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ABSTRACT Chronic polymicrobial infections (cPMIs) harbor complex bacterial 
communities with diverse metabolic capacities, leading to competitive and cooperative 
interactions. Although the microbes present in cPMIs have been established through 
culture-dependent and culture-independent methods, the key functions that drive 
different cPMIs and the metabolic activities of these complex communities remain 
unknown. To address this knowledge gap, we analyzed 102 published metatranscrip
tomes collected from cystic fibrosis (CF) sputum and chronic wound infections (CW) to 
identify key bacterial members and functions in cPMIs. Community composition analysis 
identified a high prevalence of pathogens, particularly Staphylococcus and Pseudomonas, 
and anaerobic members of the microbiota, including Porphyromonas, Anaerococcus, 
and Prevotella. Functional profiling with HUMANn3 and SAMSA2 revealed that while 
functions involved in bacterial competition, oxidative stress response, and virulence were 
conserved across both chronic infection types, >40% of the functions were differentially 
expressed. Higher expression of antibiotic resistance and biofilm functions was observed 
in CF, while tissue-destructive enzymes and oxidative stress response functions were 
highly expressed in CW samples. Of note, strict anaerobes had negative correlations with 
traditional pathogens in both CW and CF samples, and they significantly contributed 
to the expression of these functions. Additionally, we show that microbial communities 
have unique expression patterns, and distinct organisms fulfill the expression of key 
functions in each site, indicating that the infection environment strongly influences 
bacterial physiology and that community structure influences function. Collectively, our 
findings indicate that community composition and function should guide treatment 
strategies for cPMIs.

IMPORTANCE The microbial diversity in polymicrobial infections (PMIs) allows for 
community members to establish interactions with one another, which can result 
in enhanced disease outcomes such as increased antibiotic tolerance and chronic
ity. Chronic PMIs result in large burdens on health systems, as they affect a signifi
cant proportion of the population and are expensive and difficult to treat. However, 
investigations into physiology of microbial communities in actual human infection sites 
are lacking. Here, we highlight that the predominant functions in chronic PMIs differ, 
and anaerobes, often described as bystanders, may be significant in the progression 
of chronic infections. Determining the community structure and functions in PMIs is a 
critical step toward understanding the molecular mechanisms that increase the virulence 
potential of the microbial community in these environments.

KEYWORDS human infection, transcriptomics, chronic wounds, cystic fibrosis, 
microbial community functions

M icrobes live in multi-species communities where community structure and 
function dictate key processes such as nutrient cycling, tolerance to disturbances, 
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and disease progression in infection sites. The presence of diverse microbes with a 
wide range of metabolic capacities and large nutrient gradients often leads to microbe-
microbe interactions in chronic polymicrobial infections (cPMIs), which dictate overall 
community function and impact disease progression (1–3). However, although we have 
known that chronic infections are composed of polymicrobial communities for over 100 
years, pathogenesis research has focused on the physiology of a handful of well-known 
pathogens in isolation in vitro and in animal models, and data on microbial community 
physiology in human infection sites are lacking (4–6). Furthermore, the contribution of 
the normal flora identified in cPMIs to disease progression has remained debatable, and 
members of the microbiota are often ignored in current treatment plans (7). Therefore, 
two important knowledge gaps are the key functions that drive each chronic PMI and 
the metabolic activities of the array of microbes present. To address these questions, we 
analyzed 102 previously published metatranscriptomes collected from people with cystic 
fibrosis (CF) (30%) and chronic wound (CW) infections (70%) to identify key bacterial 
members and community functions in these typical examples of clinically important 
cPMIs (8, 9).

Anaerobes are prominent in chronic infections

We identified transcriptionally active microbial communities in 90 of our 102 samples 
(CF: 31, CW: 59) through community composition analysis with MetaPhlAn4 (Data Set 
S1). Identification of the transcriptionally active genera present revealed that both the 
CW and CF sputum samples contained a mix of traditional pathogens from the genera 
Staphylococcus, Pseudomonas, and Streptococcus, along with anaerobic members of the 
microbiota (Fig. 1A), concordant with what is expected in these infections based on 
previous metagenomic and 16S rRNA gene data (8, 10–13). Of note, the Corynebacte
rium and Streptococcus species identified in our samples were almost exclusively known 
pathogenic species (Corynebacterium striatum, Streptococcus pneumoniae, Streptococcus 
agalactiae, and Streptococcus mitis). While the mean number of species identified in 
each sample aligns with previous reports (10, 12–15), we found the CF samples were 
more diverse than CW samples, with a mean of 11.8 and 6.7 species identified, respec
tively (P value <0.01) (Fig. 1B). The increased diversity in CF sputum compared to CW 
wounds was also observed with both Shannon and Simpson diversity indices (Fig. 1C and 
D). Interestingly, we identified a high abundance of transcripts assigned to anaerobes 
in these samples (Fig. 1A and E), suggesting that chronic infection environments are 
likely hypoxic. Furthermore, we found that while anaerobes co-occurred with traditional 
pathogens in over 50% of samples (CF: 80.7%, CW: 52.5%), there was a strong negative 
correlation between the anaerobes and traditional pathogens in both sites, indicating 
possible competitive interactions (Fig. S1). It should be noted that we used metatran
scriptomes to assess the transcriptional activity for these analyses as metagenomes and 
16S rRNA sequences were not available for all samples. This distinction is an important 
consideration when evaluating the differences in alpha-diversity here. Furthermore, the 
samples used for this analysis were previously published data from different sources, 
and it is possible that there are differences in sample collection methods or contamina
tion with members of the skin and oral microbiota. However, the congruence in our 
findings across studies and the high prevalence of reads from the microbiota make these 
possibilities unlikely.

