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Abstract

Early life stress (ELS) can impact brain development and is a risk factor for neurodevelop-

mental disorders such as schizophrenia. Post-weaning social isolation (SI) is used to model

ELS in animals, using isolation stress to disrupt a normal developmental trajectory. We

aimed to investigate how SI affects the expression of genes in mouse hippocampus and to

investigate how these changes related to the genetic basis of neurodevelopmental pheno-

types. BL/6J mice were exposed to post-weaning SI (PD21-25) or treated as group-housed

controls (n = 7–8 per group). RNA sequencing was performed on tissue samples from the

hippocampus of adult male and female mice. Four hundred and 1,215 differentially-

expressed genes (DEGs) at a false discovery rate of < 0.05 were detected between SI and

control samples for males and females respectively. DEGS for both males and females were

significantly overrepresented in gene ontologies related to synaptic structure and function,

especially the post-synapse. DEGs were enriched for common variant (SNP) heritability in

humans that contributes to risk of neuropsychiatric disorders (schizophrenia, bipolar disor-

der) and to cognitive function. DEGs were also enriched for genes harbouring rare de novo

variants that contribute to autism spectrum disorder and other developmental disorders.

Finally, cell type analysis revealed populations of hippocampal astrocytes that were enriched

for DEGs, indicating effects in these cell types as well as neurons. Overall, these data sug-

gest a convergence between genes dysregulated by the SI stressor in the mouse and genes

associated with neurodevelopmental disorders and cognitive phenotypes in humans.

Introduction

Early life stress (ELS) includes childhood exposure to a range of adversities, and is associated

with increased risk for neurodevelopmental disorders [1]. One such stressor is social isolation
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(SI), a situation in which an individual is deprived of typical and expected social interaction.

These interactions are fundamental to normal social development [2] and exposure to SI dur-

ing vulnerable periods of neurodevelopment can impact on both the behaviour and neurobiol-

ogy of those affected [3, 4]. The detriment of SI-induced changes is clear, with evidence that

exposure contributes to increased risk of anxiety and depression [5, 6], schizophrenia [7] and

cognitive decline [8].

The use of rodent models of SI to investigate behaviour is common. Mice exposed to

post-weaning SI tend to experience increased anxiety [9–16], increased depressive-like

behaviour [11, 13], decreased cognitive ability [13, 14, 17–19], increased aggression [12,

20] and decreased sociability [10, 21] when compared to group-housed controls. Some of

the neurobiology relevant to SI-induced behaviour in rodents has been mapped [22]. Tar-

geted analyses have implicated neuronal growth factors such as BDNF [13, 16, 17, 20], hor-

mones such as oxytocin [23], inflammatory mediators such as cytokines [24–26] and the

function of most main neurotransmitter systems [22] as being involved in behaviours

found in SI-exposed rodents. Rodents subjected to SI display dysregulation of genes crucial

to the function of glutamatergic [14, 27, 28], GABAergic [28–30], dopaminergic [31] neu-

rotransmission, all of which are systems thought to have a part to play in psychiatric disor-

ders [32].

To our knowledge, no mouse studies of SI have included full transcriptome gene expres-

sion analysis of the molecular changes caused by SI in the hippocampus. Previously, tran-

scriptomic analysis of the basolateral amygdala in socially-isolated mice identified genes

associated with aggressive behaviour and found evidence of upregulated ion channel func-

tion, while genes related to limbic system development and cognition were downregulated.

Furthermore, in the ventral tegmental area, genes related to neuropeptide signalling were

downregulated and genes related to synaptic signalling were upregulated [33]. Other tran-

scriptomic work using microarray in rat cortex [29] also found dysregulation of genes related

to synaptic structure and function, particularly in relation to inhibitory GABAergic

synapses.

