0.06
FA21 (EIB72_16280::mini-Tn5Tel) 1,600 - 0.07 ± 0.01
FA84 (EIB72_11905::mini-Tn5Tel) 1,600 - 1.22 ± 0.22
FA90 (EIB72_05180–85::mini-Tn5Tel) 1,600 - 0.81 ± 0.04
FA91 (prpF::mini-Tn5Tel) 1,600 - 0.81 ± 0.04
FA92 (prpR::mini-Tn5Tel) 1,600 - 0.62 ± 0.07
aMean ± SD of three independent cultures is shown.

TABLE 4 MICs of FA, capability to grow with FA as carbon source and specific growth rates (µ) calculated for B. ambifaria strains

B. ambifaria strain/plasmid MIC FA (µg/mL) µCA C. source
a

(h−1)
µPA C. source

b

(h−1)
µFA C. source

c

(h−1)
µFA N. source

d

(h−1)

T42 (ΔprpB) 400 NDe ND ND ND
T16/pSEVA234 1,600 0.40 ± 0.020 0.04 ± 0.004 0.19 ± 0.013 ND
T42/pSEVA234 400 0.42 ± 0.022 0 0 ND
T42/pSEVAicl 1,600 0.37 ± 0.020 0.03 ± 0.004 0.09 ± 0.010 ND
T42/pSEVAprpB 3,200 0.42 ± 0.024 0.19 ± 0.011 0.14 ± 0.047 ND
T16/pSEVA731 1,600 ND ND 0.20 ± 0.018 0.17 ± 0.006
T800/pSEVA731 1,600 ND ND 0 0
T800/pSEVAfuaC 1,600 ND ND 0.24 ± 0.046 0.13 ± 0.005
aµ Sodium citrate as carbon source.
bµ Sodium propionate as carbon source.
cµ Fusaric acid as carbon source.
dµ Fusaric acid as nitrogen source.
eND: not determined.

Full-Length Text Applied and Environmental Microbiology

December 2023  Volume 89  Issue 12 10.1128/aem.00630-23 9

https://doi.org/10.1128/aem.00630-23


pSEVAprpB in the ΔprpB mutant increased the tolerance to FA. The MIC value obtained 
for B. ambifaria T42/pSEVAicl (1,600 µg/mL) was similar to that of the wild-type strain. 
Interestingly, B. ambifaria T42/pSEVAprpB showed a higher MIC value than the wild type 
(3,200 µg/mL).

Next, we compared the growth of B. ambifaria T16/pSEVA234, B. ambifaria T42/
pSEVA234, B. ambifaria T42/pSEVAicl, and B. ambifaria T42/pSEVAprpB in minimal 
medium with CA, PA, or FA as carbon and energy sources (Fig. 2 and Table 4). As 
shown in Fig. 2A and Table 4, the wild-type strain, the ΔprpB mutant carrying the vector 
plasmid and the mutant bearing pSEVAprpB showed very similar growth profiles and 
almost identical specific growth rates when they were cultivated with CA as the sole 
carbon source. Meanwhile, the growth rate of the ΔprpB strain carrying pSEVAicl was 
slightly lower than the obtained for the other strains. Different results were obtained 
when these strains were grown with PA as the sole carbon source (Fig. 2B and Table 4). 
Severe growth impairment was observed for B. ambifaria T42/pSEVA234. The introduc­
tion of prpB or the icl1 gene in the T42 strain restored growth in PA. Besides, as it was 
observed with CA, the growth rate of strain T42/pSEVAicl was lower than the growth 
rates obtained for strains T16/pSEVA234 and T42/pSEVAprpB. Moreover, B. ambifaria T42 
carrying pSEVAprpB showed a much higher growth rate and a shortened lag phase 
compared to the wild type strain. Finally, similar results to the ones obtained with PA 
were observed when FA was used as the sole carbon and energy source (Fig. 2C and 

FIG 2 Growth of B. ambifaria strains in M9 minimal medium with 0.2% (wt/vol) sodium citrate (A), 0.2% (wt/vol) sodium propionate (B) or 450 µg/mL fusaric acid 