CF sputum has increased expression of antibiotic resistance and biosynthetic 
pathways, while tissue-destructive and catabolic pathways are primarily 
expressed in CW infections

Through profiling with both SAMSA2 and HUMANn3, we classified the level 4 enzyme 
commission (EC) functions in each sample (SAMSA: 4527, HUMANn3: 2459). Our analysis 
revealed that several EC classes involved in oxidative stress responses, virulence, bacterial 
competition, fatty acid metabolism, and iron acquisition were not differentially 
expressed across infection environments (Data Set S2, sheet 1), indicating that bacterial 
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FIG 1 Bacterial community composition in CF and CW environments. (A) Relative abundance of bacterial genera present in at least three samples with a 

% assigned read abundance of at least 1%. 26 unique genera were identified in CF samples and 36 in CW samples. “Bacteroidetes(U)” were members of the 

phylum Bacteroidetes that lacked specific genus level classification. “Others” were genera identified at a relative abundance less than 1% and in fewer than three 

samples. (B) Distribution of the number of species with a relative abundance of at least 1% in CF and CW samples. (C) The Shannon diversity index of each 

sample. (D) Distribution of the Simpson diversity index of each sample. (E) Distribution of the percentage of reads assigned to anaerobes (closed circles) and 

facultative anaerobes (open circles) in each sample in the CF and CW environments. For plots B–E, CF samples are in blue and CW samples are in red. P values and 

brackets indicate comparisons that were deemed statistically significant.
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community members in these infection types may be competing with one another for 
resources while tolerating host innate immune mechanisms and simultaneously 
expressing their virulence functions. However, while some key functions were conserved 
across both infection sites, over 40% of the functions identified were differentially 
expressed (q value <0.05, fold change >2) between the two sites (40.4% and 43.0% for 
SAMSA2 and HUMANn3, respectively), and there were key differences in the types of 
functions that were highly expressed in each site. CF sputum displayed high expression 
of antibiotic resistance functions, iron acquisition, virulence factors, and functions 
important for attachment to host surfaces (Fig. 2; Fig. S2 and S3; Data Set S2, sheets 2–5). 
In contrast, CW infections had high expression of functions involved in oxidative stress 
response and tissue-destructive enzymes (Fig. 2; Fig. S2 and Data Set S2, sheets 2–5). 
Taking a deeper look into the expression of metabolic pathways in each site revealed the 
enrichment of catabolic pathways, such as the glycogen degradation pathway and the 
valine degradation pathway, as well as catabolism support pathways, including phos
pholipase synthesis, in CW samples (Data Set S3). In contrast, in the CF samples, there 
was an enrichment of biosynthetic pathways, such as the fatty acid elongation pathway, 
oleate, palmitoleate, and valine biosynthesis.

The increased expression of functions involved in multiple classes of antibiotic 
resistance in sputum strongly suggests that bacterial community in CF airways may have 
adapted to negating the effect of the antibiotics used in the management of infection, 
possibly contributing to the persistence of the lung infection. Furthermore, the enrich
ment in biosynthetic pathways and siderophores in CF lung communities indicates these 
key nutrients are likely limited in this environment and these results align with previous 
studies that have explored bacterial metabolic activities and nutrient composition in 
human CF sputum (6, 11). In contrast, the high expression of oxidative stress response, 
tissue-destructive enzymes, and catabolic pathways in CW infections indicates the 
complex community in these infections is degrading host tissue to release nutrients and 
that nutrients are likely abundant, possibly contributing to bacterial virulence and 
persistence. This may also be due to the high presence of Staphylococcus aureus in CW 
infections, which is notorious for synthesizing large quantities of tissue-destructive 
enzymes (16). The shift in the key functions identified in each infection site suggests that 
the microbial community is highly responsive to the infection environment, where 
environmental cues and the nutritional landscape are key drivers of microbial physiology.

