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Abstract
Purpose  Common variable immunodeficiency (CVID) is a primary antibody deficiency that commonly manifests as recurrent 
infections. Many CVID patients also suffer from immune dysregulation, an inflammatory condition characterized by poly-
clonal lymphocytic tissue infiltration and associated with increased morbidity and mortality. The genetic cause is unknown 
in most CVID patients and epigenetic alterations may contribute to the broad range of clinical manifestations. MicroRNAs 
are small non-coding RNAs that are involved in epigenetic modulation and may contribute to the clinical phenotype in CVID.
Methods  Here, we determined the circulating microRNAome and plasma inflammatory proteins of a cohort of CVID patients 
with various levels of immune dysregulation and compared them to healthy controls. A set of deregulated microRNAs was 
validated by qPCR and correlated to inflammatory proteins and clinical findings.
Results  Levels of microRNA-34a correlated with 11 proteins such as CXCL9, TNF, and IL10, which were predicted to be 
biologically connected. Moreover, there was a negative correlation between mir-34 levels and the number of naïve CD4 T 
cells in CVID.
Conclusion  Collectively, our data show that microRNAs correlate with the inflammatory response in CVID. Further inves-
tigations are needed to elucidate the role of miRNAs in the development of CVID-related immune dysregulation.

Keywords  Inborn errors of immunity · common variable immunodeficiency · immune dysregulation · circulating 
miRNAs · next generation sequencing

Introduction

Common variable immunodeficiency disorder (CVID) is 
an inborn error of immunity with an estimated incidence 
of 1:20000 in Europe. It is a heterogeneous disorder char-
acterized by hypogammaglobinemia [1–3]. Immunoglobu-
lin replacement therapy reduces the number of bacterial 
infections [4]. Many CVID patients develop non-infectious 

complications that relate to immune dysregulation (ImD) 
and contribute to increased morbidity and mortality [4]. 
CVID-related ImD includes autoimmunity, lymphocytic 
infiltration of non-lymphoid tissues, lymphoid hyperplasia, 
and lymphoma [2]. Patients with increased frequencies of 
atypical B cells with low expression of CD21 and decreased 
naïve CD4 T cells are at higher risk of ImD complications 
[5–7]. CVID-related ImD is associated with increased inter-
feron (IFN)-γ activity [8–10]. Treatment to mitigate ImD in 
CVID is so far mostly restricted to nonspecific immunosup-
pressive therapy [11, 12].

Currently, pathogenic monogenic variants have been 
identified in 35% of the patients with CVID [13, 14]. Vari-
ants of genes originally identified in non-CVID immunode-
ficiencies have also been observed in CVID patients, empha-
sizing the complex underlying genetics of this disorder [15, 
16]. Alterations in epigenetic regulators can cause malfunc-
tions of the immune system [17]. In addition to genetic vari-
ants, epigenetic changes may contribute to the development 
of CVID [16, 18]. It was recently reported that epigenetic 
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alterations affecting DNA methylation may contribute to B 
cell failure in CVID [19].

MicroRNAs (miRNA) are short non-coding RNAs that 
are involved in epigenetic regulation and function mainly to 
repress gene expression. For instance, miRNAs are involved 
in the regulation of B cell differentiation and have been associ-
ated with autoimmune disease and B cell lymphomas [20–23]. 
Increased T cell expression of mir-201 has been reported in 
a small cohort of CVID patients [24]. Changes in circulating 
miRNAs reflect ongoing biological processes in the tissues 
and can be used as biomarkers in cancer, autoimmune, and 
infectious diseases [25–27]. Alteration of miRNA signatures 
in CVID can be considered the result of epigenetic processes 
and may contribute to the pathophysiology of CVID and 
CVID-related ImD. Epigenetic studies on CVID are scarce.

In the present study, we used next-generation sequenc-
ing to profile plasma miRNA signatures in CVID patients 
with and without ImD. Selected miRNAs were validated by 
polymerase chain reaction (PCR) and correlated to plasma 
proteins and the levels of naïve CD4 T cells. Predicting dis-
ease-associated miRNAs may increase the understanding of 
the disease mechanisms of CVID and pave the way for new 
treatment strategies.

