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Abstract

During the past decade there has been a revolution in cancer therapeutics by the emergence of 

antibody-based and cell-based immunotherapies that modulate immune responses against tumors. 

These new therapies have extended and improved the therapeutic efficacy of chemo-radiotherapy 

and have offered treatment options to patients who are no longer responding to these classic 

anti-cancer treatments. Unfortunately, tumor eradication and long-lasting responses are observed 

in a small fraction of patients, whereas the majority of patients respond only transiently. These 

outcomes indicate that the maximum potential of immunotherapy has not been reached due to 

incomplete knowledge of the cellular and molecular mechanisms that guide the development of 

successful anti-tumor immunity and its failure. In this review, we discuss recent discoveries about 

the immune cellular composition of the tumor microenvironment (TME) and the role of key 

signaling mechanisms that compromise the function of immune cells leading to cancer immune 

escape.
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1. Cancer immunosurveillance pathways and the tumor microenvironment

The exploitation of the immune system for the treatment of cancer has been investigated 

for many years. However, enthusiasm waxed and waned based on discoveries that supported 

or opposed the hypothesis that cancer can be subjected to immune-mediated control. It is 

currently understood that not only the immune system can control cancer growth but has an 

important role in shaping the immunogenicity of cancer cells via immunoediting [1]. During 

early stages of cancerous differentiation of normal cells, continuous immune surveillance 

results in the identification and elimination of these malignant populations through 

generation of adaptive anti-tumor immune responses. Tumor-associated macrophages 

(TAMs) have a central role in this process by mediating phagocytosis and clearance 

of cancer cells [2] and the presentation of cancer neoantigens to T cells [3]. Through 

continuous control, the immune system keeps cancer under check achieving equilibrium, 

even without complete elimination. The adaptive antitumor immune system can efficiently 

recognize neoantigens resulting from tumor-specific somatic mutations, antigens derived 

from oncogenic viruses, and antigens whose expression is shared with tissues at immune-

privileged sites [4]. When cancer antigens yield peptides capable of binding to an 

individual’s HLA alleles (neoepitopes), they can elicit CD4+ and CD8+ T cell responses 

[5,6] as evidenced by the presence and prognostic significance of immune infiltrates in 

human tumors [7–9]. However, under the continuous immune pressure cancer cells develop 

alterations to overcome immune attack, resulting in escape and growth of tumors that are 

resistant to the physiological immune mechanisms utilized to recognize and present antigens 

thereby engaging adaptive immune responses.

Escape mechanisms include tumor cell-intrinsic adaptations such as downregulation of 

tumor neoantigens and induction of protective mechanisms rendering tumors resistant to 

cytotoxic cells of adaptive immunity. In that regard, it has been determined that genomic 

alterations and changes of neoantigen load are linked to diminished immune responses 

[10]. Escape may also result from the development of immunosuppressive mechanisms 

of the TME, with the production of soluble factors such as IDO, VEGF, and TGF-β 
[11,12]. Alterations in the cellular populations of the TME such as recruitment of 

immunosuppressive myeloid-derived suppressor cells (MDSCs) that are produced during 

cancer-driven emergency myelopoiesis, regulatory T cells (Tregs) and tumor associated 

macrophages (TAMs) have important roles in shaping the properties of the TME (Fig. 1) 

[13]. Changes also occur in dendritic cells (DC) which lose their ability to process and 

present tumor antigens to T cells [14]. Expression of co-inhibitory molecules in these 

immune populations shapes the signaling landscape of the TME, generating primarily pro-

tumorigenic cues by suppressing critical functions of myeloid cells and TAMs, such as 

phagocytosis and antigen presentation, and compromising the ability of T cells to mount 

immune responses. These signaling pathways have a key role in cancer immune escape 

but also represent targets for immune-based treatments that have re-shaped modern cancer 

therapy. Among the coinhibitory receptors, inhibitory targeting PD-1 and its ligands with 

blocking antibodies has been the cornerstone of cancer immunotherapy and together with 

CTLA-4 blocking agents have revolutionized cancer treatment. In this review, we provide 

a concise summary of how key coinhibitory receptors shape the function of the immune 
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components of the TME and discuss the role of immune populations during tumorigenesis 

and cancer evolution.

2. Dendritic cells are key mediators of tumor antigen presentation

Dendritic cells (DC) are professional antigen-presenting cells (APC) that play an important 

role in the tumorigenic and non-tumorigenic environment by activating CD8+ T cells and 

enhancing antitumor responses. DCs make up a small minority of the tumor-infiltrating 

leucocytes [15]. In both human and mice, four different major subsets of DCs have been 

characterized: the classical DC1 (cDC1), the heterogeneous population cDC2, the monocyte-

derived DC (mo-DC), and the plasma-cytoid DC (pDC) [16]. cDC1 expresses a distinct gene 

expression profile and specific markers [17]. It has been reported that cDC1 are critical for 

priming CD8+ T cells whereas cDC2 are responsible for priming CD4+ T cells [18] and 

support Th17 responses [19]. The DC2 group is a more heterogeneous population consisting 

of two different types of DCs, cDC2 and DC3 [20]. In agreement to that, another study 

revealed two distinct cDC2 populations by transcriptional analysis, cDC2A and cDC2B 

which express T-bet and RORγt respectively and are conserved across both human and 

mice [21] and might correspond to cDC2 and DC3 [22]. In humans, DC2 and DC3 derive 

from progenitors with differential expression of IRF8, where high expression led to the 

development of cDC1 and DC2, whereas low expression of IRF8 led to the development 

of DC3 and monocytes [23]. In contrast to cDC2 which require FLT3L for expansion, 

DC3 expanded and differentiated in the presence of granulocyte-macrophage stimulating 

factor (GM-CSF) but not FLT3L, providing further evidence that DC3s forms a distinct 

population within the cDC2 compartment [24]. Mo-DC can either derive directly from 

CD34+ precursors or from monocytes [25,26]. Studies have indicated that IRF4 might be 

required for the differentiation of cDC2 and mo-DC, however, mo-DC do not share the same 

precursors as cDC2 [27,28]. Lastly, pDC are a distinct subpopulation of DC deriving from 

the common DC progenitors, secrete IFN-α/β and play an important role in viral infections 

[28].

Chemokines are mainly responsible for cDC1 recruitment and retention in the TME (Fig. 1). 

Tumors secrete several chemokines including CXCL9, CXCL10, and CXCL11, which can 

recruit Th1 and CD8+ T cells, CCL20 which recruits Th17 and immature DC, and CCL2 

or CCL5 which recruit monocytes [29]. NK cells can also recruit cDC1 to the TME by 

secretion of CCL5 and XCL1, an effect abrogated by prostaglandin E2 (PGE2) production 

[30]. Inhibition of PGE2 production by ablation of COX1 or COX2 leads to increased 

accumulation of cDC1, tumor eradication, and increased sensitivity of tumor towards anti-

PD-1 treatment [31]. Cytokines also play a role in the positioning of the DC in the TME. 

FLT3L secreted by NK cells and lymphocytes in mouse and human tumors has an active role 

in the recruitment and localization of cDC1 [32].

Generation of anti-tumor CD8+ T cell responses requires cross-presentation of tumor 

peptides to naïve CD8+ T cells on MHC class I molecules by the DC (Fig. 2A). Although 

priming of naïve T cells occurs in the tumor-draining lymph nodes, studies have shown that 

cross-presentation can also occur within the TME [33]. The antigens can travel to the lymph 

node either on cell debris or after their engulfment by migratory CD103+ cDC1 found in 
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the TME, which then migrate to the tumor-draining lymph node and cross-present tumor 

antigens to naïve T cells, either directly or through antigen exchange to resident myeloid 

cells [34]. However, only the migratory CD103+ cDC1, but not the lymph node resident 

CD8+ cDC1, can prime naïve CD8+ T cells [35]. CCR7 is required for cDC1 migration to 

the tumor-draining lymph node and ablation of CCR7 expression results in a significantly 

smaller migratory effect of cDC1 to tumor-draining lymph node and a diminished T cell 

activation profile [36]. In human tumors, CCR7 expression positively correlates with greater 

DC infiltration and increased patient survival [36].

