
Tianjiao Zhang is an associate professor of College of Computer and Control Engineering at Northeast Forestry University of China. His research interests include
bioinformatics.
Ziheng Zhang is a master candidate of College of Computer and Control Engineering at Northeast Forestry University of China. His research interests include
bioinformatics.
Liangyu Li is a master candidate of College of Computer and Control Engineering at Northeast Forestry University of China. His research interests include
bioinformatics.
Benzhi Dong is a professor of College of Computer and Control Engineering at Northeast Forestry University of China. His research interests include
bioinformatics.
Guohua Wang is a professor of College of Computer and Control Engineering at Northeast Forestry University of China. He is also a principal investigator at Key
Laboratory of Tree Genetics and Breeding, Northeast Forestry University. His research interests are bioinformatics, machine learning and algorithm.
Danan Zhang is an associated professor of Department of Gynaecology and Obstetrics in the First Affiliated Hospital of Harbin Medical University. Her research is
bioinformatics of cancers.
Received: October 21, 2023. Revised: November 20, 2023. Accepted: November 28, 2023
© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For
commercial re-use, please contact journals.permissions@oup.com

Briefings in Bioinformatics, 2024, 25(1), 1–13

https://doi.org/10.1093/bib/bbad469

Problem Solving Protocol

GTAD: a graph-based approach for cell spatial
composition inference from integrated scRNA-seq and
ST-seq data
Tianjiao Zhang , Ziheng Zhang , Liangyu Li , Benzhi Dong, Guohua Wang and Dandan Zhang
Corresponding authors: Guohua Wang, College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China. Tel.: +86-13946094199;
Fax: +86-13946094199. E-mail: ghwang@nefu.edu.cn; Dandan Zhang, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Harbin Medical
University, Harbin 150001, China. Tel.: +86-15846002980; Fax: +86-15846002980. E-mail: 15846002980@163.com

Abstract

With the emergence of spatial transcriptome sequencing (ST-seq), research now heavily relies on the joint analysis of ST-seq and single-
cell RNA sequencing (scRNA-seq) data to precisely identify cell spatial composition in tissues. However, common methods for combining
these datasets often merge data from multiple cells to generate pseudo-ST data, overlooking topological relationships and failing to
represent spatial arrangements accurately. We introduce GTAD, a method utilizing the Graph Attention Network for deconvolution of
integrated scRNA-seq and ST-seq data. GTAD effectively captures cell spatial relationships and topological structures within tissues
using a graph-based approach, enhancing cell-type identification and our understanding of complex tissue cellular landscapes. By
integrating scRNA-seq and ST data into a unified graph structure, GTAD outperforms traditional ‘pseudo-ST’ methods, providing robust
and information-rich results. GTAD performs exceptionally well with synthesized spatial data and accurately identifies cell spatial
composition in tissues like the mouse cerebral cortex, cerebellum, developing human heart and pancreatic ductal carcinoma. GTAD
holds the potential to enhance our understanding of tissue microenvironments and cellular diversity in complex bio-logical systems.
The source code is available at https: //github.com/zzhjs/GTAD.
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INTRODUCTION
In tissues, different types of cells execute their functions through
their spatial organization and structure. Revealing the intricate
spatial architecture of heterogeneous tissues is of paramount
importance for understanding cellular mechanisms and func-
tions in diseases. The rapid development of high-throughput
single-cell sequencing technology [1–3] has enabled the study
of cellular heterogeneity and gene expression specificity at
unprecedented resolutions. Advances in spatial transcriptomics
(ST) [4–7] have made it possible to measure gene expression
while retaining spatial information, presenting significant
opportunities for studying cell heterogeneity [8], intercellular
communication [9] and interactions [10] within a spatial context.
Breakthrough techniques can capture spatial gene expression
of the whole genome at subcellular to single-cell levels [11, 12].

These methods have been applied in various disease models to
decipher spatial maps of genes and culprits of interest [13–15].

However, inherent limitations exist in ST analysis, mainly that
in most cases, each spot or tile covers multiple cells. Even with
high-resolution techniques, a small fraction of several cells can
be encompassed within the same spatial barcode region. Addi-
tionally, highly heterogeneous tissues, such as cancers, consist
of various cell types in every small region of the tissue [16].
Therefore, identifying different cell types at each spot is a crucial
task for understanding the pathological and physiological spatial
context using spatially resolved transcriptomics.