Methods

Ethical Approval

This study was approved by the Regional Ethics Committee 
of Linköping, Sweden (2017/214–32). All study subjects 
enrolled in this study gave their written informed consent to 
participate in this study.

Study Subjects

The definition of CVID in this study follows the former Swed-
ish Guidelines on Primary Immunodeficiency Disorders; in 
brief, serum IgG < 3.0g/L and IgA < 0.07g/L in the absence 
of any secondary immune deficiency. The cohort included 10 
CVID patients with no to moderate ImD, i.e., infections only 

(CVIDInO), and 10 CVID patients with severe ImD complica-
tions (CVIDC). Clinical data were retrieved from their medical 
records and covered the time of the study start and 10 years 
back. An evaluation document was used to score the burden 
of infections and ImD as previously described [10]. In brief, 
patients were assessed for the presence of ImD across three 
items: autoimmunity, gastroenteropathy and lymphoprolifera-
tion. Each item was scored 0–4; hence, the sum formed an ImD 
score between 0 and 12. Patients were also given an infection 
score between 0 and 4 based on the number of suspected bac-
terial infections per year after initiation of IgG-substitution 
therapy. Information about B cell subsets was retrieved from 
the clinical records, and patients were classified according to 
the Freiburg CVID criteria [28]. Patients were compared to a 
group of healthy controls recruited among blood donors, who 
were matched for sex and age (Table 1).

Materials

A detailed list of all key resources including reagents for 
flow cytometry, critical commercial assays, software, 
and algorithms is available in supplementary information 
Table S1.

Blood Sample Collection and Plasma Preparation

Blood samples were obtained in vacutainer tubes (BD Bio-
sciences). The samples were kept at room temperature for up 
to 5 h before the plasma was separated and stored at − 80°C 
until used.

Flow Cytometry for Quantification of Peripheral T 
Cells

Absolute T cell numbers were determined by flow cytometry 
with the use of Tru count tubes (BD Biosciences). Briefly, 
antibodies were added to whole blood and samples were 
lysed with FACS lysing solution (BD biosciences) before 
data were acquired using FACS Canto II (BD Biosciences). 
Kaluza flow cytometry software version 1.5 (Beckman Coul-
ter) was used for data analysis.

Table 1   Demographics and 
clinical characteristics of study 
participants

InO, infection only; C, CVID with immune dysregulation complications; HC, healthy controls

CVIDInO (n = 10) CVIDC (n = 10) HC (n = 10)

Age, years, median (range) 57 (21–76) 51 (22–74) 52 (28–68)
Sex, female/male 1/9 4/6 4/6
CVID duration, years, median (range)  > 10 (0 to > 10) 6 (1 to > 10) N/A
Freiburg class 1 (1a), n 5 (2) 9 (8) N/A
CD4+ T cells/µL, median (range) 491 (338–1260) 739 (289–1766) 811 (274–1743)
CD8+ T cells/µL, median (range) 482 (225–1126) 474 (187–2328) 372 (160–703)
CD4/CD8, median (range) 1.4 (0.6–2.2) 1.7 (0.2–2.6) 2.2 (1.2–4.3)
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RNA Extraction, Library Construction, 
and High‑Throughput Sequencing

RNA extraction, library construction, and high-throughput 
analyses were carried out by QIAGEN Genomic Services in 
Hilden, Germany. In brief, RNA extracted from plasma with 
miRNeasy kit (QIAGEN) was converted into miRNA next-
generation sequencing libraries. Adapters containing unique 
molecular identifiers (UMI) were ligated to the RNA. Then, 
the RNA was converted to cDNA and amplified using PCR. 
Libraries were pooled in equimolar ratios and quantified 
by qPCR before being sequenced on a NextSeq (Illumina 
Inc., San Diego, CA, USA) according to the manufacturer’s 
instructions.