Within the TME, CD103+ cDC1 secrete CXCL9 and CXCL10 which recruit CXCR3+CD8+ 

effector T cells to the tumor [37]. In non-tumor models, CXCR3 has been previously 

shown to drive CD4+ and CD8+ T cell recruitment into the lymph nodes and in close 

contact to DC for T cell priming [38]. In a melanoma mouse model, CXCL9 and CXCL10 

secreted by CD103+ cDC1 were responsible for the recruitment of effector T cells and for 

controlling tumor growth [39]. CD103+ cDC1 are located at distal regions of the tumor and 

despite their sparsity, they are good CTL activators [15]. Furthermore, cDC1 can uptake and 

cross-present tumor antigens to T cells more efficiently than other myeloid cells, which can 

also engulf tumor cells and uptake tumor antigens [15]. These CD103+ cDC1 also secrete 

increased levels of IL-12 but not IL-10 suggesting a dominant role in facilitating increased 

cytotoxic function of intratumoral CD8+ T cells [15].

Tumors have developed several mechanisms of immune evasion which restrict the function 

of cDC1 [40]. One such mechanism involves reducing the number of cDC1 in the TME. 

Tumors in breast and pancreatic cancers secrete the G-CSF thereby inhibiting the expression 

of IRF8 which is responsible for the generation of DC progenitors [41]. Similarly, reduction 

of FLT3L production within the tumor limits the differentiation, expansion, and survival 

of intratumoral cDC1 [35]. The reduced tumor infiltration by DC might also result from 

an impaired chemoattractant profile in the TME. PGE2 production leads to impaired NK 

viability and consequently impaired CCL5 and CXCL1 chemokine production, both of 

which act as chemoattractants for cDC1 [30].

Impairment of cDC1 function is also possible through direct inhibition of cDC1. In a 

breast cancer model, IL-10 which is secreted mainly by tumor-associated macrophages 

in the TME, resulted in low levels of IL-12 cDC1-mediated secretion [42]. Similarly, 

PGE2 reduced the production of IL-12 by cDC1 and downregulated the expression of 

co-stimulatory molecules [31]. In murine tumor models, lipid accumulation led to decreased 

ability of DC to translocate the peptide-MHC class I complex to the cell surface resulting 

in decreased antigen-presentation ability and T cell stimulation [43]. Tumor-derived TGF-β 
also inhibited the antigen presentation capacity of DC, impaired their ability to stimulate T 

cells, and decreased their migration capacity to the draining lymph nodes [44].

Suppression of cDC1 responses in the context of cancer is also driven by the inhibitory 

receptors present on the surface of DC (Fig. 2B). In patients with hepatocellular carcinoma, 

PD-1+ DC circulate in their peripheral blood, making them potentially prone to inhibition 

by PD-L1, the ligand of PD-1, present in the TME [45]. PD-L1 is highly expressed on 

both tumor cells and immune cells present in the TME [46]. PD-L1 expression in tumor 
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infiltrating DC might be stabilized by phosphorylation mediated by the enzyme casein 

kinase 2 (CK2) [47], which is highly expressed in multiple cancers and is linked to 

increased cell growth, proliferation and inhibition of apoptosis [48]. Inhibition of CK2 

decreased PD-L1 expression on DC and resulted in tumor suppression through release of 

CD80 from DC thereby allowing T cells to receive CD80-mediated co-stimulatory signals 

and become activated [47]. In PD-L1-deficient tumors, tumor-associated DC upregulatedPD-

L1 expression [49]. The authors hypothesized that this upregulation could be an escape 

mechanism of the tumor by which immune cells receive inhibitory signals through the 

PD-L1-PD-1 axis. PD-L1 deletion on DC enhanced CD8+ anti-tumor T cell responses 

despite the higher number of tumor-associated macrophages in the TME [50]. In addition 

to its canonical interaction with PD-1 in trans, PD-L1 can also bind to CD80 in cis 
[51,52] and this interaction disrupts the PD-1: PD-L1 axis and prevents T cell inactivation 

[53,54]. Blocking of PD-L1 on DC allows CD80 to re-engage with CD28 on T cells and 

enhance T cell priming [55]. In ovarian tumor-infiltrating DC, PD-1 inhibited the secretion 

of TNFα and IL-6, and downregulated the expression of CD80, CD40, and MHC class 

I molecules [56]. PD-1 regulated multiple NF-κB targets by recruiting the SHP-2 to the 

cytoplasmic domain tyrosine-based switch motif (ITSM) of PD-1 [56]. Anti-PD-1 reversed 

the suppressive effect of PD-1 on cytokines but had no effect on the expression of the co-

stimulatory and antigen-presenting molecules [56]. Together these studies provide evidence 

about the critical role of DC-expressed PD-L1 in the induction of PD-1-mediated T cell 

immunosuppression in the context of cancer.

TIM-3, a T cell checkpoint inhibitory receptor, is highly expressed on DCs in the TME 

compared to normal tissues and inhibits innate immune responses through recognition 

of nucleic acids via the pattern recognition receptors TLR3, TLR7, and TLR9 [57]. A 

combination of CK2 and a TIM-3 inhibitors led to greater tumor suppression and longer 

survival times for the mice [47]. TIM-3 was also highly expressed on intratumoral cDC1 

in a mouse model for breast cancer [58]. Antibody blockade of TIM-3 led to increased 

granzyme B expression by CD8+ T cells and enhanced expression of CXCL9 by cDC1 [58]. 

Moreover, deletion of TIM-3 on DCs resulted in strong anti-tumoral CD8+ T cell responses 

and inflammasome activation [59]. TIM-4, a receptor responsible for engulfment of dead 

cells, is highly expressed in normal lung cDC1, however, inhibition of this receptor results in 

incomplete activation of anti-tumorigenic CD8+ T cells and increased tumor growth [60].

cDC2 cells have been historically considered to derive from monocytes and are recognized 

as cells responsible for Th2 and Th17 responses [61,62]. As mentioned earlier, they are 

recognized as a heterogeneous group which can be broken down into two different subsets, 

DC2 and DC3 [22]. In the context of cancer, these cells can travel from the tumor to the 

tumor-draining lymph nodes and present tumor antigens to CD4+ T cells [63]. Depletion 

of Treg leads to increased cDC2 ability to induce strong T cell responses and increased 

ratio of cDC2 to Treg is correlated with better clinical outcome and responsiveness to 

anti-PD-1 therapy [63]. DC3 are poorly characterized in the context of cancer. They rise 

from granulocyte-monocyte-DC progenitors and express low levels of IRF8 [23]. They 

are present in human papillomavirus-associated oropharyngeal squamous cell carcinoma 

tumors, are potent Th1 activators, and can secrete high levels of IL-12 and IL-18 which 

have the potential to drive anti-tumor responses [64]. It has been reported that DC3 bear 
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signatures of both DC and monocyte-derived DC [22]. DC3 can stimulate memory T cells 

to produce IL-17 and differentiate naïve T cells into Th17 [65]. The differentiation program 

of these cells is regulated by GM-CSF [24]. Similarly, mo-DC can be generated in vitro 

from CD34+ precursors by culture with GM-CSF and TNF-α or monocytes by culture with 

GM-CSF and IL-4 [25,26]. However, only Mo-DC generated in vitro express the DC marker 

