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Abstract

One of the hallmark advances in our understanding of metalloprotein function is showcased 

in our ability to design new, non-native, catalytically active, protein scaffolds. This review 

highlights progress and milestone achievements in the field of de novo metalloprotein design 

focused on reports from the past decade with special emphasis on de novo designs couched 

within common subfields of bioinorganic study: heme binding proteins, mono-metal and di-metal 

containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we 

highlight several of what we have identified as significant and important contributions to either our 

understanding of that subfield or de novo metalloprotein design as a discipline. These reports are 

placed in context both historically and scientifically. General suggestions for future directions that 

we feel will be important to advance our understanding or accelerate discovery are discussed.
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1. Introduction

De novo protein designers strive to create proteins from first principles, testing our 

understanding of the protein sequence-structure-function relationship by designing well 

folded and functional protein sequences without deferring to nature.1–2 Focusing on 

metalloproteins (those in which a bound metal is necessary for function) the goal becomes 

similar to that of enzyme design, to correctly position a number of amino acid side chains 

relative to one another in order to confer function.3 However, unlike Directed Evolution or 

protein re-engineering, which utilize pre-existing scaffolds found naturally in the biosphere, 

the de novo approach must also establish defined sequences that will confer a desired 

protein architecture such as α-helical coiled coils or helical bundles as their starting points. 

Replicating the metal coordination environments of metalloproteins in non-native scaffolds 

erases many interactions outside of the primary coordination sphere such as secondary 

sphere or long-range interactions. This allows researchers to determine characteristics of the 

primary sphere within a generic protein environment. Using Copper nitrite reductase as an 

example, techniques using native protein scaffolds can investigate the effects of secondary 

coordination sphere residues by mutating these residues to Ala to break their function or 

transplant the primary sphere into a native protein scaffold to try to build in that function 

but the complicated nature of these systems makes it difficult to investigate fundamental 

questions (Figure 1).4–5 De novo protein design allows the primary sphere to be separated 

from native protein folds in a way reminiscent of small molecule models while maintaining 

aqueous solubility.6–7 As the metalloprotein design field has matured, researchers have 
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developed more complex design strategies which aim to incorporate interactions beyond 

the primary coordination sphere to determine the effects of these longer-range interactions 

by building these systems from the ground up. This review will highlight work from 

the last ten years focused on four de novo designed metalloprotein subfields: porphyrin 

binding proteins, monometallic enzymes, bimetallic enzymes, and metal-containing electron 

transfer proteins. Within each subfield we discuss how these studies have advanced our 

understanding of the simplest functional unit of the parent metalloenzyme. Throughout, we 

highlight specific strategic design approaches to incorporate interactions beyond the primary 

coordination sphere. Finally, we consider potential future directions within each subfield and 

for the de novo metalloprotein design community as a whole.

2. Heme Protein Design

Heme proteins have long fascinated the bioinorganic community perhaps because myoglobin 

was the first protein crystal structure solved by X-ray Diffraction.8 While oxygen transport 

and storage is the most well-known function, heme-containing enzymes catalyze a broad 

range of reactions such as hydroxylation, halogenation, oxygenation, disproportionation of 

H2O2, as well as oxidation and haloperoxidation of organic molecules.9–16 Heme protein 

design, therefore, has significant potential industrial, pharmaceutical, and biotechnological 

applications.

Evolution has tuned heme-containing enzymes to be stable and functional within the well-

defined environment of biological systems. These native conditions may not be amenable 

to biotechnology applications so enzymes that function at elevated temperatures or within 

nonaqueous solvents are in constant high demand. Designed proteins that are functional in 

harsher environments would, therefore, be a boon to industry. Peroxidases are a particularly 

tantalizing enzyme target as they catalyze oxidative reactions on a variety of substrates 

using only water and H2O2.17–18 High production costs and protein stability issues of native 

enzymes make peroxidases and other heme proteins valuable targets to protein designers. 

De novo enzymes are also often more promiscuous than native enzymes, acting more like 

their primordial counterparts, which can be a boon or bane depending on the scope of the 

intended application.19

In this section, we review work on de novo designed heme enzymes within the last ten 

years. Specifically, we highlight work by the DeGrado and Lombardi labs on whole scaffold 

redesign, c-type maquettes of the Anderson lab, and pH dependent ligation within a helical 

structure. Several reviews dedicated to a historically complete and comprehensive discussion 

on heme protein design are recommended for interested readers.20–21

2.2. Covalent Heme Attachment

One of the complications of de novo heme enzyme design is leaving an open coordination 

site for substrates after binding the cofactor. A common approach is to attach the porphyrin 

to the peptide scaffold covalently. For example, the Pavone lab has previously used 

deuterohemin covalently attached to two peptides to create bis-His coordinated artificial 

heme-protein mimics within a minimal protein environment. Although simple, these 

constructs have been shown to adopt well-defined secondary and tertiary geometries with the 
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deuterohemin correctly positioned between the two helical peptides.22–23 More recently, the 

scaffold has been modified to remove one of the heme-coordinating His ligands to mimic the 

5 coordinate active site of a heme enzyme.24 Mimochrome VI used two different peptides 

(one 14 AA long with a ligating His and the other 10 AA long) covalently attached to the 

porphyrin to create a design where the heme-iron would be bound with a single His, leaving 

the distal Fe site open for catalysis (Figure 2). This strategy was adapted from previous work 

with cobalt porphyrins.25–26

The design of Mimochrome VI includes covalent bonds between the ring of the deuteroheme 

and Lys9 side chains of the two peptides. Interchain ion pairs were included to stabilize the 

secondary structure of each peptide. At extremely low pH (2.0) the UV-visible absorption 

spectral data were consistent with a high spin ferric porphyrin (S=5/2); as the pH was 

increased from 2.0 to 5.5 the absorption data indicated histidine binding to the axial face 

of the porphyrin with a pKa of 3.4.27–28 Further increasing the pH from 6.5 to 8.5, spectral 

changes consistent with the replacement of a distal water by a hydroxide were observed 

with a pKa of 7.4, indicating that a 5-coordinate deuteroheme binding mimochrome 

was successfully developed.29–30 Ligand binding to Mimochrome VI was observed using 

NO and CO for the ferric and ferrous forms, respectively.31–33 Peroxidase activity 

of Mimochrome VI was assessed with H2O2 and 2,2’-azino-di(2-ethyl-benzothiazoline-6-

sulfonic acid) (ABTS) or guaiacol.34–35 Compared to horse radish peroxidase (HRP), 

Mimochrome VI has a kcat 11-fold slower if both enzymes are assessed at their optimal 

pH conditions (pH 4.6 for HRP, pH 6.5 for Mimochrome VI) but turns over faster than 

HRP by 7-fold at neutral pH. Substrate recognition, however, was notably unremarkable as 

indicated by KM values in the micromolar range similar to that of H42A variants of hHRP.36 

It is useful to acknowledge that KM in many of the studies presented in this review may have 

a different meaning than its standard interpretation due to the lack of a defined substrate 

binding site in many de novo metalloproteins. Similar results were observed for the nitration 

of phenol with NO2
−; Mimochrome VI has the highest product yield for a peroxidase mimic, 

comes within 4-fold kcat of soybean peroxidase, and remains active under conditions that 

inactivate the native enzyme.37–38

Mimochrome VI’s success as a peroxidase mimic demonstrates that a simple design 

with a mono-His coordinated porphyrin can achieve catalytic efficiencies approaching 

those of native enzymes without any intentionally designed secondary coordination sphere 

interactions. Next, the Pavone lab sought to increase the complexity of their design strategy 

and incorporate some of the secondary coordination sphere interactions present in native 

peroxidases.39 They designed hydrogen bonding interactions between the proximal His and 

a nearby Asp as well as a distal Arg residue, based on HRP.40–41 The Mimochrome scaffold 

was too small to include additional design elements, so a four helical bundle (4HB) scaffold, 

that is based on the bis Met heme found sandwiched between two Fe2 containing 4HB’s in 

bacterioferritin, was selected (Figure 3).42 While 4HB based heme binding protein scaffolds 

are well established, only a few examples contain the unsaturated coordination site necessary 

for catalytic activity.43–44

The final MP3 design is a 4HB scaffold based on the heme binding site in bacterioferritin, 

using a pair of minimized helical bundles from this protein. The two heme-coordinating Met 
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residues were replaced, one with an axial His ligand, the other with a distal Ser to open 

the active site. The secondary sphere Asp and Arg residues found in HRP were positioned 

along the helices at appropriate geometries (Figure 4). The porphyrin was covalently bound 

to the peptides via Lys residues, similar to the strategy used in Mimochrome constructs. It 

is debatable whether a minimized protein structure like this is truly de novo metalloprotein 

design. We have included these kinds of investigations in our review because the structures 

are similar to those created by more standard de novo design and through them we can learn 

many of the same lessons about secondary coordination sphere interactions.

MP3 displays good peroxidase activity with KM(ABTS) of 0.34 mM, KM(H2O2) of 172 

mM and kcat of 535 s−1 and was most active at pH 6.5 in the presence of 40% 2,2,2,-

trifluoroethanol (TFE) to stabilize its alpha helical structure. MP3 had a pH titration 

monitored by UV-Vis found three transitions with midpoints at 3.37, 5.91, and 7.62 assigned 

to His coordination, deprotonation of the proximal Asp, and water exchange to hydroxide, 

respectively. Based on magnetic circular dichroism (MCD) analysis, the ligation of His at 

low pH initially pushes the spin equilibrium towards low spin, but upon hydroxide binding 

the system becomes predominantly high spin. This differs from what is observed for native 

HRP and more closely resembles Mb at high pH.45–47 Further investigation with electron 

paramagnetic resonance (EPR) spectroscopy found that this discrepancy was likely due 

to the distal Arg in MP3 weakly interacting with the bound hydroxide. Compared to the 

original Mimochrome VI design without secondary sphere interactions, MP3 successfully 

increased the kcat from 371 s−1 to 535 s−1, but the KM for both H2O2 and ABTS also 

increased by 3–5 fold leading to an overall catalytic efficiency decrease of 2–3 fold. These 

values are comparable to R38A-hHRP in which the secondary sphere Arg residue has been 

removed, consistent with spectroscopic analysis that the Arg in MP3 does not interact with 

the bound substrate as the design intended.48 The authors suggested that the MP3 distal 

Arg may have more structural freedom and is, therefore, not oriented correctly for catalysis. 

Future peroxidase designs would focus on improving this interaction and add a distal His 

residue not included in MP3.

2.2. Bringing Stability to Heme Design

Despite successes in de novo designing proteins that bind porphyrin cofactors, structural 

information that could be used to improve function rationally was lacking because many 

of these maquette-based designs exhibit multiple structures in solution.49–52 Only one de 
novo heme binding protein crystal structure was available at the time; it was crystallized in 

the absence of heme, showed no obvious space for cofactor binding, and so provided little 

information on the holo structure.53 To address this gap in knowledge, Polizzi and DeGrado 

set out to create a hyperstable porphyrin binding protein that would permit systematic 

structural analysis by considering contributions to binding from the entire scaffold. This 

strategy was inspired by studies of native proteins where long-distance amino acid residues 

can have significant impact on ligand interactions.54–57

The DeGrado lab had previously attempted to incorporate this design philosophy using a 

step-wise approach where the tertiary structure was parameterized to form an antiparallel 

coiled-coil before hydrophobic packing; this resulted in porphyrin binding proteins lacking 
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unique conformations for high-resolution structure solutions.58–60 Revisiting this idea, 

they interconnected the design of the ligand binding site and the hydrophobic core while 

including flexibility in the protein backbone, a first in de novo metalloprotein design.61 

This design was based on a previous de novo protein (SCRPZ2) which bound a much 

larger cofactor than the target Zn porphyrin, allowing the program space to repack the 

hydrophobic core around the bound ligand.60 The ligand was manually docked into this 

scaffold, and small backbone changes were made using Backrub within the Rosetta program 

suite.62 Several rounds of fixed-backbone sequence optimization, followed by minimization 

of the backbone and sidechains, changed 70% of the internal amino acids and used different 

rotamers for many of the remaining 30%. This scaffold, named PS1, was therefore designed 

to accommodate the porphyrin and ligand site (Figure 5).

Holo-PS1 is monomeric and displays impressive thermodynamic stability with an 

extrapolated melting temperature (Tm) above 120 °C. NMR structures of both the apo- 

and holo-PS1 were obtained and were remarkably similar. By redesigning the entire protein 

around the intended ligand, apo-PS1 retains the core packing structure of the holo state, 

predisposing it for binding the Zn porphyrin. Unlike the previously solved apo-heme 

maquette structure, apo-PS1 does not hydrophobically collapse its heme binding pocket, 

likely due to having predominantly Ala and Gly side chains surrounding this pocket. The 

authors also suggested that residues as far as 20 Å from the binding site were predisposed 

towards ligand binding.

This holistic protein design strategy was next applied to the problem of a two-domain 

protein.63 Natural proteins often use a combination of well folded domains to enable 

more complex function.64 Combinations like this allow for redox-active proteins which 

combine multiple cofactors for long range electron transfer as well as proteins with allosteric 

regulation where ligand binding at one domain controls a secondary catalytic domain.65 

Previous multiple domain designs were appended end-to-end or inserted, but none had 

redesigned the complex from scratch.66–68 Pirro and DeGrado combined the porphyrin 

binding domain of PS1 with an Fe2 binding domain from the Due Ferri (DF) family detailed 

in section 4.1.69 While previous protein design studies have incorporated multiple cofactors, 

the lack of high-resolution structures limited their instructive value.50, 58, 70–75

Structural comparison between apo- and holo-PS1 indicated that the apo state exists in a 

more open conformation. This could enable ZnP binding to PS1 to affect the properties of 

a nearby DF catalytic site. Both PS1 and DF are 4HB scaffolds, but they have different 

helical offsets and registers, making their direct combination a challenge. The first step was 

to determine the optimal positioning of the two bundles relative to one another (Figure 6). 

This process was simplified by reducing the number of variable search parameters to two, 

the distance separating the domains and the rotation angle between the two bundles, before 

using the search program MASTER to determine designable confirmations on a contour 

plot.76 The optimum orientation found by this analysis was 21.5 Å apart and −33.8° to 

accommodate the left handed twist of the two bundles. To limit the impact on function in 

fusing the functional sites together, sequence redesign was limited to helical segments that 

connected the bundles and were well beyond the first or second shell of cofactor binding 

sites.
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The structure of the first construct in this series, DFP1, with both ZnP and Zn2 bound, 

was solved to 3.5 Å. The two cofactors were 12 Å apart and the crystal structure 

matched the predicted computational design impressively well with RSMD of 0.8 Å. The 

design strategy of DFP1 focused on stability, but this tight packing left the DF active 

site inaccessible to substrates. Similar issues with making DF proteins catalytically active 

have been investigated within the DF series themselves. Using a strategy established from 

studies of the DF family, the active site was opened up by mutating four nearby Leu 

and Ala residues to Gly to create DFP3. Even with four highly disruptive mutations 

like this, DFP3 was exceptionally thermostable with Tm in 4 M guanidinium of 71° C 

for Zn(II)2-DFP3, 83.2° C for ZnP-DFP3 and 87.3° C for Zn(II)2-ZnP-DFP3. UV-visible 

absorption spectra of Co(II)2-DFP3 (Co(II) is often used as a spectroscopic probe of Zn(II) 

coordination) showed pentacoordinate Co-coordination indicating greater ligand access 

compared to DFP1.69, 77–79 Finally, the activity of Fe(II)2-DFP3 and Fe(II)2-ZnP-DFP3 

were compared to determine the effects of ZnP binding on DF catalysis using the two 

electron oxidation of 4-aminophenol (4AP) to quinone imine. Both forms showed similar 

overall catalytic efficiency but upon ZnP binding, KM increased 4-fold while kcat decreased 

7-fold. Molecular Dynamics (MD) simulations to investigate this apparent allosteric effect 

on catalysis implicated a shift in the Tyr18 residue in the second coordination sphere upon 

ZnP binding. In the absence of ZnP, Tyr18 occupies an undesigned conformation, interacting 

with a backbone carbonyl instead of the intended Glu72 primary coordination sphere ligand. 

Upon ZnP binding, the Tyr18 repositions to its designed confirmation within the intended 

H-bond network due to steric blocking by the large cofactor. Thus, allosteric regulatory 

communication was demonstrated within a designed scaffold, opening up another dimension 

of complexity to protein designers.

Thus far, the ZnP binding scaffolds from the DeGrado lab were redox inactive and not 

designed for ligand binding. A common feature of heme enzymes is binding dioxygen or 

H2O2 to make high-valent species.15, 80 This requires that substrates have access to the 

active site and that the powerful oxidants created are controlled from reacting with the 

protein itself. The DeGrado lab extended their previous design of the ZnP-PS1 to bind Mn 

diphenylporphyrin (MnDPP) and explored how these questions could be tackled by protein 

design.81 Mn-aryl porphyrins can perform a variety of oxidative reactions like those of 

native hemes using high-valent Mn(IV) or Mn(V) species.82

The challenge of incorporating a MnDPP cofactor is that the design must balance substrate 

access with control of the high-valent species. Natural oxidases and peroxidases often allow 

access for H2O to the cofactor, which is displaced during the reaction.15, 83 By including a 

dioxygen bound to the Mn during design, the authors hypothesized that substrates would be 

able to access the cofactor in the final design (Figure 7). MPP1 was designed by positioning 

the MnDPP cofactor along the central axis of the bundle using the backbone from PS1 and 

extending the protein scaffold to fully encompass the larger cofactor. Dioxygen from an 

oxy-p450 structure was positioned at the open coordination site of the MnDPP to maintain 

an open active site.84

Interior residues around the cofactor were cycled through an iterative flexible backbone 

design process similar to the design of PS1, with some restrictions. Trp and Tyr residues 

Koebke et al. Page 7

Chem Rev. Author manuscript; available in PMC 2023 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were not allowed within 12 Å of the cofactor to avoid oxidation. Met and Cys were 

disallowed entirely to avoid undesirable heme ligation. Gly and Ala residues were used 

to surround the cofactor binding site to avoid hydrophobic collapse. Four variants with 

different loops were created; two showed signs of multiple conformations in solution similar 

to previous maquette designs. Of the remaining two, the final design, MPP1, was readily 

crystallized, had only 35% of its interior residues in common with the original PS1 scaffold, 

and showed no evidence for binding the original cofactor ZnP.

UV-visible absorption spectral data of MnDPP bound to MPP1 was consistent with 6-

coordinate Mn(III), suggesting that the intended His/H2O coordination design was correctly 

incorporated. Upon oxidation with NaIO4, a Mn(V)-oxo intermediate species accumulated 

then slowly returned to Mn(III) with a half-life of 12 minutes.85–87 Adding thioanisole 

to the reaction mixture greatly decreased the Mn(V)-oxo intermediate’s half-life and mass 

spectrometric analysis confirmed a methyl phenyl sulfoxide product was formed, showing 

that this intermediate is reactive and accessible to substrates as designed.88–89 It is important 

to note that the cofactor alone is unable to produce this species. Instead, it is slowly 

decomposed in the presence of NaIO4, suggesting that MPP1 stabilizes the Mn(V)-oxo 

species.

Holo-MPP1 was also the first de novo designed porphyrin binding protein crystal structure 

to be resolved to 1.75 Å. Comparison of the crystal structure to the computational design 

showed remarkable similarity with the backbone having only 0.6 Å RMSD. The cofactor 

was also positioned precisely where it was designed to fit, differing by only 0.5 Å RMSD 

though it was rotated axially by 55 degrees. Two water molecules were positioned where the 

two oxygen atoms had been included in the design. Overall, this design strategy allowed for 

structural resolution of de novo porphyrin binding proteins for the first time and showed an 

impressive success rate as all four of the designed scaffolds correctly bound the cofactor, 

despite the fact that two showed signs of conformation averaging by NMR.

2.3. C-Type Maquettes

The maquette approach to de novo metalloprotein design has been adapted to a variety 

of different cofactors. Prior to the work of Anderson and Dutton, cofactors were usually 

incorporated in vitro while in vivo incorporation showed limited success.90–91 Designed 

proteins have severely limited synthetic biology applications if the protein is not expressed 

in a functional form in vivo. B-type heme maquette designs had also been restricted to 

bis-His heme coordination sites, which are not suitable for enzymatic activity. Covalent 

attachment of a c-type heme would allow for protein engineering modifications without 

cofactor loss.92–94 Towards this goal, Anderson and Dutton designed a maquette that could 

interface with cellular machinery to insert a c-type heme covalently (Figure 8).95

A previously reported b-type heme maquette, that reversibly bound oxygen similar to natural 

oxygen transports proteins and preferentially bound O2 over CO, was used as the starting 

scaffold.96 Loops were added between the dimeric sections of the maquette to permit more 

complex designs and a site for covalent attachment of a c-type heme was added to test if 

the cofactor would be incorporated in vivo. A survey of the Protein Data Bank (PDB) for 

c-type heme recognition sequences culminated in the sequence CIACH and this was built 
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into helix 2 of the scaffold and a His on helix 4 was included as a distal ligand. Lastly, His 

residues were designed into helices 1 and 3 to generate a potential secondary binding site 

for a b-type heme. This construct, named C2, was cloned into the pMal-p4x periplasmic 

expression vector which uses an N-terminal signal peptide and the sec translocon for 

periplasmic transport before in vivo cleavage.97–98 E. coli co-transformed with a pEC86 

vector containing the ccmA-H cassette was used for C2 expression so cells could produce 

the required cytochrome c maturation machinery.99 Later attempts to incorporate the c-type 

heme in vitro after expression of apo-C2 proved unsuccessful, showing the necessity of the 

cytochrome c maturation machinery for this strategy. The authors proposed that the success 

of this strategy implies that the maturation machinery interacts with proteins in a dynamic or 

molten state, with broad specificity, for it to interact with a de novo designed scaffold.

In vivo incorporation of the c-type heme into C2 was confirmed by MALDI-TOF mass 

spectrometry. C2 was also resistant to acidified 2-butanone, which partitions non-covalently 

attached hemes, and showed an identical spectrum to that of horse heart cytochrome c using 

the pyridine hemochrome assay.100–101 Fe(II/III) EPR and UV-visible absorption spectral 

data of C2 were consistent with a 6-coordinate bis-His c-type heme.102 Surprisingly, despite 

significant modifications from the original design, C2 maintained the ability to reversibly 

bind O2, which is uncommon in native c-type cytochromes.103–106 This result suggests that 

while c-type heme proteins capable of oxygen transport are rare in nature, it is not due to 

intrinsic differences between the b- and c-type heme cofactors.

The porphyrin of Holo-C2 could also be demetallated, and the iron replaced with a zinc 

for light-activated electron transfer, without displacing the porphyrin. This is consistent 

with the cofactor being covalently linked to the protein.107 Adding a b-type heme to this 

Holo-Zn-C2 construct quenched the observed fluorescence by 40%, suggesting that electron 

transfer can occur between the two porphyrin metal centers.108 Given that native systems 

often closely pack c-type hemes for multi-heme electron transfer chains, the success of 

this electron transfer between porphyrins in a de novo system is particularly exciting for 

protein engineers. Covalent attachment of the cofactor also opens up additional interesting 

heme coordination sphere options such as His/Met to adjust cofactor redox potential or a 

5-coordinate His for catalysis; these coordination modes are challenging to include in a 

b-type heme system.

Continuing from this work, Watkins and Anderson explored the robustness of this design 

strategy by creating a suite of c-type heme maquettes.109 Their goal was to create a more 

stable c-type heme maquette which could be engineered for O2 activation rather than O2 

binding. The original C2 maquette was a 138 AA antiparallel 4-helix bundle and bound 

O2 analogous to neuroglobin, a 6-coordinate O2 binding protein.110 A suite of proteins was 

created from this original design. Each design had different c-type heme binding sites or 

covalent attachment points (Figure 9). Several constructs with multiple c-type heme binding 

motifs were also designed to attempt a multi-heme electron transfer chain. Seven new 

constructs were designed. C-type heme incorporation showed surprising robustness, with 

only a single construct of the new set (C3C4) displaying no in vivo heme incorporation. 

Importantly, all four single site c-type heme designs correctly incorporated the cofactor 
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regardless of the position of the binding sequence, and all the constructs could bind a second 

b-type heme to form mixed B/C maquettes.

