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ABSTRACT Iron-oxidizing Zetaproteobacteria are well known to colonize deep-sea 
hydrothermal vent fields around the world where iron-rich fluids are discharged into 
oxic seawater. How inter-field and intra-field differences in geochemistry influence the 
diversity of Zetaproteobacteria, however, remains largely unknown. Here, we character­
ize Zetaproteobacteria phylogenomic diversity, metabolic potential, and morphologies 
of the iron oxides they form, with a focus on the recently discovered Fåvne vent field. 
Located along the Mohns ridge in the Arctic, this vent field is a unique study site 
with vent fluids containing both iron and hydrogen with thick iron microbial mats (Fe 
mats) covering porously venting high-temperature (227–267°C) black smoker chimneys. 
Through genome-resolved metagenomics, we demonstrate that Zetaproteobacteria, 
Ghiorsea spp., likely produce tubular iron oxide sheaths dominating the Fe mats at Fåvne, 
as observed via microscopy. With these structures, Ghiorsea may provide a surface area 
for members of other abundant taxa such as Campylobacterota, Gammaproteobacteria, 
and Alphaproteobacteria. Furthermore, Ghiorsea likely oxidizes both iron and hydrogen 
present in the fluids, with several Ghiorsea populations co-existing in the same niche. 
Homologs of Zetaproteobacteria Ni,Fe hydrogenases and iron oxidation gene cyc2 were 
found in genomes of other community members, suggesting exchange of these genes 
could have happened in similar environments. Our study provides new insights into 
Zetaproteobacteria in hydrothermal vents, their diversity, energy metabolism and niche 
formation.

IMPORTANCE Knowledge on microbial iron oxidation is important for understanding 
the cycling of iron, carbon, nitrogen, nutrients, and metals. The current study yields 
important insights into the niche sharing, diversification, and Fe(III) oxyhydroxide 
morphology of Ghiorsea, an iron- and hydrogen-oxidizing Zetaproteobacteria repre­
sentative belonging to Zetaproteobacteria operational taxonomic unit 9. The study 
proposes that Ghiorsea exhibits a more extensive morphology of Fe(III) oxyhydroxide 
than previously observed. Overall, the results increase our knowledge on potential 
drivers of Zetaproteobacteria diversity in iron microbial mats and can eventually be used 
to develop strategies for the cultivation of sheath-forming Zetaproteobacteria.

KEYWORDS Zetaproteobacteria, iron oxidation, hydrogen oxidation, hydrothermal 
vents, microbial mats, genome-resolved metagenomics

C hemolithoautotrophic iron-oxidizing bacteria (FeOB) are frequently observed at 
deep-sea hydrothermal vents associated with Fe(II)-rich fluids. At neutral pH, 

FeOB can obtain energy by oxidation of Fe(II) under microaerobic conditions, some 
can grow anaerobically using nitrate as terminal electron acceptor or they can be 
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photoferrotrophs, while there are acidophilic FeOB inhabiting low pH environments (1). 
Fe-oxidizers influence biogeochemical cycling of iron and other elements through 
transforming the soluble Fe(II) to insoluble Fe(III), which often takes the form of Fe(III) 
oxyhydroxides. These Fe(III) oxyhydroxides have the ability to co-precipitate and adsorb 
carbon, nutrients, and heavy metals (1–6). FeOB can also play a role in corrosion (7, 
8) and bioremediation of metal pollution and recovery of resources (9, 10). Seafloor 
hydrothermal fluids are typically rich in diverse electron donors such as hydrogen 
sulfide and methane but with variable hydrogen and Fe contents (11–14). The exact 
chemical composition of these fluids varies widely between and often within vent 
fields, depending on the hydrothermal system’s geological setting, and exerts a strong 
influence on the microbial communities present (15–17).

FeOB are found in iron microbial mats (Fe mats) around the globe, such as at 
the Kama‘ehuakanaloa (Lō‘ihi) seamount (18–22), Vailuluʻu seamount (23), Mid-Atlantic 
Ridge (24, 25), the Mariana region (26–31), Kermadec Arc (32), South Tonga Arc (33), 
Mid-Cayman Ridge (34), and Arctic Mid-Ocean Ridges (AMOR) (35–37). The dominant 
FeOB in these Fe mats are Zetaproteobacteria, first proposed as a class in 2007 (38) 
and collectively divided into operational taxonomic units specific to subgroups of 
Zetaproteobacteria (ZetaOTUs) (39). To obtain energy for CO2 fixation, Zetaproteobac­
teria oxidize soluble Fe(II) under low oxygen conditions (40). Micrometer-scale struc­
tures composed largely of extracellular polymeric substances and precipitated Fe(III) 
oxyhydroxides are often formed as a result of their Fe metabolism. The morphology of 
Fe(III) hydroxides varies between types of Zetaproteobacteria. Some produce twisted 
stalks, others produce hollow tubular sheaths, bifurcating tubular structures or dreads 
(18, 20, 41–43). It has been hypothesized that these structures prevent the cells from 
becoming encrusted in Fe and that they keep the cells within the gradient of oxygen and 
Fe required for growth (20, 38). While stalk formation genes have recently been proposed 
(44, 45), the molecular mechanisms for formation of other structures are not well studied, 
and not all morphologies have a known isolated representative. Fe(III) oxyhydroxide 
sheaths in marine environments were found associated with Zetaproteobacteria (18); 
however, to date, no sheath-forming Zetaproteobacteria have been isolated nor have 
the Zetaproteobacteria responsible for sheath formation been identified and confirmed. 
Since sheaths and stalks make up the majority of Fe mats, stalk- and sheath-forming 
Zetaproteobacteria are recognized as ecosystem engineers that produce the structure of 
these mats, providing a suitable environment for other species (20).

Only a few FeOB belonging to the Zetaproteobacteria have been cultured, most of 
which are members of the genus Mariprofundus (38, 41, 46–49). The cyc2 gene has 
been validated as the main gene involved in the Fe oxidation pathway of Zetaproteobac­
teria and other bacteria in near-neutral pH environments (31, 50–52). While most of 
Zetaproteobacteria are strict FeOB, it has been shown that Ghiorsea bivora, a ZetaOTU9 
representative, can obtain energy from hydrogen oxidation by using hydrogen as either 
the sole electron donor or in combination with Fe(II) (53). The co-occurrence of Fe(II) 
and H2 may play an important role in defining the niche of ZetaOTU9 (40). However, we 
have a limited understanding of the functioning of FeOB that also use H2 and how this 
affects their diversity and ecology. In this paper, we contribute toward narrowing this 
knowledge gap.

At the recently discovered Fåvne deep-sea hydrothermal vent field located on the 
Mohns Ridge (54–56), dense Fe mats cover porous black smoker chimney surfaces at 
in situ temperatures of ~50°C (see Supplementary Material 4 at https://doi.org/10.5281/
zenodo.8297777). The venting fluids at Fåvne contain both abundant dissolved H2 and 
Fe(II) as energy sources, with measured concentrations (±10%) of 22 and 24 mmol/L, 
respectively, in the North Tower duplicate isobaric gas-tight (IGT) fluid samples (55). In 
contrast to lower temperature Fe mat systems where H2 is below detection or absent 
(14), these levels at Fåvne instead are more characteristic of black smoker fluids at 
sites such as Rainbow, Logatchev, and Azhadze 1 and 2 (57). This geochemistry makes 
Fåvne a valuable study site to investigate FeOB that can use H2 as an alternate electron 
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donor. Our genome-resolved metagenomics and microscopy study characterize Fåvne Fe 
mats as a deep-sea hydrothermal habitat formed using abundant byproducts of novel 
sheath-forming Fe-oxidizing Zetaproteobacteria that potentially also utilize H2. The 
identification of sheath-producing Ghiorsea belonging to ZetaOTU9 extends previous 
knowledge on Fe(III) oxyhydroxide morphologies. In addition, our results suggest that 
hydrogen could be the main driver of diversity of Zetaproteobacteria interacting with 
vent fluids containing both Fe(II) and H2, where flexible lithotrophic energy metabolism 
of Ghiorsea provides an advantage.