Zbtb46, providing evidence that these in vitro generated populations might not be the true 

counterparts of mo-DC differentiated in vivo [66]. The role of mo-DC in the presentation of 

tumor antigens is currently unclear. It was reported that although mo-DC can uptake antigen 

they have impaired capacity to induce potent T cell responses due to increased nitric oxide 

(NO) production [67]. However, in a different experimental system it was found that mo-DC 

could induce strong anti-tumor CD8+ T cell responses, which were impaired by blockade of 

monocyte entry to tumors [68]. Further studies are needed to fully characterize the cDC2, 

DC3 and mo-DC roles in the context of cancer.

pDCs are found in higher frequencies in human cancers and their presence is associated 

with poor prognosis and decreased survival [69]. Although pDCs normally produce IFN-α, 

in tumor settings including ovarian cancer, breast cancer, and melanoma, cancer-associated 

pDC have impaired IFN-α secretion [70]. This effect might be mediated by TNF-α and 

TGF-β present in the TME, which affect production of other cytokines such as IL-6, MIP-1b 

(CCL4) and RANTES [70]. In human ovarian cancer, pDCs are present in the tumor -but not 

ascites- can induce IL-10 secretion by naïve allogeneic T cells, and correlate with relapse 

[70]. Furthermore, when pDCs were cultured in medium from head and neck squamous cell 

carcinoma their ability to secrete IFN-α after TLR stimulation was significantly limited by 

IL-10 present in the medium, supporting the hypothesis that immunosuppressive cytokines 

in the TME contribute to the anti-inflammatory profile of tumor infiltrating immune cells 

[71]. Lastly, pDCs express the ICOS-L which can stimulate ICOS-expressing Foxp3+ Treg 

which in turn secrete IL-10 in the TME and suppress immune responses [72]. Together, 

these immunological, signaling and functional features of DCs underline the pivotal role of 

this immune cell population in the development of anti-tumor responses and explain why 

DC-targeting signaling alterations in the TME might have a significant impact in anti-tumor 

immunity.

3. Myeloid derived suppressor cells (MDSC) inhibit anti-tumor T cell 

responses

The constant and prolonged secretion of danger-associated molecular patterns (DAMPs) 

and cytokines from the tumor cells has a direct effect on the bone marrow, through 

a process that is called in emergency myelopoiesis. During emergency myelopoiesis, 

immature myeloid cells, named MDSCs, with potent immunosuppressive properties, are 

produced and accumulate in the tumor microenvironment and peripheral organs. High 

numbers of these cells are associated with poor treatment outcome and worse clinical 

prognosis in various cancer types [73]. Two major subsets of MDSCs have been described in 

mice: Polymorphonuclear MDSCs (PMN-MDSCs) monocytic-MDSCs (M-MDSCs), which 

resemble morphologically and phenotypically to neutrophils and monocytes, respectively. 

PMN-MDSCs are identified as CD11b+Ly6G+Ly6Clo in mice and CD11b+CD14−CD15+/
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CD66b+ in humans, while M-MDSCs are identified as CD11b+Ly6G−Ly6Chi in mice and 

CD14+CD15−HLA-DRlo/− in humans [74].

Among the mechanisms proposed for MDSC-mediated suppression function and subsequent 

cancer immune evasion, checkpoint inhibitors might have an important role. MDSCs 

isolated from patients with AML express high levels of VISTA and siRNA-mediated 

VISTA deletion attenuated MDSC-mediated inhibition of CD8+ T cells [75]. VISTA, a 

B7 family ligand, is predominantly expressed on the hematopoietic compartment, with 

highest expression observed in myeloid cells, including monocytic and granulocytic cells, 

and weaker expression on T cells [76]. VISTA was also identified as a homolog of PD-1, 

a member of the CD28 superfamily, indicating a potential function both as a ligand and 

a receptor [77]. VISTA transcription can be induced by HIF-1α suggesting that hypoxia 

is implicated in VISTA upregulation in MDSCs located in hypoxic regions of the TME 

[78]. VISTA deletion in MDSCs had no effects in T cell proliferation in vitro. However, 

VISTA deletion resulted in increased T cell proliferation under hypoxia, suggesting that 

regulation of MDSC function by VISTA might occur only under oxygen deprivation [78]. 

Furthermore, VISTA blockade in tumor-bearing mice altered the tumor infiltrating immune 

cell populations by decreasing MDSCs and increasing T cells with anti-tumor properties 

[79].

The MDSCs suppression capacity is also affected by the PD-1/PD-L1 pathway. Compared 

to MDSCs localized in non-cancerous tissues, tumor infiltrating MDSCs express high levels 

of PD-L1, which is regulated by the COX2/mPGES1/PGE2 pathway, pSTAT1-IRF1 axis 

and hypoxia-induced HIF-1α [80–82]. Consistent with an active role of these pathways 

in MDSC function, PD-L1 blockade under hypoxia diminished the ability of MDSCs to 

suppress T cell activation by reducing the production of IL-10 and IL-6 [82]. Notably, 

conditional deletion of PD-1 in the myeloid compartment in tumor-bearing mice, resulted 

in diminished NO production and attenuated suppressive capacity of M-MDSCs indicating 

that PD-1 blockade or deletion counteracts the generation of immunosuppressive immature 

myeloid cells [83].

Due to their potent immunosuppressive properties, MDSCs have been associated with the 

limited efficacy of immunotherapy and standard chemotherapy in mouse tumor models and 

cancer patients. Conversely, selective depletion of MDSC reversed resistance to anti-CTLA4 

Ab treatment in tumor bearing mice and increased the numbers of cytotoxic CD8+ T cells 

in tumor-deraining lymph nodes and TME [84]. Doxycyline-induced suppression of MDSCs 

improved the efficacy of PD-1 inhibitors [85]. Similarly, in a mouse model of gastric 

cancer, 5-flurouracil and oxaliplatin combination, which decreased MDSCs, augmented 

CD8+ tumor infiltrating T cells and improved the therapeutic efficacy of anti-PD-1 treatment 

[86]. Furthermore, epigenetic targeting of MDSC in mice bearing immunotherapy-resistant 

tumors resulted in tumor eradication after anti-PD-1/anti-CTLA4 combined immunotherapy 

[87].
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4. Generation of pro-tumorigenic tumor-associate macrophages (TAMs)

After egress from the bone marrow, monocytes (or M-MDSCs) are recruited to the TME via 

chemokines of the CC and CXC families, such as CCL2, CCL5, and CXCL12 [88] produced 

by cancer cells at early stages of the cancer immunity cycle and convert to bone marrow-

derived tumor associated macrophages (Fig. 1), which, together with embryonically-

derived tissue resident macrophages, form the population of TAMs. TAMs represent 

the most abundant immune population of the TME, consisting ~50% of hematopoietic 

cells and have predominantly pro-tumorigenic functions [89]. Pro-tumorigenic TAMs are 

immunosuppressive, lose the natural ability of macrophages to mediate phagocytosis and 

antigen presentation [83,90,91] and are characterized by expression of inhibitory molecules 

such as PD-1, PD-L1, VISTA, B7-H4 and TIM-3 [83,90–96].

The TME has a causative role in promoting the differentiation of pro-tumorigenic TAMs 

in a stepwise manner [97]. As a consequence of the malignant transformation of normal 

epithelial cells into cancerous cells by oncogenes and driver mutations, soluble factors, such 

as hematopoietic growth factors (e.g., M-CSF, GM-CSF) cytokines (e.g., IL-6, IL-1, and 

IL-8) and chemokines (e.g., CCL2, CCL5, CXCL12), are produced during cancer evolution 

(Fig. 1). For example, in pancreatic adenocarcinoma, KRASG12D mutation induces secretion 

of GM-CSF, which is correlated with an increased tumor infiltration by myeloid cells 

and immunosuppressive function [98,99]. p53 mutation has been documented to induce 

cancer-related inflammation by suppressing the production of IL-1 receptor antagonist 

[100]. In human melanoma, BRAFV600E, a highly oncogenic mutated form of BRAF, and 

STAT3, a potent transcription factor often linked to oncogenic signaling, have been shown 

to drive expression of IL-6, IL-10 and VEGF, which promote a tolerogenic differentiation 

of bone marrow derived monocytes [101]. BRCA1-associated triple negative breast cancer 

induces pro-tumorigenic TAMs, by reprogramming glycolysis and SREBP1-mediated lipid 

metabolism, a metabolic signature associated with resistance to PARP inhibitors [102]. 