The hemes in all four mixed B/C type heme constructs differed in redox potential by about 

40 mV while the one dual c-type heme construct had a 53 mV difference, a promising first 

step towards synthetic electron transfer chains of c-type hemes.111 All of the new constructs 

were more thermodynamically stable than the original C2 (Tm = 35 °C) with C3 being the 

most stable (Tm = 59 °C). MD simulations with GROMACS MD and CHARMM found 

that the heme propionate groups of the C1 and C2 designs are positioned within the protein 

hydrophobic core, while those of C3 and C4 are oriented towards the solvent, forming salt 

bridges with nearby Lys residues (Figure 10).112–113 The authors hypothesize that cofactor 

orientation was the driving force behind the improved thermodynamic stability of C3 and 

C4.

In vivo incorporation of a catalytic heme cofactor within a man-made protein is a major 

goal of synthetic biology as this could create enzymes applicable in a plethora of industrial 

applications as cheap, green catalysts.50, 114–115 Towards this end, Watkins and Anderson 

redesigned one of the above mentioned stable c-type maquettes (C4) and opened up the 

active site to substrate access for catalytic activity.116 Natural heme peroxidases contain a 

5-coordinate b- or c-type heme iron with a single His residue bound to the metal.15 The 

authors hypothesized that removing one of the His ligands from the C4 maquette would 

allow for peroxidase activity within the scaffold. C46 was created by removing the b-type 

heme binding site from C4 which improved the Tm from 51 °C to 84 °C. Next, C45 was 

created by removing the distal His on helix 2 (Figure 11). This created a mono-His ligated 

c-type heme maquette whose thermodynamic stability was unperturbed (Tm = 86 °C).

UV-visible absorption spectral data of C45 was consistent with those of cytochrome c, with 

a water occupying the “empty” axial coordination site. pH titrations exhibited a transition at 

8.11, similar to that observed for hydroxide replacing water in Mb.30, 104 O2 binding to the 

more open construct is also an order of magnitude faster than in the original C4 construct. 

Imidazole titration of Fe(II) or Fe(III) C45 reproduces the spectral features of 6-coordinate 

c-type heme maquettes C4 or C46. Demonstrating that a 5-coordinate c-type heme had been 

incorporated successfully, the authors investigated its catalytic properties. They found that 

when H2O2 is mixed with C45 it can turn over ABTS with KM (H2O2) 94mM, KM (ABTS) 

379 μM, kcat 1200 s−1 and kcat/KM of 3.2 × 106 M−1 s−1 at an optimal pH of 8.6. This 

catalytic efficiency approaches that of native HRP (kcat/KM 5.13 × 106 M−1 s−1), though the 

initial activation of H2O2 is about 400 times slower which the authors hypothesized was due 

to the lack of key secondary sphere amino acids.41, 48 Compound I with a Trp radical was 

isolated by mixing H2O2 with Fe(III)-C45 in the absence of substrate and confirmed using 

UV-visible absorption and EPR spectral matching to cytochrome c peroxidase compound 

I.117–118

C45 recapitulates the activity of the native HRP, and thus showcases the power of man-made 

biocatalysts. C45 is resilient to high temperatures and organic solvents and is promiscuously 

catalytic with reactivity to guaiacol, p-anisidine, luminol, and the prodrug isoniazid. This 

promiscuity and in vivo cofactor incorporation make it a strong candidate for directed 
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evolution approaches. Further work has explored the substrate and reactivity promiscuity of 

this construct and the application of directed evolution to c-type Maquettes to tune carbene 

transfer reactivity.119–121

Several natural heme proteins can perform carbene transfer to a nucleophile through a 

metallocarbenoid intermediate (Figure 12).122–126 Stenner and Anderson hypothesized that 

if the same intermediate could be formed in C45, it might be capable of promiscuous 

carbene transfer. When Fe(III) C45 was mixed with ethyl diazoacetate (EDA) a carbene 

precursor spectral signature, consistent with that of carbene:iron porphyrin complexes, built 

up over 60 seconds and remained for up to 20 minutes without degradation.127 Similar 

intermediate species were observed with more bulky benzyl-diazoacetate and tert-butyl-

diazoacetate carbene precursors. The authors hypothesized that the inherent flexibility of 

the C45 de novo scaffold enables it to incorporate these bulky substrates. Compared to an 

engineered cytochrome c from Rhodothermus marinus (Rma-TDE) with established carbene 

transferase activity, C45 bound EDA more rapidly and possibly with a higher affinity while 

producing identical spectra.128

The metallocarbenoid intermediate of both C45 or Rma-TDE can perform carbene transfer 

with styrene, a common carbene acceptor.122 Analysis of the C45 carbene transfer products 

by HPLC identified them as (R,R) or (S,S) enantiomers of the expected product with 77% 

enantiomeric excess of (R,R). Previous results by NMR indicated that C45 was in a transient 

structural state, a common property of de novo designed proteins, and it is interesting to note 

that this does not preclude high enantiomeric selectivity. Arguably, this flexibility is a factor 

in allowing substrate access to the active site. Directed evolution through successive rounds 

of error-prone PCR was used to invert C45’s enantioselectivity from 77% ee of the (R,R) 

product to 99% ee of the (S,S) product. This new construct was named AP3.2 and differed 

from C45 by 8 mutations. Spectroscopic and electrochemical characterization of AP3.2 

provided no obvious explanation as to why these mutations would lead to such a drastic 

change, a common result for random directed evolution methods.129 A further push towards 

incorporating c-type maquettes within synthetic biology was made by showing that C45 

could produce the NAD(P)H precursor niacin as part of a reaction cascade.119 This suggests 

that it is possible to input C45 as part of a life-sustaining artificial reaction pathway from 

pyrrole to nicotinamide. Initial tests with C45 and a Bacillus subtilis esterase as a cascade in 
vivo look promising. Once incorporated into a strain with the native aspartate pathway for 

nicotinic acid mononucleotide production knocked out, this could become a life sustaining 

pathway and the first time a bacterium is reliant on a de novo metalloenzyme.130–131

2.4. Ligand Switching

The versatility of heme protein reactivity relies on variations in the iron coordinating 

ligands (His, Tyr, Cys, or Met) and modification of the heme binding environment through 

secondary sphere effects. While there are many examples of designed heme proteins that 

use His ligation, examples that use axial Cys ligation are relegated solely to small molecule 

mimics of heme proteins.132–133 The Ivancich and Pecoraro labs investigated His and Cys 

as competing ligands to the same cofactor by presenting both within a single de novo 
protein.134 This study used the GRAND family of peptides which have been extensively 
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studied for the incorporation of transition metal or heavy binding sites using His and Cys 

residues.135–138

Free hemin was titrated into GRAND L16C L30H (GRL16CL30H) where the 16th helical 

position was mutated to Cys and the 30th position mutated to His. Heme was added at 

pH 7, but the pH could be reversibly changed from 6 to 11 without heme disassociation. 

UV visible absorption and EPR spectroscopies were used to characterize heme binding at 

each pH condition. At pH 7.14, a 5-coordinate heme iron UV visible absorption signal 

with an LMCT at 640 nm, similar to that of peroxidases, was observed.15 This species’ 

EPR spectrum was consistent with a high-spin Fe(III), indistinguishable from that of heme 

penta-coordinated to imidazole. These results indicate that the heme is bound to the His30 

residue as an axial ligand, forming a 5-coordiante heme iron at neutral pH (Figure 13b). As 

the pH was increased to 9.5, the UV visible absorption and EPR spectra shifted, consistent 

with a 5-coordinate Cys ligated heme iron, with a Soret band at 397 nm and a broad LMCT 

band at about 625 nm (Figure 13a).139–141 As pH continued to increase up to 10.5, the 

UV visible absorption spectra shifted to a split Soret, with peaks at 360 and 420 nm, and 

LMCT bands at 540 and 570 nm. This and the EPR spectral changes were consistent with 

a 6-coordinate Cys ligated species.142–143 Similar equilibria and conversions between spin 

states have been reported for cytochrome P450 enzymes.139, 144 In summary, when His and 

Cys ligands are present within this de novo construct, the heme iron is 5-coordinate His 

bound at neutral pH, converts to 5-coordinate Cys bound as pH increases to 9.5, and, finally, 

becomes 6-coordinate Cys with a hydroxide completing the coordination sphere when pH 

is increased to 10.5 and above (Figure 14). These assignments were confirmed using single 

binding site variants of each ligating residue (GRWL16C or GRWL30H). Redox studies 

confirmed that His or Cys ligation is maintained upon redox cycling.

Analytical ultra-centrifugation (AUC) analysis showed that heme incorporation converted 

GRWL16CL30H from a three-stranded coiled-coil (3SCC) to a four-stranded coiled-coil 

(4SCC). While this is unexpected, GRAND peptides can be converted to two stranded coiled 

coils at acidic pH conditions, and a conversion from parallel 3SCC to antiparallel 4SCC 

caused by minimal perturbations to the structure has literature precedent.145–146 The heme 

to peptide binding ratio was confirmed as 1:2, indicating each 4SCC is capable of binding 

two heme cofactors. The authors hypothesized that the 4SCC construct is best described as 

an antiparallel dimer of dimers and that the pH switch between His and Cys coordination is 

due to weak imidazole coordination favoring heme dissociation at basic pH. Similar weak 

His ligation has been observed for other model systems.147 Deprotonation of the competing 

Cys ligand at these pH conditions allows it to ligate in replacement of the His residue.

Future studies with this system will elucidate more clearly the binding of the heme 

prosthetic group in all three coordinated states. In addition, one might anticipate studies 

assessing the differential placement of His and Cys residues in other sequence positions in 

order to shift coordination preferences in this system. Finally, the reported reaction of ABTS 

when the heme has been activated by peroxide suggests that this system will have interesting 

reactivity that may be controllable through the simple expedient of changing pH.
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2.5. Summary

Heme and other porphyrin-containing scaffolds were some of the first de novo designed 

metalloproteins. Previously, these were almost exclusively 6-coordinate heme-iron systems 

that bound using nitrogenous ligands and were too thermodynamically flexible for high 

resolution structural information. The DeGrado and Lombardi groups have developed highly 

stable porphyrin binding scaffolds by treating the protein design holistically, redesigning the 

entire protein matrix around the cofactor. They used this strategy to design Zn-porphyrin 

binding constructs which were structurally characterized to high resolution as well as 

a Mn-porphyrin binding construct capable of catalysis (Figure 15).61, 63, 81 The Pavone 

lab designed a heme protein with an open iron coordination site, permitting catalytic 

capabilities, by covalently attaching deutoerohemin to miniature peptide constructs. Their 

attempts to incorporate secondary sphere interactions in a second-generation construct did 

not improve peroxidase activity (Figure 15).24, 39

The Anderson lab created c-type maquettes that covalently incorporate c-type heme 

cofactors in vivo using native maturation machinery.90, 109 They next made 5-coordinate 

designs of these constructs and showed they were catalytically active for a variety of 

reactivities (Figure 15).116 Using directed evolution, they shifted the enantioselectivity for 

one reaction from 75% ee of one enantiomer to 99% ee of the other.119–121 Lastly, the 

Pecoraro and Ivancich labs designed a construct that presented both His and Cys ligands to a 

heme and created a reversible pH-based ligation switch which may be used in later work to 

control reactivities by changing pH conditions (Figure 15).134

These examples demonstrate success in protein design beyond the primary coordination 

sphere of the metal and expand on the possibilities of de novo heme protein design. 

Interestingly, attempts to rationally design secondary sphere interactions were not shown 

to improve reactivity. One future milestone will be incorporation of substrate-activating 

secondary sphere residue interactions, similar to the approach of the Pavone lab working 

on MP3. Using c-type maquettes for covalent attachment, which permits more options 

for heme-iron ligation, and the DeGrado lab’s method of protein redesign are particularly 

intriguing approaches that could be used for this purpose. The His-Cys pH-based switch 

system of the Pecoraro and Ivancich labs requires further characterization before more 

complicated design elements, such as secondary sphere interactions, can be attempted. 

Taken together, the recent progress in designing de novo porphyrin binding proteins shows 

that there are intriguing design lessons to be learned and many more problems to solve 

before scientists can accomplish what Nature has been doing for millennia.

3. Non-Heme Designed Metalloenzymes

Following initial successes in designing heme proteins, the de novo metalloprotein design 

community branched out into a number of other metalloprotein families. We will first 

discuss work to incorporate mono-metal catalytic sites within de novo scaffolds. This 

includes work targeting the hydrolytic ZnHis3 site of carbonic anhydrase (CA), the redox 

active catalytic CuHis3 site of Cu nitrite reductase (CuNiR), and various work on superoxide 

dismutase (SOD) or Cu monooxygenases.148–153 Designing a de novo mono-metal catalyst 

presents several challenges such as completing metal ion coordination sphere and enforcing 
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preferred coordination geometry changes upon redox activity while maintaining sufficient 

active site flexibility for efficient catalysis.

3.1. Carbonic Anhydrase Mimics

We begin with work that purposefully or serendipitously created mimics of the CA ZnHis3 

site. CA is found throughout nature and is essential for a number of essential biological 

functions such as respiration and the regulation of pH through the reversible hydration of 

CO2.149 Human carbonic anhydrase II is one of the most efficient enzymes known with 

rates approaching the limit of diffusion.154 The importance and well-studied nature of this 

enzyme, as well as its relatively simple primary coordination sphere, made it an appealing 

target for design (Figure 16). The Pecoraro lab specifically targeted CA activity due to the 

protein’s threefold symmetric binding site. This was ideal as the lab had prior experience 

designing threefold symmetric Cys3 heavy metal binding sites. The Kuhlman lab created 

metal-mediated de novo protein-protein interfaces that generated a CA mimic as a side 

effect. First, we will focus on work within three stranded coiled-coils (3SCCs).

Previous work within the Due Ferri system remarked on the difficulty of balancing structural 

stability and catalytic activity (see section 4.1).78 The Pecoraro lab sought to attack this 

problem using two distinct metal binding sites within a 3SCC construct (TRIL9CL23H), 

a ZnHis3H2O site for CA catalytic activity and a HgCys3 site for structural stability.155 

This was the first example of a de novo designed mononuclear metalloenzyme and 

scaffold with two metal binding sites of different function. Hg(II)TRIL9CL23H was more 

thermodynamically stable than either the binding site in the absence of Hg(II) (apo-form) 

or the protein in the absence of the heavy metal binding site. Similar results had been 

observed in previous work using heavy metal binding peptides.145, 156–159 This extra 

stability permitted structural analysis by protein crystallography, a feature that is uncommon 

with de novo designed metalloproteins. The crystal structure of Hg(II)Zn(II)TRIL9CL23H 

showed that the Zn(II) site was a structural mimic for the primary coordination sphere of CA 

(Figure 17).

Given these structural similarities, Hg(II)Zn(II)TRIL9CL23H was investigated for carbonic 

anhydrase activity by following para-nitrophenyl acetate (pNPA) hydrolysis and CO2 

hydration. At optimal pH conditions (9.5), Hg(II)Zn(II)TRIL9CL23H hydrolyzed pNPA for 

at least 10,000 turnovers with a kcat of 3.8 × 10−2 s−1 and kcat/KM of 17.6 M−1s−1, an order 

of magnitude more efficient than the best reported small molecules at the time and only 100-

fold less active than native h-CAII.160–164 Previous work had shown that removing a critical 

secondary sphere Thr199 residue decreased the activity of h-CAII approximately 100-fold 

and shifted the pKa of the bound water from 6.8 to 8.3.154 These two observations were 

consistent with the lower activity and shifted pKa of the designed peptide, supporting the 

hypothesis that Hg(II)Zn(II)TRIL9CL23H faithfully recapitulated the primary coordination 

sphere of CAII.154, 165 CO2 hydration by Hg(II)Zn(II)TRIL9CL23H showed similar results, 

with an efficiency roughly 70-fold faster than previously reported models and within 50-fold 

of CAII.166–168 This study showcases the power of de novo metalloenzyme design to isolate 

a single component of catalysis (in this case the role of the primary coordination sphere) 

that would be difficult using native metalloenzymes where it can be difficult to separate the 
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impact of losing secondary sphere interactions from any other influences from the native 

scaffold.

Since Hg(II)Zn(II)TRIL9CL23H successfully mimicked the structural parameters of the 

primary coordination sphere of CA, the next step was to increase the complexity of the 

design and try to match the activity of the native enzyme. Towards this goal, the Pecoraro 

lab investigated the effect of the ZnHis3 site’s position within the scaffold.169 Previous 

work with Cys3 sites within 3SCC scaffolds showed that the helical position of the binding 

residue (a vs d) and the position of the site along the peptide scaffold can impact heavy 

metal binding properties, but this had not been explored with a catalytic center.170–172 They 

removed the heavy metal binding site from the original design, creating TRIWL23H, and 

found minimal effects on both Zn(II) binding affinity and hydrolytic activity. While the 

heavy metal binding Cys3 site is not beneficial to these parameters, it does stabilize the 

scaffold at higher pH conditions where catalytic activity is greatest and was maintained in 

later designs.

The first repositioned metal binding site construct was TRIL9HL23C in which the positions 

of the heavy metal and transition metal binding sites are swapped. Based on the previous 

crystal structure, one would expect the water bound to the more N-terminally located 

Zn(II)His3 active site to be more solvent exposed, but catalytic efficiency remained similar 

to the original while Zn(II) affinity decreased by an order of magnitude. TRIL9CL19H was 

created next to determine the effect of moving the Zn(II)His3 site from an a site in the heptad 

repeat to a d site and again Zn(II) affinity was significantly decreased (5-fold) more so 

than catalytic efficiency (< 2-fold decrease). Reaction kinetic evaluations of these constructs 

showed that repositioning the Zn(II)His3 metal binding site towards the N-terminus of the 

scaffold increased substrate and solvent access (improving kcat); similarly increasing KM 

values meant the overall effect on catalytic efficiency was minimal. To summarize, this study 

showed that the three primary sphere ligands alone (3 His) are the only requirement for 

CA activity and that the active site can be repositioned within the 3SCC scaffold to modify 

features of catalysis such as substrate access.

Thus far the Pecoraro lab had explored CA activity of His3 sites within C3 symmetric 3SCC 

systems, but more recent work has sought to break this restraint through the formation 

of heterotrimeric 3SCCs. The formation of heterotrimeric 3SCCs had been accomplished 

by other labs without a metalloenzyme focus, but these solutions either required the 

use of all hydrophobic layers in the scaffold for heterotrimer formation or non-native 

amino acids.173–175 Tolbert and Pecoraro instead created a design which used heavy metal 

templated assembly to create A2B or AB2 heterotrimers. Because there are 8 remaining 

core layers, this allowed for the incorporation of a metal binding site at the opposite end 

of the helical scaffold, which could provide either first or second coordination sphere 

asymmetric transition metal catalytic sites.176 This strategy uses a Pb(II) ion bound in a 

trigonal pyramidal geometry to Cys residues in an a or d heptad position.138, 177–178 By 

modifying the adjacent layer (toward the N terminal site for an a site cysteine or toward 

the C terminal layer for a d cysteine site) with an Ala (A monomer) instead of Leu (B 

monomer) in the secondary sphere a single A2B heterotrimer was preferentially formed 

with a Cys or A2B and AB2 species with d Cys layers. Interestingly, similar discrimination 
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was not observed when Hg(II), which forms trigonal planar complexes, was utilized as the 

templating cation. Pb(II) heterotrimer specificity was evaluated by207Pb NMR, a technique 

highly sensitive to the Pb(II) ion’s environment. The d Cys A2B or AB2 heterotrimers 

were fully selective while the a Cys A2B heterotrimer was about 80% of a mixed oligomer 

state.177

Crystal structures of Pb(II) bound Ala homotrimers determined that the Pb(II) ion pointed 

to the opposite pole of the helix then where the alanine substitution was incorporated. 

At the same time, the Cys residues rotated to place the thiolate sulfur atoms towards the 

cavity generated by replacing leucine with alanine. This same phenomenon was observed 

regardless of whether the Cys residues were in an a or d position (Figure 18). The cavity that 

forms when Ala is present fills with water molecules (these solvents are ejected by the more 

sterically demanding Leu) and were shown to form strong H-bonds to the thiolate sulfurs. 

The orientation of the waters with respect to the Sulfur atoms depended on whether the Cys 

was in an a or d layer. The authors hypothesized that the stabilizing force of these water 

molecules hydrogen bonding with the Pb(II) bound Cys residues counters the hydrophobic 

stabilization of introducing Leu into this position, leading to a low energy mixed layer of 

two Ala and one Leu.

Quantum Mechanics/Molecular Mechanics (QM/MM) simulations determined that the a 

and d Cys3 positions were not identical in energy profile, instead the d layer exhibited 

larger energy differences between the desired and undesired oligomer forms leading to 

specific heterotrimer formation while the a Cys construct only preferentially formed A2B 

heterotrimers. Substituting Pb(II) with Hg(II) in the Cys site or changing the position 

of the Ala/Leu layer both abolished heterotrimer formation, consistent with the authors’ 

proposed mechanism. Once heterotrimer formation was confirmed, the authors next moved 

to coupling this to catalysis by combining the d Cys A2B heterotrimer with a His3 CA 

catalytic site with Leu, Thr, or Asp in the secondary coordination sphere. After determining 

that Zn(II) binding did not affect heterotrimer formation the authors investigated pNPA 

hydrolysis kinetics with varying secondary sphere layer compositions. Though modest (10–

20%), the authors did observe enhancement of catalytic efficiency when a single Thr or Asp 

was incorporated within the secondary sphere layer compared to Leu3, Thr3, or Asp3 layers. 

This strategy will be limited to systems that are insensitive to the presence of Pb(II) and 

which are not sufficiently oxidizing to modify the cysteines residues. Never-the-less, these 

results were a major breakthrough in conceptual de novo protein design as they open the 

door for preparing true dissymmetry in the outer or inner coordination spheres of catalytic 

centers embedded within simple peptidic constructs. It will be interesting to see whether this 

heterotrimeric 3SCC scaffold strategy can more greatly enhance other enzymatic activities in 

future work.

An alternative approach to avoid the 3-fold symmetry of the 3SCC scaffold is to prepare 

antiparallel 3-helix bundles (3HB) made from a single polypeptide chain. Towards this end, 

the Zn(II)His3 site from Hg(II)Zn(II)TRIL9CL23H was incorporated into an asymmetric 

3HB scaffold originally developed by the DeGrado lab called α3D.179–182 Previously, α3D 

had been used to examine heavy metal binding to Cys3 sites; α3D H3 was made by mutating 

those same positions to His instead of Cys (L18H, L28H, L67H) (Figure 19).183–184 
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Compared to Hg(II)Zn(II)TRIL9CL23H, α3D H3 bound Zn(II) 6-fold tighter but was 2.6-

fold less efficient at CO2 hydration. It is important to note that even with this activity 

decrease, α3D H3 reacted faster than any small molecule mimics of carbonic anhydrase and 

fell within 1–3 orders of magnitude of native enzyme activity.168, 185 These results suggest 

that the CA activity of a Zn(II)His3 site (with a water completing an approximate tetrahedral 

zinc coordination sphere) is intrinsic, remaining active after installation in different scaffolds 

such as the 3SCC or 3HB.

In parallel with the Pecoraro lab work, the Kuhlman lab was developing de novo CA models, 

but with a focus on metal directed protein-protein interfaces. Enzymatic active sites often 

occur at protein interfaces, whether between hetero or homo oligomeric complexes.186–187 

On average, such interfaces feature cavities and clefts twice the volume of those on protein 

surfaces and are hypothesized to be a likely evolutionary pathway to the formation of 

new active sites.188–189 Most previous work on de novo metalloprotein design had focused 

on creating a metal binding site within an existing scaffold, but little had been done on 

metal binding sites at protein-protein interfaces.190 While an interesting target, the de novo 
design of a protein-protein interface remains a challenging problem due to the complex 

web of interactions that must be accounted for. Der and Kuhlman designed a de novo 
protein-protein interface between two helix-turn-helix motifs derived from the Rab4-binding 

domain of rabenosyn to test whether designed Zn binding interactions could overcome 

suboptimal protein-protein interface packing.191–192 The design strategy used Rosettamatch, 

searching for monomeric proteins that could accommodate His2 patches. The initial 600 hits 

from this search were filtered down to eight candidate scaffolds of which only one, MID1, 

was found to be expressed and form dimers in solution. MID1 had two His4 Zn binding sites 

at the ends of the dimer bundle and hydrophobic residues (Met38, Tyr41, and Phe42) at the 

dimer interface. It bound Co(II), Zn(II), and Ni(II) with KD’s of 4300 nM, 410 nM, and 

less than 30 nM, respectively, with no measurable affinity for other divalent cations. When 

scaffolds that lacked either the ZnHis4 binding site or hydrophobic interface residues were 

examined the authors found that while each design feature allows for weak dimer association 

alone, the combination of the two enable robust dimer formation.