To comprehend cell-type distributions from ST, the most
common strategy is to combine it with scRNA-seq. Currently,
mainstream methods primarily rely on deconvolution approaches
that aim to estimate the exact cell-type proportions at each
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spatial position through regression models [17, 18], deep learning
models [19, 20] or fitting probability distributions [21, 22]. Deep
learning models often combine multiple cells to simulate the
composition of real ST data. In this step, the gene expression
values of multiple cells are often summed as the gene expression
of a single spot to create pseudo-ST data. However, due to different
experimental and technical conditions, such as sequencing depth
and batch effects [23], pseudo-ST data composed of scRNA-seq
are influenced differently compared with real ST data, leading to
inconsistency between the datasets, impacting data comparison
and overall interpretation. Furthermore, the relationship between
pseudo-ST data and real ST data is vital. In research, pseudo-
ST data are generated by mixing scRNA-seq data from the same
tissue to simulate ST data. The generation of pseudo-ST data aims
to provide a theoretically controllable dataset for evaluating and
optimizing deconvolution method performance. In this study, the
relationship between pseudo-ST data and real ST data is crucial.
The objective of deconvolution is to reconstruct the cell-type
composition at different locations (spots) from real ST data to gain
an in-depth understanding of cell-type distributions and spatial
structures in tissues. However, traditional simple graph methods
have limitations when dealing with the relationship between
pseudo-ST data and real ST data. These methods typically employ
a simplified data representation that may not fully capture
richer information, such as cell-to-cell topological relationships
and spatial correlations. Given the significance of intercellular
interactions and relative positions in complex biological tissues,
these factors play pivotal roles in the recognition of cell types and
the analysis of spatial distribution. Conventional simple graph
methods may not adequately account for these critical factors.

To overcome these limitations, we propose a new method called
GTAD: A Graph-based Approach for Cell Spatial Composition
Inference from Integrated scRNA-seq and ST-seq Data, which
utilizes a Graph Attention Network (GAT) model for deconvolution
[24]. We use Seurat’s IntegrateData method [25] to integrate the
generated pseudo-ST data and real ST data to eliminate batch
effects between them, enhancing data consistency and compa-
rability. Subsequently, we employ a random projection forest [26]
to construct a weighted adjacency matrix to accurately repre-
sent the topological relationship between pseudo-ST and real ST.
Importantly, by integrating features and the weighted adjacency
matrix into the GAT model, we can infer the cell-type composi-
tion at each position in ST. We validated GTAD’s accuracy and
sensitivity in predicting cell-type proportions through simulated
ST data. Furthermore, to demonstrate the broad applicability of
GTAD, we applied it to ST datasets from four different tissues,
including mouse cerebral cortex, cerebellum, developing human
heart and pancreatic ductal adenocarcinoma (PDAC). Through the
joint analysis of spatial and single-cell transcriptomic data, GTAD
revealed cell spatial composition and heterogeneity.

Compared with existing methods, GTAD employs a GAT model
for deconvolution, accurately revealing the topological relation-
ship between pseudo-ST and real ST and enhancing the resolution
of cell-type distribution in tissues. Moreover, GTAD’s versatility
has been experimentally validated in four different tissue con-
ditions, showcasing its robustness and reliability across diverse
scenarios. Thus, GTAD provides a novel, more accurate and com-
prehensive approach for the analysis of ST data.

MATERIAL AND METHODS
Implementation of GTAD
First, we apply the enhanced GAT model to predict the cell-
type proportions for each spot. The neural network training is

implemented using the TensorFlow package [27] (version 2.12)
(Figure 1):

1. Feature Selection and Synthetic Pseudo-ST Data Genera-
tion: Based on the gene expression matrix from scRNA-seq and
the cell types obtained from the metadata, we conducted total
count normalization of the gene expression data. Differential gene
expression analysis was carried out for each cell subgroup using
the Wilcoxon Rank-Sum test. This analysis allowed us to identify
and select the most differentially expressed genes with biological
significance as the feature genes. These extracted genes were
utilized as features to filter the gene expression matrices of both
scRNA-seq and ST data. Subsequently, the filtered scRNA-seq data
was employed to generate synthetic pseudo-ST data with known
cellular components.

2. Integration of Pseudo-ST and Real ST Data. To enhance the
consistency and comparability of the generated pseudo-ST data
with real ST data, a series of steps were undertaken. Initially,
we standardized and reduced the dimensionality of data from
each dataset using techniques like principal component analy-
sis. This step facilitated computational efficiency and captured
crucial cellular features. Similarity scores between spots within
each dataset were computed, often utilizing metrics like cosine
similarity. Between datasets, we identified anchor points—pairs
of spots with high similarity scores—indicating similar expres-
sion patterns. Aligning these anchor points maximized similar-
ity scores, allowing the integration of spot pairs from different
datasets. The anchor point information guided the creation of
cross-dataset connections, and the feature representations were
mapped into an integrated space. The combined dataset, com-
prising both pseudo-ST and real ST data, served as the feature
representation matrix X, where each row represented a spot, and
each column represented a feature dimension.