Previous work by our group [10] showed that mice exposed to post-weaning SI exhibited a

significant increase in anxiety related behaviours (males and females) and decreased sociability

(females) compared to animals that were group-housed. We now extend our previous investi-

gation by performing RNA sequencing (RNA-seq) to identify differentially expressed genes

(DEGs) in the brains of the same animals–specifically in the hippocampus, a region that regu-

lates stress response and emotion [34, 35]. Transcriptomic changes were found to be induced

in both male and female hippocampus by SI. These differentially expressed genes (DEGs)

encoded protein involved in synaptic structure and function. We further considered how these

transcriptomic changes converge with the biological basis of human psychiatric disorders and

behaviours by investigating if the DEGs were enriched for common heritability contributing

to neurodevelopmental phenotypes and enriched for genes harbouring rare de novo variants

contributing to neurodevelopmental disorders. Finally, we explored which specific cell types

were enriched for DEGs induced by SI.

Materials and methods

Ethics statement

All procedures received ethical approval from the local Animal Care Research Ethics Commit-

tee (ACREC) and the Health Products Regulatory Authority in Ireland (licence number

AE19125/P083).
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Social isolation procedure

Tissues used in this analysis were obtained directly from the animals used in our previous

study [10], consisting of post-weaning (P21-25) adult male and female C57 BL/6J mice

(Charles River Laboratories, UK) assigned to either group-housed cages (3–4 animals per

cage) or single housed cages (SI; n = 7–8 per group) until animals were sacrificed by brief

exposure to CO2 (90s) followed by immediate decapitation after a 60 day period. Whole brain

was dissected on ice and hippocampus was snap-frozen in dry-ice before being stored at −80

˚C.

Sample preparation

Total RNA was extracted from frozen hippocampus using the Absolutely RNA Miniprep kit

(Agilent; product code: #400800) following appropriate standard procedure for quantity of tis-

sue. Once purity and integrity (RIN> 6) was confirmed, isolated RNA-seq was performed on

the Illumina NovaSeq (paired-end; 2x150 bp reads) sequencing platform producing a mini-

mum of> 20M reads/sample (Genewiz Germany GmbH).

Differential expression analysis

Raw data was received through SFTP in FASTQC format. Trimmomatic v0.39 [36] was used to

remove low quality and adapter sequences from the paired-end reads (LEADING:3, TRAIL-

ING:3, MINLEN:36). Salmon v1.8.0 [37] was used to quasi-map and quantify reads. The

DEseq2 v1.24.0 [38] R package was used to test genes for differential expression. The sva
v3.32.1 svaseq [39] function was used to detect batch effects in individual groups. Significant

surrogate variable (SVs) were introduced into the differential expression model to control for

technical batch effects. DEGs were defined at a false discovery rate (FDR) of< 0.05. Fold

changes were shrunk using apeglm v1.6.0 [40]. Genes were converted to human orthologues

using biomaRt v2.40.5 [41] where necessary.

Gene ontology analysis

Gene ontology (GO) analysis was done using ConsensusPathDB (http://cpdb.molgen.mpg.de/

) [42] over-representation analysis. Ontologies with GO term levels 2–5 were tested and ontol-

ogies with a FDR-corrected p-value < 0.05 were considered significantly enriched. In order to

limit GO analysis to ontologies relevant to the synapse, sets of DEGs also tested for enrichment

using SynGO (https://www.syngoportal.org/) [43], an expert-curated resource for synaptic GO

analysis. Ontologies with an FDR corrected p-value< 0.05 were considered significantly

enriched.

Testing genes for enrichment of common genetic risk variants associated

with neurodevelopmental phenotypes

Data on common variants (SNPs) associated with human phenotypes were accessed in the

form of genome-wide association study (GWAS) summary stats for a range of phenotypes rel-

evant to neurodevelopment and psychiatric disorders including schizophrenia (SCZ; GWAS

based on 67,390 cases and 94,015 controls) [44], intelligence (IQ; 269,867 individuals) [45],

educational attainment (EA; 766,345 individuals) [46], bipolar disorder (BPD; 41,917 cases

and 371,549 controls) [47], major depressive disorder (MDD; 246,636 cases and 561,190 con-

trols) [48] and anxiety-tension (Anx-Ten; 270,059 individuals) [49]. As control phenotypes,