These mechanisms induce a unique differentiation program of TAMs, which lose the normal 

properties of healthy macrophages and obtain pro-tumorigenic features.

The immunophenotypic and metabolic properties of TAMs were previously streamlined 

in the simplified concept that TAMs have a differentiation program resembling M2 

macrophages, characterized by expression of CD206, CD204, VEGF, CD163 and Arg-1 

[103]. This is in contrast to the expression of classical markers of M1 polarized macrophage 

including CD80, CD86, MHC-II, iNOS and CD68, which correlated with effector function 

of macrophages and tumoricidal function of TAMs [103]. The M1/M2 programs rely 

mainly on metabolism, since proinflammatory M1 macrophages are supported by glycolysis, 

whereas anti-inflammatory M2 macrophages utilize mainly fatty acid oxidation (FAO)[104]. 

This concept is no further considered appropriate, but such differentiation profiles remain 

useful in the characterization of TAMs because there is extensive experience regarding the 

correlation between the expression of such immune marker combinations and prognosis in 

various cancers [97,105].

Live cell imaging allowing assessment of the spatial interaction of TAMs with other cells 

of the TME has significantly improved our understanding about the role of TAMs in tumor 
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evolution. In a breast cancer mouse model, multiphoton microscopy studies showed that 

TAMs interact with mammary cancer cells, facilitating their intravasation and subsequent 

metastasis. Tumor cells closer to TAMs are more motile and are directed toward TAMs of 

the perivascular area where they interact with blood vessels and enter the blood stream [106, 

107]. Real time imaging provided evidence about the role of perivascular Tie2hi TAMs in 

promoting transient vascular permeabilization and tumor intravasation, thereby facilitating 

metastasis [108]. In a model of GBM, intravital 2-photon microscopy showed two distinct 

TAM subtypes with morphological and functional differences: microglial cells which are 

large, highly branched and less motile, and bone marrow-derived macrophages which are 

smaller, less branched and less motile [109]. The differential properties of the spatially 

distinct subsets of TAMs might form attractive targets for therapeutic intervention.

Beyond the impact of oncogenes in regulating the production of tumor-derived soluble 

factors that regulate monocyte recruitment and TAM generation, the mutational landscape 

of tumor cells alter other immune cell types that are recruited in the TME. Colorectal 

cancer (CRC) serves as a paradigm for this process. Based on gene expression studies, 

CRC can be classified into four molecular subtypes (CMS1–4) [110]. CRC-CMS1 has DNA 

mismatch-repair defects, which cause microsatellite instability and hypermutation. These 

tumors are densely infiltrated by CD4+ and CD8+ T cells with high expression of immune 

checkpoint inhibitors including CTLA-4, PD-1, and PD-L1 and display favorable responses 

to checkpoint immunotherapy [111]. In contrast, CRC-CMS4 is characterized by tumor cells 

with a mesenchymal-like phenotype, an RNA sequencing profile dominated by signatures 

of the TGF-β pathway, Th17 pathway, monocyte/macrophage infiltration, and resistance to 

checkpoint immunotherapy [111]. Thus, cancer-specific properties have a significant impact 

on the quantitative and qualitative inflammatory infiltrate of the TME and in regulating the 

crosstalk between myeloid cells and the adaptive immune system.

5. Tumor-associated T cells and signaling pathways shaping their 

function

A critical determinant of tumor containment and progression over time is the number 

and function of T cells within the TME. For this reason, T cells are the key targets 

of antibody-based and cell-based immunotherapies in cancer. During the phase of cancer 

escape from immune control, T cells that can recognize tumor-associated antigens and 

control tumor growth, lose the ability to mediate this function due to mechanisms related 

with tumor-induced tolerance and immunosuppression (Fig. 1) [112]. These dysfunctional 

T cells are characterized by features of T cell exhaustion (TEX) observed in chronic viral 

infections [113] such as high surface expression of inhibitory receptors CTLA-4, PD-1, 

TIM-3, LAG-3, loss of expansion ability, and impaired effector function as determined by 

the diminished production of cytokines such as IFNγ and TNF-α (Fig. 3) [114]. The TEX 

state might be reversible or irreversible [115] and a central goal of novel immunotherapies 

is to achieve re-invigoration of tumor-specific TEX cells. The development of TEX state is 

mediated primarily by T cell-extrinsic factors that lead to persistent T cell activation by 

tumor antigens [116].
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The co-inhibitory molecules such as PD-1 (CD279) and CTLA-4 (CD152) are induced 

during physiologic T cell stimulation to tame activation signals. CTLA-4 being upregulated 

and acting early during T cell activation, is the high affinity receptor of CD80/CD86. 

CTLA-4 directly competes with CD28 for binding on CD80/CD86, and its binding on 

CD80/CD86 ligands on APC can result in the depletion of CD80/CD86 by trans-endocytosis 

[117] while simultaneously releasing free PD-L1 by eliminating availability of CD80 

for PD-L1 engagement in PD-L1: CD80 interaction [118]. PD-1 is also induced upon 

TCR-mediated activation. Engagement of PD-1 by its ligands PD-L1 (B7-H1 or CD274) 

and/or PD-L2 (B7-DC or B7-H3) counteracts TCR signaling and CD28-mediated co-

stimulation [119,120]. PD-1 and CTLA-4 are the prototype inhibitory receptors, known 

as immune checkpoints, and are the most extensively utilized therapeutic targets in cancer 

immunotherapy [121].

After engagement with its ligands PD-L1 or PD-L2, but also via tonic signaling [122], PD-1 

inhibits T cell functions by recruiting phosphatases, predominantly SHP-2 but also SHP-1, 

to the immunoreceptor tyrosine-based switch motif (ITSM) and immunoreceptor tyrosine-

based inhibitory motif (ITIM), expressed in PD-1 cytoplasmic tail, which antagonize TCR 

and CD28-mediated activation signals [123–126]. This TCR proximal signaling blockade 

results in inhibition of key downstream pathways including PI3K/Akt and Ras leading 

to altered biochemical, transcriptional and metabolic T cell reprograming [127–129]. 

Constitutive PD-1 expression on T cells induced by persistent antigen stimulation during 

cancer promotes immune evasion, and blockade of the PD-1 pathway can improve T cell 

function and reduce tumor burden in multiple experimental tumor models and multiple types 

of human cancers [130,131].