3. Graph Construction Using Random Projection Forest. Pseudo-
ST data are derived from the manipulation of genes that exhibit
significant expression variations among distinct cell types in
scRNA-seq data. These genes in scRNA-seq data hold valuable
insights into different cell types. To better analyze the pseudo-
ST data alongside real ST data, a graph structure is utilized to
depict the topological relationships between pseudo-spots and
real spots. This graphical representation aids in unraveling the
intricate interplay between these complex datasets, enabling
more profound biological insights.

Using a graph structure to depict the relationships between
pseudo-spots and real spots is motivated by its capacity to model
intricate spatial connections and interactions within ST datasets.
This is crucial because neighboring spots in the spatial context
often exhibit similarities in gene expression patterns or functional
associations, and a graphical representation effectively captures
these local dependencies. Furthermore, the utilization of graph-
based representations is well founded, as similar methods have
been successfully employed in the past within the domain of ST
[20].

Using the integrated data as input features, a random
projection forest (rpForest) was employed to generate an
adjacency matrix by constructing multiple random projection
trees (rpTrees). Each rpTree projected and partitioned the data
based on random directions, resulting in different leaf nodes.
By connecting data points that fell into the same leaf node, an
adjacency matrix was constructed. A random projection forest
is chosen for graph construction due to its effectiveness in
addressing key challenges. Unlike traditional k-nearest neighbors
(k-NN) methods that require specifying a neighborhood size,
random projection forests adaptively partition data, connecting
points in the same leaf node. This dynamic approach adjusts edge
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Figure 1. Framework of GTAD for deconvoluting ST data.

weights based on common presence in leaf nodes, resulting in a
weighted adjacency matrix reflecting spot similarity. Considering
data point distribution during construction, random projection
forests overcome equi-weighted edges issues in traditional k-NN
graphs, providing a more accurate representation of similarity.

The weighted adjacency matrix is represented as A, where each
element Aijsignifies the connection weight between node i and
node j.

4. Model Construction: Traditional graph convolutional net-
works (such as GCN) [28] employ fixed weights for each node when
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aggregating node information, meaning that every node attributes
the same importance to neighboring nodes’ information. In cer-
tain cases, this approach may not be flexible enough, as rela-
tionships between different nodes can be diverse and complex,
and a fixed weight cannot accurately capture this intricacy. The
GAT model addresses this issue by introducing a graph attention
mechanism. It adaptively learns the importance and degree of
association between nodes by computing attention weights.

Utilizing the relationship between the graph structure and
node features, the GAT model adaptively learns the importance
and degree of association between nodes through attention
weight computation. Graph data typically involve intricate
relationships between nodes, where certain connections between
nodes hold more significance than others. By introducing
graph weights, the model can dynamically allocate distinct
weights to each node and its neighboring nodes. This dynamic
allocation enhances the model’s capability to effectively capture
relationships between nodes. Consequently, the model can more
accurately depict information propagation within the graph.
The GAT model comprises multiple graph attention heads,
each capable of learning different attention weight distributions
between nodes, thus capturing contextual information for nodes.
Each head generates an aggregated feature representation of
nodes by weighting and summing input features and attention
weights.

Attention coefficients

For each attention layer, considering N node features,
−→
h ={−→

h 1,
−→
h 2, . . . ,

−→
h N

}
,
−→
h i ∈ RF, where the dimension of each node

feature is F, the computation of attention coefficients can be
represented as follows:

eij =
(−→a T

[
W

−→
h i

∥∥∥W
−→
h j

])
(1)

where eij is the attention coefficient of node i relative to node j,

and −→a T
and W are shared learnable parameters.

Weighted adjacency matrix
Subsequently, the previously calculated weights of the adjacency
matrix are incorporated into the model, emphasizing the topolog-
ical relationships of the graph:

V = E � A (2)

where V are the attention coefficients, which take into consid-
eration the weights of the adjacency matrix; E are the attention
coefficients between all nodes; A is the overall weight of the
adjacency matrix.

Normalization
To achieve better weight distribution, it is necessary to uniformly
normalize the calculated relevance with respect to all neighbors,
typically accomplished through softmax normalization:

αij = softmaxj
(
vij

) = exp
(
vij

)
∑

k∈Ni
exp (vik)

(3)

where aij is the normalized attention coefficient of node i with
respect to node j. vij is the attention coefficient of node i relative
to node j.

Multi-head attention
By parallelly computing multiple attention heads, the multi-head
attention mechanism can capture different patterns of correla-
tions and information interactions, thus providing a more com-
prehensive understanding of the input sequence:

h′
i =∥∥K

k=1σ

⎛
⎝ ∑

vj∈N(vi)

α
(k)

ij W(k)hj

⎞
⎠ (4)

where h′
i is the new feature of node i after incorporating neighbor-

hood information;
∥∥∥ is operations such as vector concatenation or

averaging; and σ is the activation function.