GWAS data for three brain-related disorders: Attention deficit/hyperactivity disorder

(ADHD; 20,183 cases and 35,191 controls) [50], Alzheimer’s disease (AlzD; 71,880 cases and
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383,378 controls) [51], stroke (40,585 cases and 406,111 controls) [52] and two non-brain

related disorders: type-2 diabetes (T2D; 74,124 cases and 824,006 controls) [53] and coronary

artery disease (CAD; 22,233 cases and 64,762 controls) [54] were used. Stratified LD Score

regression (sLDSC) was used to investigate if gene-sets were significantly enriched for SNP

heritability contributing to the test and control phenotypes [55, 56]. Gene start and stop coor-

dinates of each DEG on GRCh37 were found using biomaRt v2.40.5 [41]. Annotation files

were generated for each chromosome in each set of DEGs using 1000 genomes European

cohort SNPs and a window size of 100kb extended to coordinates [57]. LD scores were esti-

mated within a 1cM window using 1000 Genomes Phase 3 European reference panel. Herita-

bility was stratified in a joint analysis between 53 previous function genomic annotations [56]

and each set of DEGs. Only SNPs from HapMap Project phase 3 SNPs with a MAF > 0.05

were considered in this analysis.

For phenotypes with significantly enriched heritability from the LDSC analysis, MAGMA

[58] was used to test individual genes for association. First, we annotated the SNP data to

genes using the build 37 gene locations (https://ctg.cncr.nl/software/MAGMA/aux_files/

NCBI37.3.zip) and 1000 Genomes European Panel reference (https://ctg.cncr.nl/software/

MAGMA/ref_data/g1000_eur.zip) files, the latter which MAGMA uses to account for linkage

disequilibrium (LD) between SNPs. Second, MAGMA generated p-values for individual gene

reflecting their level of association with the test and control phenotypes. Genes with a Bonfer-

roni-corrected p-value of< 0.05 (correcting for the number of genes tested) were considered

genome-wide significant for association with each phenotype.

Testing genes for enrichment of de novo mutations reported in

neurodevelopmental disorders

Rare de novomutations (DNMs) contributing to a phenotype can be detected using exome

sequencing of trios including an affected proband and their biological parents. To test if DEGs

were enriched for DNMs that contribute to neurodevelopmental disorders, we analysed

DNMs reported in studies of autism spectrum disorder (ASD), intellectual disability (ID), SCZ

and developmental disorders (DD). The functional class and gene location of DNMs identified

in patients with ASD (n = 6,430), ID (n = 192) and in unaffected siblings (n = 1,995) and con-

trols (n = 54) based on exome sequencing of trios were sourced from [59] and [60]. Genes har-

bouring DNMs reported in affected SCZ trios (n = 3,394) were taken from [61] and [62].

DNMs identified in developmental disorders (DD) were sourced from [63]. Mutations used

for DD were subject to additional filtering based on posterior probability of de novomutations,

as described in [63]. To account for underlying mutational burden associated with the test

phenotypes, results were then subject to a competitive test against background de novomuta-

tion rate using a two-sample Poisson rate ratio test. Results with a Bonferroni-adjusted p-value

of< 0.05 (correcting for the number of mutational classes and disorders tested) were consid-

ered significantly enriched.