RESULTS

Zetaproteobacteria produce Fe(III) oxyhydroxide tubular sheaths in Fe mats 
at Fåvne

The porous black smoker chimneys at Fåvne show focused flow venting at 227°C of 
fluids containing abundant Fe(II) and H2 (55), and support growth of extensive Fe mats 
covering tall black smoker chimney spires (Fig. 1a and b). The temperature within the 
Fe mats close to the venting orifice on chimney exteriors was measured at ~50°C (Fig. 
1b). The chimney structures appear to lack defined central conduits (54), leading to 
copious venting of hydrothermal fluids (55) through permeable and porous chimney 
walls. Analysis of the microbial community composition based on metagenome-assem­
bled genome (MAG) coverage (and supported by 16S sequence read abundance) 
revealed that Zetaproteobacteria comprised 7% of the observed community (Fe Mat, 
see Supplementary Material 1 Table S1 at https://doi.org/10.5281/zenodo.8297777). 

FIG 1 Fe mats at Fåvne are dominated by Fe(III) oxyhydroxide sheaths produced by Zetaproteobacteria. (a) Fe mats on black smoker chimneys at Fåvne vent 

field with hydraulic suction device (biosyringe) used for sampling on the right. (b) Measuring temperatures within Fe mats using an isobaric gas-tight sampler 

(55). (c) Fe mats dominated by Fe(III) oxyhydroxide sheaths of two different widths produced by Zetaproteobacteria, scanning electron microscopy. Two Fe(III) 

oxyhydroxide sheath morphotypes, either 2 µm or 1 µm wide. (d) Zetaproteobacteria cells inside Fe(III) oxyhydroxide sheaths (stained with Zeta674 fluorescence 

in situ hybridization probe). Overlay of phase-contrast and florescence images.
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Other lineages frequently observed at vents (58–62) were more abundant in the Fe 
mat sample than Zetaproteobacteria, including members of Gammaproteobacteria and 
Campylobacterota (previously known as Epsilonproteobacteria [63]) of mainly genus 
Sulfurovum, which comprise 31% and 30% of the community, respectively (see Fig. S1 at 
https://doi.org/10.5281/zenodo.8297777). A single Alphaproteobacteria Robiginitomacu­
lum MAG comprised ~2% of all MAGs recovered from the mat sample. Three high-quality 
(CheckV) viral genomes (vMAGs) identified in the Fe mat are predicted to have abun­
dant Fe mat bacteria Sulfurimonas (Campylobacterota) and Gammaproteobacteria as 
potential hosts (see Table S1 at https://doi.org/10.5281/zenodo.8297777).

Scanning electron microscopy (SEM) revealed that tubular Fe(III) oxyhydroxide 
sheaths dominate the black smoker Fe mats (Fig. 1c, see Fig. S2 and S3 at https://
doi.org/10.5281/zenodo.8297777). Fe(III) oxyhydroxide sheaths were the only morpho­
type observed, the majority of which are about 2 µm wide, with thinner 1 µm sheaths 
also present, albeit less frequently. The Zeta674 fluorescence in situ hybridization (FISH) 
probe detected Zetaproteobacteria cells inside the sheaths (Fig. 1d), identifying tubular 
sheath-forming Zetaproteobacteria as major Fe-oxidizers in the Fe mat.

Phylogeny of Fe-oxidizing Zetaproteobacteria at Fåvne

Out of 111 MAGs reconstructed from the Fe mat, dereplicated at 98% ANI, with 
average completeness of 91.1% and average contamination of 1.9% (see Table S2 
at https://doi.org/10.5281/zenodo.8297777), 69 MAGs were of high quality (>90% 
completeness, <5% contamination), and 42 MAGs were of medium quality (>50% 
completeness, <10% contamination) (64). Five of all the MAGs from the Fe mat were 
classified as the Zetaproteobacteria genus Ghiorsea (Genome Taxonomy Database 
[GTDB] and 16S sequences). All but one of the Ghiorsea MAGs are new species-represen­
tative genomes based on publicly available genomes of Zetaproteobacteria and a 95% 
average nucleotide identity (ANI) cutoff (65, 66). Phylogenomic and average amino acid 
identity (AAI) analyses among Ghiorsea identified two distinct clusters previously not 
described for the genus (designated Clusters A and B, Fig. 2, see Fig. S4 at https://doi.org/
10.5281/zenodo.8297777). The two Fåvne MAGs in Cluster A were affiliated with the 
symbiont Ghiorsea from the vent shrimp Rimicaris (67), Ghiorsea from Mid-Cayman Rise 
and North Pond (68), whereas the three other Fåvne MAGs in Cluster B were affiliated 
with the cultivated G. bivora (53) and Ghiorsea from Urashima (31). The two dominating 
Ghiorsea Fåvne MAGs, Faavne_M6_B18 and AMOR20_M1306, are members of each of 
these clusters and were present at 5% and 2%, respectively. Based on ANI estimates, 
the closest publicly available genome to the highest-quality Ghiorsea MAG from Fåvne 
(98.5% completeness, 2.6% contamination) is a Ghiorsea MAG (64.8% complete) from 
a cold oxic subseafloor aquifer (68) with an ANI value of 81.3% (see Fig. S5 at https://
doi.org/10.5281/zenodo.8297777). The same Fåvne MAG has an ANI value of 77.7% to 
Ghiorsea bivora (53), an isolated Zetaproteobacteria ZetaOTU9 representative, while the 
16S sequence has 96.8% identity to the isolate sequence.

To compare the taxonomy of Zetaproteobacteria in Fe mats with those present at 
other locations at Fåvne, we recovered MAGs from other Fåvne sampling sites (see 
Supplementary Material 1 Table S1 at https://doi.org/10.5281/zenodo.8297777). While 
black smoker Fe mats Zetaproteobacteria were all  assigned to the genus Ghiorsea, 
low-temperature diffuse venting at Fåvne supported a higher number of other 
Zetaproteobacteria taxa (see Table S3 at https://doi.org/10.5281/zenodo.8297777). 
A total of 28 unique species-representative genomes of Zetaproteobacteria were 
recovered at Fåvne (based on 95% ANI cutoff and publicly available MAGs) 
consisting of high- and medium-quality MAGs (average completeness 81.7%, 
contamination 2.1% based on CheckM2; see Table S4 at https://doi.org/10.5281/
zenodo.8297777). These Fåvne MAGs were associated with two families defined by 
GTDB and seven defined genera, with three MAGs remaining unclassified to genus 
level and most of taxa lacking cultured representatives (see Fig. S6 at https://doi.org/
10.5281/zenodo.8297777).
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Ghiorsea in Fåvne Fe mats can oxidize H2 in addition to Fe(II)

In alignment with the presence of H2 and Fe(II) in endmember fluids at Fåvne (55), genes 
encoding all subunits of a transmembrane H2-uptake Ni,Fe hydrogenase (Group 1d) and 
Cyc2 for Fe(II) oxidation were identified in Fåvne Ghiorsea genomes belonging to both 
Cluster A and Cluster B (Fig. 2 and 4). In addition, codon usage bias analysis predicts 
high expression of Fe(II) oxidation and H2 oxidation genes of the Ghiorsea MAGs from 
Fåvne (see Table S5 at https://doi.org/10.5281/zenodo.8297777). A broader functional 
screening revealed that H2-based metabolism with a Group 1d hydrogenase is common 
to other dominant MAGs within the Fe mat belonging to the Gammaproteobacteria, 
Ignavibacteria, Calditrichia, KSB1, and Aquificae (see Fig. S7; Table S6 at https://doi.org/
10.5281/zenodo.8297777). Ghiorsea and some Gammaproteobacteria in the Fe mat also 
encode genes of an Ni,Fe H2-sensing hydrogenase histidine kinase-linked Group 2b 
(hup) located in the cytosol responsible for activating hydrogenase expression (see 
Fig. S8 at https://doi.org/10.5281/zenodo.8297777) (70). In contrast, hydrogenases were 
not detected in Zetaproteobacteria MAGs not belonging to genus Ghiorsea from other 
locations at Fåvne.