Bacterial community structure and environment influence function

In addition to the distinct functions identified in each infection site, we were interested in 
if the same or distinct community members were contributing to each site. Therefore, we 
analyzed the stratified output provided by HUMANn3 to evaluate community member 
contributions. We observed that transcripts were frequently assigned to common 
pathogens such as Pseudomonas aeruginosa, Staphylococcus epidermidis, S. aureus, 
Streptococcus agalactiae, and anaerobic members of the microbiota such as Anaerococus 
vaginalis, Finegoldia magna, Prevotella melaninogenica, and Veillonella parvula. While 
both groups were prominent contributors to the reduction of oxidative stress and 
bacterial competition, iron acquisition and biofilm functions were mostly expressed by P. 
aeruginosa in the CF environment, while S. aureus dominated expression in CW infec
tions. Additionally, tissue-degrading enzymes were primarily expressed by P. aeruginosa 
in CF sputum but by the anaerobic microbiota in CW infection (Fig. 2; Fig. S3). Taken 
together, our data show that key community functions are expressed by distinct species 
in each site, indicating niche differentiation may be occurring during chronic infection. 
However, it should be noted that one limitation is that the short reads used may not 
allow for species-level identification of all functions by HUMANn3.

Conclusions and key takeaways

We found that the key functions that drive disease progression in each infection type 
differ. Furthermore, we showed that the microbial community in each infection type is 
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distinct, and this compositional difference, alongside the infection environment, is 
critical in determining functions important for disease progression. Interestingly, we 

FIG 2 Distinct expression of microbial functions in CF and CW communities. (A) Volcano plot to highlight differentially expressed functions between infection 

sites as identified by SAMSA2. Of the functions, 40.37% were differentially expressed (adjusted P value < 0.05, log2 fold change >1 with 1,335 and 488 functions 

highly expressed in CF and CW samples, respectively. (B and C) Bacterial contribution to the expression of functions conserved across CF and CW environments. 

(D–G) Bacterial contribution to the expression of differentially expressed functions. Species contribution (y-axis) refers to the sum of the relative abundance of 

the bacterial species per sample for each function in log scale.
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found that the anaerobic microbiota may play a significant role in the progression of 
chronic infections. Together, these findings will prompt future studies aimed at investi
gating how co-infecting microbes interact with traditional pathogens, the molecular 
mechanisms that drive these interactions, and how these interactions impact bacterial 
virulence and disease chronicity.

MATERIALS AND METHODS

Data set collection and validation

We analyzed 102 RNA-sequencing files of chronic wound and cystic fibrosis patients from 
published studies (7, 11, 16–19). We limited our search to metatranscriptomes collected 
from people with CW in lower extremities and CF and ensured the absence of technical 
replicates or transcriptomes with reads previously mapped to single bacterial species, 
which identified six studies that fit these criteria. We assessed the quality of the sequence 
files using FastQC version 0.11.9 (20) and removed adapter sequences and reads less 
than 22 bases with CutAdapt version 4.1 (21). Ribosomal RNA sequences were removed 
with SortMeRNA version 4.0.0 (22) using default parameters. The resulting reads were 
mapped to the human genome (GRCh38/hg38), and processed reads that did not map to 
GRCh38 were used for community and functional analyses.

Metatranscriptome analysis

MetaPhlAn version 4.0.1 was used for community composition analysis and to obtain the 
relative abundances of bacteria in each sample using a minimum read length threshold 
of 22 bases and other default parameters (23). SAMSA version 2.0 and HUMAnN version 
3.0 were used for functional profiling. First, we analyzed the prokaryotic non-rRNA 
reads with SAMSA2 to identify the functional profile of the microbial community in 
each sample (24). SAMSA2 annotated the reads against the RefSeq bacterial database 
and SEED subsystems database using DIAMOND aligner. Outputs were aggregated and 
exported for statistical analysis with DESeq2 version 1.38.3 in RStudio. In addition, we 
also did functional profiling with HUMAnN3 to obtain the metabolic potential of the 
microbial communites (25). HUMANn3 uses the DIAMOND aligner to map reads to the 
UniRef90 database to identify the UniRef protein families, which were regrouped to level 
4 ECs. We normalized the reads per kilobase output from HUMAN3 to relative abundance 
data with the humann_renorm_table script, and the data was used as input in MaAsLin2 
version 1.12.0 for statistical analysis in RStudio. The metabolic feature of HUMANn3 was 
also used to map the reads to MetaCyc pathways.

Statistical analyses

All other statistical analyses were performed in RStudio with R version 4.2.2. Data 
visualizations were performed in GraphPad Prism version 9.
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