Cell type enrichment

Data from single cell RNA-seq (scRNA-seq) of the mouse brain (565 cell types) [64] was used

to test if different cell types were enriched for DEGs. Analysis was performed using the expres-

sion-weighted cell type enrichment (EWCE) R package [65], which investigated whether the

cell types were significantly enriched for a gene-set when weighted by gene expression. Cell

types were considered significantly enriched at a Bonferroni-corrected p-value of< 0.05 (cor-

recting for the number of cell types tested).
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Results

Differential gene expression

Table 1 summarises the numbers of DEGs induced by SI detected in male and female hippo-

campal tissue at FDR < 0.05. In total, 1,215 significant DEGs were identified in females and

400 in males. In both sexes, approximately twice as many DEGs were found to be downregu-

lated than upregulated. Among the downregulated DEGs, 98 were common between males

and females. Of the upregulated DEGs, 30 were common between males and females. Expres-

sion log 2 fold change (Log2FC) was highly consistent among DEGs shared between male and

female samples, producing a R2 correlation coefficient of 0.88 (p-value < 2.2e-16). Full differ-

ential expression results can be found in S1 Table.

GO and SynGO analysis

GO analysis was performed in order to gain insight into the functional roles of DEGs. Consen-

susPathDB was used to identify GO biological processes (BP), cellular compartments (CC)

and molecular functions (MF) terms enriched for DEGs. A total of 738 GO terms were found

to be enriched for the female DEGs and 306 GO terms were enriched for the male DEGs at

FDR< 0.05. (S2 Table). Of these enriched terms, 72 (9.8%) of the female and 36 (11.8%) of the

male contained any of "neuro", "synap", "dendr" or "axon", indicating their relation to having

neuronal, axonal or synaptic structure or function. Female DEGs were highly enriched for a

number of neurodevelopmental GO terms. The most enriched level 4 and level 5 terms were

nervous system development (GO:0007399, FDR-adjusted p-value = q-value = 2.76E-16) neuro-
genesis (GO:0022008, q-value = 9.02E-16), neuron development (GO:0048666, q-value = 1.26E-

15), generation of neurons (GO:0048699, q-value = 1.57E-15), neuron projection development
(GO:0031175, q-value = 1.57E-15) and neuron differentiation (GO:0030182, q-value = 2.57E-

15). The significantly enriched GO terms for the male DEGs included nervous system develop-
ment (GO:0007399, q-value = 6.79E-6), neuron part (GO:0097458, q-value = 9.82E-5), central
nervous system development (GO:0007417, q-value = 3.31e-4) and brain development
(GO:0007420, q-value = 4.61e-4).

Following up these neuronal GO term enrichments, additional GO analysis was performed

using SynGO [43] to gain insight into the synaptic CCs and BPs enriched for DEGs (Fig 1; S3

Table). All enriched SynGO analysis terms were related to presynaptic and postsynaptic struc-

ture (CC) and function (BP) and provide greater focus on the precise neurobiological changes

brought about by SI. The female DEG set showed significant enrichments in 39 SynGO terms.

Both postsynapse (GO:0098794, q-value = 5.14e-17) and presynapse (GO:0098793, q-

value = 3.15e-4) CCs were significantly enriched as well as a number of specific postsynaptic

ontologies including postsynaptic density (GO:0014069, q-value = 2.25e-8), postsynaptic spe-
cialisation (GO:0099572, q-value = 1.56e-7), translation at postsynapse (GO:0140242, q-

value = 5.76e-4) and postsynaptic organisiation (GO:0099173, q-value = 2.19e-3). The male

DEGs showed significant enrichment in the postsynapse (GO:0098794, q-value = 3.67e-3) but

not presynapse CCs. Similar to that of the females, male DEGs were also significantly enriched

Table 1. Summary of DEGs induced by SI in hippocampus.

Set DEGs at FDR < 0.05 Downregulated Upregulated

Female 1215 810 (67.7%) 405 (33.3%)

Male 400 259 (64.7%) 141 (35.3%)

https://doi.org/10.1371/journal.pone.0295855.t001
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for processes of postsynaptic specialisation (GO:0099572, q-value = 0.003667) and postsynaptic
density (GO:0014069, q-value = 0.012).