(C) as sole carbon and energy source. The graphs show the means ± SD obtained from three biological replicates. The OD600 values obtained were subjected 

to Kruskal-Wallis analysis of variance followed by Dunnett’s test. The ΔprpB strain bearing the vector plasmid (T42/pSEVA234) was used as control in the test. P 

values were considered significant when they were lower than 0.05. Asterisks indicate that there is a statistically significant difference between OD600 values of 

strains T16/pSEVA234, T42/pSEVAicl or T42/pSEVAprpB and OD600 values of T42/pSEVA234.
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Table 4). The prpB deletion mutant carrying pSEVA234 was unable to grow using FA 
as carbon source. The introduction of pSEVAicl or pSEVAprpB in the ΔprpB strain was 
able to restore the growth with FA. Over-expression of prpB shortened the lag phase. 
These results indicate that a functional 2-MCC is essential for the growth of B. ambifaria 
T16 with FA as the sole carbon and energy source, and suggest that propionyl-CoA is 
generated during FA catabolism.

Proteins differentially induced during growth with FA as the sole carbon 
source

A proteomic analysis of B. ambifaria T16 grown with CA or FA as the sole carbon and 
energy source was performed to identify proteins involved in FA catabolism. A detailed 
list of the identified proteins (1,998 proteins), and the difference in protein abundance 
between the two cultivation conditions are shown in Table S1 in the supplemental 
material. Several enzymes involved in fatty acid biosynthesis and cofactor biosynthesis 
(including coenzyme A and flavin biosynthesis) were upregulated during growth of 
B. ambifaria T16 with FA. Furthermore, a higher abundance of enzymes involved in 
degradation of amino acids, carboxylates, and lipids was observed when the bacteria 
used the mycotoxin as the sole carbon and energy source (Fig. S1; supplemental 
material).

FIG 3 Differential protein abundance in B. ambifaria T16 grown in M9 minimal medium with citrate (M9 + CA) or fusaric 

acid (M9 + FA) as sole carbon source. Red dots represent some upregulated proteins during growth with FA. Proteins IDs 

NHL69607.1 to NHL69612.1 correspond to proteins involved in valine degradation. Proteins NHL70913.1 to 70915.1: 2-oxo acid 

dehydrogenase complex. NHL70916.1: predicted BdkR transcriptional regulator involved in the regulation of isoleucine and 

valine catabolism. Proteins NHL70920.1 to 70924.1 are encoded in a gene cluster of unknown function.
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Fig. 3 shows the proteomic results as a volcano plot. Enzymes belonging to the 
2-MCC showed a log2LFQ(FA-CA)=5–6, indicating a much higher intracellular level of 
these proteins during growth with FA compared to CA. Some proteins encoded in a 
gene cluster predicted to be involved in valine degradation (NHL69607.1 to NHL69612.1) 
were also found to be significantly upregulated during growth with FA (Fig. 3 ; Table 
S1). Other proteins that showed very high levels of abundance during the growth 
of B. ambifaria T16 with FA, with log2LFQ(FA-CA) values from 6.2 to 10.8, include 
NHL70913.1, NHL70914.1, NHL70916.1, and NHL70920.1 to NHL70924.1 (Fig. 3 ; Table 
S1). Protein NHL70916.1 is predicted to be a BdkR transcriptional factor involved 
in the regulation of isoleucine and valine catabolism, and proteins NHL70913.1 and 
NHL70914.1 belong to a 2-oxoacid dehydrogenase complex. These complexes convert 
2-oxoacids to the corresponding acyl-CoA derivatives. Proteins NHL70920.1 to 70924.1, 
encoded in the gene cluster EIB72_31580 to EIB72_31610, have no known function. 
The genetic organization and the predicted functions of the proteins encoded in this 
cluster are shown in Fig. 4 and Table 5. The gene EIB72_31580 encodes a predicted 
transcriptional regulator of the AraC family. This regulator possesses 38% identity to 
the NimR regulator of E. coli involved in the tolerance to 2-nitroimidazole (60). Down­
stream of this regulatory gene, six genes encoding enzymes with different activities are 
found (Fig. 4). Among them, EIB72_31585 and EIB72_31600 are predicted to encode two 
enoyl-CoA hydratases. These proteins identified as NHL70920.1 and NHL70923.1, possess 
sequence identities values of 36 and 34%, respectively, to the 2,3-dehydroadipyl-CoA 
hydratase and 1,2-epoxyphenylacetyl-CoA isomerase of E. coli, which are involved in the 
catabolism of phenylacetate (61). The protein encoded by EIB72_31590 belongs to the 
creatininase family, which includes proteins catalyzing the hydrolysis of an amide bond 
(62, 63). The gene EIB72_31595 is predicted to encode a flavin-dependent oxidoreduc­
tase (NHL70922.1) from the luciferase-like monooxygenase (LLM) family. According to 
a classification based on their structural and functional characteristics, members of 
the LLM belong to group C Flavin-dependent monooxygenases (FMOs-C) (64). These 
proteins use reduced FMN for the activation of molecular oxygen, which is generated 
by a NAD(P)H-dependent flavin reductase (64). A gene predicted to encode a flavin-
reductase (EIB72_31610) with an FMN binding site is also located in this gene cluster 
(Fig. 4). The flavin reductase encoded by EIB72_31610 has 45.6% identity to the NADH-
FMN reductase RutF of E.coli, involved in the catabolism of uracil (65). Finally, the gen 
EIB72_31605 encodes a predicted AMP binding protein with high sequence identity to 
long-chain fatty acid-CoA ligases.