A phylogenetic tree constructed using the large subunit of the transmembrane Ni,Fe 
hydrogenase (Fig. 3, see Fig. S7 at https://doi.org/10.5281/zenodo.8297777) to assess 
the evolutionary relationships of encoded hydrogenases reveals the close relationship 
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FIG 2 Phylogeny of Zetaproteobacteria in black smoker Fe mats at Fåvne. The tree is based on a concatenated alignment of a manually curated set of 12 
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iterations. The maximum likelihood tree with substitution model Qpfam + F + I + I + R7. The Ghiorsea genus is based on GTDB taxonomy r214 and AAI values 

within the proposed 65% AAI cutoff for genus (69).
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of Fåvne Ghiorsea hydrogenases with hydrogenases of other Ghiorsea (53, 67) and 
Gammaproteobacteria. Interestingly, the closest non-Zetaproteobacteria homolog was 
identified as a hydrogenase from a Gammaproteobacteria MAG (encoding genes for 
sulfur oxidation) from the same Fe mat.

The cyc2 gene has previously been identified as one of the key genes in 
Fe(II) oxidation, with three distinct phylogenetic clusters of functionally verified and 
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biochemically characterized representative Fe oxidases (51, 71, 72). Identified Cluster 3 
and Cluster 1 cyc2 genes of Ghiorsea in the Fe mat at Fåvne showed highest similarity to 
cyc2 in other Ghiorsea MAGs from hydrothermal vents. Cyc2 genes were also identified in 
MAGs belonging to Gammaproteobacteria, Alphaproteobacteria, Aquificae, Planctomy­
cetes, and Calditrichia (Fig. 4, see Table S7 at https://doi.org/10.5281/zenodo.8297777).

Manganese and iron are well known to co-vary in high-temperature black smoker 
fluids (73). Gene annotations revealed the presence of several genes in Gammaproteo­
bacteria putatively involved in manganese oxidation, such as mcoA, mopA, and moxA 
(74–78). Furthermore, preliminary proteomics analysis of abundant proteins in black 
smoker Fe mats shows expressed McoA (see Table S8, Supplementary Material 2 Text1 at 
https://doi.org/10.5281/zenodo.8297777).
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Metabolism of the microbial community in Fe mats

Analysis of the genomic content of the 25 most abundant MAGs (see Table S2 at 
https://doi.org/10.5281/zenodo.8297777), contributing to 87% of the binned coverages, 
identified genes for the oxidation of sulfur compounds, H2, CH4, and NH4

+ (Fig. 5, see 
Fig. S9 at https://doi.org/10.5281/zenodo.8297777). Terminal oxidases found in Ghiorsea 
MAGs were cbb3-type cytochrome c oxidases, indicating an adaptation to low oxygen 
concentrations (79). Other MAGs contained both cbb3-, aa3-type cytochrome c oxidases, 
and cytochrome bd-I ubiquinol oxidases. Dissimilatory nitrate and nitrite reductase 
genes were identified in Ghiorsea MAGs, indicating a possibility of an auxiliary anaerobic 
metabolism (19, 80). Arsenate reductase was also detected.

Enzymes involved in carbon fixation were identified (see Fig. S10 at https://doi.org/
10.5281/zenodo.8297777) for expected CO2 fixation pathways in representative lineages 
(40, 63, 81, 82); however, key genes for the serine variant of the reductive glycine 
pathway were observed in a Campylobacterota MAG (83). Form I RubisCO genes were 
identified in the Ghiorsea MAG Faaavne_M6_B18, and in a Gammaproteobacteria and 
Alphaproteobacteria MAG, using LithoGenie within MagicLamp (84). In one Alphaproteo­
bacteria MAG, gene for Form II RubisCO was also identified.

Given that Fe(III) oxyhydroxides adsorb heavy metals (5), an analysis of heavy 
metal resistance genes within the full metagenomic assembly of the Fe mat was 
performed. Heavy-metal resistance genes were identified for copper, cobalt, sodium 
acetate, chromium, tellurium, selenium, and silver (see Table S9 at https://doi.org/
10.5281/zenodo.8297777).

DISCUSSION

Fe-oxidizing Zetaproteobacteria are globally distributed, yet our knowledge on the 
importance of hydrogen for their distribution is still limited. Here, we phylogenetically 
and functionally characterized Fe(II)- and H2-oxidizing Zetaproteobacteria from the 
Fåvne vent field belonging to Ghiorsea genus, adding four novel species-representa­
tive genomes predicted to use H2. We reconstructed 28 novel species-representative 
genomes of diverse Zetaproteobacteria taxa, extending the known Zetaproteobacteria 
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diversity. Based on Zetaproteobacteria distribution at Fåvne and encoded uptake 
hydrogenases, we demonstrate that H2 availability indeed plays a role in the niche 
diversity of Zetaproteobacteria. Multiple species of Ghiorsea share the H2 oxidation 
capacity in Fe mats at Fåvne, possibly sharing one niche.

Until recently, the identity of sheath-forming Zetaproteobacteria has remained 
elusive. We show that at least two populations of Ghiorsea (ZetaOTU9) most likely 
produce Fe(III) oxyhydroxide sheaths and form dense Fe mats.

Hydrogen as a driver of Zetaproteobacteria diversification

Most Zetaproteobacteria genera are metabolic specialists only able to obtain energy 
from the oxidation of Fe(II). The only known cultivated exception is G. bivora, capable of 
using H2 simultaneously with Fe(II), or as sole electron donor (53). It has been suggested 
that members of Ghiorsea (ZetaOTU9) not only occupy environments rich in Fe(II) but 
also combined with predicted presence of H2, such as at hydrothermal vents (53), in 
corrosion of steel (8, 85), and mineral weathering (40, 85, 86). The presence of hydrogen 
in these Ghiorsea environments has mainly been based on hypotheses until the current 
study. Remarkably, in the Fe mat close to the venting orifice at Fåvne and in contact 
with fluids containing abundant H2, the reconstructed Zetaproteobacteria MAGs are 
represented by only Ghiorsea within ZetaOTU9.

In contrast, a higher diversity of Zetaproteobacteria is present in low-temperature 
diffuse-venting areas at around ~10°C (see Table S3; Fig. S11 and S12 at https://
doi.org/10.5281/zenodo.8297777). All these genomes, except for Ghiorsea, lack uptake 
hydrogenases (see Fig. S6 at https://doi.org/10.5281/zenodo.8297777). Low-temperature 
diffuse-venting areas may reflect a low availability of H2 relative to Fe(II), lost by abiotic 
or other subsurface mixing processes and low-temperature fluid formation (87). Ghiorsea, 
with its hydrogen uptake capability, emerges as the sole specialist in the presence of 
H2. Members within Ghiorsea are also observed in likely H2-poor diffuse-flow environ­
ments. Here, the diversity of Zetaproteobacteria is higher, also reflected by a diver­
sity of Fe(III) oxyhydroxide structures (see Fig. S13 and S14 at https://doi.org/10.5281/
zenodo.8297777). Hence, this diversity indicates an absence of a monopolizing niche 
player in H2-poor diffuse flow, in contrast to Ghiorsea in the black smoker Fe mat where 
H2 is available. This pattern of distribution supports the hypothesis that H2 acts as a 
niche-determining factor for Ghiorsea at Fe(II)-rich hydrothermal vents (40). The ability 
of Ghiorsea to utilize H2 affords it a competitive advantage as H2 is a thermodynami­
cally more favorable energy source than Fe(II), supporting faster cell growth (53). The 
competitive advantage of growing on H2 is likely linked to evading the need for reverse 
electron flow to replenish the reducing agent NADH needed for CO2 fixation (Fig. 6).