Enrichment for genes contributing to human neurodevelopmental

phenotypes

To assess whether genes dysregulated in mouse hippocampal tissue by SI harboured genetic

risk for human neurodevelopmental phenotypes, enrichments for common heritability (SNPs)

and genes harbouring rare DNMs contributing to neurodevelopmental disorders and related

phenotypes were investigated. sLDSC [55, 56] was used to test common SNPs. The 1,215

female DEGs accounted for 9.5% of the total SNPs in the analysis, while the smaller male set of

400 DEGs accounted for 3.5% of total SNPs. Results can been seen in Table 2, showing per-

centage of heritability (% h2) and enrichment p-value in SNP-based heritability for SCZ, EA,

IQ and BPD for the female DEG set and enrichments in SCZ, IQ and BPD for the male DEG

set. Of the five control phenotypes tested, just one (coronary artery disease) showed a marginal

enrichment for the female DEG set. Full results from the sLDSC analysis can be found in S4

Table.

Given there was evidence of convergence of SI-induced DEGs and genes contributing to

risk of neurodevelopmental phenotypes, we investigated which genes may be driving this con-

nection. For the test phenotypes with significant enrichments in LDSC (SCZ, EA, IQ and

BPD), MAGMA [58] was used to test which genes had genome-wide significant associations.

Fig 1. SynGO cellular compartment (CC) enrichments of female and male DEG sets. Annotated sunburst of

enriched SynGO synaptic CC ontologies. Enrichments were detected for both pre and post-synaptic terms, however

most significantly-enriched ontologies are post-synaptic. DEGs from females showed more enrichments in SynGO

terms than DEGs from males.

https://doi.org/10.1371/journal.pone.0295855.g001

Table 2. Enrichment of SNP-based heritability for test phenotypes.

DEG Set % of Total SNPs SCZ IQ EA MDD BPD Anx-Ten

% h2 P* % h2 P % h2 P % h2 P % h2 P % h2 P

Female 9.5% 13.3% 2.27E-05 12.9% 0.000109 13.3% 2.60E-07 11.7% 0.0472 14.2% 0.000388 12.3% 0.0422

Male 3.5% 6.2% 7.08E-05 5.0% 0.00276 4.5% 0.0132 4.6% 0.0434 7.2% 2.51E-05 4.1% 0.4202

Results in bold survive Bonferroni correction for multiple testing (including control phenotypes)

https://doi.org/10.1371/journal.pone.0295855.t002

PLOS ONE Gene expression study of social isolation

PLOS ONE | https://doi.org/10.1371/journal.pone.0295855 December 21, 2023 6 / 16

https://doi.org/10.1371/journal.pone.0295855.g001
https://doi.org/10.1371/journal.pone.0295855.t002
https://doi.org/10.1371/journal.pone.0295855


Genes were considered significantly enriched at a Bonferroni-corrected p-value of< 0.05. A

total of 619 genes were genome-wide significant for SCZ, 160 for BPD, 377 for IQ and 689 for

EA. Full MAGMA gene-based analysis results can be found in S5 Table. These lists were fur-

ther restricted to DEGs that were common between male and female hippocampus and with

consistent direction of expression change. A total of ten genes, shown in Table 3 below,

matched these criteria and were significantly associated with one or more of SCZ, BPD, IQ or

EA. Three of the 10 highlighted genes were genome-wide significant for two phenotypes, while

7 had a single significant gene-phenotype association from MAGMA. At least one gene was

associated with SCZ, BPD, IQ or EA. All ten genes were downregulated, with male hippocam-

pus consistently showing greater expression change.

Using gene-level data from these studies, the R package denovolyzeR [66] was used to test

gene-sets for enrichment for genes harbouring rare DNMs contributing to SCZ, ASD, ID and

DD. Categories of synonymous (syn), missense (mis) and loss-of-function (lof) mutations

were considered for analysis. Following a competitive analyses, gene-sets were considered

enriched at a Bonferroni-corrected p-value of<0.05. Table 4 shows enriched categories of

Table 3. Genes found to be common between DEG analysis (same direction of effect in females and males) and MAGMA gene-based association analysis.