MID1 was uncharacteristically amenable to protein crystallization for a de novo designed 

metalloprotein with apo, Co(II)-, and Zn(II)-bound crystal structures available. While the 

metal bound structures matched the computational designs, the orientation of the monomers 

in the apo structure were more antiparallel than the perpendicular orientation in the metal 

bound structures (Figure 20). Close inspection of the Zn(II)MID1 crystal structure showed 

that one of the His residues (His35) did not coordinate Zn(II) as intended, and that another 

His bound the Zn ion with δN rather than the ϵN. A series of Glu-containing mutants were 

created to make His3Glu 4-coord Zn(II) binding sites, but no improvement in the binding 

affinity was observed.

Given the ability of metals to enforce protein-protein interactions, their inherent reactivity, 

and the increased likelihood of potential substrate clefts at these interfaces, Der and 

Kuhlman hypothesized that metal mediated protein interfaces would be catalytically 

active. The authors investigated the structural Zn(II) sites of MID1 for CA activity.193 

The previously published crystal structure of Zn(II)MID1 showed a ZnHis3 metal 
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binding site with a tartrate (from crystallization buffer) occupying the fourth coordination 

position (Figure 21). The size of the nearby binding pockets (6 Å and 4 Å deep) 

are sufficient for common CA substrates, so Zn(II)MID1’s ability to hydrolyze pNPA 

or para-nitrophenylphosphate (pNPP) was investigated. Zn(II)MID1 hydrolyzes pNPA 

with a KM of 0.42 mM, kcat of 0.3 s-1, and kcat/KM of 630 M−1 s−1 compared to 

Hg(II)Zn(II)TRIL9CL23H at 23 M−1 s−1 or native CAII at 2550 M−1 s−1.155, 163 Extensive 

controls demonstrated that this activity arose from the ZnHis3 site; inactive H35E and 

H12E variant crystal structures, which completed the 4-coordinate zinc, showed that open 

coordination site of Zn(II)MID1 were essential for activity.

The unplanned catalytic activity of a metal-mediated protein-protein interface is a strong 

argument for a similar evolutionary pathway for natural metalloenzymes. Comparing their 

construct to Hg(II)Zn(II)TRIL9CL23H, the authors suggested that Zn(II)MID1 has a more 

shallow but accessible substrate binding cleft compared to a Zn(II)His3 which is fully 

buried within a 3SCC. This leads to faster kcat and tighter KM as well as an overall more 

efficient enzyme. In comparison to the native enzyme, Zn(II)MID1 has a 200-fold slower 

kcat while KM is 50-fold tighter, indicating that activation of the substrate is lacking rather 

than substrate recognition. The authors suggest that the difference in kcat may be due to 

secondary sphere interactions.

It is often easy to conclude that missing long distance interactions and subtle scaffold 

changes could differentiate de novo metalloenzymes from their native counterparts and 

that incorporating these design elements would greatly improve catalysis. Putting this into 

practice, however, too much about the structure-function relationship remains unknown to 

rationally incorporate these properties. One way to ‘blindly’ incorporate these long-range 

effects is to use processes such as directed evolution where activity screening directs the 

design process. Studer and Hilvert applied this process to a single chain version of MID1 

called MID1sc linking the dimer structure with a Gly-Ser chain and removing one of the 

Zn sites to simplify analysis while maintaining similar levels of pNPA hydrolysis (Figure 

22).194 Libraries of MID1sc variants were created by cassette mutagenesis, DNA shuffling, 

or random mutagenesis and screened using a racemic fluorogenic ester assay developed by 

the authors. The initial MID1sc hydrolyzed this ester with a modest kcat of .011 s−1 and 

kcat/KM of 18 M−1 s−1 with two-fold preference for the R conformer.

After 9 rounds of library generation and screening, MID1sc9 had 20 mutations (about 

20% of all residues) from the original MID1sc. The putative Zn binding residues (His39, 

His61, and His65) were probed by mutagenesis to determine if the Zn-binding site had been 

modified during evolution. While H61A and H65A variations decreased catalytic efficiency 

as expected, H39A did not show an impact on activity, suggesting that the binding site 

had repositioned. A new His residue was introduced during evolution and mutating this 

(H35A) reduced activity by >1000-fold, suggesting that the new zinc binding site consisted 

of His35, His61, and His65. A final construct, MID1sc10, was rationally designed from 

MID1sc9 by eliminating nearby potential metal coordinating residues with E32Q, H39A, 

and E58Q mutations. MID1sc10 hydrolyzed the ester substrate with kcat of 1.64 s−1 and 

kcat/KM of 980000 M−1 s−1 (10,000-fold higher than the original MID1sc). The catalytic 

proficiency of MID1sc10 was similar to that of native enzymes and outperformed artificial 
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esterases, including catalytic antibodies, computationally designed enzymes, and engineered 

metalloproteins, by several orders of magnitude.155, 193, 195–201 MID1sc10 even managed 

to out compete some native enzymes by 100-fold, such as the h-CAII reaction with para-

nitrophenol (pNP) and the hydration of CO2.163, 202 Although the selection pressure process 

used a racemic mixture of the fluorogenic ester, MID1sc10 has a 990-fold kinetic preference 

for the S configuration of the ester compared to the original construct’s 2-fold preference 

for the R configuration. The authors hypothesized that the evolution process led to the Zn 

center deprioritizing structural stability, since Zn binding had no effect on thermal stability 

of MID1sc10, while it increased MID1’s melting temperature by 24 °C (Figure 23).191

A crystal structure of MID1sc10 was solved with Zn(II) and a substrate transition state 

mimic bound to a resolution of 1.34 Å. MID1sc10 adopts a similar helical bundle fold as 

the original MID1, but the crossover angle between the two bundles drastically changed 

to 47°, 37° more offset than MID1. The substrate pocket is deeper in MID1sc10 while a 

Q36P mutation kinks the second helix, facilitating His35 zinc binding. Second coordination 

sphere interactions, such as a H-bond from Gln58 to the backside nitrogen of His61 (part 

of the Zn(II)His3 binding site) were suggested to tune reactivity.149, 203 Interactions between 

Arg68 and the substrate transition state analog suggest this residue may assist in leaving 

group departure. Overall, this work showcases the power of directed evolution to find 

unintuitive solutions to problems within protein design. The success of MID1sc10 compared 

to previous designed esterases (even after similar directed evolution campaigns), reveals 

the power of metals for catalysis and the importance of metalloenzyme design and natural 

evolution pathways.

The MID1sc scaffold has more recently been evolved to target Diels-Alder reactivity, a 

useful reaction for which few native enzymes are capable.204–208 This reaction has been 

targeted by several labs using different scaffolds, but the authors suspected that a transition 

metal’s incorporation may allow for higher efficiency than previous attempts.209–213 They 

targeted the Lewis-acid-catalyzed reaction of azachalcone and 3-vinylindole to determine 

whether a de novo enzyme could be evolved to selectively produce a single product, given 

several possible competing reaction pathways.

Directed evolution requires some starting activity. Using Rosetta, the authors incorporated 

E32L and K68W mutations into MID1sc to create a construct, called DA0, with Diels-

Alder activity 2-fold over that of background as a starting point. Over several rounds of 

variation and selection, 12 mutations were incorporated to produce DA7 with five orders of 

magnitude improvement over the original construct (Figure 24). Similar to the Hilvert lab’s 

previous work with MID1sc, a drastic change to the Zn binding site was essential to this 

improvement. The original His39, His61, His65 binding site was converted to Cys35, His61, 

His65 with a reduction in crossover angle between helix-turn-helix fragments as determined 

by X-ray diffraction. The authors hypothesized that the stronger ligation of Cys35 compared 

to the original His39 allowed for this large conformational shift which created an enclosed 

pocket that could accommodate both intended substrates. Though their previous work to 

produce an esterase had a similar conformational change, it did not have any detectable 

Diels-Alderase activity.
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The catalytic proficiency of DA7 was calculated as 2.9 × 1010 M−1, a record Diels-Alderase 

activity at the time.214–217 The authors hypothesized that the improved activity was in part 

due to hydrogen-bonding interactions with substrates from Arg28 and Gln80. This, and 

previous work of the Hilvert lab, indicate that the flexibility and substrate promiscuity of de 
novo metalloenzymes make them ideal candidates for directed evolution. It will be exciting 

to see how much further MID1sc and other de novo metalloenzymes can be pushed using 

this technique.

Analysis of proteins deposited into the PDB indicates that modern enzymes on average 

are at least 100 amino acids in length, near the minimum required to fold into a globular 

protein with a well-defined hydrophobic core.218 Given the sequence space involved, how 

Nature managed to screen for activity in initial stages of evolution remains unknown. 

This conundrum led to the hypothesis that the first enzymes were evolved from short 

self-assembling peptides, diminishing the sequence search space necessary to screen.219–220 

While most of this review focuses on alpha helical scaffolds for metalloenzyme design, 

simple heptapeptides which alternate between polar and apolar residues can self-assemble 

into extended beta sheets with a variety of conformations making it possible that these 

amyloid structures were some of the first enzymes.221–224 Rufo and Korendovych explored 

this possibility in the context of metalloenzymes by investigating the catalytic properties 

of Zn(II) binding amyloid forming peptides similar to the secondary structure of CA’s 

active site (Figure 25).201 The authors modified a minimal beta sheet forming heptapeptide 

sequence LKLKLKL by replacing the Lys residues at 2 and 4 with His residues and 

varying the 6th position between acidic, neutral, or basic residues with varying pKa values 

to determine their effects as general acids/bases in the secondary sphere. An initial peptide 

series varying the 6th position found Gln substitution to be the most active with kcat/KM for 

pNPA of 30 M−1 s−1. Arg, Lys and Tyr were also found to improve activity compared to Glu, 

His, or Asp in this position.

The authors hypothesized that the activity enhancement of Gln was due to its ability to 

promote amyloid formation. This hypothesis was tested by creating variants in which 

the hydrophobic residues were substituted with those that should increase (Iso or Val) or 

decrease (Ala) amyloid formation.225–226 The most active of this series (Iso) was combined 

with a Gln in the 6th position to make the peptide IHIHIQI which enhanced the kcat/KM 

to 360 M−1 s−1, only an order of magnitude lower than CA itself and comparable to 

the fastest designed systems.163 (Table 1) Structural studies were done on all designed 

peptides to determine if fibril formation was correlated with activity as expected. CD and 

IR spectroscopies were used to confirm beta-sheet formation while thioflavin binding and 

negative stain transmission electron microscopy confirmed fibril formation. Based on these 

analyses the initial Leu containing peptides (i.e. LHLHLQL) require Zn(II) for beta sheet 

formation while the more active Iso containing peptides do not require Zn(II), consistent 

with the authors’ hypothesis. Co(II) driven fibril formation was investigated to gain insight 

into the coordination sphere around the metal using Co(II) as a spectroscopic probe for 

Zn(II). UV-Visible absorption spectroscopy of the Co(II)(IHIHIQI) was consistent with 

tetrahedral coordination, in good agreement with structural models made using Rosetta 

software.227 The authors hypothesized that mixtures of these peptides could be used to 

produce new catalytic enhancements compared to the individual peptides, allowing for 
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a combinatorial approach to enzyme evolution. This hypothesis was bolstered by the 

observation of synergistic effects between two peptides when they are used to make mixed 

fibrils compared to mixtures of preformed fibrils. Since this initial study the Korendovych 

lab followed up with Cu(II) binding amyloids capable of activating oxygen, providing 

further evidence that these structures can catalyze a diverse set of reactions.228–229

3.2. Copper Nitrite Reductase

As we’ve seen, de novo metalloprotein design focuses on fundamental questions pertaining 

to the interaction between protein scaffold and metal structural or catalytic site. An 

additional layer of complexity when it comes to designing mono-metal metalloenzymes 

occurs when the metal is redox active. In this case, the designed metal binding site must 

accommodate both oxidation states, which can have different preferred geometries. The 

Pecoraro lab has been attempting to design one of the simplest redox active mono-metal 

centers, the type 2 CuHis3 site from Cu nitrite reductase (CuNiR) (Figure 26).7 Copper 

metalloenzymes are involved in numerous biological functions. One of the most interesting 

from an agricultural standpoint is the ability to reverse the nitrification process which 

produces toxic runoff from fertilizer.148, 231–232 CuNiR has two Cu metal binding sites, one 

for electron transfer and one for catalysis, that it uses to convert nitrite to nitric oxide.233–235 

CuNiR’s electron transfer site is a Type 1 Cu and the catalytic center is a Type 2 Cu with 

His3 ligation and a water bound in a distorted tetrahedral geometry. Once substrate binds, the 

electron necessary for catalysis is transferred from the Type 1 center to the Type 2 center in a 

gated mechanism.

One of the benefits of de novo metalloprotein design is that researchers can easily separate a 

complex system like CuNiR into its constituent parts and study them individually. The His3 

Zn(II) binding site in the crystal structure of Hg(II)Zn(II)TRIL9CL23H overlays remarkably 

well with the Type 2 Cu center from native CuNiR (Figure 27).235 This structural overlay, 

and that both Zn(II) and Cu(I) are d10 metals, lead Tegoni and Pecoraro to hypothesize that 

this His3 binding site could act as a model of the type II active site of CuNiR. A simplified 

scaffold, lacking the heavy metal binding Cys3 site, was created (TRIL23H) to characterize 

Cu(I) and Cu(II) binding.

Nuclear Magnetic Resonance (NMR) analysis at various pH conditions determined that 

Cu(I) bound with a pKa of 4.45 (His side chain deprotonation). X-ray absorption 

near edge spectral (XANES) analysis of the 1s to 4p transition of Cu(I)TRIL23H was 

consistent with a 3-coordinate Cu(I) complex while extended X-ray absorption fine structure 

(EXAFS) analysis confirmed His binding through outer-shell scattering consistent with 

imidazole ligation.236–237 Cu(II)TRIL23H was characterized by both absorption and EPR 

spectroscopies which were consistent with a Cu(II)His3 site and one or two waters bound.238 

Titration of Cu(II)TRIL23H with nitrite compressed the hyperfine coupling constant 

observed in EPR spectral data as observed with nitrite binding to native CuNiR.233 Cu(I) 

and Cu(II) affinities were determined to be 3.1 pM and 40 nM respectively.239 Using these 

stability constants, the redox potential of CuTRIL23H was calculated to be 400–500 mV vs 

NHE, around 200 mV more positive than native CuNiR but nitrite reducing range (~1300 

mV vs NHE at pH 6.0).148, 235, 240
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When Cu(I)TRIL23H was mixed with nitrite, a UV-visible absorption spectral signature 

indicative of Cu(II)TRIL23H accumulated over 70 minutes. NO gas production was 

confirmed by trapping as [Fe(NO)(EDTA)]2-. With excess ascorbate to re-reduce the Cu, 

the system became catalytic and ascorbate oxidation could be followed at 265 nm.241 

FTIR spectral analysis did not detect N2O, a common side product observed with small 

molecule models of CuNiR. After pH optimization to pH 5.8, the first order rate constant 

was determined to be 4.4 × 10−4 s−1. Thus, by switching out the Zn for a Cu, the authors 

demonstrated that the scaffold was a competent CuNiR, both structurally and catalytically. 

This scaffold was the first stable, functional, and water soluble de novo Type 2 Cu site, 

but this model reacted much slower than its native counterpart which has a first order rate 

constant of ~1500 s−1. Within native CuHis3 sites, there is a wide range of functionality 

from electron transfer centers like the CuH center of peptidylglycine alpha-hydroxylating 

monooxygenase (PHM), to that of CuNiR acting as a catalytic active site.153, 242–244 Further 

work on CuNiR models investigated how the protein environment could tune the reactivity 

of CuHis3 sites.

The Pecoraro lab next modified long-range charged amino acids within this CuNiR 

model.245 Similar residues in native metalloproteins fine-tune redox potentials, impacting 

the enzymatic activity.246–249 The redox potential of CuTRIL23H is relatively positive 

compared to native CuNiR, which the authors hypothesized was due to the stabilization 

of the Cu(I) oxidation state in a trigonal planar geometry within the 3SCC environment. 

Methods to tune the redox potential to that of a native CuNiR could improve the reactivity. 

Lys22, Lys24, and Glu27 were mutated to neutral or opposing charge amino acids to 

increase the negative charge around the Cu-site by as much as −12 (Figure 28). This shift 

in charge decreased the Cu(I) affinity of the construct by as much as 2 orders of magnitude, 

while Cu(II) affinity was invariant, leading to a 100 mV reduction in the redox potential 

and a 3.5-fold increase in CuNiR activity. UV-visible absorption and EPR spectral data 

of constructs with a K22E mutation collected at different pH were consistent with Glu22 

interacting with the primary coordination sphere through a hydrogen bond to His23. While 

this caused a measurable increase in activity, the effect was modest and the second sphere 

interaction of this Glu22 are difficult to confirm without additional structural information.

The effects of secondary sphere mutations on the activity of CuTRIL23H were next 

investigated.250 Previous studies of Cys3 sites within 3SCCs had shown that the coordination 

mode of Cd(II) could be modified by adjusting the hydrophobic packing above or below 

the metal binding site, which tuned water access to the metal.170, 251–252 Similar behavior 

was seen with Pb(II) and Hg(II). Basically, converting leucine to alanine provided internal 

space for water to enter the hydrophobic region near the metal site that allowed for 

solvation or new H-bonding to protein ligands, while more sterically demanding ligands 

like D-Leu (DL) could block water from entering the coiled coil.176, 253 It was, therefore, 

potentially instructive to apply the same changes to catalytic sites. CuTRIL23H contains 

Leu residues above and below the metal binding site so water access should be minimized. 

Effects of decreasing or increasing steric bulk around the CuHis3 site was investigated by 

mutating these Leu packing layers to either Ala above or below (reducing steric bulk) or 

Ile/D-Leu above (enhancing steric bulk toward the Cu binding site) (Figure 29). The other 

strategy investigated in this study was the rational design of secondary coordination sphere 
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interactions with Asp residues. Mutations of Asp98 in native CuNiR decrease its activity by 

up to 2 orders of magnitude.4 Therefore, designing similar interactions in de novo scaffolds 

could lead to reactivity enhancements; Leu layers adjacent to the CuHis3 site of CuTRIL23H 

were mutated to Asp to establish such an interaction.

Pseudo-first order rate constants of CuNiR activity were unaffected by increased steric 

bulk in CuTRIL23H L19I or L19DL, but incorporation of Asp in those positions increased 

the rate constant by up to 75 times compared to the parent design (4.6 × 10−4 s−1 up to 

3.5 × 10−2 s−1). While this suggests that the secondary sphere interaction was correctly 

incorporated, a similar enhanced rate was observed when Ala was positioned above or below 

the CuHis3. The authors hypothesized that the enforced C3 symmetry of the TRIL23H 

scaffold led the Asp3 layers to interact with one another, rather than the bound substrate, 

decreasing steric bulk similar to the Ala3 layers. X-ray absorption spectroscopy showed 

some coordination differences in the Cu(I) oxidation states of each of these constructs with 

Ala3 or Asp3 layers above the active site leading to more 2-coordinate character (Cu-N 

distance of 1.86–1.88 Å) while Ala3 or Asp3 layers below did not affect coordination 

(Cu-N distance of 1.91–1.93 Å). This suggested that the steric bulk above, but not below, 

the CuHis3 enforces the Cu(I) into an unpreferred trigonal geometry. While investigating 

factors that correlated with increased CuNiR rate, the authors determined that the 1s to 4p 

transition energy observed in XANES analysis increased by as much as 1 eV for higher 

activity constructs. While intriguing, this correlation is currently unexplained structurally or 

mechanistically and its predictive value remains limited.

While this article is mainly focused on the effects of the primary and secondary coordination 

spheres, a study using non-native amino acids in a TRIL23H scaffold is worth mentioning 

briefly.254 Native Type 2 Cu sites like those of CuNiR (catalytic center) and PHM (electron 

transfer center) differ in His coordination modes; all His ligands within CuNiR bind the 

Cu through the imidazole epsilon nitrogen (Nε) while those of PHM bind through the delta 

nitrogen (Nδ).255–256 These differences in functionality are consistent with a long-standing 

hypothesis based on comparison of Cu metalloprotein function and structures deposited 

within the PDB.257 Essentially, Nδ bound copper leads to a more rigid environment that 

facilitates fast electron transfer while Ne is associated with a more flexible coordination 

mode that assists in catalysis. Using His residues methylated at either the Nδ or Nε nitrogen 

positions, the Pecoraro lab determined that Nε ligation was two orders of magnitude more 

active than Nδ ligation towards CuNiR activity. Electronic differences between His and 

methylated His also had the side benefit of increasing the CuNiR rate up to as much as 

0.12 s−1 compared to 4.6 × 10−4 s−1 for CuTRIL23H. Steady state kinetics revealed that 

by combining the δm-Imidazole side chain and the relieved steric bulk that accompanies 

the leucine to alanine mutation in the secondary coordination sphere, Km was reduced by 

a factor of 1.4 compared to CuTRIL23- δmH and did not influence the kcat, which suggest 

that the modest 2-fold increase in the rate to a maximum of 0.30 s−1 was due to increase in 

substrate affinity. This study is an excellent example of design strategies enabled by de novo 
scaffolds that are more challenging within native systems.

These studies had improved the CuNiR activity of TRIL23H by around three orders of 

magnitude, but still fell short of native CuNiR by three to four orders of magnitude. It could 

Koebke et al. Page 23

Chem Rev. Author manuscript; available in PMC 2023 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be impossible to reach native rates without incorporating secondary sphere interactions, 

since Asp98 or His255 mutations decrease CuNiR activity by 2–3 orders of magnitude.4 

The authors’ previous attempts at incorporating these interactions within the TRI system 

was hampered by the enforced C3 symmetry of the scaffold; however adapting heavy metal 

templated heterotrimers for asymmetric 3SCC catalytic sites, as discussed above with de 
novo Zn enzymes, promises an opportunity to begin exploiting asymmetric coordination 

spheres (both first and second) around the metals.176

As was employed for carbonic anhydrase mimics (see section 3.1), the Pecoraro lab 

attempted to generate asymmetric environments around copper by incorporating a CuHis3 

site within the α3D and GRα3D scaffolds to investigate the effect of single Asp or His 

residues near the active site and the overall effect of large scaffold changes on CuNiR 

catalysis.258 The same CuHis3 site was 6 times more active when incorporated into α3D 

and up to 18 times more in the more stable scaffold GRα3D. That the surrounding protein 

matrix could impact a metal center’s function is not novel, but it had only recently been 

recognized in de novo metalloprotein design (see section 2.2).61 The CuNiR activities of 

scaffolds containing Asp residues positioned above or below the CuHis3 binding site or a 

fourth His residue were determined using a series of constructs previously investigated for 

CuSOD activity (see section 3.3).259 Every construct with active sites divergent from the 

parent construct GRα3D H3 had decreased activity, some to such a degree that their activity 

matched that of the original TRIWL23H (18-fold less than GRα3D).

Finally, there is also an interest in increased complexity within de novo metalloprotein 

design to include both electron transfer and catalytic sites within the same construct, similar 

to the strategy employed by native CuNiR, so repositioning of the CuHis3 site within the 

GRα3D was investigated. Repositioning the CuHis3 site 22 Å towards the N-terminus of 

the scaffold decreased the CuNiR activity by 18-fold (Figure 30). Given the wide variety 

of different CuNiR constructs with different strategies for their design, it is tempting to try 

to find factors that correlate with activity across the entire spectrum of designs within this 

study. Similar to work within the TRI system, the energy and intensity of the Cu(I) XANES 

1s to 4p transition correlated with changes in coordination number and activity (3-coordinate 

being less active and 2-coordinate more active).

3.3. Superoxide Dismutase

Superoxide dismutase (SOD) is a primary defense against oxidative damage in organisms. 

SODs are enticing targets for metalloenzyme design due to multiple examples of different 

metal environments capable of the same reaction at diffusion limited rates. FeHis3Asp, 

MnHis3Asp, NiHis2Cys, CuZn dual metal systems, and recently CuHis4 systems have been 

characterized.150, 261–269 The reduction potentials of these metal sites are tightly controlled 

around the optimal 0.36 V, the midpoint between oxidation and reduction of superoxide.

One of the earliest de novo design investigations of SOD mimics targeted the 

MnHis3AspH2O coordination sphere of MnSOD (Figure 31a).270 The Mn binding peptide 

MHB was created by modifying a helix-loop-helix peptide previously used to study heme 

binding (dA1).271–272 EPR spectroscopy confirmed Mn(II) binding to the peptide based on 

decreasing intensity of the six EPR lines, a property that has a long history of use to study 
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Mn(II) interaction with designed peptides.273 Mn(II) titration determined a stoichiometry 

of 1.16 Mn(II) per peptide and binding affinity of 36 μM. The original parent peptide dA1 

showed no significant affinity for Mn(II) suggesting that the designed binding site of MHB 

was effective. MHB was also specific to Mn(II) and showed no binding to either Fe or Cu. 