Hydrogenases restricted to Ghiorsea ZetaOTU9 at Fåvne show that potential for 
growth on H2 is a trait limited to ZetaOTU9. However, through the analysis of publicly 
available genomes of Zetaproteobacteria, transmembrane uptake hydrogenases were 
detected in Zetaproteobacteria outside of Ghiorsea, beyond hydrothermal vents (see 
Fig. S6 and S7 at https://doi.org/10.5281/zenodo.8297777). Even so, all Ghiorsea do not 
necessarily share the ability to oxidize H2. Outside of Ghiorsea Clusters A and B, two 
species representatives of Ghiorsea from freshwater and a subsea tunnel do not appear 
to possess hydrogenases (Fig. 2). Thus, far evidence suggests that presence of hydroge­
nases within Ghiorsea may be unique to hydrothermal vents.

Other H2 oxidizers besides Ghiorsea are also present in the black smoker Fe mat which 
possess different hydrogenases (Fig. 5). Ni,Fe hydrogenases found in Ghiorsea MAGs 
were most closely related to hydrogenase subunits from other Ghiorsea and a Gammap­
roteobacteria MAG within the same Fe mat (Fig. 3) and symbiont chemolithotrophic 
sulfur-oxidizing microorganisms in hydrothermal vent fauna. These observations further 
strengthen the possibility of horizontal gene transfer of H2 oxidation genes between 
Zetaproteobacteria and lithotrophic sulfur-oxidizing Gammaproteobacteria (53). We 
hypothesize this may have happened at hydrothermal vents.

Research Article mSystems

November/December 2023  Volume 8  Issue 6 10.1128/msystems.00543-23 9

https://doi.org/10.5281/zenodo.8297777
https://doi.org/10.5281/zenodo.8297777
https://doi.org/10.5281/zenodo.8297777
https://doi.org/10.5281/zenodo.8297777
https://doi.org/10.1128/msystems.00543-23


Fe mats at Fåvne cover black smokers at temperatures of up to 50°C (the maximum 
measured inside of a single Fe mat), which is at the high end of the temperature 
spectrum where Fe mats and ZetaOTU9 have been observed (40, 53). The role of 
temperature in distribution patterns of Zetaproteobacteria cannot be ignored; however, 
minor differences in predicted optimum growth temperatures (see Fig. S6 at https://
doi.org/10.5281/zenodo.8297777) indicate fluid composition plays a larger role on the 
Ghiorsea (ZetaOTU9) niche differentiation than temperature. It is worth noting that the 
Fe mat studied is a bulk sample, where different microenvironments likely exist with 
varying degrees of exposure to the high-temperature-reducing venting fluids. Obtaining 
small-scale samples and corresponding in situ measurements to capture this variability in 
such environments remains a challenge.

Several Ghiorsea populations at Fåvne share the same metabolic niche

Within the Fe mats at Fåvne, four novel uncultured species or populations represented 
by MAGs of Ghiorsea (ZetaOTU9) co-exist, belonging to two distinct phylogenetic clusters 
(Cluster A and Cluster B; Fig. 2). Co-existence of multiple Ghiorsea populations has 
also been observed in Rimicaris vent shrimp, where the difference in the presence of 
hydrogenase in Ghiorsea MAGs has been proposed to contribute to niche partitioning, 
avoiding potential competition (67). In contrast, at Fåvne, all species-representative 
Ghiorsea genomes seem to possess genes for common metabolic functions, including 
presence of uptake hydrogenases, suggesting that multiple Ghiorsea species occupy the 
same ecological niche at Fåvne. It remains unknown what kind of interactions arise 
from co-occupying the niche in Fe mats. Possible competitive relationships among 
closely related populations of Zetaproteobacteria could be responsible for differential 
distribution across physical space ultimately leading to divergence within the ZetaOTU, 
as hypothesized for cosmopolitan ZetaOTU2 (88). In this context, the use of genome-

FIG 6 Membrane complexes in Ghiorsea. Electrons coming from the oxidation of Fe2+ are passed all the way to the high oxygen affinity terminal oxidase, 

leading to the generation of a proton motive force. Reverse electron transport is necessary to regenerate NADH needed for CO2 fixation. NADH could also get 

replenished with the help of Ni,Fe uptake hydrogenase instead of the energy-intensive reverse electron transport. Hydrogenase can also donate electrons to the 

electron transport chain. ATP is generated by ATP synthase. A schematic representation of the metabolic potential of Ghiorsea, based on Ghiorsea MAGs from 

Fåvne and previous studies (40, 53). Created with BioRender.com.
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resolved metagenomics offers valuable information about distinct subpopulations 
belonging to the same ZetaOTU and their genomic makeup.

Production of Fe(III) oxyhydroxide sheaths by members of the Fe- and 
H2-oxidizing genus Ghiorsea (Zetaproteobacteria)

In contrast to stalk-forming Zetaproteobacteria (44), the identity of sheath-forming 
Zetaproteobacteria has not been established through either cultivation or identification 
of the environmental and genetic drivers for sheath formation. Fe(III) oxyhydroxide 
sheaths in marine environments were shown to be associated with Zetaproteobacteria 
(18), and previous research has suggested ZetaOTU6, ZetaOTU9, and ZetaOTU15 as 
candidates for sheath-forming Zetaproteobacteria (22, 24, 85), with ZetaOTU6 sequen­
ces identified from an enrichment of sheath-forming Zetaproteobacteria (85). Specific 
ZetaOTU could not definitively be assigned to sheath morphology; however, ZetaOTU2, 
ZetaOTU6, and ZetaOTU14 were present in sheath-rich Fe mats (18). Ghiorsea within 
ZetaOTU9 accounting for 100% of all Zetaproteobacteria present in the Fe mat and 
the abundant homogenous Fe(III) oxyhydroxide tubular sheaths containing Zetaproteo­
bacteria cells (Fig. 1d, see Fig. S11 and S14 at https://doi.org/10.5281/zenodo.8297777) 
strongly suggest that, at Fåvne Ghiorsea, ZetaOTU9 is uniquely forming these structures. 
The presence of two-size morphotypes of Fe(III) oxyhydroxide sheaths suggests that 
more than one Ghiorsea population is producing Fe(III) oxyhydroxide sheaths. The 
comparison of MAG relative abundances with abundance of the two sheath variants 
(Fig. 1c) indicates the large 2 µm sheaths are produced by the Faavne_M6_B18 (Cluster A) 
Ghiorsea population, while the 1-µm-wide sheaths are produced by the AMOR20_M1306 
(Cluster B) Ghiorsea population. Variable width Fe(III) oxyhydroxide sheaths hypothesized 
to be created by two different unidentified Zetaproteobacteria have previously been 
observed in Fe mats at Beebe’s vents (34). Despite these concurring observations, the 
possibility remains that variation in sheath width is instead a consequence of a later, 
secondary colonization of the same species under different conditions, resulting in 
variations in cell size. Due to sheathed cells themselves being relatively rare and usually 
observed only at the tip of the sheaths while producing these structures moving forward 
(18), we cannot completely exclude the possibility that sheaths could be produced by a 
different rare ZetaOTU that was not detected in sequencing. Nonetheless, only through 
cultivation and targeted FISH staining, the formation of Fe(III) oxyhydroxide sheaths by 
Ghiorsea can be confirmed.