Symbol Gene Name Associated

Phenotypes

Direction in Females Direction in Males

RIMS1 Regulating Synaptic Membrane Exocytosis 1 SCZ, BPD Downregulated, Log2FC =

-0.22

Downregulated, Log2FC =

-0.32

ZNF365 Zinc Finger Protein 365 SCZ, BPD Downregulated, Log2FC =

-0.21

Downregulated, Log2FC =

-0.32

AGAP1 ArfGAP With GTPase Domain, Ankyrin Repeat And PH

Domain

IQ, EA Downregulated, Log2FC =

-0.21

Downregulated, Log2FC =

-0.25

TTBK1 Tau Tubulin Kinase 1 SCZ Downregulated, Log2FC =

-0.14

Downregulated, Log2FC =

-0.31

PPP1R16B Protein Phosphatase 1 Regulatory Subunit 16B SCZ Downregulated, Log2FC =

-0.18

Downregulated, Log2FC =

-0.31

SPTBN2 Spectrin Beta, Non-Erythrocytic 2 BPD Downregulated, Log2FC =

-0.21

Downregulated, Log2FC =

-0.32

SHANK2 SH3 And Multiple Ankyrin Repeat Domains 2 BPD Downregulated, Log2FC =

-0.14

Downregulated, Log2FC =

-0.27

UTRN Utrophin EA Downregulated, Log2FC =

-0.25

Downregulated, Log2FC =

-0.24

PHF2 PHD Finger Protein 2 IQ Downregulated, Log2FC =

-0.12

Downregulated, Log2FC =

-0.18

ZBTB4 Zinc Finger And BTB Domain Containing 4 EA Downregulated, Log2FC =

-0.13

Downregulated, Log2FC =

-0.33

https://doi.org/10.1371/journal.pone.0295855.t003

Table 4. Enrichments for genes harbouring rare de novo mutations in male and female gene sets.

Set DEGs SCZ

n = 3394 Trios

ASD

n = 6430 Trios

ID

n = 192 Trios

DD

n = 4293 Trios

Female Hippocampus 1215 ns ns ns mis (p = 5.20e-6)

Male Hippocampus 400 ns lof (p = 2.60e-5) ns lof (p = 8.23e-8)

mis (p = 8.05e-5)

SCZ = Schizophrenia; ASD = Autism; ID = Intellectual Disability; DD = Developmental Disorder

ns = non-significant; lof = loss of function mutations; mis = missense mutations; Results in bold survive Bonferroni correction for multiple testing

https://doi.org/10.1371/journal.pone.0295855.t004
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variants in each gene-set. Female DEGs showed strong enrichment for genes containing mis-

sense variants contributing to DD. Male DEGs were also enriched for missense variants con-

tributing to DD as well as being enriched for genes containing loss-of-function mutations

contributing to DD and ASD. As a control, gene-sets were not enriched for synonymous vari-

ants in any of the disorders. No enrichments were seen in trios containing unaffected siblings

or controls. Complete results from rare variant analysis can be found in S6 Table.

Cell-type enrichment analysis

Cell types enriched for male and female DEGs were tested using EWCE [65]. Both sets were

tested in scRNA-seq gene expression data from mouse brain [64]. Although this dataset con-

tains expression data on 565 cell types, enrichments from this analysis was restricted to cell

types from the hippocampus (n = 104). Cell types were considered enriched at a Bonferroni-

corrected p-value of< 0.05. The primary cell type found to be enrichment in female DEGs

was of glial origin. Of the cell types in the mouse brain data [64] three hippocampal cell types,

HC_7–1 (p< 0.00001), HC_7–2 (p< 0.00001) and HC_7–3 (p< 0.00001) were enriched; all

three were populations of hippocampal astrocytes. No hippocampal cell types were considered

significantly enriched after multiple testing correction in the male DEG set. Full cell type

enrichment results found in S7 Table.

Discussion

This study builds on our previous behavioural work [10] using post-weaning SI mice and here

investigates the molecular consequences of the environmental stressor on the mouse brain.