FIG 4 Organization of the gene cluster EIB72_31580-EIB72_31610 (fua cluster) encoding proteins NHL70920.1 to 70924. 1. Genes are represented by arrows. 

Locus IDs are shown above the genes. FR, flavin reductase; LLM, luciferase-like monooxygenase.

Full-Length Text Applied and Environmental Microbiology

December 2023  Volume 89  Issue 12 10.1128/aem.00630-23 12

https://doi.org/10.1128/aem.00630-23


Construction of a B. ambifaria deletion mutant in the gene encoding the LLM 
NHL70922.1 and evaluation of its capability to grow on FA

According to in silico predictions, the genes EIB72_31595 and EIB72_31610 encode a 
two-component FMO from the LLM family. Two-component FMOs catalyze the oxidation 
of several substrates, including N-heterocyclic compounds (65–68). The LLM NHL70922.1 
possesses 25% identity to the pyrimidine monooxygenase RutA of E. coli (65), 34% 
identity to the tetramethyl pyrazine oxygenase TpdA of Rhodococcus sp. THP1 (67), 
29% to the pyridine monooxygenase PyrA of Arthrobacter sp. 68b (66), and 23% to the 
trigonelline monooxygenase TgnB of Acitenobacter baylyi ADP1 (68). We hypothesized 
that the products of the gene cluster EIB72_31580-EIB72_31610 are involved in the first 
steps of FA catabolism in B. ambifaria T16. To find out if NHL70922.1 is involved in 
the catabolism of FA, we constructed a clean deletion mutant in the gene encoding 
this protein (EIB72_31595). This new strain was designated B. ambifaria T800. Next, 
a DNA fragment encompassing the gene locus EIB72_31595 and its promoter region 
was cloned in pSEVA731 and introduced into B. ambifaria T800. The MICs of FA and 
the capability to grow with the mycotoxin were analyzed in B. ambifaria T16 and 
T800 carrying pSEVA731 and in B. ambifaria T800 with the pSEVA plasmid carrying 
the EIB72_31595 gene fragment. B. ambifariaT800/pSEVA731 showed the same MIC for 
FA as T16/pSEVA731 (Table 4), indicating that deletion of EIB72_31595 does not affect 
the tolerance of B. ambifaria to this mycotoxin. However, elimination of EIB72_31595 
completely abolished the capability of B. ambifaria to grow with FA as the sole carbon 
and energy source (Fig. 5A). Introduction of pSEVA731 carrying EIB72_31595 into B. 
ambifaria T800 was able to restore growth (Fig. 5A), demonstrating that EIB72_31595 is 
essential for FA catabolism in B. ambifaria T16. For that reason, we decided to designate 
the gene cluster encompassing EIB72_31580-EIB72_31610 as fua (fusaric acid) cluster 
and the gene EIB72_31595 as fuaC. As it can be observed in Fig. 5A and Table 4, the 

TABLE 5 Functional annotations of the proteins encoded by the EIB72_31580 to EIB72_31610 (fua) gene cluster

Gene

locus

Protein ID Protein 

length (aa)

Putative funcion Conserved

domains/intervala

Nearest Homolog/

accession Nos°b

Identity

(%)