Similar to stalk formation, the genetic features for dread-forming Zetaproteobacteria 
are associated with the presence of distant homologs of stalk-forming Zetaproteobacte­
ria sfz genes (44, 45). However, no homologs of the sfz genes were identified in Ghiorsea 
MAGs from Fåvne (Sfz1-6 genes; see Fig. S6 at https://doi.org/10.5281/zenodo.8297777) 
or the full metagenome assembly even at low sequence identity, suggesting a different 
genetic mechanism for sheath formation.

Whether sheaths are uniquely formed by Ghiorsea ZetaOTU9 globally remains an 
open question. Previous microscopy studies of Ghiorsea did not reveal any sheath 
formation (53, 67), with the cultured representative strains of Ghiorsea instead producing 
amorphous Fe(III) oxyhydroxide particulates during growth on FeCl2 (53). This aligns 
with the observation that closely related species vary in their capacity to produce 
distinct Fe(III) oxyhydroxide structures (20). Sheath-dominated Fe mat communities have 
been observed at several locations (18, 20, 23, 24, 32, 34). Given that ZetaOTU9 has 
been described as having a cosmopolitan distribution (22, 35, 89), member species 
could be producing Fe(III) oxyhydroxide sheaths in numerous environments worldwide. 
This emphasizes the importance of microscopy in microbial ecology as not everything 
can be easily observed through genetic analyses. As preserved biogenic Fe(III) oxyhydr­
oxide structures can help us understand the environmental conditions of early Earth 
through studying ancient iron oxide deposits (90–93) and can also be potentially used 
as biosignatures (20, 94), knowledge of a sheath-forming Zetaproteobacteria capable of 
oxidizing both Fe(II) and H2 might prove valuable for the interpretation.
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Ghiorsea (ZetaOTU9) is the architect of Fe mats with abundant H2

Although sheath-forming Ghiorsea is not the most abundant community member (7% 
relative abundance), it can be considered the main community engineer with respect 
to the amount of produced material (Fig. 7), in agreement with Zetaproteobacteria 
previously characterized as ecosystem engineers and primary colonizers in Fe mats (20, 
95). The generation of the architectural character of the Fe mat is subsequently followed 
by recruitment of other community members (42). At Fåvne, the dense Fe mats close 
to the venting orifice show a high abundance of Campylobacterota (formerly Epsilon­
proteobacteria), Gammaproteobacteria, and Alphaproteobacteria; taxa commonly seen 
in Fe mats (27). Diversity of primary producers in Fe mats at Fåvne appears high 
in comparison with other hydrothermal vent mats dominated by sulfur oxidizers (59–
61). This is in-line with previous findings that FeOB support higher diversity (20, 27). 
Differences in relative abundances of common lineages in microbial mats have been 
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observed at sites with differing chemistry in previous studies (27, 88, 96), emphasizing 
the influence of vent fluids on microbial mat communities.

The mixing of oxygen-rich seawater and reduced vent fluids in the porous chimney 
structures at Fåvne gives rise to steep chemical gradients which are reflected in the 
available electron donors and acceptors utilized within the Fe mat (Fig. 5). A strong 
association of Fe and Mn has been shown for hydrothermal fluids elsewhere (73), and 
at Fåvne, genes likely involved in manganese oxidation or detoxification were detected 
in proteomics analysis (Fig. 5, see Table S8, Supplementary Material 2 Text 1 at https://
doi.org/10.5281/zenodo.8297777). Consistent with the notion that Fe(III) oxyhydroxides 
adsorb heavy metals (5), the presence of various heavy metal resistance genes in the 
Fe mat (see Table S9 at https://doi.org/10.5281/zenodo.8297777) suggests adaptation to 
heavy metals.

Diversity of Fe oxidation based on Cyc2 genes at Fåvne

Potential for iron oxidation at Fåvne vent field is not limited to Zetaproteobacteria 
based on the presence of Cyc2 genes across several phyla. The identification of cyc2 in 
abundant members of the Gammaproteobacteria and Alphaproteobacteria may indicate 
a broader taxonomic range for neutrophilic iron oxidation (Fig. 4 and 5), as seen in 
previous studies (31, 51, 52, 85, 97, 98), including in vent fauna endosymbionts (45, 
50). Based on metabolic profiling, MAGs possessing cyc2 seem able to use oxygen and 
nitrate (Fig. 5, see Fig. S15 at https://doi.org/10.5281/zenodo.8297777). The presence 
of nitrate and nitrite reductase genes in Zetaproteobacteria MAGs suggests a possi­
bility of an advantageous metabolic plasticity in Zetaproteobacteria able to reduce 
nitrate and nitrite in the absence of oxygen. Such an anaerobic metabolism has not 
yet been observed in isolates under laboratory conditions (19, 80),z and Zetaproteobac­
teria terminal oxidases are predicted to be highly expressed (see Table S5 at https://
doi.org/10.5281/zenodo.8297777). Similarly, in addition to the common microaerophilic 
Zetaproteobacteria, anaerobic iron oxidizers have been detected in deeper layers of Fe 
mats at Kama‘ehuakanaloa (Lō‘ihi) (21). It remains unknown whether the widespread 
occurrence of Cyc2 genes at Fåvne is involved in Fe oxidation to obtain energy for carbon 
fixation in several lineages or whether some of these microorganisms rather use the Fe 
oxidase in other processes such as detoxification (52, 99). It is, however, unlikely that 
Fe-oxidizing Ghiorsea at Fåvne are competing with other organisms for Fe resources, as 
there is an abundant supply of Fe(II) in the venting fluids (55).

Most Zetaproteobacteria encode for Form II RubisCO (41, 48, 100, 101), including 
Ghiorsea genomes (53, 67), suggesting a preference for environments with high CO2 and 
low oxygen concentrations (102, 103). A few Zetaproteobacteria encode genes for both 
Form I RubisCO, adapted to higher O2 concentrations, and Form II RubisCO (48, 104, 105), 
suggesting a certain environment flexibility. Notably, Ghiorsea MAG Faaavne_M6_B18 
(98.5% complete) encoded genes for Form I RubisCO exclusively, possibly indicating a 
tolerance to higher oxygen concentrations than most other Zetaproteobacteria. This 
oxygen tolerance could be in-line with their hypothesized presence on the outer, more 
oxygenated side of the black smoker Fe mat.

Porous black smoker chimneys support growth of Fe mats with iron and 
hydrogen at Fåvne

Previous studies of Fe mats constructed by Zetaproteobacteria have generally focused 
on low-temperature diffuse-venting areas rather than high-temperature hydrothermal 
vents (21, 22, 35). Although Fe mats on black smoker chimneys have been observed (29), 
the communities and interactions of their members have not yet been characterized. 
Whereas Fe mats studied previously are associated with fluids depleted in H2 (18, 24, 
27, 31), vent fluids at Fåvne contain both H2 and Fe(II) as abundant energy sources for 
Fe mats growing on black smoker chimney surfaces (55). Other hydrothermal vents with 
similar geochemistry to Fåvne, such as Rainbow at Mid-Atlantic Ridge and Beebe’s vents 
(Piccard) at Mid-Cayman Rise where both H2 and Fe(II) are present, have chimneys that 
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contain much higher-temperature mineralized conduits that are likely not as porous 
(106, 107), which may establish a much steeper chemical gradient through the chimney 
walls that is unable to sustain large exterior Fe mats. In contrast, the chimneys at Fåvne 
appear to be highly porous, visibly allowing vent fluid to advect outward and permeate 
through to the chimney surface. This is evident by the relatively high measured exterior 
temperatures (50°C) and visible shimmering, compared with the often much lower, near 
bottom water temperatures typically observed on more mineralized chimney exteriors 
(108). We propose this high fluid flux setting creates a suitable environment for microbial 
life to access higher abundances of electron donors at warmer temperatures, thereby 
forming dense Fe mats.