The miRNA‑seq Data Analysis

Raw data was de-multiplexed and FASTQ files for each 
sample were generated using the bcl2fastq software (Illu-
mina Inc.). All primary analysis was carried out using CLC 
Genomics Server 21.0.4 (Qiagen). The workflow “QIAseq 
miRNA Quantification” of the CLC Genomics Server with 
standard parameters was used to map the reads to miRBase 
version 22. In short, the reads were trimmed, before filter-
ing of reads with length < 15 nt or length > 55 nt. The reads 
were then deduplicated using their UMI. Reads were grouped 
based on the UMI sequences. Reads that failed mapping to 
the miRbase were mapped to the human genome, using the 
“RNA-Seq Analysis” workflow of the CLC Genomics Server.

Identification of Differentially Expressed miRNAs

The empirical analysis of the differential gene expres-
sion algorithm of the CLC Genomics Workbench was 
used for differential expression analysis. For all unsu-
pervised analysis, only miRNAs that had at least 10 
counts summed over all samples were considered. A 
variance stabilizing transformation was performed on 
the raw count matrix using the function of the R pack-
age DESeq2 version 1.28.1. Five hundred genes with the 
highest variance were used for the principal component 
analysis. Thirty-five genes with the highest variance 
across samples were selected for hierarchical clustering.

Targeted Analysis of miRNA with Real‑Time qPCR

In brief, extracted RNA was reverse transcribed using the 
miRCURY LNA RT Kit (QIAGEN). cDNA was assayed in 
PCR reactions according to the protocol for miRCURY LNA 
miRNA PCR using miRCURY LNA SYBR Green master 
mix. The amplification was performed in a LightCycler® 

480 Real-Time PCR System (Roche Diagnostics, Basel, 
Switzerland) in 384 well plates. Target miRNA Cq values 
were normalized to global mean Cq of hsa-miR-23a-3p and 
hsa-let-7d-3p, using the formula:

Target Gene Prediction

The miRNA Enrichment Analysis and Annotation Tool 
(miEAA) was used for target gene prediction using over-
representation analysis (ORA) with at least three hits 
among input deregulated miRNAs and FDR < 0.01. When 
CVIDC- or CVIDInO groups were compared to healthy 
controls, differently expressed miRNAs with FDR < 0.01 
were considered deregulated and miRNAs with FDR < 0.1 
when the CVIDC group was compared to the CVIDInO 
group. The Uniprot database was used to find Biological 
Process GO-terms of predicted target genes.

Targeted Proteomic Analysis

Frozen plasma samples were sent to the Clinical Biomarkers 
facility, Science for Life Laboratory, Uppsala, Sweden, for 
analysis. The multiplex protein extension assay (PEA), OLINK 
Target 96 Inflammation v.3021, was used for the detection of 92 
different inflammatory-associated proteins (Table S2). Seventy-
two proteins were detected in > 95% of samples and selected for 
further analysis. Thirty-two of these proteins were differently 
expressed (t-test FDR < 0.05) when comparing CVID patients 
with healthy controls and were used for the construction of a 
correlation matrix with normalized miRNA dCq-values.

Protein–Protein Interaction Analysis

Protein–protein interaction networks were created with 
differently expressed proteins using STRING version 11.5 
(http://​string-​db.​org/) by including interactions with a 
medium confidence score (> 0.7). STRING database is 
a curated knowledge database of known and predicted 
protein–protein interactions [29].

Statistical Analysis

An Exact Test was used for comparing miRNA profiles generated 
by high-throughput sequencing, and Benjamini–Hochberg correc-
tion was applied to adjust for multiple testing. The Mann–Whitney 
test and Kruskal–Wallis test with Dunn’s correction were used for 
univariate statistics comparing two or three groups, respectively. 
Spearman’s was used for correlation measures.

Normalized dCq = global mean Cq (sample n) − target Cq (sample n)
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Results