EIB72_31580

(fuaR)

NHL70919.1 273 AraC family transcriptional 

regulator

Cupin_NimR

(40–121)

AraC family

(147–272)

HTH-type transcriptional regulator 

NimR (E. coli K-12)/P76241.1

38.49

EIB72_31585

(fuaA)

NHL70920.1 254 Enoyl-CoA hydratase/

Isomerase

family protein

Crotonase

(7–194)

2,3-dihydroadipyl-CoA hydratase 

(E. coli K-12)/P76082.1

36.62

EIB72_31590

(fuaB)

NHL70921.1 259 Creatininase family protein

(amido-

hydrolase)

Creatininase

(22–250)

Mycofactocin precursor peptide 

peptidase (Mycobacterium 

ulcerans

Agy99)/A0PM51.1

33.33

EIB72_31595

(fuaC)

NHL70922.1 384 LLM class flavin-dependent

oxidoreductase

Bac-luciferase

(3–324)

Uncharacterized protein y4vj 

(Synorhizobium fredii NGR234)/

Q53218.2

25.22%

EIB72_31600

(fuaD)

NHL70923.1 262 Enoyl-CoA hydratase/isomerase

family protein

Crotonase

(6–254)

Probably enoyl-CoA hydratase

(Caenorhabditis

elegans)/P34559.1

35.25

EIB72_31605

(fuaE)

NHL70924.1 635 AMP binding protein Adenylate forming domain-

ClassI superfamily (16–624)

Putative fatty-acid-CoA ligase 

(Mycobacterium

tuberculosis)/P9WQ52.1

33.79

EIB72_31610

(fuaF)

- 154 Flavin reductase (pseudogen) Pyridoxine 5′-phosphate

oxidase and flavin

reductase (1–149)

FMN reductase (NADH) RutF 

(Yersina enterocolitica 8081)/

A1JMW4.1

49.04

aThe proteins sequences were analyzed against the Conserved Domain Database at the NCBI website. Intervals correspond to aminoacid sequence numbers.
bTop BLASTP hit obtained using the UniProtKB/Swiss-Prot Database at the NCBI website.
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wild-type strain with the vector plasmid (B. ambifaria T16/pSEVA731) and the comple­
mented strain (B. ambifaria T800/pSEVAfuaC) grew at very similar specific growth rates. A 
very long lag phase, which lasted more than 40 h, was observed when B. ambifariaT800/
pSEVAfuaC was cultivated with FA as the sole carbon source (Fig. 5A).

As expected, the deletion of the fuaC gene also eliminated the capability of B. 
ambifaria to grow with FA as the sole nitrogen source (Fig. 5B). Growth was restored by 
the introduction of pSEVAfuaC. B. ambifaria T800 bearing pSEVAfuaC showed a slightly 
lower growth rate than the wild-type strain carrying the vector plasmid (Table 4).

Due to its reported phytotoxic effects, the presence of FA can be detected by 
employing simple phytotoxicity assays (8, 10, 11, 13, 32). Taking this into account, we 
evaluated the presence of FA in the culture supernatants of B. ambifaria T16/pSEVA731, 
B. ambifaria T800/pSEVA731, and B. ambifaria T800/pSEVAfuaC cultivated with FA as the 
sole carbon and energy source, by applying the cell-free supernatants on germinated 
barley seedlings (32)(Fig. 6A and B). The growth medium with the addition of 450 µg/mL 
FA (M9 + FA) was used as a control of the experiment. As expected, the growth of the 
roots and the coleoptile of barley seedlings was negatively affected by the treatment 
with M9 + FA (Fig. 6A and B). Barley seedlings treated with cell-free-supernatants from 
stationary phase-cultures of B. ambifaria T800/pSEVA731 showed similar coleoptile’s 
and root’s lengths to the seeds treated with M9 + FA, indicating that FA is present in 
the supernatant and therefore has not been catabolized by this strain. Meanwhile, the 
barley seedlings exposed to the cell-free-supernatants from stationary phase-cultures of 
B. ambifaria T16/pSEVA731 or B. ambifaria T800/pSEVAfuaC cultivated with FA, showed 
coleoptiles and roots significantly longer than the barley seedlings exposed to M9 + FA, 
showing that FA has been degraded in cultures of these strains.