Conclusion

The presence of abundant (mmolar) Fe(II) and H2 in the hydrothermal fluids at the Fåvne 
vent field offers a unique opportunity to investigate the interactions and adaptations 
of FeOB in response to the presence of elevated H2, providing valuable insights into 
their physiology and ecological dynamics. Our study is a first look into the microbial 
communities of black smoker Fe mats and the first microbiological exploration of the 
newly discovered Fåvne hydrothermal vent field. The findings strongly suggest that 
Zetaproteobacteria of Fe- and H2-oxidizing genus Ghiorsea at Fåvne produce Fe(III) 
oxyhydroxide sheaths and form dense Fe mats. With these Fe(III) oxyhydroxide struc­
tures, Ghiorsea provide the environment for other microorganisms, ultimately maintain­
ing the carbon, nitrogen, sulfur, and iron cycling in the Fe mats. Exclusive presence of 
Fe(II)- and H2-oxidizing Ghiorsea in the black smoker Fe mat exposed to abundant H2 
compared with occupation by diverse Zetaproteobacteria without hydrogenases at likely 
low H2 environments at Fåvne supports the notion that H2 availability plays a crucial role 
in driving the niche partitioning of Zetaproteobacteria.

MATERIALS AND METHODS

Sampling site

The Fåvne vent field is located at 72°45.4′ N, 3°49.9′ E on the Mohns Ridge section of 
the series of AMOR at 3,030 m below sea level (54–56) (see Fig. S16 at https://doi.org/
10.5281/zenodo.8297777). Black smoker chimneys have a porous structure and are rich 
in iron oxide and oxyhydroxide minerals, with high cobalt concentration of hydrother­
mal deposits (54, 56). The black smoker hydrothermal fluids there are characterized by 
abundant iron and hydrogen (55).

Sample collection

Iron microbial mat samples were collected using an Ægir6000 remotely operating vehicle 
(ROV) on board the R/V G.O. SARS in June 2019, equipped with a biosyringe (a hydraulic 
sampling cylinder) connected to the ROV manipulator arm (Fig. 1a). Temperature (±1°C 
uncertainty) in the iron microbial mat was taken in real time using a temperature 
probe attached to the isobaric gas-tight fluid sampler snorkel inlet (109), which was 
used for vent fluid sample collection (55). Iron microbial mat was collected on the 
exterior of the North Tower vent (coordinates 72°45.4′ N, 3°50′ E), a 13-m-tall active 
black smoker chimney 3,025 m below sea level, 1–2 m below the orifice (Fig. 1, 
see Supplementary Material 4, Supplementary Material 1 Table S1 at https://doi.org/
10.5281/zenodo.8297777). Additional samples of the iron microbial mat mixed with 
underlying chimney, chimney, and iron oxide deposits were collected (see Supplemen­
tary Material 1 Table S1 at https://doi.org/10.5281/zenodo.8297777). Samples retrieved 
were centrifuged at 6,000 rcf for 5 minutes, and the supernatant was removed. Iron 
microbial mat pellet for on-ship metagenome sequencing using Nanopore MinION was 
processed directly. Aliquots for other analyses were frozen in liquid nitrogen and stored 
at −80°C until processing. Samples for scanning electron microscopy were fixed in 2.5% 
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glutaraldehyde and stored at 4°C until further processing. Samples for fluorescence 
microscopy were fixed in 2% formaldehyde at 4°C overnight.

Scanning electron microscopy and elemental composition analysis

Fixed samples for SEM were filtered onto 0.2 µm polycarbonate filters with subsequent 
incubation in a series of increasing ethanol concentrations to remove water with and 
without critical point drying in CO2. Filters were then mounted on Al stubs and sputter 
coated with Ir using a Gatan 682 Precision etching coating system. The sputter coater 
was set for intended coating thickness of 10 nm. SEM images for morphological 
observation were produced at 5 keV using a Zeiss SUPRA 55VP scanning electron 
microscope equipped with a Thermo Noran Six Energy Dispersive Spectrometer at 
ELMILAB (laboratory for analytical electron microscopy) at the Department of Earth 
Science (Faculty of Mathematics and Natural Sciences, University of Bergen). For analysis 
of elemental composition, energy-dispersive X-ray spectroscopy (EDS) was performed at 
an accelerating voltage of 15 keV and a working distance of 8 mm. Data were processed 
with Pathfinder X-ray Microanalysis Software v.1.2 (Thermo Fisher Scientific) with default 
settings. Spot scanning setting was used, and Ir peaks were removed due to the Ir 
signal from the coating. Qualitative elemental abundances of all abundant elements 
were measured, with the focus on C, N, O, P, S, Fe, Mn, Cu, Ca, Mg, Al, Si, and Zn. Table 
of elements for EDS analysis was used to inform us whether there were elements with 
similar energies that could be mixed up.

Fluorescence in situ hybridization

Samples were fixed in 2% formaldehyde at 4°C overnight, rinsed three times with 
phosphate-buffered saline (PBS), resuspended in 1:1 PBS:ethanol solution, and stored 
at −20°C following a protocol for preservation of material for FISH (110). Samples 
were spread on microscopy slides, air dried, and embedded in 0.5% low melting point 
agarose. For visualizing Zetaproteobacteria, the Zeta674 probe labeled with Atto488 
fluorochrome was used (18). The Zeta674 probe specificity was analyzed, and the probe 
was successfully hybridized in silico using the SILVA Test-Probe tool, local BLAST, and 
the 16S sequence of the highest-quality Ghiorsea MAG recovered (Faavne_M6_B18). FISH 
was performed according to a previously published protocol (111). Slides were incubated 
at 46°C for 1 h with 20% formamide hybridization buffer in a hybridization chamber. The 
probe was added, followed by hybridization for 2 h at 46°C. Slides were then incubated in 
a washing solution (0.1 M NaCl, 20 mM Tris-HCl [pH 8.0], 5 mM EDTA, and 0.01% SDS] at 
48°C for 15 minutes, washed twice with PBS, and air dried. Vectashield antifade solution 
was added. Slides were visualized with fluorescence microscopy using an overlay of 
phase-contrast and fluorescence images. Non-EUB338 was used as a negative control 
(112). SYBRGreen was used to visualize all cells.

Genome-resolved metagenomics

On-ship Nanopore MinION sequencing workflow

DNA extraction, sequencing, and preliminary analysis were performed on board the 
research vessel during the expedition. DNA was extracted from a 1-mL Fe Mat sam­
ple aliquot using FastDNA Spin Kit for soil (MP Biomedicals), according to the manu­
facturer’s protocol. Metagenomic sequencing of total DNA was carried out using the 
rapid sequencing library (SQK-RAD004) and the Oxford Nanopore Technologies MinION 
1Mk1B sequencer equipped with a FLO-MIN106 SpotON Flow cell v.R9. Sequencing 
and raw data acquisition were controlled with the MinKNOW software. Basecalling was 
performed with a local version of the guppy basecaller v.3.4.4 (https://community.nano­
poretech.com). Filtering of raw reads on length and quality was performed twice using 
Nanofilt v.2.5.0 as part of the NanoPack (113) and Porechop v.0.2.4 (https://github.com/
rrwick/Porechop) (sequencing and filtering statistics in Tables S10 and S11 at https://
doi.org/10.5281/zenodo.8297777).
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Illumina sequencing workflow

Whole-sample genomic DNA was extracted using Powersoil DNA Isolation Kit (QIAGEN) 
from frozen samples and sent to the Norwegian Sequencing Centre (University of Oslo, 
Norway) for shotgun metagenomic sequencing. A 150-bp paired-end sequencing was 
performed using an Illumina NovaSeq S4 flow cell. Raw reads were scanned for quality, 
duplication rate, and adapter contamination using FastQC v0.11.9 (https://github.com/
s-andrews/FastQC), and concurrent visualization of the reports across samples was 
carried out in MultiQC (114). Strand-specific quality filtering methods recommended 
(115) were implemented through use of the “iu-filter-quality-minoche” script of the 
illumina-utils python package (116). Quality-filtered reads were subsequently cleaned 
of contaminating human DNA by mapping reads to the hg19 human genome with a 
mask applied to highly conserved genomic regions using the bbmap.sh script within the 
BBTools package (117) and human genome mask developed by Bushnell (available at 
https://drive.google.com/u/0/uc?id=0B3llHR93L14wd0pSSnFULUlhcUk).