Demographics and Clinical Characteristics 
of the Patient Cohort

CVIDC patients (with severe immune dysregulation) and 
CVIDInO patients (with infection-only phenotype) were included 
in the study (Table 1). All patients had ongoing immunoglobulin 
replacement therapy but had not received any immunomodula-
tory drugs at the time when the samples were collected. The 
disease-infectious scoring system used by us had a strong cor-
relation with previously published [30] disease severity score 
for CVID and CVID-like disorders (Fig. S1). Information about 
mild manifestations such as uncomplicated airway infections 
and isolated elevation of alkaline phosphatase in infection-
only patients were missing in our dataset and not included in 
the comparison. In the CVIDC group, disease scores, including 
polyclonal lymphoproliferation, autoimmunity, and gastroen-
teropathy, ranged between 3 and 11, compared to 0–2 in the 
CVIDInO group (Fig. 1a). There were no differences in the infec-
tion scores between the two groups (Fig. 1b). Even if the CD4 
T cell counts were similar between the groups, the frequencies 
of peripheral naïve CD4 T cells were lower in CVIDC patients, 
further reflecting a more severe clinical phenotype (Fig. 1c–d). 
Seven of the CVID patients have been subjected to exome analy-
sis targeting genetic variants in accordance with IUIS Phenotypi-
cal Classification for Human Inborn Errors of Immunity [14]. 
All genotyped patients belonged to the group with immune 

dysregulation, and one patient was diagnosed with CTLA4 hap-
loinsufficiency. In two patients, heterozygous variants of uncer-
tain significance have been detected involving a member of the 
VAV gene family and a gene coding for an immunoglobulin like 
receptor. No pathological variant was detected in any of the other 
tested patients. Two of the patients in the CVIDc group that have 
not been genotyped have mild immune dysregulation (scores 
3–4), and the third is deceased with no family history of CVID, 
which may explain why gene testing has not been performed.

Mapping to Small RNA Databases

Sequencing technology was used to measure the expres-
sion of small RNAs (15–55 bases) extracted from plasma. 
In total, 262 small RNAs were detected in all samples, 
and another 143 were found in more than 70% of the sam-
ples. Percentages of the reads that could be mapped to the 
miRBase or piRNA database varied between 6.4 and 39% 
across all three groups (Fig. S2).

Shared and Unique Circulating miRNA Signatures 
in CVID Patients with Different Phenotypes

Dimensional reduction of transformed raw counts of the 500 
miRNAs with the highest variance across samples showed a 
separation between healthy controls and CVID patients when 
the data were projected to principal component (PC) 1 and 

Fig. 1   Clinical phenotype of 
CVID patients. The level of 
immune dysregulation was 
graded 0–4, for each of the 
following items; lymphocytic 
proliferation, autoimmunity, and 
gastroenteropathy, resulting in 
total disease scores of 0–12 (a). 
Infection score was graded 0–4, 
based on the average of bacte-
rial infections per year (b). Fre-
quencies of naïve (CD45RA+ 
CD62L+) CD4 T cells in 
peripheral blood. Reference 
values for naïve CD4 (10–90 
percentiles), 30–70% of CD4 
(c). Representative gating for 
naïve CD4 T cells. InO, CVID 
infection only; C, CVID with 
immune dysregulation compli-
cations; CM, central memory; 
EM, effector memory; TEMRA, 
terminally differentiated RA 
positive. The Mann–Whitney 
test was used for comparison 
between groups
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PC2 (Fig. 2a). CVID patients clustered into two groups, and 
one cluster was dominated by patients with an increased infec-
tion score, suggesting that the burden of infections may influ-
ence the plasma miRNA profiles. We performed a pair-wise 
comparison of the levels of circulating miRNAs between the 
CVIDC group (n = 10) and healthy controls (n = 10), and the 
CVIDInO group (n = 10) and healthy controls, to identify sig-
nificantly deregulated miRNAs in plasma. When comparing 

CVIDC patients and healthy controls, a total of 24 circulating 
miRNAs were deregulated in CVIDC patients, when a false 
discovery rate (FDR) of < 0.01 was applied (Table S3a). Thir-
teen miRNAs were upregulated in CVIDC, and another 11 
were downregulated. When comparing CVIDInO patients and 
healthy controls, a total of 24 circulating miRNAs were dereg-
ulated (Table S3b). Seven miRNAs were upregulated, and 
another 17 were downregulated in the CVIDInO group when 