The use of RNA-seq to investigate the transcriptomic changes in mouse hippocampus caused

by SI presents a novel insight into the underlying molecular underpinnings of altered behav-

iour. Furthermore, we used data from studies of rare and common risk variants for neurodeve-

lopmental phenotypes to investigate the relevance of the SI model to human illness and

behaviour.

Differential expression analysis detected hundreds of dysregulated genes with approxi-

mately three times the number of DEGs in female (n = 1,215) compared to male (n = 400) hip-

pocampal tissue. This is consistent with our behavioural data in these animals [10], which

showed females to be more susceptible to SI-induced behavioural measures of anxiety and

sociability. GO analysis identified that DEGs in both males and females were enriched in struc-

tural and functional synaptic ontologies with DEGs from females implicated in both overall

presynapse and postsynapse ontologies, while DEGs from males were only implicated postsy-
napse ontologies. In the context of our behavioural data [10], this suggests that presynaptic

processes may play a role in facilitating SI-induced behaviours of anxiety and decreased socia-

bility observed in the females. Synaptic biology is implicated in many neurodevelopmental dis-

orders. In SCZ, the latest GWAS implicates genes involved in the organisation, differentiation

and function of synapses [44]. For ASD, rare variants in genes involved in synapse structure

including from the SHANK [67], NRXN [68] and NLGN [69] gene families are linked with the

disorder.

In our rare variant analysis, enrichment for genes containing loss-of-function mutations

contributing to ASD were found in the DEGs from males but not females. DEGs from both

males and females were enriched for genes harbouring DNMs contributing to DD, however

the DEGs from males showed a greater level of enrichment. Our sLDSC analysis detected

enrichments in SNP heritability associated with SCZ, BPD and IQ in both male and female

DEG sets with again males displaying stronger enrichments in all of these phenotypes.

Together, the rare variant and heritability analyses indicate that the set of DEGs from male SI
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mice, despite only totalling a third of the number of DEGs in the set from female SI mice, con-

verge more strongly with the genes that underpin risk for neurodevelopmental disorders and

associated phenotypes in humans.

Anxiety was the most prominent phenotype induced by SI in our behavioural work [10].

Although a nominal enrichment in heritability was seen in the Anx-Ten phenotype for the

DEGs from females (p = 0.042), this result did not survive multiple-testing correction. How-

ever, it is important to note that anxiety disorders are under less genetic influence (heritability

of 20–60%) [70] than for example SCZ and BPD (both with heritability of 60–80% heritable)

[44, 47]. As a result and despite a very large sample size, the GWAS of Anx-Ten identified just

fourteen independent loci [49] and therefore we were unlikely to detect that our sets of DEGs

were strongly enriched for common variants associated with this phenotype. Based on the pre-

text that no SI-induced cognitive changes were detected in these mice [10], the enrichment in

IQ and EA heritability in the set of DEGs from female mice suggests that a subclinical effect of

SI on cognition may have been present in this circumstance.

Ten genes were prioritised based on being consistently differentially expressed in males and

females, as well as having genome-wide significant associations with any of the phenotypes

that were enriched in the sLDSC analysis. Three genes, RIMS1, ZNF365 and AGAP1, were

associated with two of the four phenotypes tested. RIMS1 plays an important role regulating

and localising calcium channels and neurotransmission [71–75], regulating synaptic plasticity

[76–79] as well as being crucial for learning and memory in mouse [80]. In humans, RIMS1 is

also an ASD candidate risk gene implicated in rare variant studies [81–83]. ZNF365 (also called

DBZ) is involved in neurogenesis, especially regarding basket cells in the somatosensory cortex

[84]. It is also involved in oligodendrocyte differentiation [85] and regulating dendritic spine

density in pyramidal neurons [86]. ZNF365 interacts with the SCZ candidate gene, DISC1,

which through its role on oligodendrocyte differentiation could be a contributor to SCZ and

MDD [87]. AGAP1 (also called CENTG2) regulates dendritic spine morphology [88] and is

involved in neurotransmitter release in dopaminergic neurons [89]. In humans, variation in

AGAP1 has been associated with to ASD [90], SCZ [91]and ASD/ID [92]. Further human data

from PsychEncode is consistent with these prioritised mouse DEGs, with RIMS1 downregu-

lated in post-mortem brain samples SCZ (Log2FC = -0.05, FDR = 0.004) and ZNF365 downre-

gulated in post-mortem brain samples of ASD (Log2FC = -0.24, FDR = 0.002) [93].