Finally, the SOD activity of Mn(II)MHB was tested, using xanthine-xanthine oxidase nitro 

blue tetrazolium methods and determined a kcat of 3.7 × 105 M−1 s−1, indicating four order 

of magnitude lower activity than native MnSOD (kcat = 3.78 × 109 M−1 s−1).

Cu-only SODS are a more recently discovered class of SODs, with four His residues 

coordinating Cu(II) in a pseudo-trigonal pyramid (Figure 31b).267 The Pecoraro and Policar 

labs used the three helical bundle (3HB) scaffold GRα3D to design Cu-only SODs and 

test the effect of the fourth ligand’s identity on reactivity and redox potential by designing 

binding sites consisting of three His (H3), four His (H4), His2Asp binding plane with a third 

His outside this plane (H2DH), or His3 binding plane with an Asp outside the plane (H3D) 

(Figure 32).259 Cu(II) EXAFS of these constructs were all consistent with 4-coordinate N- 

or O-bound Cu(II) with average bond lengths of 1.94 Å to 1.95 Å while Cu(I) XANES data 

were consistent with 2- or 3-coordinate Cu(I). Cu(II) EPR spectra of the constructs were 

consistent with 4-coordinate Cu(II) in a distorted square planar geometry, but GRα3D H3 

and GRα3D H4 had complicated spectra fit as multiple species with similar intensity.274

As mentioned above, the redox potential of SOD is critical for function. The redox potentials 

of the four constructs were calculated and found to range from 420 mV vs NHE (GRα3D 

H2DH) to 550 mV vs NHE (GRα3D H3). The potentials did not correlate with the activities 

determined by McCord-Fridovich assay; GRα3D H4 had the lowest activity at 1.1 × 106 

M−1 s−1 but a redox potential of 463 mV vs. NHE while the other three constructs fell 

within 2.6 to 3.0 × 106 M−1 s−1 though their redox potentials ranged from 420 to 550 mV 

vs. NHE.275–277 These results suggest that the identity or presence of a fourth ligand from 

the scaffold is not a necessity for Cu-only SOD activity, though it can be used to modulate 

the redox potential of the bound Cu. Previous low molecular weight mimics of Mn and 

Cu SODs found a correlation between activity and the redox potential with those closer 

to 360 mV vs NHE having the highest activity, so it is surprising that no such correlation 

was observed in this de novo Cu-only SOD series.278–279 The authors hypothesize that the 

rate limiting step for SOD activity within these designed proteins may be product release or 

conversion between metal oxidation states which would obfuscate the usually observed trend 

in SOD activity.

3.4. O-O and O-H bond activation

De novo metalloprotein design has successfully created a number of systems for hydrolytic, 

reductive, dismutative, and oxidative reactions (see sections 3.1, 3.2, and 3.3) but the 

activation of O-O or O-H bonds for alternative energy applications is less explored. As 

reserves of fossil fuels dwindle it is imperative that the scientific community is ready 

with a plethora of methods to meet energy demands using abundant resources like O2 and 

H2O.283–285 Cu metalloenzymes are involved in numerous biochemical processes that use 

O2, likely linked to the trigonal geometry of Cu which promotes inner sphere binding 

of O2, making a de novo Cu metalloenzyme for O-O or O-H activation an enticing 
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target.274, 286–289 Mitra and Chakraborty have recently explored this possibility using a 

CuHis3 site within a 3SCC similar to the design of the CuNiR reported by the Pecoraro 

lab, but using a different 3SCC sequence and the CuHis3 positioned more towards the 

N-terminus of the peptide at the 9th position.7, 290

The crystal structure of ArCuP was solved to 1.45 Å and showed Cu bound to the three 

His residues through epsilon nitrogen, a common feature of native Cu enzymatic active 

sites in comparison to Cu electron transfer centers which are usually bound by the delta 

nitrogen.257 No waters were observed bound to the Cu which the authors suggested may 

result from cryoreduction of the Cu(II) species to Cu(I) during irradiation, a common issue 

when collecting X-ray crystal structures of Cu(II) proteins. EPR and UV-visible absorption 

spectroscopic studies of ArCuP in solution indicated waters bound to the Cu(II) site.291–293 

Adding H2O2 to Cu(II)ArCuP or Cu(I)ArCuP produced a stable Cu-OOH species similar to 

that observed in streptavidin systems.294 Given that ArCuP does not possess the H-bonding 

thought to stabilize the Cu-OOH species in the streptavidin system, the authors suggested 

that forming the Cu-OOH species within the hydrophobic core prohibits dimeric Cu-O-O-Cu 

species from forming. This species also formed 4-fold faster with Cu(I) than Cu(II) ArCuP. 

This is similar to lytic polysaccharide monooxygenase (LPMO) reaction with H2O2 in which 

Cu(II) reduction to Cu(I) is thought to prime the system.295–296

LC-MS/MS analysis of the CuArCuP reaction with H2O2 determined that the reaction 

produced hydroxyl radicals and several residues were oxidized at distances of 5–28 Å from 

the active site Cu (Figure 33). Similar oxidative damage of the protein is observed when 

H2O2 is used as the terminal oxidant in Cu monooxygenases such as LPMO.295, 297 Lastly, 

ArCuP was immobilized to a pyrolytic graphite electrode for electrocatalytic reduction of 

H2O2. Kinetic analysis determined that ArCuP had a KM of 3 mM for H2O2 (comparable 

to some native systems attached to electrodes but an order of magnitude greater than 

the benchmark horseradish peroxidase) and a kcat of 0.72 s−1 at pH 7.5 which was 

~7-fold slower than a comparable native system.298–299 This application of de novo Cu 

metalloenzyme design to O-O and O-H bond activation is an exciting avenue of research and 

it will be interesting to see how this system continues to develop.

The Korendovych lab has also applied their catalytic amyloid strategy to the investigation of 

oxygen-activation by de novo Cu enzymes.228–229 After successfully creating a Zn binding 

amyloid CA mimic scaffold, Makhylnets and Korendovich investigated redox catalysis by 

replacing Zn with Cu and looking at the oxidation of 2,6-dimethoxyphenol (DMP). (scheme 

1)201, 300–301 The authors started with 16 peptides that were previously shown to produce 

Zn binding amyloids capable of catalysis. Upon adding Cu to these peptides, one (11, Ac-

IHIHIQI-CONH2) catalyzed DMP oxidation an order of magnitude above baseline activity. 

Similar to the previous work, peptides containing hydrophobic residues promoting amyloid 

formation showed improved activity; but, it is important to note that Cu-amyloid formation 

is not the sole requirement as the amyloid beta peptide (Ab 1–40) can form amyloids upon 

binding Cu but does not catalyze DMP oxidation.302 EPR spectral comparisons of active and 

inactive Cu-bound peptides showed classic type 2 features indicative of CuN3O1 or CuN2O2 

coordination for both groups but that the two groups were distinct from one another.303 
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Amyloid formation appears to lock the His residues into a geometry which activates Cu for 

DMP oxidation.

Lengyel and Korendovych showcased the utility of catalytic amyloids by applying this 

strategy to the hydrolysis of paraoxon, a common organophosphate pesticide with low 

background hydrolysis (7.97 × 10−7 min−1 at pH 7.8) that causes it to remain in the 

environment for extended periods.229, 304 During an initial screening, peptide 7IY (Ac-

IHIHIYI-NH2) showed high activity and was further characterized. Kinetic analysis of 

Cu(II)7IY found the kcat/KM to be 1.7 M−1 min−1 and catalytic enhancement (kcat/kuncat) of 

3.5 × 103 at pH 8.0, values on par with small molecule catalysts and catalytic antibodies, but 

less than previously described engineered enzymes.304–312

One of the benefits of catalytic amyloids is that they can function as heterogeneous catalysts. 

The authors demonstrated this capability using a catalytic flow system by trapping peptides 

on a 0.22 μm syringe filter. While the amyloids had reduced catalytic efficiency when 

deposited, substrate passed through the filter was still measurably converted to product. 

Cu(II)7IY was also sufficiently promiscuous to allow tandem catalysis of two reactions, a 

marked benefit of a de novo designed metalloenzyme compared to their native counterparts.

3.5. Summary

Designing mono-metal metalloenzymes arguably requires more control over the 

coordination sphere than designing heme proteins as the designed scaffold must satisfy more 

than two open coordination sites of the metal while maintaining flexibility for catalysis. The 

Pecoraro, and Kuhlman, and Korendovych labs have put efforts into recreating the ZnHis3 

site of carbonic anhydrase. The Pecoraro lab began their work with carbonic anhydrase 

in mind, creating a His3 site within a three-stranded-coiled-coil that was only two orders 

of magnitude slower than native CAIII.155 Further work with this system determined that 

the ZnHis3 site’s catalytic efficiency was largely unaffected by both repositioning of the 

site within the 3SCC or changing the scaffold to a three-helical bundle suggesting that 

ZnHis3 primary sphere mimics of CA are generally active and this observed reactivity 

was not due to unforeseen or unplanned long range interactions specific to the scaffolds 

examined.169, 179 The Kuhlman lab created a de novo Zn-directed protein-protein interaction 

between two Helix-Turn-Helix peptides which was shown to be capable of CA catalysis 

at higher efficiencies than those within the 3SCC system (Figure 34).191, 193 Later, the 

Hilvert and Kuhlman labs revisited this construct, converted it to a single chain, and turned 

it into an enantioselective esterase using directed evolution which incorporated long distance 

effects such as a 37° offset between helices (Figure 34).194 Rufo and Korendovych recreated 

the ZnHis3 site of CA within amyloid forming peptides with interesting implications for 

metalloenzyme evolution (Figure 34).

Redox active metalloenzymes have proven more difficult to recapitulate using de novo 
design because two oxidation states of the metal can affect designs. The Pecoraro lab has 

reported several studies on the Type 2 Cu center of CuNiR, first by switching their CA 

mimic to a CuNiR by exchanging Zn with Cu.7 Focus on long distance, secondary sphere, 

and even primary sphere (epsilon vs. delta nitrogen of His) effects have improved on the 

original rate up to 730-fold, but there is still a 3–4 order of magnitude rate gap compared 
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to native CuNiR.245, 250, 254 Most recently, a CuHis3 site with several possible secondary 

sphere designs was incorporated into the asymmetric scaffold GRα3D which showed that 

CuNiR activity is sensitive to metal site design and position within the scaffold (Figure 

34).258 Superoxide dismutase (SOD) and monooxygenase mimics have been worked on by 

several labs and the Cu-only SOD constructs show surprising insensitivity to the usually 

observed correlation of redox potential and catalytic efficiency.259, 290

The de novo design of mono-metal metalloenzymes is a strong showcase for the lessons we 

can learn about the simplest functional unit necessary for metalloenzyme activity. This cuts 

to the heart of the question of secondary sphere interaction by first determining the activity 

of a metalloenzyme where all such interactions have been wiped clean. That one can use the 

same His3 scaffold and create a hydrolytic catalyst only two orders of magnitude short of 

native examples as well as a redox catalyst seven orders of magnitude from native examples 

hints at where challenges remain. Designing secondary sphere interactions has proven more 

challenging and has thus far only been accomplished through non-rational design either 

through happenstance (with a H-bond to a His3 site within the CuNiR systems) or through 

directed evolution in the CA systems. While directed evolution is a powerful technique, 

further studies which investigate the effects of these long-range mutations are required if we 

are to gain information about the effects of secondary sphere amino acids within de novo 
systems.

Computational protein design is a powerful technique that has been under-utilized within 

mono-metal metalloenzyme design. Given the sensitivity of CuNiR activity to the local 

environment, a study of how hydrophobic repacking impacts activity is warranted. This may 

lead to strategies that permit the incorporation of secondary sphere amino acids with the 

necessary orientation for improved catalysis. Finally, it is exciting to see progress towards 

alternative energy applications of de novo metalloenzymes. Though these are currently 

in early development and the possibility of incorporating secondary sphere interactions 

into these designs are unknown. Incorporation of secondary sphere interactions similar 

to work on CuNiR models could investigate their effects on peroxide reduction. While 

mono-metalloenzyme active sites appear simple, there is immense complexity beyond the 

primary coordination sphere yet to be fully investigated or understood.

4. Di-Metal Cluster Metalloenzymes

We now move from the design of metalloenzyme active sites that contain a single metal 

ion to those that contain two. The symmetric nature of di-iron cluster metalloenzymes 

made them an early target for de novo design through the use of retrostructural analysis to 

determine the minimal components necessary for function.69 Since this initial study, a wide 

variety of design strategies have been applied to the Due Ferri family of de novo 4 helix 

bundle (4HB) proteins; from changes to the primary and secondary coordination sphere, to 

modification of the overall protein scaffold enabling more complex designs. Throughout this 

work, the DeGrado lab focused on developing a stable, but also functional active site. These 

are often-competing goals and the Due Ferri story is an interesting case study of attempts to 

have one’s cake and eat it too.
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4.1. DueFerri System

Diiron enzymes are responsible for a number of different biologically necessary functions 

such as reversible oxygen binding, phosphatases, hydrolysis, and oxidative processes.313–316 

The DeGrado lab has long investigated how these proteins tune their reactivity using 

a dimetal binding de novo scaffold system called Due Ferri (DF). The first DF 

design was created by a retrostructural analysis of EXXH containing diiron proteins, 

including three ferroxidases, ribonucleotide reductase, Δ9 ACP desaturase, and methane 

monooxygenase.42, 69, 317–323 While this group show less than 5% sequence identity, all of 

their active sites are based on a relatively simple pseudo-222-symmetric four-helix bundle 

motif. Thus, the geometry of the active sites can be described by a D2-symmetric model 

with six adjustable parameters. The coordination environment of the metal cluster consists 

of Glu and His ligands coordinated to each metal with two Glu residues bridging the metals 

(Figure 35). Lombardi and DeGrado designed a stripped down version of this binding site 

using a D2-symmetric four-helix bundle consisting of 21 amino acid helices. After including 

all the structural constraints determined by retrostructural analysis, functional secondary 

sphere amino acids were added; an Asp residue to H-bond with the ligating His and a Tyr 

to H-bond with the non-bridging Glu. Once these constraints were included, the 4HB was 

hydrophobically repacked computationally and by visual inspection with almost identical 

results.324 The final design was a 48 residue long protein named DF1.

DF1 forms an alpha helical structure in solution and binds Zn(II), Co(II), and Fe(II). Co(II)2-

DF1’s UV-visible absorption spectrum was in reasonable agreement with the literature 

values of Co(II) substituted bacterioferritin.325 The crystal structure of Zn(II)2-DF1 was 

solved to a resolution of 2.5 Å and matched the computational design with an RMSD of 

0.55 Å for backbone atoms and 0.41 Å for atoms within 10 Å of the metal binding site. 

This match to the designed structure extended to the secondary sphere Asp and Tyr residues 

which correctly formed their designed H-bond pairs.

Later work by Di Costanzo and DeGrado focused on methods to increase substrate access, 

with the intention that Fe(II)2-DF1 would be catalytically active.326 Reconstitution of metal-

bound DF1 required denaturing and refolding, indicating that substates could not access the 

active site in the folded protein. The crystal structure showed vacant metal coordination sites 

but Leu13 occluded solvent access. DF1 L13A was created, and Mn(II)2-DF1 L13A was 

structurally characterized to a resolution of 1.7 Å and compared to the three dimensional 

structures of Mn(II) substituted diiron-oxo proteins such as ribonucleotide reductase and 

bacteroferritin.42, 327 The Mn(II)2-DF1 L13A crystal structure showed that DMSO (from 

the crystallization buffer) was bound to the Mn(II)2 site in a bridging orientation and 

several water molecules filled the pocket, indicated a more opened active site due to the 

L13A mutation (Figure 36). Previous examples of exogenous bridging organic ligands were 

thought to occupy the position normally taken by substrates in the catalytic cycle.323, 328 

The Mn-Mn distances within the three crystallographically unique structures of Mn(II)2-

DF1 L13A ranged from 3.6 to 3.9 Å, matching the range of di-Mn(II) substituted forms 

of bacterioferritin (4.0 Å) or ribonucleotide reductase R2 (3.6–3.7 Å). Shorter distances are 

often observed for di-Mn(III) forms of catalase, suggesting that the Mn was bound in the 
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Mn(II) oxidation state. Secondary coordination sphere interactions originally designed in 

DF1 were largely unaffected by the DF1-L13A variation.

Solution characterization was impeded by the limited solubility of DF1 L13A, so further 

studies used the more water soluble DF2 which also has an Ala residue at the 13th 

position.329 The Fe(III)2-DF2 optical spectrum was similar to those of Fe(III)-O-Fe(III) 

containing proteins and inorganic complexes.330–333 Azide titration of Fe(III)2-DF2 showed 

that two azide molecules could bind to the active site. Given that the coordination number of 

the Fe(III)2-DF2 is expected to be saturated (based on the structure of Mn(II)2-DF1 L13A), 

the authors suggested that the protein ligands might change coordination mode for azide to 

bind. Such changes are well precedented in natural diiron proteins and are thought to be 

allowed by the flexibility of the carboxylate ligands which can switch between monodentate 

and bidentate binding modes.321, 328, 334–335 Overall, this study concluded that the DF1 

structure was stable enough to allow destabilizing mutations for solvent access, and that 

these mutations enabled small molecules to bind to Fe(III)2-DF2, a massive step towards the 

creation of a de novo oxygen dependent diFe enzyme.

Active sites of native metalloproteins are often preorganized for metal binding in the apo 

state, requiring that polar residues be buried within the hydrophobic core at the expense 

of protein stability.329 This preorganization is thought to be how the protein imparts non-

ideal coordination geometries on the metals rather than vice versa. Maglio and DeGrado 

investigated the thermodynamic stability of DF1, DF1 L13A, and L13G to determine the 

cost of carving out substrate access channels as well as the level of preorganization within 

the DF1 active site.336 Based on guanidinium titrations followed by circular dichroism 

(CD) DF1 L19A mutation decreases the stability of the scaffold by 5.6 kcal/mol while 

the L19G variant destabilized the scaffold by an even greater 10.8 kcal/mol. These values 

were consistent with native proteins, indicating that further destabilizing modifications 

to incorporate additional design elements might have to be compensated by alternative 

approaches to increase structural stability.337–340

The apo structure of DF1 was solved by NMR and compared to the di-Zn(II) derivative to 

determine the level of preorganization in the active site. The superposition of these structures 

showed that they were similar overall down to the second shell interactions such as Glu10 

accepting H-bonds from Tyr17 and Asp35 from His39. A larger rotation of the helices to 

expose some active site amino acids to solvent was also observed (Figure 37). While the 

structure of the N-terminal helices was invariant, the C-terminal helices were rotated 30°, 

exposing Glu-36 and His-39 to solvent compared to the more buried orientation of these 

residues in the holo structure. The authors suggested that DF1’s inability to maintain a 

fully preorganized active site could be related to its small size. A similar study with heavy 

metal binding Cys3 active sites showed that preorganization was maintained in the apo state; 

but, this was with the more easily accommodated Cys residues, so it is possible that the 

preorganization penalty was less in this case.341

To this point, the DeGrado lab laid the ground work for de novo Fe2 catalysts, but the work 

of Kaplan and DeGrado is when this first came to fruition.342 The scaffold for this work was 

DFtet, a heterotetrameric four stranded coiled coil which allowed for a combinatorial study 
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using different substrate access increasing mutations (L15aA/G or A19bG) to investigate 

the optimum substrate access for catalysis.343 Oxidation of 4-aminophenol (4AP) was 

followed by quenching and spectroscopically detecting the quinone monoimine product 

using established methods.344–346 L15 and A19 were chosen for mutation based on models 

of DFtet with 4AP within the active site which indicated that these two amino acids would 

make unfavorable contacts with the substrate. Kinetic analyses of combinations of these 

mutations found that the greatest effect (~25-fold increase) was observed when all four 

positions were Gly (Figure 38). It is particularly interesting that such a measurable effect can 

be observed upon slight changes such as when two carbon atoms are added to the active site 

(4Gly to 2Gly2Ala constructs). This showcases the fine tuning of designed metalloenzymes 

that can be accomplished outside of the primary coordination sphere.

Unfortunately, the DFtet system, while convenient for a combinatorial study, was overly 

complex to structurally characterize. Faiella and Lombardi applied the lessons of increasing 

substrate access through Gly residues to the better characterized DF system creating DF3.347 

Introduction of four Gly residues into the DF1 structure directly would likely result in an 

unfolded protein, based on the previous study by Maglio and DeGrado which determined 

that two Leu to Gly substitutions destabilized the complex by 10.8 kcal/mol and left the 

free energy of unfolding at only −12.7 kcal/mol.336 To improve the stability of the scaffold, 

the interhelical turn of DF1 was redesigned by searching through the PDB database for the 

most common amino acid sequences that adopt a similar turn geometry.69, 348 This analysis 

resulted in the V24-K25-L26 loop of DF1 being substituted with T24-H25-N26 and this, 

combined with two Leu to Gly mutations (to bring together 4 Gly in the complex), created 

DF3.

DF3 was well-folded in solution, suggesting that the loop redesign successfully 

compensated for active site destabilization. DF3 oxidized 4AP with similar efficiency as 

DFtet-G4. DF3 had a similar reaction profile to established Fe2 enzymes, reacting with 

3–5-ditert-butyl-catechol 5-fold faster than 4AP but para-phenylendiamine reacted 75-fold 

slower and ortho-phenylendiamine did not react at all.349–350 Zn(II)2-DF3 was structurally 

solved by NMR (Figure 39). Zn(II)2-DF3 contained the expected H-bonds within its 

redesigned loop, matching the computational model with an RMSD of 1.2 Å. Comparison 

of Zn(II)2-DF1 and Zn(II)2-DF3 showcases the opened substrate channel which allows for 

enzymatic activity. Overall, this study is an excellent example of a consistent theme of 

research within the Due Ferrie system, the warring factors of stability and catalysis within 

enzymes. The authors successfully walked the tightrope between these two properties by 

redesigning the interhelical loop in tandem with opening the active site.

Despite the limited set of metals readily available in nature, metalloenzymes can have a 

number of different functions. For example, iron enzymes are quite prolific. Even within 

the much smaller subset of non-heme Fe2 enzymes, one observes peroxidation, oxidation, 

and NO reduction catalysis.351–362 Reig and DeGrado explored how primary and secondary 

sphere modifications change the metal reactivity within the DF family of scaffolds.78 This 

required transferring the established activity into a single-chain version of DF called DFsc 

which would permit asymmetry in the active site.363 G4DFsc was designed by incorporating 
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four Gly mutations (A10G, A14G, A43G, A47G) into DFsc to mimic the successful strategy 

used in both the DFtet and DF3 scaffolds (Figure 40).

At the time, the only structurally characterized N-oxygenase containing an Fe2 active site 

was para-aminobenzoate N-oxygenase (AurF). This protein was used as the design target for 

two-electron oxidation of activated quinols to N-oxygenation of anilines.364–365 The active 

site of AurF matches that of G4DFsc closely excepting a third ligating His residue bound 

to one of the two Fe. G4DFsc I100H was designed including Y18F or Y18L modifications 

to incorporate this His interaction and provide sufficient space within the active site for 

coordination, but neither construct was successful (Figure 40). After several redesigns, a H-

bond network from His100 to His81 terminating with Asn37 proved necessary to correctly 

incorporate the third His residue at position 100. The final construct (3His-G4DFsc) was 

only folded in the presence of divalent metal ions, showcasing the consistent battle between 

stability and function, but correctly incorporated those metals in the designed 2:1 ratio when 

present.

The incorporation of this third His residue nearly abolished 4AP oxidation activity but 

enabled the construct to N-hydroxylate para-anisidine. Following the reaction of 3His-

G4DFsc with para-anisidine by UV-visible absorption spectroscopy, an intermediate product 

absorbing at 360 nm was observed which disappeared over several hours to a final 

product absorbing at 445 nm. HPLC and MS analysis identified the final product as 

4-nitroso-4’-methoxydiphenylamine resulting from a reaction of the intermediate product 

para-nitrosoanisole with unreacted para-anisidine (Figure 41). Thus, the authors had not only 

shown that the de novo Due Ferri scaffold could be converted from one reactivity to another, 

but that the differences in reactivity seen in native AurF compared to other natural Fe2 

enzymes could be accounted for largely through the third His within the active site.