Fig. 2   Differential circulating 
miRNA expression. Principal 
component analysis of 500 
miRNAs with the highest 
variation. Green circles indicate 
healthy controls (HC), CVID 
with immune dysregulation 
complications (C) is indicated 
in red and CVID infection only 
(InO) in blue. Triangles indicate 
infection score (InfS) 0–1 
and squares indicate infection 
score 2–4 (a). Heatmap of 39 
deregulated miRNAs compared 
to HC, defined as FDR < 0.01 
and log2FC > 1.1 or <  − 0.7. 
miRNAs in turquoise, CVIDC 
vs HC; in orange, CVIDInO vs 
HC; in white, overlap CVIDC 
and CVIDInO (b)
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compared to healthy controls. The normalized expressed reads 
of the 39 significantly deregulated miRNAs were analyzed, 
and we found a clear separation between CVID patients and 
healthy controls and that the infection burden, i.e., infection 
scores, did not contribute to the separation between the two 
CVID groups (Fig. 2b). ORA using the miRNA enrichment 
and analysis and annotation tool (miEAA) [31] identified 14 
candidate genes (FDR < 0.01) targeted by the 24 miRNAs 
deregulated in CVIDC patients and eight candidate genes 
(FDR < 0.01) targeted in CVIDInO patients (Table 2). Five of 
the 14 candidate genes predicted by the CVIDC deregulated 
miRNAs were annotated with gene ontology (GO)-child terms 
of “immune system process.” Two of the most significantly 
affected genes, DAPK1 and WNT5A, were annotated with the 
GO-term “cellular response to type 2 interferons” (Table 2). 
Together, these findings indicate that miRNAs may modulate 
immune functions associated with CVID-related ImD.

Differences in Circulating miRNA Signatures 
in CVIDC‑ and CVIDInO Patients

When the two CVID groups were compared with each other, 
we applied FDR < 0.1. Three miRNAs were increased, and 
five miRNAs were decreased in CVIDC patients compared 
to CVIDInO patients (Fig. 3a). ORA identified 13 candidate 
genes (FDR < 0.01) targeted by the eight miRNAs deregu-
lated in the CVIDC-group compared to the CVIDInO-group 
(Fig.  3b). Among the 13 candidate genes, NOTCH2, 
PIK3CA, PTPRD, CASP3, RAB34, and FLOT2 were anno-
tated with GO terms related to the immune system process, 
including “T- and B cell homeostasis”. Except for CASP3, 
the predicted candidate genes were distinct from the pre-
dicted candidate genes when comparing CVID patients with 
healthy controls. In summary, the miRNA patterns differed 
between CVIDInO- and CVIDC patients, suggesting distinct 
sets of predicted candidate genes.

Table 2   Predicted candidate 
gene targets biological process 
annotations

HC, healthy controls; FDR, false discovery rate; #Total number annotated gene ontology (GO) terms bio-
logical process (BP). *Number annotated BP GO-terms within the item immune system process (ISP)

Target FDR Expected Observed Annotated BP GO-terms

CVID with immune dysregulation vs HC All# ISP* Biological process
  CASP3 0.0017 0.3308 6 55 5 T cell homeostasis, B cell homeostasis
  DAPK1 0.0017 0.1890 5 19 1 Cellular response to type II interferon
  PTEN 0.0077 1.1343 8 91 4 T cell proliferation
  BCL2 0.0097 0.633 6 130 11 T cell homeostasis, B cell homeostasis
  TGFBR3 0.0097 0.6276 6 35 2 Immune response
  NFKB1 0.0092 0.1607 4 32 0
  CKAP5 0.0021 0.0945 4 10 0
  ADNP 0.0078 0.0472 3 23 0
  JMY 0.0092 0.5671 6 9 0
  PDK4 0.0092 0.0567 3 16 0
  GGA3 0.0097 0.3497 5 10 0
  USP47 0.0097 0.1891 4 16 0
  DERL1 0.0097 0.0662 3 10 0
  PROSER1 0.0094 0.0656 3 N/A -
  DICER1 0.0098 0.6617 6 20 0
  NUS1 0.0098 0.6617 6 11 0
  ZNF480 0.0098 0.1985 4 1 0

CVID infection only All# ISP* Biological process
  WNT5A 0.0067 0.2930 5 153 6 Cellular response to type II interferon
  PDE4B 0.0067 0.0473 3 15 4 Neutrophil homeostasis
  SMN1 0.0041 0.0851 4 4 0
  BAZ1B 0.0067 0.1229 4 10 0
  SER-