The expression status of PD-L1 on tumor cells has served as a factor for patient stratification 

for anti-PD-1 therapy. However, in several clinical studies, there were patients with 

undetectable PD-L1 on tumors, who also responded to anti-PD-1 therapy [132]. This effect 

can be explained by the fact that, other cell types in the TME, such as macrophages, 

DCs, tumor-associated fibroblasts and myeloid cells also express PD-L1, creating an 

immunosuppressive TME for T cells and supporting tumor cell growth. Therefore, the 

relative contribution of PD-L1 on tumor cells and other cell types in limiting anti-tumor 

responses in the TME remains under investigation. PD-L1 expression on tumor cells can 

locally inhibit CD8+ T cell activation and protect PD-L1+, but not PD-L1− tumors from 

eradication by the immune system, indicating a critical role for tumor PD-L1 in suppressing 

antitumor immunity [133]. By genetic deletion of PD-L1 in tumor cells and host mice, a 

different study showed comparable contribution of PD-L1 on each of these compartments to 

immune suppression, suggesting that PD-L1 expression in either of these compartments 

can be predictive of responses to PD-1/PD-L1 blockade therapy [134]. However by 

using conditional deletion of PD-L1 in tumor cells and dendritic cells-, transplantation 

chimeras, as well as various approaches of antibody blockade, it was determined by several 

investigators that PD-L1 expressed in APC, rather than tumor cells, has a causative role 

in compromising anti-tumor T cell responses and this APC-mediated PD-1 ligation and T 

cell immunosuppression is the dominant interaction targeted by checkpoint blockade therapy 

[95,135]. Since DCs mediate CD4+ T cell priming and cross-presentation of tumor antigens 
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to CD8 + T cells, upregulation of PD-L1 on dendritic cells can attenuate cytotoxic T cell 

activity and compromise antitumor responses [136,137].

Recently, in cis interaction of PD-L1 and B7–1, on the same cell surface of APC, has been 

reported by several studies [51–54]. The in cis interaction of B7–1 with PD-L1 impairs 

the interaction of PD-L1 with PD-1 in trans (Fig. 3) resulting in reduced PD-1 signaling 

(reviewed in [138]). Blockade of the in cis interaction of PD-L1/B7–1 by B7–1-specific 

antibodies could increase PD-1-mediated T cell suppression and alleviate autoimmunity 

in several mouse models [139]. Among tumor-infiltrating myeloid cells, PD-L1-expressing 

DCs have a dominant role in regulating antitumor T cell responses via in cis interaction of 

PD-L1/B7–1 on DCs and PD-L1/PD-1 interactions between DCs and T cells. These findings 

suggest a new therapeutic mechanism of PD-L1 checkpoint blockade acting on DCs to 

induce enhanced antigen presentation for T cell priming and simultaneous clonal expansion 

[137]. A more comprehensive understanding of these mechanisms will be necessary to 

optimize PD-1/PD-L1 targeting immunotherapy.

While the PD1/PD-L1 axis has been extensively investigated, other inhibitory pathways 

are also exploited by tumor cells, contributing to the generation of an immunosuppressive 

TME and escape of immunosurveillance [140]. VISTA (B7-H5, PD-1 H, Gi24, Dies1, 

SISP1 and DD1α) has increasingly become a promising target for overcoming resistance 

to anti-PD-1 immunotherapy [141]. In addition to the ability of VISTA to regulate the 

immunosuppressive function of MDSC under hypoxia, as mentioned above [78], VISTA can 

function as an inhibitory regulator of naïve T cells, critical for steady-state maintenance of 

immune quiescence and peripheral tolerance (Fig. 3) [142]. Notably, VISTA can mitigate 

pathogenesis and progression of murine lupus by transmitting inhibitory signals on both T 

cells and myeloid cells [143, 144].

Although few studies have reported VISTA expression on tumor cells [145,146], VISTA 

expression on intratumoral myeloid cells and stromal cells has been recognized as a 

potential mediator of acquired resistance to anti-PD-1 and anti-CTLA-4 immunotherapies 

in patients with metastatic melanoma and pancreatic ductal adenocarcinoma [147–149]. 

Therapeutic blockade of the VISTA pathway has been limited by its unknown binding 

partners and their function. A recent study identified VSIG-3 as a putative ligand of VISTA 

to inhibit T cell activation and cytokine production [150]. While at physiological pH VISTA 

interacts mainly with VSIG-3, in acidic pH, VISTA serves as a selective ligand for PSGL-1 

receptor on T cells suppressing T cell function (Fig. 3) [151]. This unique pH-dependent 

VISTA/PSGL-1 interaction suggests that engineering pH-sensitive antibodies might enable 

selective targeting of VISTA within the acidic TME to reverse cancer-mediated immune 

suppression without compromising self-tolerance and inducing autoimmunity [151]. Thus, 

targeting the VISTA pathway can be achieved in a context-dependent manner to overcome 

the immunosuppressive TME and reinvigorate responses of tumor-specific T cells.

5.1. T regulatory cells of the TME and implications in cancer immunotherapy

It has been previously established that inhibition of Akt and its downstream target mTOR is 

required to induce Treg differentiation and sustain Treg suppressor function [152,153]. PD-1 

ligation inhibits Akt activation [127] and synergizes with TGF-β to induce FoxP3+ iTreg 
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cells with potent suppressive capacity [154]. Moreover, PD-1 promotes fatty acid oxidation 

[128], a metabolic program that supports the differentiation, survival and function of Treg 

cells [155]. Based on these, one would anticipate that PD-1 promotes Treg generation and 

suppressor function. However, recent studies revealed an unexpected connection between 

PD-1 expression in Treg cells and the outcome of PD-1 pathway blockade [156]. In humans, 

FoxP3+CD4+ Treg cells represent a heterogenous population that can be subdivided into 

three functionally and phenotypically distinct subsets [157]. Thymus derived naïve Tregs 

(nTreg: CD45RA+ FOXP3lo) and activated effector-Tregs (eTreg: CD45RA− FOXP3hi) 

are highly suppressive while the CD45RA− FOXP3lo Treg cells represent a non-Treg 

population with a potential of inflammatory cytokine production. Among these Treg subsets, 

FoxP3+ Tregs infiltrating the TME in most cancers are predominantly the eTreg cells 

[158]. Expression of PD-1 was found in eTreg cells and the frequency of PD-1+ eTreg 

cells was higher in tumor samples from patients who did not respond to PD-1-blocking 

immunotherapy. Notably, blockade of the PD-1: PD-L1 pathway induced activation of 

eTreg in TILs, as determined by upregulation of CTLA-4, GITR and ICOS and these 

Treg obtained a more potent suppressor function. These results highlight a previously 

unappreciated role of PD-1 signaling in Tregs and suggest that PD-1 blockade enhances 

the suppressive activity of Tregs that express high levels of PD-1. While blocking PD-1 in 

PD-1+ CD8+ T cells converts them to CD8+ Teff cells that have potent effector function 

leading to tumor regression, blocking PD-1 in PD-1+ Treg converts them to activated eTreg 

that have potent suppressor function leading to tumor progression. Thus, PD-1 expression 

balance between CD8+ Teff cells and eTreg in the TME that might predict the clinical 

efficacy of PD-1 blocking immunotherapy.

6. T cell differentiation and cancer immunosurveillance

CD8+ T cells play an important role in the adaptive immune response to intracellular 

pathogens and cancer [159]. Therapeutic responses to PD-1 checkpoint immunotherapy 

correlate with expansion of CD8+ memory T cells in mouse tumor models and patients 

[160]. Immunometabolic programs have a causative role in T cell differentiation and their 

immune function [161,162]. This is particularly important in the metabolically stressful 

TME where nutrient competition, hypoxia, excess ROS and metabolic byproducts of cancer 

cells create uniquely hostile conditions under which T cell activation by and cytotoxic 

function should be operated [163–165]. Although glycolysis has been intimately linked 

to effector function [166,167], augmenting glycolytic flux drives CD8+ T cells toward a 

terminally differentiated state, while its inhibition preserves the formation of long-lived 

TM CD8+ T cells [168]. Thus, multiple signaling pathways and mediators of metabolic 

reprogramming, such as mTOR, SREBP, Myc [169–172], have important roles in immune-

mediated tumor control by guiding differentiation and function of T cells in the context 

of cancer [172–175]. After stimulation with antigen, CD8+ naive T cells expand and 

differentiate into TEFF cells and distinct TM cell subsets, including TSCM, TCM, and TEM 

[176]. Preclinical studies using adoptive transfer of purified CD8+ T cell populations 

revealed that less-differentiated T cells with features of TSCM and TCM mediate enhanced 

antitumor and antiviral responses compared with more-differentiated TEM and TEFF cells 

[177–179]. Preservation of TSCM and TCM cells with a quiescent phenotype and increased 
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proliferative and survival capacities enhance T cell ability to maintain sustained anti-tumor 

control [180]. For example, Wnt signaling prevents TEFF differentiation, while promoting 

the generation of TSCM that maintain stemness and pluripotency and display long-lasting 

potent anti-tumor properties [179].