Given the unprecedented nature of the reactivity switch from G4DFsc to His3-G4DFsc, 

Snyder and Solomon put out two spectroscopic studies to determine the cause. The first 

investigation focused on how the primary sphere alterations affected O2 activation.366 

Among native Fe2 enzymes, a number of ligand geometries are possible, largely due to 

the ability of carboxylate residues to switch between mono- or bidentate coordination 

(Figure 42).323, 334, 367–368 The AurF modelled in His3-G4DFsc has an even larger 

difference in its active site, with 3-His/4-carboxylate instead of the 2-His/4-carboxylate of 

more standard Fe2 enzymes leading to a spectroscopically distinct peroxy intermediate.369 

Snyder and Solomon used near-IR (NIR), circular dichroism (CD), magnetic circular 

dichroism (MCD), and variable-temperature variable-field (VTVH) MCD spectroscopies to 

evaluate the Fe(II)2 active sites of G4DFsc, His3-G4DFsc, and G4DFsc(Mut3) to determine 

the effects of increased solvent access, primary coordination sphere changes, and helix-

stabilizing residues. G4DFsc(Mut3) was a new construct made for this study which included 

the secondary sphere mutations present in His3-G4DFsc but lacks the third His in the active 

site.

NIR MCD spectroscopy determined that Fe(II)2His3-G4DFsc differed drastically from 

Fe(II)2G4DFsc and Fe(II)2G4DFsc(Mut3), with three bands observed rather than two, 

suggesting higher coordination at the Fe(II)2 site in Fe(II)2His3-G4DFsc. VTVH MCD 

Koebke et al. Page 32

Chem Rev. Author manuscript; available in PMC 2023 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



curves of all three constructs indicated that their MCD bands (whether two or three) derive 

from two non-equivalent Fe ions. Based on these analyses, and the energy of the observed 

MCD peaks, the authors concluded that Fe(II)2G4DFsc and Fe(II)2G4DFsc(Mut3) were best 

described as two inequivalent 5-coordinate trigonal bipyramidal Fe(II) with weak coupling 

from the two bridging carboxylates (Figure 43B).354, 370 Previous analysis of Fe(II)2DFsc 

showed it was best described as a split 4/5-coordinate Fe2 site similar to ribonucleotide 

reductase. This difference in coordination is likely due to H2O binding to one of the Fe due 

to greater solvent access.371 Finally, the same analysis of Fe(II)2His3-G4DFsc found it was 

best described as a 6/5-coordinate Fe2 site with the third His residue binding to make a 6-

coordinate Fe (Figure 43C). Stopped-flow kinetic analysis of O2 reactivity found that DFsc’s 

reaction rate was similar to that of natural Fe2 enzymes at 2 s−1, but increased solvent 

access in G4DFsc decreased this to 0.02 s−1 while G4DFsc(Mut3) was further decreased to 

2 × 10−3 s−1.372 Based on VTVH MCD analysis, this lower reaction rate correlated with 

the strength of the superexchange pathway from bridging carboxylate ligands allowing for 

two-electron reduction at a single Fe.

The authors suggested that one of the deficiencies in the DF system for oxygen reactivity 

was a lack of positions at which O2 could or strong carboxylates could bridge the two Fe 

ions to allow for efficient superexchange between them. Snyder and Solomon continued 

their spectroscopic study in the DF system by focusing on how the incorporation of a third 

His residue in the active site switches reactivity from oxygenase to arylamine oxidase.373 

Reactivity of 4AP was investigated under tightly controlled anaerobic conditions with 

Fe(II)2-G4DFsc or Fe(II)2-3HisG4DFsc with substrate bound before O2-saturated buffer 

was added to complete the reaction. Under these conditions, the two constructs oxidize 

4AP at the same rate. Previously when O2 and 4AP were added at the same time, the 

two His variant was much faster than the three His variant. Following 4AP binding by 

MCD, they found that 4AP binding perturbed the Fe(II)2 site to a single Fe(II) center, 

but both 4AP-Fe(II)2-G4DFsc and 4AP-Fe(II)2-3HisG4DFsc were 6/5-coordinate trigonal 

bipyramidal Fe(II) centers (Figure 44). This indicated that 4AP binding increases the 

coordination number of the two His construct while the iron coordination environment of the 

three His construct is maintained.

The authors suggested that 4AP coordination replaced His100 in the active site, consistent 

with kinetic studies where 4AP binds to the two His construct with a rate (0.027–0.042 

s−1), an order of magnitude higher than it does in the three His construct (0.0046 s−1). 

Given that both constructs react with O2 at a similar rate (0.02–0.04 s−1), the apparent 

difference in reactivity under aerobic conditions for 4APoxidation is due to oxidation to 

the inactive Fe(III)2 state outcompeting substrate binding in the three His construct whereas 

the two processes are comparable in rate for the two His construct. Next, the differential 

oxygenation of para-anisidine by G4DFsc or 3His-G4DFsc was investigated. Slight shifts 

to both constructs’ NIR CD and MCD spectra upon addition of para-anisidine indicated 

that the substrate bound near the active site but not directly to either Fe(II) (Figure 45). 

While both constructs could incorporate the substrate, the three His construct increased 

antiferromagnetic coupling between the two Fe(II) while it decreased upon binding to the 

two His construct which the authors concluded was the cause of their differential reactivity.
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One of the most fascinating features of native metalloenzymes is their ability to produce 

highly reactive intermediates without releasing these into solution or degrading the protein. 

For example, several DF proteins were capable of one- or two-electron oxidative chemistry 

but a net four electron reduction without radical release had not yet been achieved. Chino 

and Lombardi set out to create a DF scaffold which could sequester the reactive intermediate 

of 4AP oxidation 4-benzoquinone monoimine (4BQM) inside the protein active site and 

therefore change the reaction pathway to a 4 electron reduction.77 Their target for redesign 

was the native metalloenzyme toluene mono-oxygenase (TMO).374–375 TMO’s active site 

is asymmetric, so the researchers used a DF scaffold in which two different alpha-helical 

hairpins (referred to as the K chain and the Z chain) are covalently linked together by 

Cu(I) catalyzed click chemistry (Figure 46).376–378 Mutations were introduced within this 

asymmetric scaffold to modulate active site access (G13KT with L33KQ and G9ZF with 

Y17ZL and Y17KF), form new H-bond networks (L43KN with L29ZQ), and improve 

the overall packing (Q16KL and I14KA) to create DF-C1 (Figure 46). CD, UV-visible 

absorption and NMR spectroscopic analysis of DF-C1 showed it was well-folded in solution 

and capable of binding two metal ions. Co(II)2-DF-C1 absorption spectra were consistent 

with either both Co being 5-coordinate or mixed 5/6-coordinate, as is common for Co(II) 

reconstituted Fe2 proteins.379–380 Unlike the original DF3 design, when Fe(III)2-DF-C1 

oxidized 4AP, no 4BQM was observed. HPLC analysis determined the product was the 

oxidation/condensation derivative of 4AP, an analogue of a Barndrowski’s base (Figure 

47).350 The authors suggested that this product was generated by 4AP binding to the active 

site of Fe2-DF-C1, reacting with a second 4AP to produce a dimer which, when released 

to solution, reacts with a third 4AP molecule to create the final product. Docking studies 

of the 4AP dimer indicated that part of the active site redesign had resulted in π-stacking 

interactions from Phe9 which may have guided dimer formation. Thus, a de novo scaffold 

that was capable of a single two-electron oxidation was tuned by active site redesign at 

multiple secondary sphere locations to perform sequential two-electron oxidations. This is 

the most recent report on DF engineering alone, independent of the more recent porphyrin 

binding investigations (see section 2.2).61, 63

4.2. Mn2 cluster binding for electron transfer and catalysis

While the Lombardi and DeGrado labs have explored different metal-substituted Due 

Ferri constructs, these were always with the overarching goal of learning about the Fe2 

system. The Allen lab has taken a different tactic to de novo bimetal protein design 

by targeting photosystem II using Mn2 binding proteins and later applying these design 

strategies to models of catalase.381–382 The Mn4Ca cluster of photosystem II is necessary for 

water oxidation and has been investigated using a plethora of structural and spectroscopic 

techniques, but questions remain.383–389 For example, the redox midpoint potential of the 

Mn4Ca cluster is a critical parameter but has been difficult to measure directly.390–392 Also, 

the Mn4Ca cluster is in a distorted cuboidal arrangement enforced by the surrounding 

protein, but the role of surrounding residues remains under debate.393–396 Due to the 

complicated nature of photosystem II, the authors used the evolutionarily related bacterial 

reaction center of Rhodobacter sphaeroides and tested de novo four-helix bundle Mn2 

proteins for their ability to bind and reduce the bacteriochlorophyll dimer (Figure 48).397
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The homodimeric Due Ferrie protein DF2t was used as the scaffold for this study.78, 348 

Three different Mn2 binding proteins were created using this template: P0 with a single 

Mn2 binding site, P1 with three separate Mn2 binding sites spanning the 4HB, and P2 

with two Mn2 binding sites. The structure of P0 was solved to a resolution of 1.75 

Å and overlaid well with previous Mn2 DF proteins.326, 398–399 Time resolved spectral 

analysis in the presence of the P865 dimer showed that all three de novo Mn2 proteins 

could transfer electrons and compete with the charge-recombination reaction of P865
+QA

−. 

P1 (with three Mn2 binding sites) was the most effective at decreasing dimer bleaching 

and this effect decreased as the number of Mn2 binding sites decreased. Whether this 

pattern arose due to the number of Mn2 binding sites increasing the possibility of electron 

transfer or because of other parameters that differ between the constructs (such as midpoint 

potential) is unknown. Docking studies using Rosetta compared the inter-protein distance 

expected for P0 interacting with the reaction center (17 Å) and the native electron 

transfer protein cytochrome c2 (11 Å). This 6 Å increase in inter-protein distance should 

decrease the rate of electron transfer from 106 s−1 down to 103 s−1 but this was not 

confirmed experimentally.400–402 This is one of only a few examples of de novo designed 

metalloproteins interfacing with native biological machinery, showcasing the potential of 

designed proteins to replace components of complex multiprotein systems.

The electron transfer capabilities of these Mn2 cluster proteins were impressive, but upon 

inspection the structure of P0 more closely resembled the enzymatic Mn2 cluster of Mn-

catalase (Figure 49). Mn-catalase serves a similar function as its heme-based corollary 

(conversion of H2O2 into O2 and H2O) but functions in anaerobic bacteria rather than 

aerobic organisms.403–404 Olson and Allen created a suite of Mn2 de novo proteins with 

metal binding sites in different positions.382 Four different constructs were characterized and 

investigated for catalase activity by the production of O2 and the loss of H2O2. P0, P1, and 

P2 from the previous de novo Mn2 work were included in this study as well as P3, which 

repositioned the non-central Mn cluster further from the central Mn cluster, and P4, which 

removes the central Mn cluster from P3. (Figure 50)

EPR spectroscopy of the Mn-bound constructs (except for P4 that aggregated when Mn 

bound) found no spectral features to indicate magnetically interacting Mn(II) ions, which 

is likely related to the increased Mn separation in the cluster (4 Å) compared to native 

Mn-Catalase (3.0 to 3.4 Å).405 CD analysis determined that most of the construct series 

was well folded in solution with the exception of P3 which did not appear to be fully 

alpha helical in the apo state. Kinetic analysis of H2O2 degradation determined that P1 and 

P3 which contain three Mn2 clusters react at approximately double the rate of P0 and P2, 

which contain one or two Mn2 cluster sites, respectively. Kinetic analysis of P1, following 

O2 production, determined that this construct had a kcat and KM of 10−4 s−1 and 200 mM, 

respectively, compared to 2–3 × 105 s−1 and 80–350 mM for native Mn-catalase.403–404 

Overall, the authors showed that the number of Mn2 clusters had a significant impact on 

catalase function while the position of those clusters did not. It is interesting to note that 

the KM of P1 was comparable to that of native Mn-Catalase, but the kcat falls 9 orders 

of magnitude short. This suggests that future design should focus on improving substrate 

activation, such as inclusion of secondary sphere interactions found in native Mn-Catalase.
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4.3. Summary

The Due Ferri system is one of the longest continuous stories of metalloprotein design. After 

the initial design of a di-metal binding 4HB by retrostructural analysis, Di Constanzo and 

DeGrado made the first step towards enzymatic activity by opening up substrate access 

through a L13A mutation.69, 326 Studies of apo-DF1 determined that these mutations 

were highly destabilizing.336 DFtet, a heterotetrameric 4SCC variant, was the first to 

be catalytically characterized; and the best combination for oxidation of 4-aminophenol 

(4AP) was two Leu/Ala to Gly mutations (Figure 51).342 DFtet could not be structurally 

characterized, so Faiella and Lombardi applied the Gly mutations to DF1, but these were 

too destabilizing for the less thermodynamically stable scaffold.347 They incorporated 

these mutations by concurrently changing the initial scaffold beyond the active site; they 

redesigned the loop between helices to increase stability. The final design, DF3 oxidized 

4AP at similar rates as the DFtet-G4 system.

Reig and DeGrado investigated Due Ferri active site changes that modified reactivity 

from hydroquinone oxidation to N-hydroxylation.78 A single chain variant of DF3 called 

G4DFsc was made and a third His residue was incorporated into the active site to 

mimic the binding geometry of para-aminobenzoate N-oxygenase (AurF). Remarkably, 

this completely switched the reactivity and His3-G4DFsc showed no reaction with 4AP 

but did N-hydroxylate para-anisidine. Follow-up studies by Snyder and Solomon found 

that His3-G4DFsc could still perform 4AP oxidation, but substrate binding was slower 

than metal center oxidation and inactivation under aerobic conditions.366, 373 Chino and 

Lombardi developed a scaffold that sequesters reactive intermediates by redesigning DF3 

to incorporate the asymmetric active site of toluene mono-oxygenase (Figure 51).77 They 

changed a de novo scaffold capable of a single two-electron oxidation to one that is capable 

of two two-electron oxidations. Finally, while most work on Due Ferri has focused on 

creating Fe2 enzymes, the Allen lab used these scaffolds to mimic Mn2 clusters. They 

showed that these clusters could interact with other biological machinery through electron 

transfer to the bacterial reaction center of Rhodobacter Sphaeroides and possess Mn-catalase 

activity (Figure 51).381–382

These reports on the Due Ferri system showcase the different strategies employed to 

study metalloenzymes. Between the DeGrado and Lombardi labs, they have changed 

from homodimeric to heterotetrameric, single chain, or even heterodimeric scaffolds. This 

was in pursuit of balancing the stability and catalytic activity of these systems. There 

have also been notable successes at designing DF secondary sphere interactions. Multiple 

constructs have shown the benefit of opening space for substrate access and the DFtet system 

demonstrated that even a single carbon increase in steric bulk had a measurable effect 

on 4AP oxidation. Several reports have incorporated hydrogen bonds between His or Asp 

residues with primary sphere ligands.

The impact of these secondary sphere interactions on structure and catalysis is a yet under-

investigated property. Often, these are included in the initial DF redesign strategy, but 

this obfuscates its effects from those caused by other redesigned mutations. For example, 

DF-C1 had 12 mutations from the DF3 sequence to mimic the active site of Toluene 

Monooxygenase.77 Applying many redesign strategies (substrate access opening, H-bond 
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network, active site reshaping) to the same construct at once is impressive but information 

about the impact of each modification is lost. It would be interesting to see additional 

combinatorial studies (like DFtet) or more details on the effect of single amino acid changes 

(Snyder and Solomon) applied to more recent DF family constructs.342, 366, 373

5. Non-heme electron transfer sites

As de novo metalloenzyme designs increase in complexity, aspects beyond the primary 

or even secondary coordination sphere of the metal will need to be included. For many 

metalloenzymes, this includes other metal centers which assist in catalysis indirectly. 

The combination of a structural metal binding site with a catalytic active site has been 

accomplished, but the more intricate combination of an electron transfer site coupled to 

an enzymatic site has not been reported.155 Much work has been done on heme electron 

transfer proteins, but the goal of combining different metal-binding sites within a single 

scaffold would be assisted by the design of smaller electron transfer sites. Here, we limit 

our focus to design of FeS cluster proteins and cupredoxin mimics. With multiple research 

groups contributing, we are coming closer and closer to the goal of designs that can mirror 

the complexity found in nature.

5.1. FeS Cluster proteins

FeS clusters are one of the most common electron transfer elements within biological 

systems and are thought to be evolutionary remnants from an era when the Earth’s 

atmosphere was more reducing.406 Interest in their design has grown lately as they are 

an important part of a number of systems with possible alternative fuel applications such as 

photosystem I, complex I, and hydrogenases.407–410 Chains of FeS clusters are particularly 

desirable design targets as they are likely to be required for the application of hydrogenases 

to electrodes or photoelectron sources.411–412 Common FeS clusters include the FeCys4 

metal center of rubredoxin as well as [2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters. De novo 
design efforts have been centered on rubredoxin and [4Fe-4S] clusters so these will be the 

focus of this section.413

The simplest form of an FeS cluster is the FeCys4 binding site of rubredoxin, and this 

made it an early target of de novo metalloprotein design (Figure 52). Lombardi and Pavone 

created a miniaturized rubredoxin to determine the smallest functional unit of the native 

structure.414 Rubredoxins are small proteins with a high-spin Fe in a tetrahedral Cys4 

binding site.415 Structural analysis determined that within 17 Å of the Fe, the native protein 

had a pseudo-C2 symmetry axis with Cys residues at i and i+3 positions of two type 3 

β-hairpins.416–419 C2 axes were included in previous designs by Lombardi and Pavone 

(DF1 and mimochromes) to simplify design and decrease the peptide length necessary for 

synthesis.23, 25–26, 147, 420–422 While the authors determined that a peptide of only 5 AA in 

length could recapitulate the primary coordination sphere of rubredoxin, this was extended 

to 11 AA to destabilize undesirable diastereomeric forms. The final design, METP, used 

the sequence from Cys39 to Phe49 of rubredoxin with a number of modifications to avoid 

steric clashes (Phe40Thr, Phe49Ile) and reinforce dimer formation (Val41Lys, Pro45Asn, 

Lys46Aib) (Figure 53).
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METP successfully bound Co, Zn, and Fe ions in an apparent tetrahedral Cys4 geometry. 

Co(II)METP absorption spectroscopy was in agreement with Co(II)-substituted rubredoxin 

with d-d transitions characteristic of tetrahedral geometry and an LMCT band at 350 

nm indicative of Cys ligation.423–426 Zn(II) binding was determined by competition with 

Co(II)METP and while no spectroscopic information could be obtained, the construct’s 

lower affinity for Co(II) (53.5 μM) than Zn(II) (2.7 μM) is consistent with tetrahedral 

coordination.427–428 METP bound Fe(II) and formed a red color upon air oxidation 

indicative of Fe(III)METP. This color irreversibly faded within less than a minute 

in water, but was much more stable in MeOH, where the Fe(III)METP absorption 

spectrum was recorded. Fe(II) and Fe(III)METP had absorption spectra consistent with 

native rubredoxins.429–430 Overall, this minimal model correctly recapitulated the primary 

coordination sphere of native rubredoxin in the Fe(II) and Fe(III) oxidation states, but its 

stability and functionality as an electron transfer center in water was not modelled.

Arguing that the previous system had failed to go through reversible redox cycles because 

of lacking tertiary structural constraints, Nanda and DeGrado created a more complex design 

to address the immediate secondary structure surrounding the rubredoxin Fe binding site.431 

This was notable in that few studies had include beta sheet structure design elements at the 

time. Following retrostructural analysis the environment around the Fe in rubredoxin was 

described as two beta hairpins related by C2 symmetry. Each hairpin was redesigned with an 

additional C-terminal appendage that would interact with the opposite hairpin with the goal 

of increased tertiary structural complex stability (Figure 53). Initial studies with this dimeric 

design were promising, but these scaffolds were only stable for four redox cycles so further 

redesigns attempted to create a single chain version.

The dimers were fused together with a tryptophan zipper motif and the active-site cysteines 

were rationally redesigned for the new topology while other amino acids were chosen 

with the SCADS methodology developed by Kono and Saven (Figure 54).432–433 The final 

design (RM1) was 40 AA long and had a different beta sheet topology compared to native 

rubredoxin. The Co(II)RM1 absorption spectrum had a d-d transition near 700 nm and a 

LMCT at 340 nm and the Co(II) was displaced upon addition of Zn(II), all consistent with a 

tetrathiolate environment.414, 423, 425–426 Surprisingly, even though the protein scaffold was 

relatively small and simple, CD analysis indicated that it was folded in both the apo and holo 

states, suggesting a preorganization of the metal binding site. The absorption spectrum of 

Fe(III)RM1 exhibited expected bands at 370, 490, 600, and 750 nm and the redox potential 

was on the edge of that for native rubredoxins at 55 mV vs. NTE, indicating that Fe(III)RM1 

has a similar Fe-binding environment as native rubredoxin. The most impressive part of this 

design was its ability to go through 16 redox cycles, well above the previous record for a 

designed rubredoxin of three cycles.426 FeRM1 remains the most stable rubredoxin model to 

redox cycling, a significant achievement.

The minimized rubredoxin structure around the metal binding site had successfully 

maintained Fe geometry but questions remained. Is the β sheet secondary structure 

necessary for correct tetrahedral geometry or is it possible to design the same geometry 

into a much more rigid alpha helical scaffold? Tebo and Pecoraro designed a rubredoxin 

Cys4 binding site into the α3D scaffold, based on a Cys3 heavy metal binding peptide 
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(α3DIV).181, 184, 434 Recent work on mimicking the Cd(II) binding site of CadC had created 

several Cys4 binding sites and shown that α3DIV L21C reproduced the Cd(II)Cys4 binding 

site, so this peptide was investigated as a possible rubredoxin mimic (Figure 55).435

Fe(II)- and Fe(III)-α3DIV L21C were characterized by absorption, Mössbauer, EPR, 

and MCD spectroscopies which all confirmed that the electronics of native rubredoxin 

had been recapitulated. MCD spectroscopic analysis was particularly compelling as it 

deconvoluted the absorption spectrum into nine transitions which closely resembled those 

of Fe(III)rubredoxins from Clostridium pasterurianum and Desulfovibrio gigas, a first 

for a rubredoxin model.436–437 EXAFS analysis found that Fe(II)α3DIV L21C had an 

Fe-S distance of 2.32 Å, similar to that of native reduced rubredoxins, indicating that 

Fe(II)α3DIV L21C was also a good structural model of rubredoxin.438–439 The measured 

redox potential of Fe(II/III)α3DIV L21C of −75 mV vs. NHE was within the range of 

native systems, but this construct was only capable of three redox cycles before irreversible 

bleaching occurred.440–443 This study proved that the tetrahedral FeCys4 binding site of 

rubredoxin could be divorced completely from its protein structural environment and a 

functional model created within an unrelated protein fold, a rigid alpha helical scaffold 

compared to the native loop structures between beta sheets.

The function of an electron transfer center is either intra- or intermolecular reduction/

oxidation. The Aukauloo lab in collaboration with the Pecoraro lab investigated these 

properties using electron transfer protein mimics to determine the functionality of these 

de novo designs.444 While the Pecoraro lab has collaborated with the Quaranta lab to 

examine intermolecular electron transfer properties, we will focus our attention here on 

intramolecular electron transfers as these are arguably more pertinent to the creation of 

complex de novo enzymes.444–446 Tebo and Aukauloo first investigated whether apo α3DH3 

could produce a Tyr radical for long range electron transfer. The redox-active amino acids 

Tyr and Trp are often used as “pit stops” for long distance electron transfers through a 

protein matrix.447 Tyr radicals in particular are vital parts of biological systems that require 

long-distance electron transfers such as photosystem II and ribonucleotide reductase.448

De novo scaffolds designed by Tommos and Dutton have been used to study these amino 

acid radicals directly through the design of α3W and α3Y which are 3HB bundle peptides 

with redox active amino acids at the 32nd positions (either Trp or Tyr).449 Using pulsed 

nonreversible voltammetry, the authors determined that burying these aromatic amino acids 

within the hydrophobic interior increased the redox potential of Tyr by 900 mV vs NHE 

but only increased that of Trp by 350 mV vs NHE. Dai and Wand later determined the 

NMR structure of α3W which suggested a π-cation interaction between Trp32 and Lys36 

at a distance of 4.7 Å, consistent with similar interactions in native proteins.450–451 Further 

studies of α3Y by the Tommos lab determined the Tyr32 redox potential to be 1070 or 

910 mV vs NHE at pH 5.5 or 8.5, respectively, using square wave voltammetry.452 This 

radical was also surprisingly stable with a half-life of 2 to 10 seconds as determined by 

time-resolved spectroscopy.453

For their study Tebo and Aukaloo attached a [Ru(II)bpy3]+2 photooxidant to the C-terminal 

Cys residue of a variant of α3DH3 which would place the chromophore within ~16 Å of 
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Tyr70 (Figure 56).454 Using nanosecond laser flash photolysis, the rate of electron transfer 

from Tyr70 to the [Ru(II)bpy3]+2 attached to α3DH3 was determined to be 3.3 × 105 s−1, 

consistent with that expected at a distance of ~16 Å. The presence of a Tyr radical was 

confirmed using X-Band EPR. This showed that a Tyr radical could be produced in this 

context and was an important first step toward long-distance electron transfer within de novo 
metalloproteins. Design of electron transfer relays, requiring multiple transfers within a 

scaffold, has only recently been investigated.402, 420 Tebo and Aukauloo used α3DIV L12C 

(the previously described rubredoxin mimic) to determine whether [Ru(II)bpy3]+2 could 

oxidize the FeCys4 site using Tyr70 as an intermediate.444

Transient absorption spectroscopy of the full relay showed that Tyr70 oxidation was the rate 

determining step at 1.4 × 105 s−1 but this was indistinguishable from Fe(II)Cys4 oxidation 

due to the short distance between Tyr70 and the metal binding site (~5–7 Å). This was 

confirmed using apo-α3DIV L12C in which a Tyr70 radical was produced at a similar 

rate as Fe(III) in the holo construct. Finally, α3DIV L12C Y70F was tested as a control. 