DISCUSSION

This work describes the first example of bacterial genes essential for growth on FA as the 
sole carbon and energy source. By screening of a transposon insertional library, several 
mini-Tn5 mutants of B. ambifaria were found to be unable to grow in minimal medium 
with 450 µg/mL FA as the sole carbon source. Among these mutants, B. ambifaria FA2 
and FA3 showed an enhanced sensitivity to FA. Moreover, none of these mutants were 
able to grow with 450 µg/mL FA as the sole nitrogen source.

In B. ambifaria FA3, the mini-Tn5 insertion mapped in mlaD, a gene encoding 
one of the periplasmic components of the Mla system. This system is composed of 

FIG 5 Growth of B. ambifaria strains with fusaric acid as the sole carbon and energy source (A) or as the sole nitrogen source (B). The graphs show the means 

± SD obtained from three biological replicates. OD600 values were subjected to Kruskal-Wallis analysis of variance, followed by Dunnett’s test. B. ambifaria 

T800/pSEVA731 was used as a control in the test. P values were considered significant when they were lower than 0.05. Asterisks indicate that there is a 

statistically significant difference with B. ambifaria T800/pSEVA731.
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six proteins distributed across the cell envelope and functions as an intermembrane 
phospholipid transport system that maintains lipid asymmetry in the outer membrane 
(OM) of Gram-negative bacteria (56). This asymmetry, established by having phospho­
lipids confined to the inner leaflet of the membrane and lipopolysaccharides to the 
outer leaflet, is crucial to the barrier function of the OM. Mutants defective in the Mla 
pathway are hypersensitive to detergents (56), hydrophobic compounds (69), antibiotics 
and human serum (70). Besides enhanced sensitivity to FA, the growth of B. ambifaria 
FA3 was also affected by the presence of toluene and SDS/EDTA (Supplemental material; 
Table S2 and Table S3). Although the effects of FA on the cell envelope of Gram-negative 
bacteria have not been evaluated so far, the structure of this mycotoxin, its ability to bind 
metal cations with high affinity (23), and its oxidative power (11), point to a probable OM 
disruptive effect. In this scenario, the Mla system would be very important to preserve 
the integrity of the OM (Fig. 7) . The importance of the OM in the tolerance to FA 

FIG 6 FA toxicity assay using barley seedlings. Box plots of median, 1st and 3rd quartiles (boxes), and 1.5x quartiles (whiskers) corresponding to total root lenght 

(A) and coleoptile length (B) of seedlings (n=60) treated with cell-free supernatants from stationary phase-cultures of B. ambifaria strains, M9 minimal medium 

(M9), or M9 supplemented with 450 μg/mL FA (M9+FA). Three biological replicates were used. Dots denote observations outside the range of adjacent values. 

Data were subjected to Kruskal-Wallis analysis of variance and compared by Dunnet’s test. Seeds treated with M9 + FA were used as control. Asterisks indicate 

significant differences at P < 0.05 between values from the barley seedlings treated with bacterial supernatants or M9, and the barley seedlings treated with 

M9 + FA (control). (C) Photographic image showing barley seedlings treated with culture supernatants of B. ambifaria strains, M9 minimal medium (M9), or M9 

supplemented with 450 μg/mL FA (M9 + FA).
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is illustrated by the fact that Gram-positive species exhibit lower MIC values for this 
mycotoxin compared to Gram-negative species (19–21, 23).

The transposon insertion in the gene EIB72_16280 (B. ambifaria FA21), encoding a 
predicted acyl-CoA dehydrogenase (NHL67938.1), completely abolished the capability of 
B. ambifaria T16 to use FA as carbon and nitrogen source. However, the sensitivity to FA 
was not affected by this insertion, suggesting that this acyl-CoA dehydrogenase could 
be implicated in FA catabolism. The gene EIB72_16280 clusters with a gene encoding 
a LysR-type transcriptional regulator (NHL67939.1), two genes for short-chain dehydro­
genases, a gene encoding an aminoglycoside phosphotransferase and a gene predicted 
to encode a protein belonging to the histidine phosphatase superfamily (NHL67935.1). 
It is noteworthy that the LysR regulator NHL6739.1 has a C-terminal substrate binding 
domain involved in the catabolism of nitroaromatic/naphthalene compounds (71).