7. Tissue resident memory cells (TRM) are novel regulators of anti-tumor 

immunity

Memory T cells have been classically divided into two subsets [181]. TEM cells create 

immediate effector function to inflamed tissues whereas central memory T cells (TCM) 

accumulate in secondary lymphoid organs and generate protective immunity [181,182]. 

Recently, a distinct T memory cell population, named tissue-resident memory T cells (TRM) 

were identified and classified by their unique phenotype and properties. These cells reside 

permanently in peripheral non-lymphoid tissues and provide a protective effect against 

infections and cancer [183,184]. TRM cells have been identified and investigated both in 

mice and humans in many tissues including skin, gut, brain and liver [185–187]. Although 

TRM cells were defined as either CD4+ or CD8+, only CD8+ TRM play a major role in cancer 

immunosurveillance and tumor prognosis [188–190]. Traditionally, CD8+ TRM are defined 

by the co-expression of CD103, CD69 and/or CD49 [191], and downregulation of receptors 

that promote T cell recirculation including S1pr1, CD62L (L-selectin) and CCR7 [192–194]. 

CD103 integrin, formed by αE (CD103) and β7 subunits, promotes TRM cells retention 

and homing to epithelial tissue and tumors [195–197]. TRM cells have an established role 

in protective immunity in bacterial, viral infections and autoimmune diseases, including 

Listeria monocytogenes and Herpes Simplex infections and vitiligo.

An important role of TRM in cancer is currently evolving. In a model of melanoma-

associated vitiligo (MAV), using adoptive pmel cells which have a TCR that can detect 

melanoma gp100 antigen, it was shown that adoptively transferred pmel T cells acquired a 

TRM immunological profile with a CD103+CD69+CD62Llo phenotype in the skin, draining 

lymph nodes, lung, and liver [198]. In this context, TRM cells had a protective function 

against metastasis and expressed transcripts different from TCM cells, characterized by 

features of effector function and lipid metabolism. In a mouse model of epicutaneous 

melanoma, it was also determined that TRM have a role in promoting melanoma immune 

equilibrium [189]. Mice that did not develop melanoma (non-developer group) had higher 

numbers of CD69+CD103+ TRM cells than tumor-developer mice. In addition, intact skin 

from the non-developer group, peritumoral area, and tumoral area showed higher number 

of TRM cells. Notably, both CD69 and CD103 knock-out mice are more susceptible to 

melanoma formation than wild type counterparts, indicating the causative role of CD69 and 

CD103 proteins in regulating TRM development and anti-tumor function [189]. Other studies 

have shown that CD103 + TRM cells can protect against melanoma re-exposure providing 

evidence for the long-lasting ability of TRM to provide cancer immunosurveilance [199]. 

In many types of cancer, CD8 + TRM cells display robust production of cytokines such as 

granzyme B, granzyme A, perforin, and IFN-γ [198,200–203]. Importantly, recent work, 

using a VHL deficiency mouse model, provided evidence for a link between HIF-1α and 

CD103 expression and showed that HIF-1α expression supported enhanced differentiation 
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of TRM cells with cytotoxic function [200,203]. These findings link HIF-1α, a key signature 

molecule of the TME, with TRM differentiation and function and underline the direct 

relevance of TRM in anti-tumor immunity.

TRM cells express checkpoint receptors, and might serve as markers for prognosis prediction 

In melanoma patients, TRM express PD-1, TIM-3, and PD-L1 at higher levels than 

peripheral blood T cells. Single-cell RNA sequencing of T cells isolated from human 

breast cancer demonstrated a high number of TRM cells with a high level of TIM-3, PD-1, 

CTLA-4, TIGIT, and LAG-3 expression [190]. In lung cancer, PD-1, TIM − 3, and CD137 

are highly expressed [202,204]. After ex vivo pharmacologic stimulation of PD-1+CD103+ 

CD8 TILs from ovarian cancer, these TRM-like cells highly expressed TIM-3, CTLA-4, and 

LAG-3 [205, 206]. In lung cancer patients, after anti-PD-1 treatment, TRM cells upregulated 

PD-1, CTLA-4, TIM-3, TIGIT, and CD39 [207], whereas in melanoma patients PD-1 

checkpoint immunotherapy resulted in TRM-specific upregulation of PD-1 and LAG-3 [208]. 

Notably, the number of TRM cells is correlated with a better response to PD-1 checkpoint 

immunotherapy and a favorable prognosis in multiple cancers including melanoma, breast 

cancer, lung cancer, urothelial cancer, ovarian cancer and cervical cancer [205,208–215]. 

The unravelling role of TRM cells in cancer evolution and response to immunotherapy 

suggest that TRM might be a promising novel target for therapeutic exploitation in cancer.

8. Innate lymphoid cells and their role in cancer immunotherapy

Innate lymphoid cells (ILCs), which lack antigen-specific receptors, are considered as the 

innate equivalents of T cells. The most recent nomenclature classifies ILCs into five groups, 

namely ILC1s, ILC2s, ILC3s which are the equivalent of Th1, Th2, and Th17 CD4+ T 

helper (Th) cells, respectively, natural killer (NK) cells, which are the equivalent of CD8+ 

cytotoxic T cells, and lymphoid tissue-inducer cells (LTis), a unique subset involved in the 

development of secondary lymphoid organs [216]. With the exception of the highly mobile 

and constantly circulating NK cells, ILCs are largely tissue-resident cells. Besides their 

main role of immune surveillance and tissue homeostasis, ILCs have emerged as critical 

players in cancer growth and therapy [217]. ILCs express a plethora of activating and 

inhibitory receptors [218]. Among the latter, checkpoint inhibitory receptors increasingly 

raise attention due to their role in tumor immunotherapy. Here, we summarize the current 

knowledge on the role of checkpoint inhibitory receptors in ILCs in the context of cancer.

8.1. Natural Killer (NK) cells

NK cells belong to a highly diverse subset of ILCs that circulate between peripheral organs, 

exerting cytotoxic activity that can directly eliminate cancer cells or cells undergoing 

microbial infections [219–221]. In healthy adults, NK cells comprise about 5–15% of 

circulating lymphocytes with the majority of healthy tissues mainly consisting of the 

mature highly cytolytic CD56dim NK cell subset, while the immature and poorly cytolytic 

CD56bright subset, although also present in healthy tissues, it becomes significantly 

enriched in cancer [222]. A plethora of activating and inhibitory receptors regulate 

NK cell development and function, with the dominant signal being inhibitory, resulting 

primarily from the interactions of certain NK cell inhibitory receptors with major 
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histocompatibility complex class I (MHC-I) molecules [223,224]. These “classical” NK 

inhibitory receptorsinclude the group of Killer Ig-like receptors (KIRs) in humans and 

the LY49 group of receptors in rodents, as well as the CD94/NKG2A receptor (Fig. 4A), 

which also recognizes HLA-E in humans and Qa-1b in mice [218, 223–228]. According 

to the “missing self” hypothesis [229], these inhibitory receptors have the unique ability 

to prevent NK cell responses against self, and allow NK cells to exert their cytotoxic 

activity against cells that have reduced or absent expression of MHC-I molecules. However, 

in the context of cancer, these NK inhibitory receptors hamper NK cell responses and 

contribute to tumor cell escape from elimination. Blocking antibodies, usually termed 

“immune checkpoint inhibitors” against KIRs (lirilumab) [230] and NKG2A (monalizumab) 

[231], which aim to improve NK cell function, are in phase I/II clinical trials against a 

range of hematologic malignancies and solid tumors either as mono- or combination therapy 

[232,233]. In addition, adoptive transfer of NK cells engineered to downregulate NKG2A in 

immunodeficient mice, efficiently prevented HLA-E+ tumor-mediated suppression leading 

to increased anti-tumor activity, suggesting this as a promising approach to be tested in a 

clinical setting [234].