Sequence reads were assembled by individual metagenomic sample with MEGAHIT 
v1.2.9 (118) using a minimum contig length of 1,000 bp. Reads from each sample were 
consecutively mapped to individual Illumina sample assemblies, effectively “co-map­
ping,” using Bowtie2 v.2.4.2 (119) then subsequent indexing with Samtools v.1.11 (120). 
Binning and quality procedures were identical to those carried out as detailed for MinION 
sequencing with the exception of inclusion of MaxBin2 v 2.2.4 as an additional binning 
software used before implementation of DASTool. File manipulation, contig database 
creation, and profiles were accomplished with scripts from the Anvi’o v.7 platform (121).

Metagenome assembly strategy

The assembly of the Nanopore-filtered reads was performed using the wtdbg2 v.2.5 
long-read assembler (options: -p 21 -AS 2 s 0.05 L 2500--edge-min 2 --rescue-low-
cov-edges) (122). Sequential polishing of the initial assembly was conducted twice 
with Racon v.1.4.3 (123) and Medaka v.0.8.2 (https://github.com/nanoporetech/med­
aka). Reconstruction of MAGs was performed in a combination using CONCOCT (124), 
MetaBAT (125, 126), and DASTool (127).

Hybrid assembly of Nanopore and Illumina reads was also performed using meta­
SPAdes (128). This hybrid assembly had lower quality than wtdbg2 and MetaFlye only 
and Illumina-polished MetaFlye assemblies (see Table S12 at https://doi.org/10.5281/
zenodo.8297777), with lower quality bins and fewer 16S sequences assigned to the 
genomes. Nanopore-only-based assembly generated only the most abundant Ghiorsea 
MAG, while the MetaFlye assembly polished with Illumina reads recovered two Ghiorsea 
MAGs, one of them the same species representative (>95% ANI) as the most abundant 
one in the Nanopore-only assembly and another one, less abundant. With this in mind, 
we decided to go forward with the MetaFlye long-read assembly polished with Illumina 
reads. Assembly read information and quality metrics are shown in Table S12 at https://
doi.org/10.5281/zenodo.8297777. Several other assembly and binning strategies were 
attempted and compared using QUAST v.5.0.2 with MetaQUAST output (129).

Combining long reads and short reads

To obtain high-quality metagenome-assembled genomes with better sequencing depth, 
a MetaFlye long-read assembly, done with Flye v2.9 and filtered Nanopore reads (130), 
was polished using Illumina short reads using Pilon v1.23 (131). Illumina short reads 
were mapped to the assembly using bwa v.0.7.17 (132) and minimap2 for Nanopore 
long reads (133). A mapping file was then reformatted using samtools (120). Automatic 
MAG reconstruction was performed using metaWRAP v.1.3 (134), which implements 
the combinatorial use of MaxBin2 (135), CONCOCT (124), and MetaBat2 (126). MAGs 
were manually refined using the Anvi’o v.7 platform (121). Quality and completeness of 
individual MAGs were assessed on the presence of lineage-specific, conserved single-
copy marker genes using CheckM v1.0.7 (136) and CheckM2 v1.0.2 (137).
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MAGs generated using MetaFlye, Pilon, and metaWRAP and the ones generated using 
only Illumina reads were dereplicated at 98% ANI using dRep v3.2.2 (138). These included 
all MAGs with at least 50% completeness and maximum 10% redundancy and all MAGs 
that had at least 0.5 coverage in the iron microbial mat metagenome (Fe Mat sample; 108 
MEGAHIT Illumina MAGs and 19 MetaFlye, Pilon, and metaWRAP MAGs). The dereplica­
tion resulted in 111 MAGs. Relative abundances were calculated using the abundance 
output of relative coverage within one sample (Anvi’o v.7), and this was normalized to 1.

Taxonomic classification

The reconstructed MAGs were taxonomically classified using the genome taxonomy 
database tool kit gtdbtk v.2.3.2 (139) using the database GTDB 214 release. In addition, 
ZetaHunter v1.0.11 was used for assigning taxonomy to the 16S sequence of the 
Zetaproteobacteria MAGs (39), classifying sequences into Zetaproteobacteria opera­
tional taxonomic units at 97% similarity. Based on ZetaHunter cutoffs, we excluded 
all ZetaOTU classifications below 75% entropy. An overall taxonomic classification of 
Illumina metagenomic reads was performed with PhyloFLASH v.3.4 (140) based on 16S 
sequences using SILVA release 138 taxonomy as reference.

Genome database of Zetaproteobacteria

Zetaproteobacteria MAGs were reconstructed from samples of iron microbial mats, a 
chimney, and iron deposit at Fåvne (see Supplementary Material 1 Table S1 at https://
doi.org/10.5281/zenodo.8297777). The choice was made to concentrate efforts on the 
black smoker Fe Mat after identifying the presence of only the genus Ghiorsea and iron 
oxide sheaths since Fe Mat was the most precise sample of the iron microbial mat. All 
publicly available Zetaproteobacteria genomes (74) (taxid 580370) and corresponding 
metadata at NCBI GenBank were downloaded using ncbi-genome-download v.0.3.0 
(https://github.com/kblin/ncbi-genome-download/) on the 19 October 2021. In addition, 
publicly available genomes of Zetaproteobacteria were downloaded from Genomes 
from Earth’s Microbiome (141), Joint Genome Institute Integrated Microbial Genomes 
(JGI IMG), and from public repositories stated in selected studies (21, 31, 67, 142). 
Additional genomes of Campylobacterota, Gammaproteobacteria, and Alphaproteobac­
teria closely related to the Fåvne MAGs were downloaded from NCBI as references. A 
threshold cutoff of high- and medium-quality genomes (min. 50% completeness, max. 
10% redundancy) was used before further analysis. Phylogenomic analyses included 
148 Zetaprotobacteria genomes in addition to the MAGs from this study. All selected 
genomes are presented in Table S4 at https://doi.org/10.5281/zenodo.8297777.

The combination of average nucleotide identity, average amino acid identity, and 
alignment fraction (AF) provides an objective measure of genetic relatedness between 
Zetaproteobacterial genomes. The proposed species cutoff at ∼95% ANI (65, 66), ∼95%–
96% AAI (143), and 60% AF (144) was used, with the genus boundary at 65% AAI (69). ANI 
analysis based on the BLAST algorithm (ANIb) was performed using the anvi-compute-
genome-similarity program within Anvio v.7.0 (121); --program pyANI --method ANIb 
(https://github.com/widdowquinn/pyani). AAI analysis was performed using ezAAI (145). 
AF was calculated using FastANI within Anvio. The graphical heatmap and dendrogram 
of percentage identities were plotted using gplots package in R.

Optimal growth temperatures were predicted for Zetaproteobacteria MAGs (see Fig. 
S6 at https://doi.org/10.5281/zenodo.8297777) using genomic features and regression 
models (146). The models employed were Superkingdom Bacteria regression models 
that take into consideration the common absence of 16S sequence and genome 
incompleteness in MAGs.