This variant showed a 20-fold decrease in Fe(II)Cys4 oxidation rate of 6.3 × 10−3 s−1, 

demonstrating the critical role of Tyr70 for fast electron transfer. As more complex designs 

with multiple metal binding sites are targeted by protein designers, electron transfer relays 

become particularly important.

The most common type of FeS cluster is the [4Fe-4S] cluster.406 These play a major role in 

long electron transfer chains in enzymes like hydrogenases.410 Designing [4Fe-4S] clusters 

within an alpha helical scaffold is an interesting design problem because most FeS proteins 

use beta sheet and loop structure around the metal binding sites.456 A [4Fe-4S] design 

within an alpha helical scaffold could be repeated in nearby scaffold layers, simplifying 

the design of [4Fe-4S] chains for long distance electron transfer.457–458 Grzyb and Noy 

were the first to report α-helical [4Fe-4S] clusters using what they termed a “metal-first 

approach”.459 This strategy identified a useful motif from the [4Fe-4S] cluster protein 

tryptophanyl-tRNA synthase (PDB 2G36) which contains a cluster bound between several 

alpha helices and a CXXC motif on a single helix.460 A 4HB (CCIS1) was designed that 

incorporated two of these motifs at a reasonable distance to incorporate a [4Fe-4S] cluster 

(Figure 57).

[4Fe-4S]-CCSI1 was produced by in situ chemical synthesis of the cluster according to 

established protocols with a reconstitution yield of about 75%.461–462 Absorption spectra of 

[4Fe-4S]-CCSI1 exhibited a peak at 415 nm with a shoulder at 360 nm, which disappeared 

upon reduction, while elemental analysis found a ratio of 4.2 (Fe:protein). These analyses 

confirmed that a [4Fe-4S] cluster was correctly incorporated. Unfortunately, this construct 

was non-functional as reduction from [4Fe-4S]+2 to [4Fe-4S]+ was irreversible. The authors 

suspected this was due to sulfur hydrolysis and that addition of secondary sphere H-bonds 

to the sulfurs could mitigate the issue; as of yet, this has not been reported for this 

system.463–465

Roy and Ghirlanda were the first to create multiple [4Fe-4S] sites within a de novo protein 

using a previously described dimeric scaffold DSD.70, 466 The DSD scaffold was originally 

designed to probe domain swapping by the dimeric assembly of helical hairpins where one 
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helix was twice the length of the other, forcing the protein to dimerize in an antiparallel 

orientation. Incorporating a [4Fe-4S] cluster within the dimer structure created a construct 

with two clusters separated by 30–34 Å called DSD-bis[4Fe-4S] (holo) and DSD-4Cys 

(apo). The dimeric assembly of multiple [4Fe-4S] clusters is reminiscent of the gene 

duplication event thought to be the origin of two-cluster ferredoxins in which 29 residues 

were duplicated to form the modern protein.467 The binding site of DSD-bis[4Fe-4S] 

mirrors that of these ferredoxins with three Cys residues from one monomer and the fourth 

from the other (Figure 58).

Dimer formation of the scaffold was confirmed by size exclusion chromatography and 

analytical ultracentrifugation. CD analysis of the apo protein (DSD-4Cys) showed that 

secondary structure was largely unchanged upon cluster incorporation, surprising given the 

relatively large clusters, indicating a preorganized metal binding sites. Absorption spectra of 

DSD-bis[4Fe-4S] had bands at 415 and 360 nm with a 410/280 nm ratio of 0.76, properties 

within the range of that observed in natural [4Fe-4S] cluster proteins.468–469 Correct cluster 

formation was confirmed by visible CD similar to ferredoxins and pulsed electron-electron 

double resonance analysis consistent with the clusters being 30–34 Å apart.470–471 Cyclic 

voltammetry analysis showed a cathodic wave at −478 mV vs NHE, but no anodic wave was 

observed. While the cathodic wave was within the range of natural [4Fe-4S] cluster proteins, 

the missing anodic wave indicates that the reduction of DSD-bis[4Fe-4S] is irreversible.472

While the above study successfully created a de novo protein with two [4Fe-4S] clusters, 

the 30–34 Å separation is too far for reasonable single-hop electron transfer. In a follow-up 

study, Roy and Ghirlanda designed DSD-Fdm, a second generation DSD with the two 

clusters 12 Å apart, within the range for native electron transfer relays (12–14 Å) (Figure 

59).473 EPR spectra of DSD-Fdm did not exhibit the spin-spin interactions often observed 

when two [4Fe-4S] clusters are at this distance, but this was explained by several factors 

such as low yield of reduced clusters in the EPR conditions.474–475 Most importantly, this 

was the first de novo designed [4Fe-4S] cluster scaffold with reversible redox measured by 

cyclic voltammetry. The determined redox potential of −479 mV vs NHE was consistent 

with a [4Fe-4S]2+/1+ couple and falls within the expected range of a low potential native 

[4Fe-4S] cluster.465, 468, 476 Given this redox potential is similar to what is observed in 

[4Fe-4S] cluster ferredoxins, the authors determined DSD-Fdm could transfer electrons to 

cytochrome c550. These results suggest that pairing these two [4Fe-4S] clusters created 

a redox active electron transfer center, and that this could be incorporated as part of an 

artificial pathway for synthetic biology applications.

As the de novo metalloprotein community pushes from first principles design to the 

application of these constructs, the question of in vivo metalation status looms. Synthetic 

biology applications require that these constructs be functional in vivo, but most de novo 
proteins are purified in apo form and then reconstituted in vitro. The few reported examples 

of in vivo metal incorporation rely on structural motifs that permit covalent attachment 

of a cofactor such as c-type hemes or bilins.90, 477 Control of in vivo metal or cluster 

incorporation without covalent attachment remains unsolved. A recent study used the 

previously reported CCIS scaffold to investigate the differences between in vivo or in 
vitro [4Fe-4S] metalation of this construct.478 CCIS had been previously reconstituted in 
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vitro using FeCl3, Na2S, and DTT under anaerobic conditions, but showed batch to batch 

variability with different mixtures of oligomers.463 In vivo reconstitution of CCIS was 

achieved by inducing expression anaerobically to promote formation of FeS cluster proteins 

(Figure 60).479–480 Expression conditions were optimized by following the coloration of cell 

pellets, brown cell pellets are often observed when expressing native FeS cluster proteins.481

Surprisingly, in vivo reconstituted CCIS produce only a single oligomer, though this was 

not the expected monomer but a trimer containing a single [4Fe-4S]. The authors suggested 

that in vivo cluster incorporation may produce a single oligomer due to smoothing of the 

folding energy landscape within the cellular milieu.482–483 The trimer of in vivo CCIS was 

confirmed by SEC, ICP-AES which showed 4.4 sulfurs for each iron atom or 12 cysteines 

per 4Fe4S cluster, and static light scattering. Variants with different Cys to Ser substitutions 

were used to determine which Cys residues were essential for [4Fe-4S] cluster binding. 

Cys13 and Cys17 were found to be essential for in vivo assembly, while Cys61Ser and 

Cys65Ser mutations showed no impact on assembly. In vivo reconstituted CCIS also differed 

in its chemical properties. It was more resistant to reduction by dithionite compared to in 
vitro reconstituted CCIS and showed slight oxygen tolerance (20% of cluster remained after 

O2 exposure compared to 0% in in vitro construct). Given the redox potential of dithionite is 

−600 mV vs NHE, this suggests that in vivo CCIS has a redox potential nearing the limits 

measured for natural ferredoxins.

Diffraction quality crystals of in vivo CCIS were not obtained, but small-angle X-ray 

scattering (SAXS) was used to get a low-resolution trimeric structure. During in vivo 
incorporation, CCIS unfolds and three copies of helix 1 interact to form the [4Fe-4S] cluster 

binding site; the remaining Cys residues form disulfides (Figure 61). This was confirmed 

by expressing a construct that only contained Helix 1, which was able to produce an in 
vivo cluster. Expressing helix 3 (the other helix of CCIS with possible metal binding site 

Cys residues) did not show in vivo cluster incorporation. The differences in the helices 

of CCIS hint at structural motifs that may be important to engaging with the [4Fe-4S] 

cluster synthetic pathways of E. coli.484 This study is one of the few where a designed 

metalloprotein interacts with the cellular machinery responsible for native metalloproteins 

maturation. In vivo production of these proteins accelerates their optimization and, more 

importantly, understanding of how active constructs can be created in vivo will allow de 
novo metalloproteins to participate in synthetic biology solutions.

5.2. Cupredoxins

Cupredoxins have long fascinated the bioinorganic chemistry community with deep colors 

of blue, green, red, or purple. These vibrant colors are the result of constrained Cu 

geometries not preferred by either oxidation state using a “Greek key” structural motif 

typically dominated by beta sheets (Figure 62).485–486 The color of the bound Cu(II) is 

dependent on the energy and intensity of LMCT bands between the Cu dx2 − y2 orbital and 

Cys σ or π molecular orbitals. A brief explanation of the different cupredoxins, their 

coordination environment, and the absorption and EPR spectroscopy is informative when 

discussing the results of cupredoxin design projects.
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Poplar plastocyanin is one of the most well studied blue-copper proteins. It has a 

CuHis2CysMet binding site with a short Cu(II)-Cys distance of 2.08 Å, LMCT absorption 

bands at 460 nm for σ and 597 nm for π with ϵσ/π ratio of 0.05, and EPR hyperfine 

coupling constant of 63 × 10−4 cm−1.487–488 Within the group of blue cupredoxins, there 

are also perturbed blue cupredoxins such as stellacyanin with CuHis2CysGln coordination 

producing a Cu(II)-Cys distance of 2.17 Å, LMCT bands at 448 and 604 nm with ϵσ/π 
ratio of 0.29, and EPR hyperfine coupling constant of 35 × 10−4 cm−1.489–490 The electron 

transfer center of Cu nitrite reductase (CuNiR) is a green cupredoxin with CuHis2CysMet 

coordination leading to LMCT bands at 457 and 570 nm with ϵσ/π ratio of 0.29, Cu(II)-Cys 

distance of 2.22 Å, and a hyperfine coupling constant of 73 × 10−4 cm−1.491–492 The 

primary coordination spheres of blue and green cupredoxins are all either trigonal planar 

or distorted tetrahedral with slight changes in the positioning of the Cu caused by varying 

axial coordination strength leading to electronic differences as explained by the “coupled 

distortion” model.486 Red cupredoxins are exemplified by nitrosocyanin with a tetragonal 

coordination of CuHis2GluCysH2O, LMCT bands blue shifted relative to previous examples 

at 390 and 490 nm with ϵσ/π ratio of 3.18, Cu(II)-Cys bond of 2.30 Å, and EPR hyperfine 

coupling constant of 142 × 10−4 cm−1.493–494 Purple cupredoxins have binuclear Cu binding 

sites with two bridging Cys residues about 3.6 Å apart, two equatorial His and various 

weakly interacting axial groups leading to intense bands at 480 and 530 nm and a complex 

EPR spectrum with 7-line EPR hyperfine splitting.495–500

Schnepf and Hildebrant were some of the first to explore the de novo design of cupredoxins 

using a scaffold of different secondary structure.501 Their strategy was to create a 

combinatorial library of 4SCCs using template assembly to incorporate three different 

helices in AB2C stoichiometry.502–503 This was based on a previous study where they 

created an initial library of 96 constructs with Cu-Cys in tetragonal geometries that showed 

no cupredoxin-like spectroscopy.504 Using the most stable of these Cu binding constructs, 

Mop5, an additional library of 180 proteins was created which altered secondary sphere 

residues while maintaining the primary sphere (Figure 63). The goal of this library was to 

determine whether secondary sphere mutations (to change sterics, polarity, or flexibility) 

could stabilize the bound Cu and permit new Cu coordination geometries.

Constructs were screened by spotting on a sheet and adding CuCl2 to examine the color 

of each by eye. There were three different colored classes within the library. Three 

constructs were chosen for further analysis as representatives; Cu-Mop21 (yellow), Cu-

Mop22 (purple), and Cu-Mop23 (brown or blue). Cu-Mop21’s yellow absorption spectrum 

exhibited a strong absorbance at 400 nm, consistent with Cu bound to Cys in a tetragonal 

geometry similar to the predecessor Cu-Mop5 (Figure 64). Cu-Mop22 (purple class) showed 

a complex absorption spectrum with bands at 477, 637, and 774 nm indicating a dinuclear 

CuA site similar to that of cytochrome c oxidase.499, 505 Finally, Cu-Mop23 from the brown 

or blue category had bands of similar intensity at 428 and 571 nm typical of a cupredoxin; 

specifically, this spectrum matched that of green cupredoxins such as the electron transfer 

center of CuNiR.491

Resonance Raman spectral analysis determined Cu-S bond lengths using a previously 

established empirical relationship from natural Cu proteins.506 Cu-S distances were 
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determined to be 2.23 Å for Cu-Mop21 while Cu-Mop23 was shorter at 2.205 Å as 

expected based on the green cupredoxin-like absorption spectrum. EPR spectral analysis 

of Cu-Mop21 and Cu-Mop23 showed that the hyperfine coupling constants did not follow 

the expected relationship based on absorption spectroscopy. The normal Cu (>130 × 10−4 

cm−1) was expected to have a less compressed hyperfine coupling constant than a green 

cupredoxin (<100 × 10−4 cm−1), but Cu-Mop21 was more compressed (107 × 10−4 cm−1) 

than Cu-Mop23 (123 × 10−4 cm−1), which is atypical.507–508 Cu-Mop22 EPR analysis was 

consistent with its assignment as a dinuclear CuA site with a highly compressed coupling 

constant of 30 × 10−4 cm−1.499 This study demonstrated that variations in the secondary 

sphere of a CuHis2Cys binding site within a de novo protein could vary the type of Cu 

site between tetragonal, green, or purple cupredoxins. It is particularly interesting that these 

secondary sphere changes could convert the tetragonal Cu-Mop5 to the tetrahedral (based 

on absorption spectroscopy) Cu-Mop23, given that larger rearrangements were required for 

similar results in later studies within three-helical bundles.509

A rational design approach was later used by Shiga and Tanaka to incorporate the 

cupredoxin binding site into a 4HB based on a previous His2Glu Cu binding peptide 

(Figure 65).510–511 Their design focused on burying the metal binding site to prevent 

solvent access. This had been shown to stabilize copper sites while leaving space within 

the hydrophobic core and allowed the metal binding residues to adopt the preferred metal 

binding conformation.512 The final construct (AM2C) had absorption spectroscopy which 

varied based on buffer composition. While in phosphate-buffered saline, Cu(II)-AM2C 

had a typical blue copper protein spectrum with intense band at 616 nm, weaker band 

at 474 nm, and extinction coefficient ratio of 0.30. When no chloride was present as an 

exogenous ligand, the two bands were similar in ratio, and the construct looked more green 

copper-like. A later study showed that high concentrations of a variety of exogenous ligands 

such as phosphate, chloride, sulfate or acetate could bind to Cu(II)-AM2C and caused the 

conversion to the blue cupredoxin-like absorption spectroscopy.513

Further work focused on the chloride bound Cu(II)-AM2C (Cu(II)-AM2C-Cl−), as this was 

the most like the blue cupredoxin target. Cu(II)-AM2C-Cl− was stable for a couple of hours 

under aerobic conditions before the absorption spectrum was bleached. Mass spectrometric 

analysis of the product determined that it was 32 mass units greater than the designed 

peptide, indicating that a Cys had been oxidized from S to SO2. This bleaching is a common 

issue with de novo produced cupredoxins and has been observed to varying degrees in 

3HB cupredoxins as well. EPR spectra of Cu(II)-AM2C-Cl− exhibited a highly compressed 

hyperfine coupling constant at 15 × 10−4 cm−1. This value is lower than that observed 

in native blue copper proteins but has been observed in variants with exogenous ligands 

such as His117Gly azurin with Cl− or azide bound.514–515 Structural analysis via EXAFS 

determined that the Cu-S distance of Cu(II)-AM2C-Cl− was surprisingly long at 2.30 Å, on 

the border of native blue copper proteins.516–517

Cu(II)-AM2C was the first rationally designed de novo green cupredoxin, and its chloride-

bound form was the first de novo designed blue cupredoxin. It is particularly interesting 

that this was possible within the binding site of AM2C where a His2Cys primary sphere 

is surrounded by Ala residues. Given the work of Schnepf and Hildebrant, and the general 
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requirement of a constrained cupredoxin metal binding geometry, it is surprising that steric 

enforcement appears unnecessary in this scaffold.

Using the same scaffold, Shiga and Tanaka designed a binuclear purple cupredoxin.518 Two 

Cys residues were placed at i and i + 3 positions of the same helix so that they would be 4 Å 

apart, similar to the 3.6 Å distance of native CuA sites.496, 498 4 His ligands were designed 

in possible equatorial and axial positions and Ala residues were placed on other nearby 

helices to allow space for ligating residue rotation (Figure 66). The final construct was called 

bi-AM2C.

Cu(II)bi-AM2C is purple in color, with an intense absorption band at 488 nm and a shoulder 

at 530 nm, similar to that seen in native CuA.495, 499–500 This absorption spectrum decayed 

with a half-life of 2.4 hours due to oxidation of Cys residues, similar to the previous 

construct. EPR spectral analysis of Cu(II)bi-AM2C had similar g-values and temperature 

dependence as native CuA but did not contain the typical 7-line hyperfine splitting pattern. 

However, not all native CuA sites have discernable hyperfine splitting, so this was consistent 

with a designed purple cupredoxin.495, 500, 519–521 EXAFS structural analysis was consistent 

with 1 Cu-His bond at 1.9 Å, 2 Cu-Cys bonds at 2.21 Å, and a Cu-Cu interaction at 2.51 Å, 

all of which are similar to those of native CuA.498 Given the success other labs have shown 

with incorporating heme binding sites into 4HBs, the authors suggested that heme could be 

incorporated within their construct to produce an electron transfer chain similar to that in 

cytochrome c oxidase, but this has not yet been reported.457, 522

By this point, it had been shown that de novo green and purple cupredoxins could be 

designed combinatorically or rationally, but recreation of the prototypical blue cupredoxin 

using only amino acid ligands (as well as the less understood red cupredoxin) remained 

unsolved. The Pecoraro lab used rational design within a 3HB to design cupredoxins 

and were eventually able to reproduce all of the mono-metal cupredoxin classes within a 

single scaffold.509, 523–524 The Pecoraro lab first started with the α3D scaffold, previously 

shown to accommodate both Cys3 or His3 sites, and determined if a cupredoxin with 

a His2Cys(Met) binding site could be recreated.179, 184, 523 The authors attempted three 

different classes of cupredoxin designs: α3D-core (CR), with binding residues placed 

within the hydrophobic core spanning all three helices; α3D-chelate (CH), with a chelate 

motif where the primary binding residues are between two helices; and, α3D-chelate-core 

(ChC) with both strategies combined. Seven constructs were designed but three had Cu(II) 

absorbance spectra that bleached within 5 minutes and were not characterized further. The 

four remaining constructs were stable for either 10 minutes (α3D-CR1, α3D-CH4), 4 hours 

(α3D-CH3), or 15 hours (α3D-ChC2) (Figure 67).

Cu(II) absorption spectra of all but one of these constructs had no discernible Cys-π LMCT 

and EPR spectra hyperfine coupling constant values typical of “normal” Cu bound to Cys 

with no cupredoxin character. Within this series, it is interesting that flipping the HXXC 

chelate motif (Cu(II)α3D-CH3) to a CXXH (Cu(II)α3D-CH4) had drastic effects on both 

the absorption spectra and the longevity of the Cu(II) species, but otherwise the designs 

were unsuccessful. Cu(II)α3D-ChC2 was unique among the series of four constructs as its 

absorption spectrum showed a distinct Cys-π LMCT with ϵσ/π ratio of 2.2, band energies of 
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401 and 499 nm and a mildly compressed hyperfine coupling constant of 136 × 10−4 cm−1. 

These spectroscopic characteristics are consistent with the red cupredoxin nitrosocyanin 

as well as axial ligand variants of blue cupredoxins such as M121E azurin and M148E 

rusticyanin.494, 525–526

EXAFS analysis of Cu(I) forms of the four constructs was consistent with short Cu(I)-Cys 

bonds between 2.16 and 2.23 Å suggesting that the Cu(I) state is blue cupredoxin-like even 

if the Cu(II) state is that of a non-cupredoxin or red cupredoxin.490, 527–528 The redox 

potentials of these constructs was 350–500 mV vs. NHE. A separate electron transfer study 

showed that α3D-CH3 is capable of rapid intermolecular electron transfer, albeit with a 

reorganization energy on the upper end of what has been observed in native cupredoxins (1.1 

eV).445, 529–532

This first study determined that rearrangements in the primary coordination geometry could 

have drastic effects on the Cu(II) electronic structure, but the Cu(I) geometry and redox 

potential were less variant. Only Cu(II)α3D-ChC2 appeared to have an entatic state, while 

the other three constructs allowed the Cu to enforce its preferred tetragonal geometry.533–534 

α3D-ChC2 was designed to encapsulate a CXXXH chelate metal binding site within a 

hydrophobically-constrained box and enforce an entatic state on the Cu(II) ion, but CD 

analysis indicated that the peptide was in a semi-stable state. There was also the question 

of whether the absorption spectrum resulted from a nitrosocyanin-like geometry or an axial 

ligand variant of a blue cupredoxin. Koebke and Pecoraro investigated this construct further 

to determine the origin of its absorption spectrum with the eventual goal of using this 

knowledge to create a de novo blue cupredoxin.524

One possibility for α3D-ChC2’s red-copper spectroscopy is that the pseudo-stable nature of 

this construct was unable to enforce the entatic state upon the bound Cu(II) and produce a 

blue copper site. The authors elongated the alpha helical region of the scaffold (a strategy 

previously used to increase stability in 3SCCs) to make GRANDα3D (GRα3D) (Figure 

68).156, 535 They then created a stable version of α3D-ChC2 called GRα3D-ChC2, but the 

Cu(II) absorption and EPR spectroscopies remained that of a red cupredoxin.

Using the crystal structure of GRα3D, a model of the binding site was created in Pymol. 

Because the His2Cys residues spanned only two helices of the scaffold, the Cu(II) would 

be positioned more toward the helical interface, rather than the hydrophobic interior as 

originally intended. This would allow the Cu(II) to interact with Glu41 from a nearby 

Glu41-Arg24 salt bridge (Figure 69). A Cu(II)-Glu interaction could explain the red 

cupredoxin character of GRα3D-ChC2 since native nitrosocyanin has a His2CysGluH2O 

coordination sphere and Met to Glu variants of blue copper proteins also have similar 

absorption spectroscopy.494, 525–526 E41Q and E41A variants of GRα3D-ChC2 were 

designed and lost their cupredoxin-like character to become yellow tetragonal Cu(II) 

binding sites based on absorption and EPR spectra. This result and MCD analysis of the 

original GRα3D-ChC2 confirmed that its red cupredoxin-like spectroscopy was due to a 

nitrosocyanin-like binding site rather than a Met to Glu variation of a blue copper protein 

site.494
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Various investigations of native cupredoxins have shown that variants of one cupredoxin 

class can convert its spectroscopy to that of another class. For example, CuNiR M182T 

eliminates the axial Met residue to convert a green cupredoxin site to a blue cupredoxin; 

a more drastic rearrangement by repositioning and converting the axial Met of the blue 

cupredoxin azurin to Glu can create a red nitrosocyanin-like cupredoxin.233, 528, 536 Koebke 

and Pecoraro applied these strategies to GRα3D-ChC2 to tune the red cupredoxin to 

green and eventually blue.509 Their previous study established GRα3D-ChC2 likely had 

a His2CysGlu binding site similar to nitrosocyanin, so they reversed the strategy of Tian 

and Lu by repositioning the Glu axial ligand and converting it to Met.536 GRα3D-ChC2 

H38M E41H (GRα3D-ChC3) and GRα3D-ChC2 H25M E41H (GRα3D-ChC4) represent 

the two possible inversions of the active site one could do to reverse the blue to red strategy 

employed by Tian and Lu (Figure 70).