ST cell-type deconvolution
In this work, cross-entropy serves as the loss function, quantifying
the variance between predicted and actual class distributions in
multi-class classification tasks. The softmax activation function
is employed to transform model outputs into a probability dis-
tribution across classes, simplifying precise class selection based
on the highest probability. These choices collectively enhance
classification accuracy and render the model’s output readily
interpretable. After the completion of training,

Ŷ = GAT (X, A) , Ŷ =
[

Ŷp

Ŷr

]
(5)

where Ŷ is the ultimately predicted cellular type proportions for
all spots, Ŷp is the cellular type proportions for pseudo-spots and
Ŷr is the cellular type proportions for genuine spots.

Hence, the predicted cellular composition for real-ST spots is
Ŷr.

Evaluating GTAD’s performance using simulated
ST data
Simulating ST data from scRNA-seq
We created pseudo-spatial transcriptomics (pseudo-ST) datasets
using two distinct single-cell RNA sequencing (scRNA-seq)
datasets: the mouse trachea dataset (Montoro_10x and Plass-
chaert) from the Cell BLAST database and the colorectal cancer
dataset from scRNA-seq data of Korean and Belgian colorectal
cancer patients (GSE132465 and GSE144735) [29]. Synthetic ST
datasets were generated for cell-type deconvolution accuracy
evaluation. These synthetic ST datasets comprised spots that
represented a mix of two to eight cells randomly selected from
the scRNA-seq data. They closely mimic real-world ST data,
serving as ground-truth references to assess GTAD’s performance
in estimating cell-type proportions within each synthetic spot.

Performance evaluation
We used the Jensen–Shannon distance (JSD) [30], a metric that
measures the similarity between two probability distributions. JSD
values range from 0 to 1, where 0 indicates identical distributions,
and 1 indicates completely dissimilar distributions. Smaller JSD
values represent higher accuracy in estimating cell-type compo-
sitions.

Benchmarking different parameters
We extracted genes with significant expression differences
among different cell types to select appropriate features for
model training. To investigate the impact of varying gene
numbers, we conducted benchmark tests. Similarly, we performed
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benchmark tests to explore the influence of different numbers
of pseudo-spots on model training. We used spot-level JSD as
an evaluation metric to assess the model performance across
different attributes.

Benchmarking different deconvolution methods
We employed simulated ST data to compare the performance of
GTAD against other ST deconvolution tools, including CellDART
[19], STRIDE [22],DSTG [20], RCTD [21] and SPOTlight [17]. When
running each of these published methods, we kept all parameters
at their default settings as specified in their respective docu-
mentation. We evaluated these methods using the JSD metric
described in the ‘Performance Evaluation’ section, comparing the
average JSD values across all spots.

Sources of scRNA-seq and ST data
We conducted an analysis using ST datasets from various sources.
For the mouse brain, we used the ‘Mouse Brain Sequencing Slices
(Sagittal - Anterior)’ dataset from the 10X Genomics Data Repos-
itory and combined it with scRNA-seq data from the mouse pri-
mary visual cortex and anterior lateral motor cortex (GSE115746).
This allowed us to gain insights into specific layer-specific exci-
tatory neuron types. In the case of the mouse cerebellum, we
utilized the Slide-seq V2 dataset from prior RCTD research along
with accompanying scRNA-seq data covering 19 distinct cell types
from the DropViz database. Our analysis also included human
heart data from a previous study [31], and we performed prepro-
cessing steps to convert ENSEMBL IDs to gene names for seamless
dataset integration. Finally, for pancreatic cancer tissue analysis,
we utilized data from the study GSE111672. These datasets were
selected for their relevance and potential insights into various
tissue types and disease conditions.

RESULTS
Assessing the impact of feature gene selection
and pseudo-ST data quantity on GTAD
deconvolution performance
In GTAD, selecting feature genes and determining the number
of pseudo-ST data are critical steps influencing the model’s per-
formance and resource consumption. We conducted benchmark
tests using healthy mouse trachea data to explore their impact.

Feature Genes: We examined the influence of the number
of differentially expressed genes (feature genes) between cell
types on GTAD’s performance (Supplemental Figure S1A). Five
quantities of feature genes (20, 30, 40, 50 and 60) were tested.
Performance improved with more feature genes up to 30, likely
because <30 genes couldn’t represent cell-type differences. How-
ever, exceeding 30 genes led to performance decline due to noise,
disrupting the model and causing overfitting. Thus, the right
number of feature genes is crucial.