The interruption of the 2-MCC genes prpR, prpF, and prpB (mutants B. ambifaria FA4, 
FA92, FA91, and FA2) completely abolished the capability of B. ambifaria T16 to grow 
with FA as the sole carbon and energy source. Moreover, these insertional mutants 
were also affected in the capability to use FA as sole nitrogen source, but to different 
extents. According to the proteomic analysis, all 2-MCC enzymes were significantly 
more abundant during growth with FA compared to CA. Altogether, these results 
indicated that the 2-methylcitrate pathway plays a very important function during the 
growth of B. ambifaria T16 on FA as carbon source (Fig. 7) . The role of the 2-MCC 

FIG 7 Schematic representation of key proteins and metabolic pathways likely required for fusaric acid catabolism in B. 

ambifaria T16. Proteins belonging to metabolic pathways written in gray were significantly more abundant during growth on 

fusaric acid compared to sodium citrate. Proteins essential for growth in the presence of fusaric acid are black-framed. OM, 

outer membrane; PEP, phosphoenolpyruvate.
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in the detoxification of propionyl-CoA and its derived catabolites (e.g., 2-methylcitrate, 
2-methylisocitrate) has been extensively demonstrated in bacteria and fungi (59, 72–80). 
A non-functional 2-MCC causes severe growth inhibition when propionate is added to 
the growth medium. Propionyl-CoA can be generated by the activation of propionate 
or from the catabolism of different molecules, such as odd-chain fatty acids, branched-
chain amino acids, or some aromatic compounds (81–84). The inability of the 2-MCC 
insertional mutants to grow with FA, led us to think that propionyl-CoA was generated 
during FA catabolism (Fig. 7). When the tolerance to FA was evaluated in these mutants, 
mutant B. ambifaria FA2 which possesses the mini-Tn5 insertion in the gene encoding 
2-methylisocitrate lyase (2-MCL)-showed a very high sensitivity to FA. For the remaining 
2-MCC mutants, the MIC values obtained were similar to that of the wild-type strain. 
In agreement with this observation, the loss of 2-MCL activity in M. smegmatis was 
more detrimental to growth on propionate than the absence of all 2-MCC enzymes 
(59). Moreover, Eoh and Rhee (75) have demonstrated that the extreme vulnerability 
of 2-MCL deficient strains during growth on propionate is due to several metabolic 
defects resulting from a truncated 2-MCC pathway. These defects include depletion of 
oxaloacetate from the TCA cycle and gluconeogenic pathways, as well as accumulation 
of 2-methylisocitrate, a noncompetitive inhibitor of the enzyme fructose 1,6-bisphos­
phatase (80). Our results showed that the absence of the gene encoding 2-MCL in B. 
ambifaria T16 caused a high sensitivity to FA and the incapability to grow on propionate 
and FA as carbon sources. The higher sensitivity to FA of the insertional mutant FA2 
compared to the ΔprpB strain could be attributed to polar effects on the expression of 
the genes located downstream prpB (prpC, prpF, or acnD) due to the mini-transposon 
insertion. The introduction of prpB from B. ambifaria T16 or a gene (icl1) encoding an 
enzyme of M. smegmatis with dual 2-MCL and isocitrate lyase activities into the ΔprpB 
mutant of B. ambifaria, increased the tolerance to FA and the ability to grow on FA as 
sole carbon source, confirming the essentiality of the 2-MCL activity for FA catabolism. 
Moreover, overexpression of prpB shortened the long lag phase observed for the wild 
type strain during growth on PA and FA, which reinforces the importance of 2-MCL 
activity for adaptation under these growth conditions. The lower growth rates obtained 
for the ΔprpB strain expressing the icl1 gene in comparison with the wild-type strain 
could be attributed to the augmented isocitrate lyase levels, which competes with the 
enzyme isocitrate dehydrogenase (85).

Insertion of the mini-Tn5 in the locus EIB72_11905, encoding PEPC, eliminated the 
capability to grow with FA as carbon source but did not alter the capability to use 
FA as nitrogen source. The essentiality of PEPC on FA catabolism could be explained 
considering our hypothesis that propionyl-CoA is generated during FA degradation, and 
taking into account that the role of PEPC is to replenish oxaloacetate. This compound is 
one of the substrates of the 2-methylcitrate synthase PrpC, the enzyme that catalyzes the 
condensation of propionyl-CoA to form 2-methylcitrate (Fig. 7).