Although GO analysis primarily implicated changes in synaptic biology caused by SI, the

primary findings from cell type enrichment analysis were glial cells. Given the number of cell

types analysed here, there is a strict Bonferroni threshold for cell types to be enriched (104 x 2

independent tests). Only cell types with a number highly unique genes overrepresented in our

analysis will show up an enriched, which may explain the lack of neuronal cell types showing

to be significantly enriched after correction. However, it is now well established that there is a

non-neuronal component of neurodevelopment [94]. Astrocytes, enriched in this analysis,

play a number of crucial functions to maintain a normal early developmental trajectory. These

include maintaining a balanced extracellular environment, protecting neurons during neu-

roinflammation, and promoting synaptogenesis [95]. In the context of these results, altered

expression of genes crucial to astrocyte function may impair the brain’s ability to deal with

other biological effects of isolation, including neuroinflammation [96] and increased oxidative

stress [97]. Human data also highlights the importance of astrocyte function. As discussed in

Kruyer, Kalivas [98], human post-mortem data widely implicate morphological and molecular

changes in multiple psychiatric disorders including SCZ, MDD and BPD discussed here.

Recent work in the SI field further summarises the effects of SI on the brain [4]. The authors

reported overall changes in neuron biology caused by SI in rodents, including changes in neu-

rogenesis, synaptogenesis, neurotransmission and cell morphology. Between GO results
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highlighting synaptic ontologies and prioritised genes being strongly implicated in neurotrans-

mitter release, neurogenesis and cell neuron morphology, our findings generally align with

these conclusions. Furthermore, there was an emphasis placed on the importance of glial cell

types mediating the effects of SI [4]. This is also generally supported by our findings in two

ways. First, the prioritised ZNF365 gene (downregulated in both males and females) plays a

role in oligodendrocyte differentiation, which as discussed [4] is a process clearly playing an

important role in dysfunction in an SI context. Second, we found that genes are dysregulated

as a consequence of SI in hippocampal astrocytes, which as noted [4] are significantly activated

as a result of early life SI in females [99].

There are a number of limitations to this present study. First, focusing on a single region

limits the ability to generalise these results. Second, these data are generated from a stressor at

a single timepoint. Investigating a number of developmental timepoints could help detect tran-

sient gene expression changes and could facilitate investigation into the impacts of earlier or

later social stressors on gene expression in the mouse brain. Finally, we use a single technique

to measure the effect of SI. Other techniques, especially epigenetic profiling using ATAC-seq,

or the use of single-cell RNA-seq methods could add valuable context to gene expression pro-

files found in this data. Addressing these limitations in future studies could help shed light on

the relationship between gene expression changes, altered behavioural phenotypes and known

human risk variation for neurodevelopmental disorders.

In summary, we provide novel insight into how SI affects the mouse brain. The use of

RNA-seq highlights gene expression changes related to synaptic biology that may underpin

the changes in behaviour previously found in these animals. We show convergence of DEGs in

socially isolated mice with genes containing genetic variation contributing to neurodevelop-

mental phenotypes in humans. We highlight genes such as RIMS1, ZNF365 and AGAP1 as

candidates for studying disrupted developmental trajectories in disorders such as SCZ, BPD

and ASD. Further, these data provide support for the molecular validity of the SI mouse model

to study neurodevelopmental phenotypes with further behavioural, molecular and interven-

tional investigations.
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