GRα3D-ChC3 produced a yellow non-cupredoxin copper thiolate species, and GRα3D-

ChC4 created a convincing green cupredoxin having red-shifted absorbance peaks, ϵσ/π ratio 

of 0.87, and EPR spectrum indicative of a compressed hyperfine coupling constant (Figure 

70). The authors hypothesized that GRα3D-ChC3 lost the His2Cys primary coordination 

sphere, similar to variants of azurin which lose their cupredoxin spectroscopy upon mutation 

of a primary sphere His residue.537–538 The authors next sought to convert this de novo 
green cupredoxin to blue by removing the axial Met residue in a similar strategy as CuNiR 

M182T.528 GRα3D-ChC2 H25I E41H (GRα3D-ChC5) proved successful with a ϵσ/π ratio 

of 0.33, well within the range of perturbed blue cupredoxins previously seen only with 

exogenous ligands (Figure 71).

Unfortunately, these de novo green and blue cupredoxins were relatively unstable, with 

half-lives less than 30 min. Attempts to use R24 variants to enclose the binding site proved 

unsuccessful. Also, analysis of the Cu(II)GRα3D-ChC5 EPR spectrum showed it was a 

mixture of cupredoxin and tetragonal Cu species in a 1:1 ratio. This ratio varied with pH, 

possibly because the His41 position is accessible to solvent. Native cupredoxins, on the 

other hand, are often extremely stable to pH changes.539–541 That these de novo cupredoxins 

are variant to buffer conditions and bleach over time is a clear barrier to their utilization 

which warrants further investigation. None-the-less, these derivatives demonstrate, as was 

observed for rubredoxins, that even a center as sensitive as a blue cupredoxin can be built 

in a protein fold (without the requirement for non-coded amino acids or exogenous ligands 

such as chloride) that differs drastically from that found in nature. It is highly likely that a 

directed evolution approach, beginning with Cu(II)GRα3D-ChC5 should provide the desired 

stability and selectivity for a single blue copper species that is desired.

5.3. Summary

The unique spectroscopic features of electron transfer sites like cupredoxins and FeS clusters 

have made them enticing targets for metalloprotein designers. The FeCys4 metal binding site 

of rubredoxin was miniaturized by Lombardi and Pavone by recapitulating the minimal 

secondary structure around the metal.414 While this successfully recreated the desired 

spectroscopic features, the construct was not capable of redox and non-functional. Nanda 

and DeGrado revisited this strategy and created a more complex design with intersubunit 
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interactions that was stable for up to 16 cycles of redox (currently an unbroken record for 

a de novo rubredoxin).431 More recently Tebo and Pecoraro proved the secondary structural 

elements around the metal binding site in rubredoxin are unnecessary by using an alpha 

helical bundle scaffold (Figure 72).434 This was later combined with a photooxidant as part 

of a multistep long distance electron transfer chain.444, 446

While the binding site amino acids are similar to rubredoxin, the design of [4Fe-4S] clusters 

requires specific positioning of these amino acids to form the larger cluster. Grzyb and Noy 

successfully recreated this cluster within an alpha helical scaffold, but even after revisiting 

the work they were unable to create a redox-stable construct.459, 463 Roy and Ghirlanda 

targeted chains of [4Fe-4S] clusters and created a construct with clusters 29–34 Å apart, too 

far for interaction.70 These authors later repositioned these two clusters to 12 Å apart and 

successfully created [4Fe-4S] clusters that could not only interact but could redox cycle and 

transfer electrons to cytochrome c (Figure 72).473 Most recently, Jagilinki and Nanda created 

a de novo [4Fe-4S] cluster protein that could incorporate the cofactor in vivo, opening up a 

number of possible synthetic biology applications (Figure 72).478

Cupredoxins, on the other hand, appear simple but maintaining their constrained metal 

coordination within a de novo scaffold has proved challenging. Schnepf and Hildebrant 

made the first de novo green and purple cupredoxins using a combinatorial approach 

which varied the sterics and charge of residues within the secondary sphere of the 

metal binding site.501 Shiga and Tanaka later used rational design to recreate both green 

and purple cupredoxins within a 4HB.511, 518 Their green cupredoxin could be turned 

blue using exogenous ligands (Figure 72).513 The Pecoraro lab created a red cupredoxin 

and showed that one of these constructs could transfer electrons intramolecularly.445, 523 

Reexamining this construct, they determined an unplanned Cu(II)-Glu interaction caused the 

red cupredoxin-like spectroscopy and created the first de novo blue cupredoxin that does not 

require an exogenous ligand (Figure 72).509, 524

Through this work we have learned about the minimal requirements of these electron 

transfer sites. Rubredoxins and cupredoxins, whose metal binding sites are located within 

beta sheets and loops, can be at least partially recapitulated within a completely different 

secondary protein structure. Cupredoxins often have very weak interactions with backbone 

carbonyls within their primary coordination sphere which is difficult to reproduce in alpha 

helical scaffolds so it is interesting that this is not necessary to recreate the coordination 

spheres of red, purple, green, or blue cupredoxins. Through the [4Fe-4S] cluster work, we 

are beginning to understand the requirements for cluster incorporation in vivo. Finally, using 

rubredoxin as a test, electron transfer between two metal centers in a de novo scaffold 

has been established. There are, however, some notable missing pieces that are under 

investigated.

While all of these electron transfer sites have been faithfully reproduced from an electronic 

and structural standpoint, their function leaves much to be desired, particularly when it 

comes to stability. De novo Cu(II) cupredoxins have hours long half-lives before being 

irreversibly bleached, rubredoxins can at best redox cycle 16 times, and many [4Fe-4S] 

clusters cannot be reversibly reduced at all. Explorations into factors that impact the 

Koebke et al. Page 48

Chem Rev. Author manuscript; available in PMC 2023 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



redox stability of these designs are sorely needed. Hydrogen-bonding interactions to the 

primary sphere Cys of cupredoxins may adjust their bleaching tendency. Redesigning the 

protein matrix around the electron transfer site might stabilize these structures to geometry 

changes during redox and stabilize redox cycling. Finally, the most functionally successful 

[4Fe-4S] cluster design used two clusters close enough to interact with one another, so it is 

possible that the short comings of our designs may be circumvented by combining multiple 

electron transfer sites in a similar fashion. The prevalence of electron transfer sites in native 

enzymatic systems suggests that perfecting their design will be a major step forward.

6. Perspective

De novo design of metalloenzymes allows investigators to completely wipe clean everything 

beyond the primary coordination sphere by incorporating it into a designed scaffold. As the 

design community moves forward, the next step is to increase design complexity and put 

back more of these secondary sphere interactions. Below are some areas that have not yet 

been fully explored as well as some possible means of attacking these problems.

There have been some successful designs which incorporate secondary sphere amino acid 

interactions to primary sphere residues (such as H-bonds to a coordinating His) but there 

have been few examples of designs that include substrate-activating interactions. Primary 

sphere residues are enforced in their position by the metal to which they coordinate and 

H-bonding with nearby secondary sphere residues. Substrate-activating residues, such as 

those in carbonic anhydrase or Cu nitrite reductase, have no direct interactions to enforce 

the necessary orientation, and thus have proven difficult to incorporate. That said, there are 

a few methods that have recently become applicable to de novo metalloprotein design that 

could solve this conundrum.

Directed evolution is a reliable method for including long range interactions in a designed 

construct and has been shown to be useful for carbonic anhydrase designs.194 The DeGrado 

lab has started implementing whole protein scaffold redesign around metal binding sites 

to create stable constructs that allow for high resolution structures.61, 63, 81 A similar 

method could be used to enforce the intended orientation of substrate-activating residues 

using the surrounding protein. Finally, balancing random chance and computational rational 

design, machine learning could offer a unique modern approach to historically difficult 

problems. For example, recently, natural proteins have been engineered for new functions 

using a relatively small library and machine learning algorithms to determine a pattern and 

suggest modifications for desired activity.542–543 Application of these methods to de novo 
metalloenzyme design has yet to be explored, but it could become a powerful and common 

tool for protein designers.

Most de novo enzymes will not be industrially efficacious on their own, but more likely 

as part of a larger system. One way that designed constructs could be incorporated into 

such enzymatic cascades is using synthetic biology to create cell lines that complete a 

particular function. The limiting factor for designing de novo enzymes for such applications 

is the metalation state of the construct in vivo. This question looms over the community 

in part because many of these peptides are purified by reverse phase HPLC which will 
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strip the protein cofactors if not covalently linked. There have been some interesting steps 

in this direction such as the work of the Anderson lab to understand the motifs necessary 

to incorporate c-type hemes into de novo proteins in vivo; or that of Jagilinki and Nanda 

to investigate how in vivo incorporated [4Fe-4S] clusters differ from those incorporated in 
vitro.90, 109, 478 Studies which investigate the metalation state of overexpressed de novo 
proteins are useful, but more work is needed on in vivo design strategies.

Cellular metalation is a complex competition between a large pool of metalloproteins for 

limited amount of metals at different concentrations.544 Keeping this in mind, the most 

important factor for controlling metalation will be how to intentionally set metal affinity 

of de novo constructs and tune them towards a particular metal and, therefore, function in 
vivo. Given that a carbonic anhydrase mimic can be switched to a CuNiR mimic simply by 

changing the metal from Zn to Cu, it is critical that this control is established. Studies in 

which metal preference is systematically controlled within de novo designed metalloprotein 

scaffolds are warranted. This should be coupled with metalloproteomic investigations to 

determine impacts on the metallome within the cell.545 Coupling changes in metal affinities 

determined in vitro to metalation in vivo is an important goal in de novo metalloprotein 

design.

Finally, while there have been studies which recreate catalytic sites, and studies for electron 

transfer sites, these have not yet been combined. These combinations are regular features 

in native enzymes and represent an important next step in designs that go beyond the 

enzyme’s primary coordination sphere. The pieces are all there with enzymatic and electron 

transfer sites designed within the same scaffold in separate studies, but there is more that 

can be done than remaking what Nature has already accomplished. De novo metalloenzyme 

studies of this type are not limited to mimicking Nature but could combine any electron 

transfer site with any enzymatic site. Is there a reason that CuNiR uses a cupredoxin for its 

electron transfer site or could a rubredoxin site work just as well? Could a hydrogenase be 

created with c-type hemes as electron transfer centers instead of [4Fe-4S] clusters? Once 

the communication between such centers is established, numerous exciting designs become 

possible.

In conclusion, de novo metalloenzymes design “clears the board” of an enzyme’s 

evolutionary accessories, allowing us to strip away everything beyond the primary 

coordination sphere. As the field has matured, we must push beyond these minimal models 

and restore some of those features beyond the primary sphere. This review summarizes 

some of the recent work towards this goal and suggests future avenues that we feel are of 

particular importance. Once these can be addressed, protein designers will be measurably 

closer to not only accomplishing what nature has done but creating constructs that are useful 

beyond academic research. When it comes to such lofty goals for de novo metalloprotein 

design, the sky’s the limit.
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Abbreviations

3HB three helical bundle

3SCC three-stranded coiled-coil

4AP 4-aminophenol

4BQM 4-benzoquinone monoimine

4HB four helical bundle

4SCC four-stranded coiled-coil

ABTS 2,2’-azino-di(2-ethyl-benzothiazoline-6-sulfonic acid

AUC Analytical ultra-centrifugation

AurF para-aminobenzoate N-oxygenase

CA carbonic anhydrase

CD circular dichroism

CuNiR Cu nitrite reductase

DF Due Ferri

EDA ethyl diazoacetate

EPR electron paramagnetic resonance

EXAFS extended X-ray absorption fine structure

GR GRAND

HRP horse radish peroxidase

LPMO lytic polysaccharide monooxygenase

MCD magnetic circular dichroism

MD Molecular Dynamics

MnDPP Mn diphenylporphyrin

NIR near-IR

Koebke et al. Page 52

Chem Rev. Author manuscript; available in PMC 2023 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NMR Nuclear Magnetic Resonance

PDB Protein Data Bank

PHM peptidylglycine alpha-hydroxylating monooxygenase

pNP para-nitrophenol

pNPA para-nitrophenyl acetate

pNPP para-nitrophenylphosphate

QM/MM quantum mechanics/ molecular mechanics

Rma-TDE engineered cytochrome c from Rhodothermus marinus

SAXS small-angle X-ray scattering

SOD superoxide dismutase

TFE trifluoroethanol

Tm melting temperature

TMO toluene mono-oxygenase

VTVH variable-temperature variable-field

XANES X-ray absorption near edge spectral
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Figure 1: 
Illustration of (A) the primary coordination sphere of CuNiR’s enzymatic site with different 

strategies used to investigate its properties within proteins: (B) reengineering of CuNiR itself 

(1SJM) to eliminate the secondary sphere, (C) native protein engineering of azurin (4AZU) 

to incorporate an enzymatic site, and (D) de novo design of a CuHis3 site within a generic 

protein fold (3PBJ).
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Figure 2: 
Fe(III)-Mimochrome represented as a model structure along with its amino acid sequence. 

Adapted with permission from ref 24. Copyright 2011 Wiley-VCH Verlag GmbH & Co.
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Figure 3: 
(A) Dimeric subunit of Bacterioferritin [PDB 1BRF] with heme group represented as 

spheres and coordinating residues represented as sticks. (B) Minimal structural subunit used 

for the design of MP3. Adapted with permission from ref 39. Copyright 2012 Wiley-VCH 

Verlag GmbH & Co.
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Figure 4: 
(A) Structural model of MP3 with key residues represented as sticks and a putative hydrogen 

bond as a dashed line and (B) sequence representation with key sidechains underlined. 

Reprinted with permission ref 39. Copyright 2012 Wiley-VCH Verlag GmbH & Co.
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Figure 5: 
(A) Natural cofactor binding proteins that exemplify folded-cores supporting cofactor 

binding region. cyt b562, cytochrome b562 (PDB 256B); DHFR, dihydrofolate reductase 

(PDB 8DFR); FD, flavodoxin (PDB 1CZU). (B) A selection of designed tetra-helical 

porphyrin-binding proteins. (C) Holistic metalloprotein design. First core residues in both 

the binding region (light color) and folded core (dark color) are optimized with a flexible 

backbone. The optimized holoprotein now has a tightly packed folded core and binding 

region around the bound cofactor, while the apoprotein leaves the binding region flexible. 

Reprinted with permission ref 61. Copyright 2017 Macmilan Publishers Limited.
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Figure 6: 
The design of DFP1 from Due Ferr (DF) and porphyrin-binding sequence (PS1) (A) Both 

helical bundles are aligned along a common axis, reducing the number of degrees of 

freedom to two: the relative translation along the bundle axis, ΔZ, and the relative rotation 

about the bundle axis, ΔΦ). The segments surrounding the dimetal in DF and porphyrin in 

PS1 were used to identify each bundle axis. (B) Search of (ΔZ,ΔΦ) space for each disjointed 

helix pair during which one helix is kept stable while the other is translated (ΔZ) or rotated 

the about the bundle axis. A 2D plot of the (ΔZ,ΔΦ) space reveals noticeable “hotspots” 

that represents designable structural matches as peaks. (C) The product of each (ΔZ,ΔΦ) 

space results in an overall bundle designability space where peaks represent the optimal 

positions of the two bundles. (D) The final design combines the two helical bundles into a 

single construct using the previously determined optimal relative orientation. Reprinted with 

permission ref 63. Copyright 2020 National Academy of Sciences.
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Figure 7: 
(A) Interconversions of metal-oxygen intermediates within heme proteins. (B) and (C) 

Designed functions of (B) PS1 and (C) MPP1. Removing the steric bulk of isoleucine during 

the design of MPP1 allowed dioxygen to be accommodated above the Mn center. Circles 

represent porphyrin macrocycles. Adapted with permission from ref 81. Copyright 2021 

American Chemical Society
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Figure 8: 
Artificial c-type cytochrome expression (A) Thioether linkages covalently attach Heme B to 

the protein backbone to make Heme C via cytochrome c maturation proteins. (B) Glycine 

and serine 1,2 loops and 4-residue N-cap (MTPE) were introduced to break the symmetry of 

the 4-helix bundle and add rigidity at the N-terminus. The c-type heme recognition sequence 

(CXXCH) promotes heme incorporation by the E. coli cytochrome c maturation proteins. 

Mutations between iterations are highlighted in red, heme ligating histidine residues and N-

terminal loops are in purple. Cartoon illustrations on the right highlight the relative positions 

of the ligating histidine (blue pentagons), loops and N-/C-termini (purple lines), and heme 

C accommodation into the 4-helix bundle (red rectangular box). (C) Primary sequence of 

artificial c-type cytochrome. (D) Cuvette of c-type maquette showcasing successful heme 

incorporation. Reprinted with permission from ref 90. Copyright 2014 The Royal Society of 

Chemistry.
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Figure 9: 
(A) Amino acid sequence of C2 (B) Successive rounds of C2 mutagenesis carried out 

to design various mono- or diheme binding peptides with His residues represented as 

blue pentagons and heme C as red/yellow rectangles. (C) Schematic highlighting binding 

orientation in mono-heme C maquettes. (D) E. coli after 4 hours expressing various c-type 

heme maquettes. Adapted with permission from ref 109. Copyright 2015 Elsevier B.V.
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Figure 10: 
MD simulations of various c-type heme maquettes. (A-D) Root mean squared deviation 

traces compared to the starting structure over 1 μs MD simulations of C1 (red), C2 (blue), 

C3 (pink) and C4 (green). (E-H) Side view and (I-L) close-up view of heme C after 1 μs 

with heme and interacting residues represented as sticks. Reprinted with permission from ref 

109. Copyright 2015 Elsevier B.V.
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Figure 11: 
(A) Illustration highlighting the design of an artificial peroxidase (C45) by removing 3 of 

the 4 histidine side chains to create a protein with a mono-histidine ligated C type heme 

site (C45). (B) Far-UV circular dichroism spectra of C45 as a function of temperature. (C) 

Reversable temperature dependence of the 222nm CD band. Optical Absorption spectra of 

ferric (D) and ferrous (E) C45 (purple) and C46 (red) with the spectrum of exogenous 

imidazole added to C45 in blue. Reprinted with permission from ref 116. Copyright 2017 

Springer Nature.
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Figure 12: 
(A) Structural snapshot of c-type cytochrome maquette, C45, during molecular-dynamics 

simulation. (B) Example of proposed reactivity of heme-based metallocarbenoid 

intermediates. (C) Stopped-flow optical absorption spectra of C45 (red), engineered Rma-

TDE (green), and MP-11 (blue), treated with Ethyl Diazoacetate (EDA). Reprinted with 

permission from ref 119. Copyright 2020 National Academy of Sciences.
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Figure 13: 
(A) Optical absorption and (B) 9-GHz EPR spectra of GRW-L16CL30H mini-heme protein 

at various pH conditions compared to absorption spectrum of hemin in buffer (pH 7, 

dash-dotted curve), and EPR spectrum of histidine bound hemin (pH 6, dash-dotted curve). 

Reprinted with permission from ref 134. Copyright 2020 John Wiley & Sons, Inc.
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Figure 14: 
Illustrations of the dimer of antiparallel 2SCC (with one heme per 2SCC) proposed for 

the folding of GRW-L16CL30H peptides upon complexation with heme. pH dependent 

coordination modes: (A) His-pentacoordinated heme (pH 7), (B) Cys-pentacoordinated 

heme (pH 9.0) and (C) Cys/hydroxy hexacoordinated heme (pH 10.5) derived from 

spectroscopic characterization. Reprinted with permission from ref 134. Copyright 2020 

John Wiley & Sons, Inc.
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Figure 15: 
Summary of recent advances in the de novo protein design of heme enzymes highlighted in 

this review. Adapted with permission from the appropriate references as specified in source 

figures previously in manuscript.
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Figure 16: 
Pymol illustrations of the overall protein fold (left) and Zn active site (right) of human 

carbonic anhydrase II (PDB 2CBA). Zn(II) ions are shown as silver spheres and water 

oxygen as a red sphere. All amino acids that either coordinate Zn(II) or empirically 

determined to improve catalysis are depicted as sticks.
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Figure 17: 
Structural comparison of [Hg(II)]S[Zn(II)(H2O/OH−)]N(CSL9PenL23H)3

n+ in cyan (pdb 

3PBJ) and carbonic anhydrase II in tan (pdb 2CBA). The primary coordination spheres 

between the two active sites share many features; however, they differ in the proposed Nɛ 
or Nδ binding modes to the Zn(II) ion and orientation of the histidine side chains. Reprinted 

with permission from ref 155. Copyright 2012 Macmillan Publishers Limited.

Koebke et al. Page 98

Chem Rev. Author manuscript; available in PMC 2023 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 18: 
A d-site Pb(II)Cys3 site from both a side (A) and top (B) view with a water-Cys distance 

of 3.4 Å shown as a solid line. An a-site Pb(II)Cys3 from both a side (C) and top (D) with 

a water–Cys distances of 3.0 Å and 3.4 Å. The Zn(II) binding site is omitted for clarity. 

Adapted with permission from ref 176. Copyright 2020 Springer Nature
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Figure 19: 
Illustration of α3D H3 highlighting the (A) overall protein fold and (B) active site, 

Zn(II)His3O. These Pymol models were derived from the NMR solution structure of α3D 

(PDB 2A3D) Adapted with permission from ref 179. Copyright 2014 Wiley-VCH Verlag 

GmbH & Co.
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Figure 20: 
Different orientational configurations of apo-MID1, Zn(II)MID1, Co(II)MID1 showcasing 

the change in bundle orientation upon metal binding. Binding of either Zn(II) (cyan) or 

Co(II) (orange) prompt the formation of orientations similar to the predicted Zn(II) model 

(tan). Adapted with permission from ref 191. Copyright 2012 American Chemical Society.

Koebke et al. Page 101

Chem Rev. Author manuscript; available in PMC 2023 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 21: 
Metal mediated interface leads to a de novo active site. (A) Metal templated homodimer 

formation naturally results in substrate clefts (red dash) while acting as a catalytic active 

site (black lines represent histidine and gray spheres represent zinc ions). Comparison of 

Zn(II)MID1 (B) computationally predicted and (C) experimentally solved crystal structures 

reveals a three-histidine coordinated Zn(II) ion in the final structure. (D) Both a substrate 

cleft (red mesh) and an open coordination site around the Zn(II) ion were observed in 

the solid-state structure hinting at possible Zn(II)MID1 catalytic activity. Adapted with 

permission from ref 193. Copyright 2012 American Chemical Society.
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Figure 22: 
(A) Design of MID1sc10 by Zinc templated helix-turn-helix fragments formation, followed 

by fusion and asymmetric diversification. (B) Illustration of the step-by-step design procress 

in the final asymmetric diversification. Reprinted with permission from ref 194. Copyright 

2017 American Association for the Advancement of Science.
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Figure 23: 
(A) Thermal stability of apo-MID1sc10 (black) and holo-MID1sc10 (green). (B) 1H-15N-

HSQC spectra apo-MID1sc10 (black) and holo-MID1sc10 (green). (C) Overlayed structures 

of MID1sc10 (green) and MID1 (gray) showing the change in crossover angle. (D) 

Structures illustrating the shallow binding site of MID1 (graph) compared to the deep 

pocket in MID1sc10 (green). (E) Active site view of the tight fit of phosphonate 4 in the 

binding pocket of MID1sc10. (F) Phosphonate 4 coordinated to the Zn(II)His3 active site in 

MID1sc10. Adapted with permission from ref 194. Copyright 2017 American Association 

for the Advancement of Science.
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Figure 24: 
(A) Comparison of Azalchalcone reacting with 3-vinylindole kinetics as catalyzed by free 

Zn(II) (grey), DA0 (magenta) or DA7 (orange). (B) Model structure of MID1sc highlighting 

the active site with Zn(II) in yellow and the amino acid positions which were mutated 

either based on computation (magenta) or acquired during evolution (orange). (C) Steady 

state kinetic analysis of DA7. (D) Plot of catalytic efficiency over the course of directed 

evolutionary design showing a 140,000-fold increase. (E) Double logarithmic plot of 

effective molarity versus catalytic proficiency. (F) Chiral HPLC analysis highlighting the 

catalytic stereoselectivity of DA7 (orange) compared to free Zn(II) (grey). Reprinted with 

permission from ref 208. Copyright 2021 Springer Nature.
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Figure 25: 
(A) Structure with zoomed-in active site of human carbonic anhydrase (B) β-strand 

configuration of designed peptide 11 (Ac-IHIHIQI-CONH2) with residue positions 

numbered. (C-E) Computational model of 11 in fibrils including the (C) overall fold, 

(D) hydrophobic core, and (E) primary coordination sphere around Zn(II). Adapted with 

permission from ref 201. Copyright 2014 Macmillan Publishers Limited.
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Figure 26: 
Pymol illustrations of the overall protein fold (left) and Cu enzyme active site (right) 

of Copper nitrite reductase (PDB 1SJM). Chains A, B, and C are in green, blue, and 

magenta respectively. Cu(II) ions are depicted as copper spheres while nitrite substrate and 

all amino acids that either coordinate Cu(II) or empirically determined to improve catalysis 

are depicted as sticks.
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Figure 27: 
(A) Model of Cu(I)/Cu(II)(TRIL23H)3 derived from Hg(II)S[Zn(II)N(H2O)](CSL9CL23H)3 

(PDB 3PBJ). (B) Zn(II)(His)3 site along the pseudo three-fold axis of Hg(II)S[Zn(II)N(H2O)]

(CSL9CL23H)3 (light gray), overlayed with the type 2 center in R. sphaeroides nitrite 

reductase (PDB 2DY2, dark gray). (C) Alternative side view of the two metal sites in B. 