Pseudo-ST Data: We investigated the effect of the number of
pseudo-ST data (ranging from 2500 to 12 500) on GTAD’s per-
formance (Supplemental Figure S1B). Performance improved up
to 10 000 as more data provided better learning. Beyond 10 000,
performance declined due to noise and redundancy, resulting in
overfitting. Too much data introduced irrelevant information and
complexity, affecting generalization to real ST data. Therefore,
balancing pseudo-ST data quantity is essential for optimal per-
formance.

In summary, selecting the right number of feature genes and
pseudo-ST data is crucial for GTAD’s deconvolution performance.

Excessive quantities can introduce noise and overfitting. Achiev-
ing the best results requires a careful balance in practical appli-
cations.

Evaluate algorithm performance in comparison
with state-of-the-art methods
Our goal was to assess the performance of various methods under
both normal and pathological conditions. We compared GTAD
with other established cell-type deconvolution tools, including
CellDART [19], STRIDE [19], DSTG [20], RCTD [21] and SPOTlight
[17]. Across simulated datasets from healthy mouse trachea and
human colorectal cancer, GTAD consistently outperformed other
methods, demonstrating superior performance across various
scenarios and pathological tissues (Figure 2A, B).

Significant performance variations were observed among
methods, with better performance in the healthy mouse trachea
dataset compared with the complex human colorectal cancer
dataset [29]. However, GTAD consistently excelled in both
datasets, achieving JSD values at least 2% lower than CellDART
and STRIDE. Statistical analysis, using the Wilcoxon Rank-Sum
test [32], confirmed GTAD’s superiority (Supplemental Table S1).
The Wilcoxon rank-sum test, selected for its non-parametric
nature and robustness, is employed to rigorously compare
GTAD with other methods, ensuring that observed differences
in performance are statistically significant. This choice allows
for a valid assessment of GTAD’s superiority, particularly when
dealing with complex and potentially non-normally distributed
data, making it a suitable statistical tool for this comparative
analysis. Violin plots illustrated GTAD’s accurate deconvolution
of cell-type compositions, closely aligning with the ground
truth (Figure 2C, D). These findings underscore GTAD’s robust
performance in diverse datasets, reaffirming its ability to
reconstruct cell-type compositions accurately.

In summary, our analysis of synthetic cell mixtures and
comparative assessments validate GTAD as a superior method
for deconvolving cell-type compositions across various biological
systems and pathological tissues. These results offer valuable
insights for spatial transcriptomic data analysis.

Decomposition of spatial cell distribution with
GTAD in mouse brain data
To validate the capability of the GTAD method in elucidating
the microanatomical structure of complex tissues, we conducted
experiments using 10X Visium ST data from the mouse cerebral
cortex. This cortex exhibits a well-defined cellular architecture,
making it highly suitable for evaluating the performance of the
GTAD method. According to the metadata of the scRNA-seq data,
this tissue encompasses 28 distinct cell subtypes, each character-
ized by unique gene expression patterns.

Leveraging this scRNA-seq data, the GTAD method performed
spatial deconvolution on the ST data, successfully reconstructing
the structure of the cerebral cortex (Figure 3B). We represented
the proportions of identified heterogeneous cells at each local
spot using pie charts. The presence of these proportions in cortical
regions confirmed the high predictive accuracy and sensitivity
of the GTAD method. Additionally, the GTAD method predicted
and spatially mapped layer-specific excitatory neuron scores for
each spot. In mouse brain tissue, we observed seven excitatory
neurons displaying spatially restricted patterns in specific cortical
layers, aligning with the hierarchical structure of excitatory neu-
rons reported in previous research [33] (Figure 3C). These results
demonstrate the GTAD method’s ability to accurately reveal cell
types and hierarchical structures in the cerebral cortex.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad469#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad469#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad469#supplementary-data
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Figure 2. Performance assessment of GTAD on benchmark datasets. (A) Assessment and comparative analysis of the performance of various methods
on simulated spatial data generated from scRNA-seq data of human colorectal cancer. (B) Evaluation and comparison of the performance of different
methods on simulated spatial data generated from scRNA-seq data of healthy mouse trachea. (C) Violin plots illustrating the comparative performance
of various methods on the simulated dataset of human colorectal cancer. (D) Violin plots illustrating the comparative performance of different methods
on the simulated dataset of healthy mouse trachea. In (A)–(D), the y-axis represents JSD (Jensen-Shannon Divergence) values. Wilcoxon Signed-Rank
tests were conducted to compare JSD values between GTAD and other methods. Statistical significance (∗∗∗∗P-value < 10–4) is indicated at the top of
the violin plots in (C) – (D).