Phylogenetic and phylogenomic analyses of Zetaproteobacteria

Single-copy marker genes present in all genomes were detected and extracted using 
Anvio v.7.0 (121) with anvi-get-sequences-for-hmm-hits, using Anvio’s Bacteria_71 and 
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GTDB’s bac_120 collection of single-copy marker genes (139). Selection of marker 
genes was based on genes being present only in a single copy, found in at least 
70% of all Zetaproteobacteria genomes, and supporting Zetaproteobacteria mono­
phyly in individual marker phylogenetic trees (see Table S13 at https://doi.org/10.5281/
zenodo.8297777). Selected marker genes were comparable to the amount of single-
copy genes used for evolutionary placement of diversity within Zetaproteobacteria 
previously (40). Single-copy marker genes were manually checked, and phylogenetic 
trees of selected individual protein sequences constructed using ultrafast bootstrap­
ping (147). Selected individual marker gene alignments were constructed using MAFFT 
L-INS-i v7.397 (148), trimmed with trimAl v1.4. rev15 with selected parameters -gt 0.5 
-cons 60 (149), and concatenated using catfasta2phyml (https://github.com/nylander/
catfasta2phyml). A maximum likelihood tree was constructed with IQ-TREE v2.0.3 (150) 
with non-parametric bootstrapping and using the best-fit model Q.pfam +F + I + I + R7 as 
determined by ModelFinder (151).

16S sequences were extracted using barrnap v.0.9 (https://github.com/tsee­
mann/barrnap, settings: --kingdom 'bac' --evalue 1e-20), and only sequences longer 
than 500 bp were kept. The alignment was constructed using MAFFT L-INS-i v7.397 
(148), manually inspected for non-matching sections, and trimmed with trimAl v1.4. 
rev15 with trimming option -gappyout (149). Using sequences of comparable length, a 
maximum likelihood tree of 16S sequences was constructed using IQ-TREE v2.0.3 (150) 
with non-parametric bootstrapping and the best-fit model GTR + F + I + I + R3 as 
determined by ModelFinder (151).

Functional annotation and genome comparison

Gene calling and functional annotation of MAGs were performed with an automated 
pipeline (152) conducting separate searches against Prokka v1.14 (153), NCBI COG 
(downloaded from NCBI webserver in February 2021), arCOG (version from 2018) (154), 
KEGG (downloaded in February 2021) (155), Pfam (release 33.0) (156), TIGRFAM (release 
15.0) (157), CAZy (dbCAN v9) (158), Transporter Classification Database (downloaded 
from TCDB webserver in February 2021) (159), HydDB (downloaded from HydDB 
webserver in February 2021) (70), and NCBI_nr (downloaded from NCBI webserver 
in February 2021). Genes of interest (presence/absence) were determined for meta­
bolic reconstruction mainly based on KEGG and TIGRFAM annotations (see Table S14 
at https://doi.org/10.5281/zenodo.8297777), with the main functions discussed in the 
article manually inspected. Genes for CO2 fixation pathways were screened using a 
customized script based on KEGG decoder v1.2.1 (160, 161). Iron oxidation genes were 
identified using FeGenie v1.1 tool (162), and manganese oxidation genes were annota­
ted using MagicLamp v1.0 with curated lithotrophy hidden Markov models (HMMs) 
(84). Potential stalk formation gene homologs were identified based on a local BLAST 
together with previously studied sequences, % identity cutoffs, and average gene 
lengths previously defined (44). Metal resistance genes were identified in metagenome-
resolved genomes and assembly using the BacMet database version 2.0 with experi­
mentally confirmed and predicted resistance genes (163). Predicted resistance gene 
identification criterion of min. 85% sequence identity with the full-length coverage of the 
short reads (75–300+ bp) was used as advised by the database authors.

Codon bias expression prediction

Codon bias gene expression levels were predicted using coRdon R package (v 1.8.0, 
https://github.com/BioinfoHR/coRdon), based on the measure independent of length 
and composition (MILC) and MILC-based expression level predictor values (164).

Phylogenetic tree of Cyc2

Cyc2 sequences were identified in MAGs present in the black smoker iron microbial 
mat and in all Zetaproteobacteria from all sampled Fåvne sites using FeGenie (162). 
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Additional Cyc2 identifications were made from the top 10 hits using a blastp align­
ment based on the GenBank and NCBI_nr database. References were downloaded with 
BatchEntrez and reannotated as Cyc2 using FeGenie. Sequences shorter than 300 and 
longer than 600 amino acids were filtered out. Identical sequences were dereplicated 
using clustering with CD-HIT v4.8.1 (165). The resulting sequences of similar lengths were 
aligned using MAFFT L-INS-I v7.397 (148), manually checked in AliView v1.26 (166), and 
trimmed using trimAl v1.4. rev15 with -gt 0.7 (positions in the alignment with gaps in 
30% or more of the sequences were removed) (149). A maximum likelihood phylogenetic 
tree was constructed with IQ-TREE v2.0.3 (150) using an alignment of 115 sequences with 
388 positions and the best-fit model Q.pfam +F + I + I + R5, according to ModelFinder 
(151). Branch support values were calculated with standard bootstrapping with 1,000 
iterations. The tree was rooted at midpoint.

Phylogenetic tree of Ni,Fe hydrogenase

The protein sequences of Ni,Fe large subunit hydrogenase 1d were identified from 
several sources: from the Fåvne iron microbial mat MAGs, the reference Zetaproteobacte­
ria, along with their closest relatives. Closest relatives were identified by BLAST Diamond 
annotations using HydDB (downloaded from HydDB webserver in February 2021) (70), 
the top 50 hits using an additional blastp alignment using GenBank and nr database, and 
blastp using a JGI IMG database gene search at 85% identity threshold (August 2022). 
Also, 213 Ni,Fe large subunit hydrogenase 1d reference sequences from HydDB were 
added (downloaded from HydDB webserver in March 2021). Sequences shorter than 460 
amino acids were filtered out. The resulting sequences of similar lengths were aligned 
using MAFFT L-INS-i v7.397 (148), manually checked in AliView v1.26 (166), and trimmed 
using trimAl v1.4. rev15 with -gt 0.5 -cons 60. A phylogenetic tree was constructed with 
IQ-TREE v2.0.3 (150) using an alignment of 317 sequences with 595 positions, based on 
maximum likelihood and the best-fit model LG + I + I + R7, according to ModelFinder 
(151). Branch support values were calculated with standard bootstrapping with 1,000 
iterations. Redundant sequences from several sources (NCBI, IMG JGI) were pruned, 
leaving only one sequence representative. The tree was rooted at midpoint. Environment 
data were pulled from available metadata and taxonomy from NCBI with corrections 
based on GTDB where genomes were present.

Viral genomes

CheckV v.0.8.1 (167), VIBRANT v.1.2.1 (168), and DeepVirFinder (169) were used to search 
for viruses in the unbinned sequences. Quality of the viral genomes was checked using 
CheckV and reported according to minimum information requirements on uncultiva­
ted viral genomes (170). We predicted host-virus associations in the iron microbial 
mat using host CRISPR-spacers, integrated prophage, host tRNA genes, and k-mer 
signatures with VirMatcher, accessed in September 2022 (https://bitbucket.org/MAVERI­
CLab/virmatcher/). This was done using minCED (v. 0.4.2; https://github.com/ctSkenner­
ton/minced), BLAST (171), promiscuous tRNA sequences (172), tRNAscan (173), and WIsH 
(174). Score of 3 was used as a threshold value to assign hosts based on previous 
approaches (175). Host-virus pairs were analyzed also with PHP host predictor software 
using K-mer predictions (176).
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