Besides the classical inhibitory receptors, NK cells also express checkpoint inhibitory 

receptors (Fig. 4A). Expression of programmed cell death 1 (PD-1) was found on NK 

cells from healthy individuals correlating with prior HCMV infection [235]. Notably, 

PD-1 expression has been found to be restricted to the fully mature CD56dim or to the 

CD56neg NK compartment and not to the immature CD56bright NK cell subset [236]. 

PD-1 is also expressed on NK cells in the context of cancer. PD-1+ NK cells were 

detected in the peripheral blood of patients with multiple myeloma, Kaposi sarcoma 

and lung cancer patients [237–239], in pleural effusions from primary mesothelioma or 

metastatic adenocarcinoma patients [240], in the peritoneal fluid of high-grade peritoneal 

carcinomatosis patients [241], and in the peripheral blood and ascitic fluid of ovarian 

carcinoma patients, with both mRNA and protein PD-1 levels to be higher in the CD56dim 

NK cell subset [242]. In contrast, PD-1 expression was found to be higher in CD56bright than 

CD56dim mature NK cells from blood and tissues from patients with Hodgkin lymphoma 

[243]. As in T cells, blockade of the PD-1/PD-L1 axis in NK cells could improve anti-tumor 

activity [243,244]. Interestingly, glucocorticoids present in the TME were found to be 

indispensable for PD-1 induction on human NK cells, particularly when combined with 

the inflammatory cytokines interleukin (IL)− 12, IL-15 and IL-18, which are abundant 

at the tumor site [245]. In addition, expression of the PD-1 ligand, PD-L1, on NK cells 

has been associated with a regulatory function, limiting DC-mediated tumor antigen cross-

presentation to CD8+ cells and resulting in impaired memory responses [246].

The inhibitory receptor cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) has also 

been detected on NK cells from mice [247], in the blood from healthy donors and in the 

blood and tissues from cancer patients [248,249]. Similarly to PD-1, CTLA-4 was found 

to be predominantly expressed on CD56dim NK cells from the blood of healthy individuals 

and was associated with decreased NK cell functionality [249]. These findings explain 

why CTLA-4 blockade, besides T cells, was also found to favor NK cell infiltration and 

antitumor function [250]. Of note, treatment with anti-CTLA-4 antibody could favor NK cell 
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anti-tumor function indirectly, by depleting CTLA-4-expressing intratumoral regulatory T 

cells (Treg) [247].

Other checkpoint inhibitory receptors such as TIM-3, LAG-3, TIGIT), CD96 (TACTILE) 

have also been identified in NK cells (Fig. 4A). Although mostly considered as an inhibitory 

receptor [251,252], TIM-3 has also been reported to have an activation role in NK cells 

[253]. Higher TIM-3 expression has been observed on the CD56dim NK cell subset, while 

on the CD56bright cell subset it may be upregulated upon cytokine stimulation [251]. In 

the context of cancer, TIM-3 has been detected in NK cells from patients with advanced 

melanoma [254,255], gastric cancer [256], lung adenocarcinoma [257], and bladder cancer 

[258]. Increased TIM-3 expression was found in both CD56dim and CD56bright NK cell 

subsets, correlating with shorter overall survival [257]. Conversely, blockade of TIM-3 

signals with TIM-3-specific antibodies improved NK cell functions in vitro [254,257].

LAG-3 acts synergistically with PD-1 and contributes to T cell and NK cell dysfunction, 

exhaustion [259] and tumor escape [260]. Several years of efforts testing LAG-3 as 

promising checkpoint blockade therapy recently led to the first approval of LAG-3 blocking 

antibody (relatlimab-rmbw) for combination therapy together with PD-1 antibody nivolumab 

(Opdualag) for the treatment of patients with unresectable or metastatic melanoma. An 

alternative approach used a LAG-3-Ig fusion protein (IMP321) as a soluble high affinity 

MHC-II agonist to enhance antigen presenting function. Treatment with IMP321 as 

monotherapy enhanced IFN-γ and TNF-α production in NK cells from control donors and 

cancer patients ex vivo [261], and was also shown to increase the number and activation of 

NK cells in the blood of breast cancer patients in combination with standard chemotherapy 

[262].

A separate group of receptors, also referred to as novel NK cell immune checkpoints, 

includes the inhibitory receptors TIGIT and CD112R [263] as well as the costimulatory 

receptor CD226 (DNAM-1) [264], and CD96 (TACTILE) for which both inhibitory 

and costimulatory functions have been reported [265,266]. These receptors interact with 

molecules of the nectin family CD155 (PVR) and CD112 (Nectin-2) (Fig. 4A) [267], two 

ligands with ubiquitous low level expression, often up-regulated in cancer cells [268,269] 

and myeloid suppressor cells within the TME [270,271]. TIGIT is expressed by activated T 

cells and NK cells and binds its ligands CD155 and CD112 expressed on antigen presenting 

cells (APC) [272]. Expression of these ligands by several cancer types results in T cell 

and NK cell exhaustion, impaired tumor immune infiltration and compromised antitumor 

function [273–275]. The TIGIT pathway and its related receptors and ligands offer new 

options for antibody-based blocking strategies, which have shown to improve tumor control 

in mice particularly when combined with PD-1/PD-L1 or CTLA-4 blockade [276].

8.2. Helper ILCs

Recent studies suggest that checkpoint receptors are involved in the immune responses 

of helper ILC subsets and have important implications in anti-tumor immunity (Fig. 4B). 

However, little information is currently available regarding the mechanisms by which these 

receptors regulate helper ILC functions. Although not detected in helper ILCs from healthy 

human tissue samples [277], PD-1 is expressed on tumor-associated helper ILC populations 
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[278]. It was recently reported that helper ILC subsets are present in human malignant 

pleural effusions, with a notable PD-1 expression level on the ILC3 subset [240]. Another 

study, using single-cell RNA sequencing and a CRC mouse model associated with AOM/

DSS-induced colitis, identified high-PD-1-expressing ILC2 infiltrates and demonstrated the 

importance of this specific subset in tumor progression [279]. Furthermore, PD-1+ ILC2 

cells were present in most human PDAC tissues as well as in orthotopic PDAC tumors 

in mice, in which PD-1 blockade, resulted in ILC2 expansion and improved antitumor 

immunity [280]. These findings suggest the potential role of ILC2 cells as tissue-specific 

enhancers of cancer immunity that may amplify the efficacy of anti-PD-1 immunotherapy.

Similarly to PD-1, CTLA-4 expression was found to be very low in helper ILCs 

from healthy donors [281], but is increased in helper ILC subsets within tumor tissues 

[278]. High CTLA-4 expression has also been reported on intratumoral ILC1 subsets in 

mice [282]. Although TIM-3 has been detected on ILC3s from human decidua during 

pregnancy and inhibiting IL-22 production [283], currently very limited information is 

known regarding TIM-3 expression on helper ILCs in the context of cancer. Transcriptomic 

and immunophenotyping analyses in mouse and human cSCCs identified infiltration of 

functionally impaired NK and ILC1 cells characterized by reduced cytotoxicity and IFN-γ 
secretion, which correlated with decreased expression of activating receptors and increased 

expression of exhaustion markers including TIGIT on NK cells, and PD-1 and TIM-3 on 

ILC1s [284]. LAG-3 expression has not been reported in resting ILCs, but in the context 

of cancer and upon TGF-β-mediated conversion of NK to ILC1 cells, several checkpoint 

receptors were upregulated, among which LAG-3, TIGIT and CD96 expression has been 

documented [282]. The functional effects of blocking these receptors on helper ILCs remain 

to be determined.