The analysis of the proteomic results using the Pathway Tools Omics module (86) 
showed that several enzymes predicted to be involved in the generation of propionyl-
CoA, including acyl-CoA synthetases and proteins involved in valine catabolism were 
upregulated during the growth on FA as carbon source. Besides, enzymes involved in 
fatty acid catabolism were also highly overexpressed in M9 + FA. Taking this into account, 
it is reasonable to assume that a long-chain fatty acid and a branched-chain amino acid 
would be generated as intermediates during FA catabolism (Fig. 7).

As it was mentioned in the Introduction, FA is toxic for most soil inhabiting microbes 
(19). According to a screening performed on soil-inhabiting bacteria, the ability to grow 
on FA as carbon and energy source was not a common characteristic in this environment 
(32). The enzymes that showed the greatest differences in their intracellular levels during 
cultivation of B. ambifaria T16 with FA compared with CA (NHL70920.1–70924. 1) are 
encoded in a gene cluster that we designate fua, due to its likely role in FA catabolism. 
Interestingly, the fua cluster is located in a genomic region that is highly variable in 
Burkholderia species, and it was predicted to be part of a genomic island (52).
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As the cleavage of the pyridine ring would require the action of an oxygenase 
and as FMOs were found to be involved in the initial step in the biodegradation of 
different N-heterocyclic aromatic compounds (65–68), we hypothesize that the flavin-
monooxygenase enzyme encoded by fuaC, is involved in the catabolism of FA in B. 
ambifaria T16. The strain B. ambifaria ΔfuaC (T800) was unable to grow with FA as the 
sole carbon and nitrogen source. Introduction of fuaC into T800 was able to restore 
growth, confirming that this gene is essential for FA catabolism. The sensitivity to FA 
was not affected by the absence of fuaC, suggesting that B. ambifaria T16 possesses 
mechanisms to cope with the toxic effects of FA, such as an OM disruptive effect and iron 
sequestration (23). Moreover, the proteomic analysis showed a marked upregulation of 
some enzymes involved in flavin biosynthesis during cultivation of B. ambifaria T16 with 
FA, which reinforces the hypothesis of the implication of flavin-dependent enzymes in 
the degradation of the mycotoxin (Fig. 7).

FA is a pyridine derivative, and although several environmental bacteria are able to 
degrade different pyridine-containing molecules, there is not much information about 
the enzymes that catalyze the first step in the catabolism of these compounds. The 
hydroxylation of the pyridine ring was proposed to be the key initial step involved in the 
metabolism of this N-heterocyclic compound (87–90). Multi-component molybdenum-
containing monooxygenases and mono-component FAD-dependent monooxygenases 
were reported to catalyze this reaction (87–92). In 2018, Perchant et al. (68) found 
that the catabolism of N-methylnicotinate started by the pyridine ring cleavage by a 
two-component FMO from the LLM family. These enzymes were also shown to catalyze 
the initial ring-opening reaction of other N-heterocyclic compounds, such as uracil 
(65) and tetramethylpyrazine (67). More recently, Časaité et al. (66) demonstrated that 
the two-component LLM PyrA catalyzes the first step in the pyridine biodegradation 
pathway of Arthrobacter sp. 68b. As described in the Results section, the FuaC LLM from 
B. ambifaria T16 shares between 23% and 34% identity to others LLMs involved in the 
catabolism of different N-heterocyclic compounds. It is worth mentioning that members 
of the LLM family usually share low amino acid sequences identity (93).

In conclusion, we report the identification of genes involved in the biodegradation 
of the mycotoxin FA by the soil bacterium B. ambifaria T16. We were able to demon­
strate that a functional 2-MCC is essential for growth on FA as carbon and energy 
source, suggesting that propionyl-CoA is an intermediate in FA catabolism. Moreover, a 
two-component FMO of unknown function, encoded in a genomic region predicted to 
be located in a genomic island, was shown to be fundamental to support the growth 
of B. ambifaria T16 with FA as sole nitrogen, carbon and energy source (Fig. 7). This 
enzyme is a good candidate to catalyze the pyridine ring-opening reaction during the 
biodegradation of FA.
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