Furthermore, the cell compositions predicted by the GTAD
method for each region provided more detailed information about
their heterogeneity (Figure 3D). Specific investigations revealed
that the enrichment of each cell type in an area correlated with
its determined proportion. For instance, L2/3 subgroups displayed
higher representation in the outer regions of the cortex, while
spots with a higher proportion of L6b cells were predominantly
located in the inner cortex layers. These findings align with
the laminar cellular architecture of cortical tissue. The GTAD
method’s capability to identify different spatial cell compositions
within each cortical neuron layer further underscores its accuracy
and sensitivity.

In summary, through the analysis of mouse cerebral cortex
data, the GTAD method demonstrates feasibility and advantages
in revealing the microanatomical structure of complex tissues.
Our results emphasize the potential of GTAD when applied to
brain tissue and other biological systems, providing valuable guid-
ance and methodologies for ST research.

Application of GTAD on Slide-seq V2 mouse
cerebellum data
To validate the applicability of the GTAD method to Slide-seq2
sequencing technology [11], we utilized mouse cerebellar slice

data obtained through Slide-seq2 technology [34]. The mouse
cerebellum exhibits a well-defined hierarchy of cell types, making
it an ideal sample for assessing cell-type resolution performance.
To further validate the reliability and applicability of the GTAD
method, we collected publicly available snRNA-seq datasets as
a reference and then used GTAD to map reference cell types to
the spatial locations in the Slide-seq2 images (Figure 4A). This
approach enabled us to gain a more accurate understanding of
the distribution and spatial relationships of different cell types in
the mouse cerebellum.

According to previous literature, the mouse cerebellar cortex
is divided into three layers (Table 1). At the top is the molecular
layer, in the middle is the Purkinje layer, and at the bottom is
the Granular layer, which contains granule cells [35]. Beneath
the cortex is the white matter region, rich in oligodendrocytes
and astrocytes. The GTAD deconvolution results align with the
literature description (Figure 4B), where the MLI1 and MLI2 molec-
ular layer interneurons (MLIs) are mapped to the topmost and
outermost layers of the cerebellar cortex. Bergmann and Purkinje
cells co-locate in the same middle layer, the Purkinje layer, while
granule cells are found in the sub-bottom Granule layer. Oligoden-
drocytes and astrocytes are distributed below the Granular layer,
notably enriched in the innermost regions of the cerebellar slice.
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Figure 3. Cell analysis of mouse cerebral cortex tissue using GTAD. (A) Slice of mouse brain tissue. (B) Spatial representation in pie chart format displays
the predicted cell-type composition for each spot within the cortical layers. (C) Layer-specific arrangement of neurons as reported in previous studies.
(D) Spatial mapping of 7 layer-specific excitatory neurons in the mouse cortex. Color mapping indicates the minimum and maximum values of the
corresponding cell scores.

In summary, GTAD can accurately deconvolve cell types from ST
data generated by Slide-seq and reconstruct the layered structure
of the mouse cerebellum.

It is worth emphasizing that the GTAD method is not only appli-
cable to common single-cell sequencing technologies like 10X
Genomics but can also be successfully applied to other sequenc-
ing methods such as Slide-seq2. This feature expands the poten-
tial applications of GTAD in studying the spatial organization of
various biological samples and cell types, further broadening the
research scope and application of the GTAD method. By combin-
ing Slide-seq2 with GTAD, we have achieved satisfactory results in

our study of the mouse cerebellum and provided powerful tools
and methods for future spatial organization research in other
biological systems.

Application of GTAD on developmental human
heart dataset revealed spatial localization
patterns of cell types
To validate the applicability of the GTAD method in different
biological tissues, especially human organs, we further applied
it to the study of organ development and spatial organization.
A recent study [31] provided a comprehensive spatiotemporal
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Figure 4. Cellular analysis of mouse cerebellar tissue using GTAD. (A) Spatial distribution of all predicted cell types by GTAD. Each spot represents pixels
captured by Slide-seq V2, with colors indicating different cell types. (B) Spatial distribution of cell types, including Granule cells, Oligodendrocytes,
Purkinje cells and MLIs. The color mapping represents the minimum and maximum values of corresponding cell scores.

Table 1: Anatomy and cellular organization of the cerebellar
cortex

Cerebellar cortex layers Cell types

Molecular layer MLI1
MLI2
Purkinje cell dendritic arbors

Purkinje layer Purkinje cell bodies
Bergmann cells

Granular layer Granule cells
White matter Oligodendrocytes

Astrocytes

map of human heart development using an integrated approach
combining scRNA-seq, ST and in situ sequencing (ISS). We chose
the developmental heart data from the latest 2022 dataset for
deconvolution experiments to explore the effectiveness of the
GTAD method in cardiac development research (Figure 5A).