Reprinted with permission from ref 7. Copyright 2012 National Academy of Sciences.
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Figure 28: 
Structural models of (1) TRI-H, (2) TRI-HK22Q, (3) TRI-EH, (4) TRI-EHE27K, 

(5) TRI-EHE27Q, (6) TRI-EHK24Q, and (7) TRI-EHK24E based on Zn(II)−NHg(II)

−S(CSL9PenL23H)3 (PDB 3PBJ). Adjusted with permission from ref 245. Copyright 2013 

American Chemical Society.
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Figure 29: 
Structural models of TRIW-H (A) L19I, (B) L19, (C) L19A, and (D) L19D illustrating 

modifications to the steric bulk above the copper active site. These models were constructed 

using the crystal structure of Zn(II)-NHg(II)-S(CSL9PenL23H)3
+ (PDB 3PBJ) or Zn(II)

(H2O)(GRAND-CSL12AL16C)3
− (PDB 5KB2). Reprinted with permission from ref 250. 

Copyright 2018 Wiley-VCH Verlag GmbH & Co.
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Figure 30: 
Structural models of GRα3D H3 (left) and GRα3D H3Nterm (right) to illustrate relative 

position of the metal binding sites within the overall GRα3D fold. Models were made using 

the crystal structural of GRα3D (PDB 6DS9). Reprinted with permission from ref 258. 

Copyright 2021 Springer Nature.
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Figure 31: 
Pymol illustrations of the overall protein fold (top) and enzyme active site (bottom) of (A) 

Mn superoxide dismutase (pdb 1VEW) or (B) Cu-only superoxide dismutase (PDB 4N3U). 

Mn(II) ions are depicted as silver spheres, Cu(II) ions are depicted as copper spheres, and 

waters are depicted as red spheres.
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Figure 32: 
Structural models of His3 (H3), His4 (H4), His2AspHis (H2DH), and His3Asp (H3D) active 

sites designed into GRα3D (PDB 6DS9). Reprinted with permission from ref 259. Copyright 

2019 John Wiley & Sons, Inc.
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Figure 33: 
(A) Structure of ArCuP highlighting the oxidizable residues on one strand as detected by 

LC-MS/MS. Proposed Cu(II)-OOH intermediates showing (B) unoxidized His residues or 

(C) proposed oxidative damage to the primary active site during catalysis. Reprinted with 

permission from ref 290. Copyright 2021 American Chemical Society.
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Figure 34: 
Summary of recent advances in the de novo protein design of mono-metal enzymes 

highlighted in this review. Adapted with permission from the appropriate references as 

specified in source figures previously in manuscript.
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Figure 35: 
Structure of an idealized diiron protein used for retrostructural analysis showcasing D2 

symmetry and coordinating amino acids. Adapted with permission from ref 42. Copyright 

2000 National Academy of Sciences.
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Figure 36: 
(Left) Top view of DF1 active site which illustrates poor substrate access to the metal 

center (Violet Spheres) due to L13 and L13’ (green sphere). (Right) Illustration of L13A 

and L13’A mutations that open substrate access to the metal center (dimethyl sulfoxide 

is represented by yellow spheres and water is represented by red spheres). Adapted with 

permission from ref 326. Copyright 2001 American Chemical Society.
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Figure 37: 
Structural overlay of apo-DF1 and Di-Zn(II)-DF1 (side chains are plotted with Corey–

Pauling–Koltun colors (C, green; N, blue; O, red) for the Di-Zn(II)-DF1 structure and the 

backbone of apo-DF1 is in yellow, the Glu side chain is in red, and the His residue is in 

blue.) The two right helices overlay with a higher degree of similarity than the two left 

helices which perturb and increase the exposure of His and Glu chains. Reprinted with 

permission from ref 336. Copyright 2003 National Academy of Sciences.
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Figure 38: 
(A) Rate of 4AP oxidation catalyzed by variants of DFtet AaAbB2 and DFtet. Bolded 

entries are from DFtet-A2B2. (B) Oxidation of 100 μM 4AP by G4-DFtet (squares) and 

L2G2-DFtet (diamonds) and the background reaction (triangles). (C) Steady state kinetic 

analysis of 4AP oxidation catalyzed by G4-DFtet. (D) Oxidation of 4AP competitively 

inhibited by 4CP. Reprinted with permission from ref 342. Copyright 2004 American 

Chemical Society.
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Figure 39: 
(A) Crystal Structure of Di-Zn(II)-DF1 (PDB: 1JMB?). (B) Representation of Di-Zn(II)-

DF1 emphasizing limited accessibility to active site (residue 9 (lime) and residue 13 (cyan)). 

(C) Di-Zn(II)-DF1 loop structure. (D) Di-Zn(II)-DF3 loop structure. (E) Representation 

of Di-Zn(II)-DF3 emphasizing improved accessibility to active site ((residue 9 (lime) and 

residue 13 (cyan)). (F) Overlay of 30 minimized structures of di-Zn(II)-DF3 from solution 

NMR. Reprinted with permission from ref 347. Copyright 2009 Nature America, Inc.
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Figure 40: 
(A) DFsc (top) and G4DFsc (bottom) represented as surface models to emphasize reduction 

in steric bulk from four Ala to Gly mutations in G4DFsc. (B) Structure of 3His-G2DFsc 

variant (PDB 2LFD) which emphasizes the active site histidine residue (H100) and 

supporting mutations (I37N and L81H). (C) Amino-acid sequences for DFsc, G4DFsc, and 

3His-G4DFsc (Metal-binding residues are bolded and mutations are underlined). Reprinted 

with permission from ref 78. Copyright 2012 Macmillan Publishers Limited.
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Figure 41: 
(A) Reaction mixtures of 3His-G4DFsc with p-anisidine at various time points after mixing 

analyzed with HPLC chromatography. (B) Proposed oxidation reaction of p-anisidine to 

p-nitrosoanisole and eventual formation of 4-nitroso-4′-methoxydiphenylamine. Reprinted 

with permission from ref 78. Copyright 2012 Macmillan Publishers Limited.
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Figure 42: 
Proposed structures of the diferrous sites in ribonucleotide reductase (RR), Δ9-desaturase 

(Δ9D), and soluble methane monooxygenase (MMO). Reprinted with permission from ref 

366. Copyright 2015 American Chemical Society.
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Figure 43: 
Proposed structures of the diferrous forms of (A) DFsc, (B) the 4A → 4G 2His variants 

of DFsc, and (C) 3His-G4DFsc(Mut3). Reprinted with permission from ref 366. Copyright 

2015 American Chemical Society.
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Figure 44: 
Mechanism of 4-aminophenol oxidation by diferrous protein. Reprinted with permission 

from ref 373. Copyright 2015 American Chemical Society.
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Figure 45: 
Mechanism of O-atom transfer to p-anisidine by 3His-G4DFsc(Mut3). Reprinted with 

permission from ref 373. Copyright 2015 American Chemical Society.
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Figure 46: 
(A) Click reaction to form DF-C1 with the K-chain in blue and Z-chain in orange. (B) 

Computational model of ZnII-DF-C1. Classes of mutations are represented as: (cyan) active 

site access, substrate recognition and catalysis, (magenta) H-bond network, or (green) 

packing improvement. Hydrogen bonds are represented by dashed yellow lines. Reprinted 

with permission from ref 77. Copyright 2017 Wiley-VCH GmbH & Co.
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Figure 47: 
O2-dependend oxidation of 4AP catalyzed by FeII-DF3 or FeII-DF-C1. With DF3, MPD 

quenched the 4BQM once released into solution; however, 4BQM remains bound to the 

active site of DF-C1 and couples to another molecular of 4AP before release. Reprinted with 

permission from ref 77. Copyright 2017 Wiley-VCH GmbH & Co.
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Figure 48: 
Illustration comparing reaction centers with bound cytochrome c2 and P0 Mn protein. 

Structures highlight the cofactors (red), L (yellow) and M (cyan) subunits of the reaction 

center with the bound cytochrome c2 (orange) and heme (red) (PDB code 1L9B). Adapted 

with permission from ref 381. Copyright 2016 Elsevier B.V.
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Figure 49: 
X-ray structures of P0 Mn-protein (A and C) and Lactobacillus plantarum Mn-catalase (B 
and D) with overall structures (A and B) and Mn2-clusters (C and D). PDB 5C39 and 1JKU. 

Adapted with permission from ref 382. Copyright 2016 Elsevier B.V.

Koebke et al. Page 130

Chem Rev. Author manuscript; available in PMC 2023 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 50: 
Illustration of the design evolution of metal-binding sites in the Mn-protein. From the 

protein sequence of DF2t (P0), additional dinuclear binding sites were designed to yield four 

new proteins (P1, P2, P3, and P4). Reprinted with permission from ref 382. Copyright 2016 

Elsevier B.V.
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Figure 51: 
Summary of recent advances in the de novo protein design of di-metal enzymes highlighted 

in this review. Adapted with permission from the appropriate references as specified in 

source figures previously in manuscript.
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Figure 52: 
Pymol illustrations of the overall protein fold (top) and metal binding site (bottom) of (A) 

Rubredoxin (pdb 8RXN) or (B) Tryptophanyl-tRNA synthetase (pdb 2G36). FeS clusters 

and coordinating Cys residues are depicted as sticks.
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Figure 53: 
Computational model of Fe(II)-METP complex. Reprinted with permission from ref 414. 

Copyright 2000 National Academy of Sciences.
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Figure 54: 
Illustration of design workflow for RM1: (A) Topology of native rubredoxin. (B) C2 

symmetric active site. (C) Minimal geometry around active site. Illustration showing (D) 

miniRM and RM1 (E) with Trpzip linker shown in red. Reprinted with permission from ref 

431. Copyright 2005 American Chemical Society

Koebke et al. Page 135

Chem Rev. Author manuscript; available in PMC 2023 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 55: 
Illustration of the designed rubredoxin, α3DIV-L21C-Fe, derived from the NMR structure of 

α3DIV (PDB 2MTQ). Reprinted with permission from ref 181. Copyright 2018 American 

Chemical Society.
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Figure 56: 
Illustration of α3DIV-L21C-Rubpymal derived from the solution structure of α3DIV (PDB 

2MTQ). Tyr70 is shown in green. Reprinted with permission from ref 444. Copyright 2017 

Wiley-VCH Verlag GmbH & Co.
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Figure 57: 
Design of a [4Fe-4S] cluster binding site in a computationally derived four-helix bundle. 

Reprinted with permission from ref 459. Copyright 2009 Elsevier B.V.
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Figure 58: 
Design of DSD-bis[4Fe-4S]. Structure of DSD (PDB 2G6U) serves as a starting point 

into which a [4Fe-4S] cluster binding site was docked by mutating the appropriate leucine 

residues to cysteines (highlighted in bold in sequences). Reprinted with permission from ref 

70. Copyright 2013 American Chemical Society
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Figure 59: 
Strategy for DSD-Fdm design (top) and sequence comparison of DSD, DSD-2[4Fe4S], and 

DSD-Fdm (bottom). Reprinted with permission from ref 473. Copyright 2014 American 

Chemical Society
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Figure 60: 
Process of producing [4Fe-4S] cluster bound CCIS in vitro vs in vivo. Reprinted with 

permission from ref 478. Copyright 2020 American Chemical Society.
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Figure 61: 
(A) SAXS derived model of holo-CCIS. (B) Structure of a three-lobed trimer contained 

within an antiparallel three-helix bundle to fit the observed SAXS density. Adapted with 

permission from ref 478. Copyright 2020 American Chemical Society
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Figure 62: 
Pymol illustrations of the overall protein fold and Cu binding sites of (A) plastocyanin 

(4DPB), (B) Cu nitrite reductase (1SJM), (C) nitrosocyanin (1IBY), and (D) nitrous oxide 

reductase (1FWX). Cu(II) ions are depicted as blue, green, red, or purple spheres, water as 

a cyan sphere, and the NδHis-NδHis-Cys plane as a dashed line to emphasize the shifting 

position of Cu between plastocyanin and Cu nitrite reductase. Adapted with permission from 

ref 524. Copyright 2020 American Chemical Society.
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Figure 63: 
(Left) Helices Ah, Bi, and Ck represented as helical nets. Filled black circles correspond 

to varied positions and invariant hydrophobic or polar residues are represented by gray 

and open circles, respectively. (Right) Illustration of the helices that make up Mop21 

(A2(B5)2C11), Mop22 (A2(B7)2C4), and Mop23 (A1(B5)2C8) with ligating residues in yellow 

and varied positions in red. Reprinted with permission from ref 501. Copyright 2004 

American Chemical Society
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Figure 64: 
Electronic absorption spectra of Cu(II) bound (A) Mop21 (B) Mop22, and (C) Mop23 with 

solution spectra represented by solid lines and solid phase spectra by dashed lines. Reprinted 

with permission from ref 501. Copyright 2004 American Chemical Society
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Figure 65: 
(A) Overlay emphasizing similarity between starting structure of AM2C−Cu2+ and its 

energy minimized structure. (B) Side view of the minimized active site of AM2C−Cu2+. 

(C) Schematic of the minimized structure of AM2C−Cu2+. (D) Space filled model of 

AM2C−Cu2+, highlighting the inner packing with internal residues represented by spheres. 

Reprinted with permission from ref 510. Copyright 2010 American Chemical Society
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Figure 66: 
(A) Bottom view, (B) Side view, and (C) schematic of an energy minimized bi-AM2C–(Cu)2 

structure. Dotted lines represent suspected axial interactions. Reprinted with permission 

from ref 511. Copyright 2012 American Chemical Society.
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Figure 67: 
EXAFS based structural models of (A) Cu(I)α3D-CR1, (B) Cu(I)α3D-ChC2, (C) Cu(I)α3D-

CH3, and (D) Cu(I)α3D-CH4. Reprinted with permission from ref 179. Copyright 2015 

American Chemical Society
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Figure 68: 
(Left) Overall secondary structure of GRα3D. (Right) Overlaid stick representation and the 

2Fo – Fc electron density map (gray grid) contoured at 1σ of the Ile21, Arg24, Leu25, 

Phe38, and Glu41. Reprinted with permission from ref 524. Copyright 2018 American 

Chemical Society.
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Figure 69: 
Pymol made model of GRα3D-ChC2 highlighting the expected position of the metal binding 

site from a bird’s eye (A) or side view (B). Adapted with permission from ref 524. 

Copyright 2018 American Chemical Society.
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Figure 70: 
Pymol created models of (A) GRα3D-ChC2, (B) GRα3D-ChC3, and (C) GRα3D-ChC4 

derived from the crystal structure of GRα3D (PDB 6DS9). (D) Optical absorption spectra 

of each de novo designed protein as well as GRα3D-ChC4 in the presence of excess NaCl. 

Reprinted with permission from ref 509. Copyright 2020 American Chemical Society.
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Figure 71: 
Pymol created models of (A) GRα3D-ChC5, (B) GRα3D-ChC5 R24M, and (C) GRα3D-

ChC5 R24Y derived from the crystal structure of GRα3D (PDB 6DS9). (D) Optical 

absorption spectra of these proteins compared to the parent construct GRα3D-ChC4. 

Reprinted with permission from ref 509. Copyright 2020 American Chemical Society.
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Figure 72: 
Summary of recent advances in the de novo protein design of electron transfer sites 

highlighted in this review. Adapted with permission from the appropriate references as 

specified in source figures previously in manuscript.
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Scheme 1: 
Oxidation of dimethoxyphenol mediated by copper bound to amyloid peptides. Reprinted 

with permission from ref 228. Copyright 2021 American Chemical Society.
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Table 1.

Comparison of Catalytic Efficiencies for Native and Model Carbonic Anhydrase

Protein pNPA Esterase CO2 Hydrolysis

CA (II)a (pH 9.0)168 kcat=2.1 s−1

KM=5.8 mM
kcat/KM= 362 M−1 s−1

kcat=8.2 × 105 s−1

KM= 8.9 mM 
kcat/KM=9.2 × 107 M−1 s−1

TRIL9CL23H (pH 9.0) kcat=3.8 × 10−2 s−1

KM=2.1 mM
kcat/KM=17.6 M−1 s−1

kcat=1.8 × 103 s−1

KM=10.0 mM
kcat/KM=1.8×105 M−1 s−1

TRIL9HL23C (pH 9.0) kcat=1.1 × 10−2 s−1

KM= 1.1 mM
kcat/KM= 9.7 M−1 s−1

N/A

TRIL9CL19H (pH 9.0) kcat=1.0 × 10−2 s−1

KM=2.3 mM
kcat/KM= 4.5 M−1 s−1

N/A

α3D-H3 (pH 9.0) N/A kcat=103 s−1

Km= 7.3 mM
kcat/KM=1.5 × 104 M−1 s−1

IHIHIQI β-strand
(pH 10.3)

kcat/KM= 360 M−1 s−1 N/A

Tris(4,5-di-n-propyl-2-imidazolyl)phosphine (pH 6.55)230 N/A k2= 2480 M−1 s−1

MID1 (pH 9.0) kcat= 0.28 s−1

KM= 0.42 mM
kcat/KM= 18 M−1 s−1

N/A

MID1sc kcat= 0.011 s−1

kcat/KM= 18 M−1 s−1

N/A

MID1sc10 kcat= 1.64 s−1

KM= 1.67 μM
kcat/KM= 9.8 × 105 M−1 s−1

N/A

a
CO2 Hydrolysis was performed at pH 8.8
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Table 2.

Comparison of Kinetics Parameters of Native and Model CuNiR.

Protein k’ (s−1) kcat (s−1) KM (M) kcat/KM (M−1 s−1)

AfCuNiR pH 6.5260 -- 620 1.5 × 10−4 4.1 × 106

[CuMe2bpa(H2O)(ClO4)]+ (in water pH 5.5)6 -- 5.3 × 10−5 0.0025 0.021

[CuMe2bpa(H2O)(ClO4)]+ (on electrode pH 5.5)6 -- 0.063 0.0015 42

TRI-H 4.6 × 10−4 N/A N/A N/A

TRI-H L19A 3.5 × 10−2 0.23 (±0.03) 0.24 (±0.03) 1.0 (±0.3)

TRI-δmH 0.12 1.5 (±0.1) 0.18 (±0.02) 8.3 (±0.1)

TRI-δmH L19A 0.30 1.5 (±0.1) 0.13 (±0.01) 11 (±0.1)

TRIW-H L19D 2.4 × 10−2 N/A N/A N/A

TRIW-H L26A 2.2 × 10−2 N/A N/A N/A
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Table 3.

Comparison of Kinetics Parameters of Native and Model SODs at Physiological pH

Protein Activity (M−1 s−1) E1/2 (mV vs NHE)

MnSOD268 3.78 × 109 (pH 7.8) 407

FeSOD268 3.25 × 109 (pH 7.8) 220280

Cu only SOD265 1.8 × 109 (pH 7.25) N/A

NiSOD264 7.0 × 108 (pH 7.5) 290

Cu/Zn SOD265 1.2 × 109 (pH 7.25) 400281

N-term Cu/Zn model HADHDHKK282 1.2 × 107 (pH 7.0) N/A

GRα3D H4 1.8 × 106 (pH 7.5) 463

GRα3D H3D 2.6 × 106 (pH 7.5) 470

GRα3D H3 3.0 × 106 (pH 7.5) 550

GRα3D H2DH 12.6 × 106 (pH 7.5) 420
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Table 4.

Comparison of Spectroscopic Parameters of Rubredoxin and Designed Proteins

Protein λnm (Δε) (M−1 

cm−1)
E0 mV (vs 

NHE)
Mössbauer (Ox.) (δ and ΔEQ in mm/s, D 

in cm−1, A in T)
Mössbauer (Red.) (δ and ΔEQ in 

mm/s, D in cm−1, A in T)

α3DIV- L21C 595 (1200)
491 (2700)
345 (5000)

−75 (pH 
8.5)

δ/ΔEQ = 0.26/−0.5 η = 0.0
D = +0.5, E/D = 0.15

Axx,yy,zz = (−15.9, −16, −17)

δ/ΔEQ= 0.80/−3.07 η= 2
D =+2.5 E/D =0.24

Axx,yy,zz = (−5,−4.1,−20)

Rubredoxin 750 (350)455

570 (3200)
490 (6600)
370 (7710)

−90 to +50 δ/ΔEQ = 0.24/−0.5439 η = 0.2
D = +1.9 E/D =0.23

Axx,yy,zz = (−16,−15.9,−16.9)

δ/ΔEQ = 0.70/−3.25 η = 0.65
D = +7.4 E/D =0.28

Axx,yy,zz = (−20.1,−8.3,−30.1)

FeRM13 750 (~500)
600 (~1500)
490 (~2900)
370 (~6800)

+55 (pH 
7.5)

N/A N/A
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Table 5.

Comparison of Spectroscopic Parameters between Native Cupredoxins and Designed Cupredoxins

Protein σ LMCT (ε) 
M−1 cm−1

π LMCT (ε) 
M-1 cm-1

εσ/επ Half-Life of 
Cu(II) Signal

E0 (mV vs 
NHE)

CuII−S(Cys) R (Å) 
(σ2 × 10−3 Å2)

CuI−S(Cys) R (Å) 
(σ2 × 10−3 Å2)

Nitrosocyanin494 390nm
(7000)

550nm
(2200)

3.2 N/A +85 2.30
(3.2)

2.21
(4.0)

A cNiR491 457nm
(2590)

570nm
(1490)

1.75 N/A +240 2.22a 2.21a

Plastocyanin488 460nm
(400)

597nm
(5200)

0.05 N/A +372 2.08a 2.19a

C.s Stellacyanin489 448nm
(1150)

604
(4000)

0.29 N/A +184 2.17
(4.2)

2.22
(1.6)

GRα3D-ChC2 400nm
(3760)

490nm
(1600)

2.33 8 h +530 2.23
(10.6)

2.17
(5.8)

GRα3D-ChC3 395nm
(3760)

600nm
(870)

3.80 5 mins -- 2.18
(13.1)

2.20
(7.7)

GRα3D-ChC4 410nm
(1070)

595nm
(1230)

0.87 15 mins +475 2.25
(9.5)

2.20
(6.0)

GRα3D-ChC5 460nm
(1035)

595nm
(3130)

0.33 30 mins +475 2.26
(9.1)

2.20
(6.0)

Mop21 400
(6100)

-- N/A N/A N/A 2.23b N/A

Mop22 477nm
(4040)

525nm
(--)

N/A N/A N/A N/A N/A

Mop23 429nm
(--)

571nm
(1000)

N/A N/A N/A 2.205b N/A

Cu(II)-AM2C 474 nm 616nm 0.30 N/A N/A 2.30
(10.0)

N/A

a
Distances from EXAFS analysis were not available, so those determined crystallographically are shown in the table.

b
Resonance Raman spectral analysis was used to estimate the Cu-S bond length.
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