9. Concluding remarks

Profiling the immune cells in the TME of patients with evolving techniques has revealed 

significant information regarding the immune cell composition of the TME in experimental 

animal models and patients with various types of cancer. It is increasingly understood that 

the immune cellular components of the TME, including DCs, TAMs and MDSCs have 

decisive roles in regulating cancer evolution and immune escape but also the outcomes of 

cancer therapy including chemotherapy, checkpoint immunotherapy and cancer vaccines. 

Although in healthy tissues these myeloid cells provide defense against insults mediated by 

pathogens, in the TME these cells lose their protective immune functions and convert to 

pro-tumorigenic mediators that support cancer growth and metastasis. Via such changes, 

myeloid cell populations fail to recruit T cells, present tumor antigens and mediate 

anti-tumor T cell responses. Instead, these myeloid cells suppress T cell activation by 

blunting recognition of tumor antigens, eliminating engagement of costimulatory pathways, 

upregulating the expression of inhibitory receptors and their ligands, and producing 

inhibitory soluble mediators thereby creating an immunosuppressive milieu. Engagement 

of inhibitory receptors on T cells of the TME impairs signaling events mediated by T 

cell receptor and costimulatory pathways and promotes generation of TEX tumor-specific 

cells that are unable to mount anti-tumor responses. The TME also promotes differentiation 

of iTreg by T cell receptor engagement by tumor antigens and concomitant ligation of 
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coinhibitory receptors, and production of Treg-promoting soluble factors such as TGF-β and 

IL-10. Together these mechanisms abrogate cancer immunosurveillance and support cancer 

evolution and immune escape. Although checkpoint blockade and cell-based therapies 

have achieved significant progress, challenges ahead include advancing the outcome 

of immunotherapy by targeting changes of the TME that compromise the function of 

key immune populations and preclude their ability to recognize and respond to tumor 

antigens. Such tentative targets for intervention include metabolic alterations, vasculature 

abnormalities and soluble inhibitors produced in the TME. Such efforts might repurpose 

available drugs previously used in the clinic, which can be administered together or 

sequentially with immunomodulating immunotherapies and cell-based therapies. In doing 

so, an additional challenge will be to achieve cancer elimination while preserving self-

tolerance and preventing autoimmunity.
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CXCR3 CXC chemokine receptor 3

G-CSF granulocyte colony-stimulating factor

PGE2 prostaglandin E2

CXCL1 CXC motif chemokine ligand 1

TNFα tumor necrosis factor alpha

NF-κB nuclear factor-kappaB

SHP-2 Src homology domain-containing phosphatase-2

TIM-3 T-cell immunoglobulin mucin-3

TLR3 Toll-like receptor 3

TLR7 Toll-like receptor 7

TLR9 Toll-like receptor 9

TIM-4 T-cell immunoglobulin mucin-4

IRF8 interferon regulatory factor 8

Th17 T helper 17 cell

MIP-1b macrophage inflammatory protein-1β

CCL4 C–C motif chemokine ligand 4

RANTES regulated on activation, normal T cell expressed and 

secreted

IFN-α interferon alpha

ICOS-L inducible costimulator ligand

AML acute myeloid leukemia

VISTA V-domain Ig suppressor of T-cell activation

mPGES1 microsomal prostaglandin E synthase-1

pSTAT1-IRF1 phosphorylated signal transducer and activator of 

transcription 1- interferon regulatory factor 1

HIF-1a hypoxia-inducible factor 1

CXCL12 CXC chemokine ligand 12

B7-H4 B7 homolog 4

SREBP1 sterol regulatory element-binding protein-1

PARP poly adenosine diphosphate-ribose polymerase
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Arg-1 arginase 1

iNOS inducible nitric oxide synthase

GBM glioblastoma multiform

LAG-3 lymphocyte activation gene-3

VSIG-3 V-set and immunoglobulin domain containing 3

PSGL-1 P-selectin glycoprotein ligand-1

GITR glucocorticoid-induced tumor necrosis factor receptor 

family-related receptor

mTOR mammalian target of rapamycin

CCR7 C-C chemokine receptor type 7

VHL von Hippel Lindau

TIGIT T cell immunoreceptor with immunoglobulin and ITIM 

domain

HCMV human cytomegalovirus

AOM/DSS azoxymethane/dextran sodium sulfate

PDAC pancreatic ductal adenocarcinoma

cSCCs cutaneous squamous cell carcinomas
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Fig. 1. 
During tumorigenesis, growth factors, such as M-CSF and GM-CSF, and damage-associated 

molecular patterns (DAMPs) produced by cancer cells due to rapid replication and 

apoptosis, act on bone marrow myeloid progenitors inducing emergency myelopoiesis and 

output of immature myelosuppressive PMN-MDSCs and M-MDSCs, which are recruited to 

the tumor via chemokines such as CCL2, CCL5 and CXCL12. In the TME, PMN-MDSCs 

and M-MDSCs directly induce immunosuppression, whereas M-MDSCs are also converted 

into tolerogenic and pro-tumorigenic TAMs by the function of soluble factors such as 

IL-6, IL-10 and VEGF. TAMs lose the physiologic properties of macrophages such as 

phagocytosis and together with MDSCs and soluble factors produced in the TME suppress 

the antigen presenting function of DCs, leading to impaired activation of tumor-specific T 

cells and generation of Treg cells. These orchestrated changes in the properties of immune 

cells promote cancer immune escape.
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Fig. 2. 
DCs, particularly the cDC1 subset, can capture and process tumor-associated antigens 

and present them to CD4+ T cells by MHC-II molecules. cDC1 can also cross-present 

(XP) tumor-associated antigens to CD8+ T cells by MHC-I molecules (A). Expression of 

checkpoint inhibitors such PD-1, PD-L1 and TIM-3, compromise these functions leading to 

impaired T cell activation, T cell expansion and anti-tumor immunity.
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Fig. 3. 
Coinhibitory pathways in T cells and APC. T cell activation is initiated by recognition of 

antigens presented by antigen-presenting cells (APCs) to the T cell receptor (TCR)/CD3 

complex. CD28 is the prototype costimulatory receptor in T cells and interacts with CD80 

and CD86. Many coinhibitory receptors are upregulated upon T cell activation and can 

attenuate TCR and costimulatory signals. CTLA4 and PD-1 are the prototype co-inhibitory 

receptors expressed in T cells. CTLA-4 interacts with B7–1 (CD80) and B7–2 (CD86) 

whereas PD-1 (CD279) interacts with PD-L1 (CD274) and PD-L2 (CD273) to inhibit T cell 

responses. In addition to canonical interaction of PD-L1 with PD-1 in trans, PD-L1 interacts 

with B7–1 (CD80) in cis, when co-expressed on the same APC leading to diminished 

availability of PD-L1 for canonical interaction with PD-1 in trans. VISTA, TIM-3 and PD-1 
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are expressed both in T cells and APC and can regulate immune responses by altering the 

properties of myeloid cells and T cells.
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Fig. 4. 
NK cells and ILCs express multiple inhibitory receptors. NK cells express the classical 

inhibitory receptors KIR and NKG2A. Both NK cells and ILC express multiple checkpoint 

inhibitors. These receptors and their ligands offer new therapeutic opportunities to improve 

NK cell functions for cancer immunotherapy.
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