As anticipated, GTAD accurately predicted ventricular and
atrial cardiomyocytes’ highest proportions within the ventricles
and atria, respectively (Figure 5A). Epicardial cells were precisely
localized to the outer heart layer, known as the epicardium.
Remarkably, cardiac neural crest cells and Schwann progenitor
cells, a rare cell type identified via scRNA-seq, occupied the
interstitial region. Smooth muscle cells were predominantly
mapped to the outflow tract, consistent with expectations [36]
(Figure 5B).

Epicardial cells, forming the thin outer heart layer (epi-
cardium), displayed significantly high distribution proportions
covering the heart’s periphery, aligning with GTAD predictions.
Cells derived from the epicardium formed a slightly thicker layer,
also present within the outflow tract during epicardium devel-
opment [37]. Our research findings successfully recapitulated
these patterns, shedding light on critical processes in cardiac

structural development. GTAD’s cell-type map closely aligned
with the original study’s ISS cell map.

We examined the distribution of known cell type-specific
marker genes [38] (Figure 5C). Top marker gene MYL2 for ven-
tricular cardiomyocytes exhibited high expression in ventricular-
dominant spots in the ST data, consistent with predicted
proportions. Similarly, top markers MYH6 and Secreted Frizzled
Related Protein 2 (SFRP2) for atrial cardiomyocytes and smooth
muscle cells showed high expression at their respective locations.
These genes had either low expression or went undetected at
other spatial spots, reflecting the heterogeneous composition of
cell types at specific ST spots.

In summary, through GTAD, we accurately reconstructed cell-
type distributions and interactions in the spatial organization of
heart development, confirming GTAD’s applicability in human
organ research.

GTAD characterized the spatial heterogeneity of
tumor cells in human PDAC microenvironment
To validate GTAD’s performance on cancer data, we applied it
to human PDAC samples and utilized matched scRNA-seq data
(inDrop) as reference data to determine the spatial location of
different cell types within the tissue (Figure 6B). We further ver-
ified the accuracy of the prediction results through consistency
with annotated regions in the original study [39] (Figure 6A),
demonstrating the reliability of the GTAD method in revealing the
spatial distribution of cell types.

In particular, we emphasized GTAD’s advantage in identifying
the enrichment or depletion of cell type-specific genes at their
respective spatial locations by examining the distribution of
known marker genes for different cell types [38] (Figure 6C, D).
We observed that in PDAC, cancer clone A and B cells were
located in the cancerous regions, with cancer clone B cells
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Figure 5. Application of GTAD in the developing human heart. (A) Spatial distribution of all predicted cell types by GTAD. Each spot represents an ST
spot, and colors represent different cell types. (B) Spatial distribution of selected cell types, including ventricular cardiomyocytes, atrial cardiomyocytes,
smooth muscle cells, epicardial cells, epicardium-derived cells and erythrocytes. (C) Spatial mapping of marker genes for each cell-type depicted in (B).
Color mapping indicates the range of corresponding cell scores.
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Figure 6. Analysis of the PDAC SRT data. (A) H&E staining image of PDAC. (B) Visualization of the deconvolution results. Spatial scatter plots depict the
predicted cell-type composition by GTAD, with each spot representing a spot in the SRT data. (C) Visualization of the abundance of selected cell types
at each spatial location. (D) Expression levels of marker genes for the corresponding cell types in (D).
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Figure 7. Analysis of the human endometrial carcinoma data. (A) Visualization of the deconvolution results. Spatial scatter plots depict the predicted
cell-type composition by GTAD, with each spot representing a spot in the SRT data. (B) Visualization of the abundance of selected cell types at each
spatial location.

primarily distributed in the top subregion, consistent with the
spatial expression patterns of marker genes TM4SF1 and S100A4.
Central ductal acinar cells were enriched in the ductal epithelium
region, consistent with the expression pattern of the marker gene
Cysteine-rich secretory protein 3 (CRISP3). Ductal centroacinar
cells were mainly present in the ductal epithelium region and
stromal region, in accordance with the expression pattern of the
marker gene Apolipoprotein L1 (APOL1). Terminal ductal cells
were predominantly found in the ductal epithelium region and
stromal region, mirroring the expression pattern of the marker
gene Trefoil Factor 3 (TFF3). Meanwhile, the expression levels of
these genes in other spots were lower or undetectable.

Furthermore, when examining cell-type enrichment/depletion
within annotated tissue regions, we observed distinct enrichment
patterns between normal pancreatic and tumor cells in differ-
ent areas [40]. Notably, our application of the GTAD method in
endometrial carcinoma tissues yielded promising results, empha-
sizing its efficacy in diverse pathological contexts (Figure 7, [41,
42]). This finding further underscores the effectiveness and poten-
tial of GTAD in deconvoluting cancer or other pathological tissues.
These results highlight the significant utility of GTAD in deter-
mining the localization and distribution of cell types in cancer
or other pathological tissues, providing valuable insights and
understanding for research into related diseases.

DISCUSSION
In contemporary biological research, the integration of multi-
omics technologies provides a powerful tool for gaining compre-
hensive and in-depth biological insights. With advancements in
technology, we can now simultaneously acquire diverse biological

information, enabling the integration and analysis of multi-
omics data [43, 44]. This comprehensive analysis not only aids
in deciphering the spatial distribution map of cells within tissues
but also reveals spatial interactions and regulatory mechanisms
among different cell types, thus enhancing our understanding of
the complexity and physiological functions of biological systems
[45].

In this study, we present GTAD, an innovative method for
integrating scRNA-seq and ST data to enhance our understanding
of tissue cell composition. By capturing spatial relationships,
GTAD improves cell-type identification, revealing intricate tis-
sue microstructures. Benchmarking on two reference datasets
demonstrates GTAD’s superior accuracy in inferring cell spa-
tial composition compared with alternative methods. Further
experiments showcase GTAD’s efficacy in uncovering spatially
located cell states and subpopulations across diverse biological
tissues, offering a valuable tool for exploring tissue microenviron-
ments and cellular heterogeneity in complex systems.

However, we acknowledge some limitations in this study. Firstly,
the complexity of tissues is often driven by factors such as cellular
diversity, intricate microenvironments, and gene expression vari-
ability. This complexity can pose challenges to the performance
of our model. Specifically, it can lead to increased noise and
uncertainty in data analysis. For instance, even within the same
cell types, gene expression can vary due to local environments
or other factors, particularly in cancer tissues. These differences
might be mistakenly interpreted as genuine biological variations,
making it difficult to accurately identify cell types or predict their
spatial distribution. To address this challenge, approaches like
denoising autoencoders for data denoising and the application
of pretrained models for preliminary categorization of cancer
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cells can be employed. These strategies are capable of handling
larger and more diverse datasets effectively. Secondly, our method
relies on feature gene selection from scRNA-seq data, which may
require more precise filtering methods for rare or unknown cell
types. Additionally, our method currently does not consider the
potential correlations between the spatial positions of cells, which
is an area for future improvement.

In summary, the GTAD method provides a novel and effective
tool for deciphering the composition of cell types and spatial
structures in complex tissues. By integrating scRNA-seq data
with ST data and employing GATs for analysis, GTAD demon-
strates significant advantages in studying cell heterogeneity and
microstructures within tissues. Future efforts will focus on fur-
ther refining the GTAD method to adapt to more complex and
heterogeneous tissues, as well as enhancing the precision and
efficiency of data analysis. We believe that the application of
GTAD will contribute to the advancement of the field of ST and
provide deeper insights into the complexity and functionality of
biological tissues.

Key Points

• We have developed an innovative model based on
graph attention neural networks, known as GTAD. This
model extensively leverages the topological relation-
ships among the data with the precise goal of accurately
deciphering the gene expressions at each ST data point
and reconstructing their cellular components.

• GTAD demonstrates remarkable accuracy and robust-
ness, making it applicable across various experimen-
tal designs, ST platforms, and tissues originating from
diverse organs.

• GTAD is provided in an open-source format and can be
directly applied for the precise analysis of tissue spatial
structures and functions.

Data availability
This study utilized eight publicly available datasets. The mouse
trachea dataset was obtained from the Cell BLAST database
(https://cblast.gao-lab.org/) with dataset IDs Montoro_10x and
Plasschaert. Colorectal cancer datasets were sourced from
GSE132465 and GSE144735, respectively. For the mouse brain
dataset, the ST data can be downloaded from the 10X Genomics
data repository (https://www.10xgenomics.com/cn/resources/
datasets) with the sample_id ‘V1_Mouse_Brain_Sagittal_Anterior,’
while the scRNA-seq data were sourced from GSE115746. Mouse
cerebellum ST data were obtained from a previous study, RCTD
(https://singlecell.broadinstitute.org/single_cell/study/SCP948).
Human developing heart data all originated from a prior study
and can be accessed at (https://data.mendeley.com/datasets/
mbvhhf8m62/2). The scRNA-seq and ST data for pancreatic ductal
adenocarcinoma (PDAC) were sourced from the published dataset
GSE111672, while the endometrial cancer data were derived from
GSE203612.

The Python source code and R source code for GTAD have been
uploaded to https://github.com/zzhjs/GTAD.

Supplementary Data
Supplementary data are available online at https://academic.oup.
com/bib.
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