PINB5
0.0067 0.1323 4 5 0

  STUB1 0.0067 0.0378 3 27 0
  TCEAL1 0.0099 0.1607 4 N/A -
  RAI14 0.0099 0.0567 3 2 0
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Targeted Analysis Deregulated miRNAs 
with Real‑Time PCR

IFN-γ is a potential underlying driver of CVID-related ImD 
[10]. DAPK1 is a protein kinase, which regulates IFN-γ 
induced gene expression [32]. When, as the next step, we 
wanted to verify the plasma levels of the miRNAs sharing the 
predicted gene target DAPK1 with real-time qPCR. In addition, 
the two most deregulated miRNAs between the CVIDInO- and 
CVIDC group were analyzed by qPCR (Table S4). Eight miR-
NAs were analyzed by RT-PCR. Four of these miRNAs were 
only detected in 3–70% of the samples and were excluded from 
further analysis due to low call rate. One sample (CVIDInO) 
had an overall low call rate and was omitted from analysis. Of 
a total of eight analyzed miRNAs, four were detected in > 75% 
of samples and selected for further analysis (Table S4).

Correlation of Circulating miRNAs with Plasma 
Levels of Inflammatory Proteins

We found a negative correlation between mir-34a-5p and 
mir-103a-3p normalized dCq plasma levels (Spearman 
correlation, rs =  − 0.53 and p = 0.003), and a positive 

correlation between mir-103a-3p and mir-301a-3p 
(rs = 0.469 and p = 0.001) dCq levels (Fig. S3). The plasma 
levels of mir-34a-5p were higher in CVIDInO- and CVIDC 
patients compared to the controls, whereas the levels of 
mir-103a-3p were decreased in CVIDInO- and CVIDC 
patients compared to healthy controls (Fig.  4a). When 
comparing CVID plasma inflammatory protein profiles, 
32 factors were elevated (T-test, FDR < 0.05) compared to 
the healthy controls (Table 3). To outline any association of 
deregulated miRNAs, circulating dCq levels were correlated 
to normalized levels of 32 deregulated proteins in plasma. 
In total, 15 proteins showed a positive correlation (rs ≥ 0.60 
and p < 0.001) with mir-34a-5p or a negative correlation 
(rs ≤ -0.60 and p < 0.001) with mir-103a-3p dCq levels 
(Table 3). No protein correlated with mir-301a-3p. Most 
of the proteins (n = 8) correlated with both mir-34a-5p and 
mir-103a-3p dCq levels: another three proteins correlated 
with mir-34a-5p and another six with mir-103a-3p (Fig. S4). 
We then used the proteins correlating with mir-34a-5p 
or mir-103a-3p to generate a protein interaction (PPI) 
network. Known and predicted interactions were revealed 
between seven of 11 factors correlating with mir-34a-5p and 
between eight of 14 factors correlating with mir-103a-3p 

Fig. 3   Differences in circu-
lating miRNA signatures in 
CVIDC and CVIDInO. Differ-
ently expressed miRNAs in 
CVIDC compared to CVIDInO 
(a). Predicted gene targets by 
differently expressed miRNAs 
over representation analysis 
(ORA). Labeled gene targets are 
annotated with gene ontology 
biological process item immune 
system process (b). Enrich-
ment factor: number observed/
number expected miRNAs. C, 
CVID with immune dysregula-
tion; InO, CVID infection only; 
p, refers to Exact Test; FC, fold 
change; FDR, false discovery 
rate
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(Fig.  4b). Proteins associated with mir-34a-5p or mir-
103a-3p were predicted to be enriched (p = 4.3 × 10−11 
and p = 6.5 × 10−13, respectively). TNFRSF9, CXCL9, 
IL10, IL12B, and CSF-1 were shared in the predicted 
networks of proteins correlating with mir-34a-5p and mir-
103a-3p. Functional annotation predicted the biological 
process “Regulation of chronic inflammatory response to 
antigenic stimulus” (GO:0002874), involving IL10 and 
IL18, to be the interaction with the highest strength in the 

network, correlating with mir-34a-5p (strength 3.07 and 
FDR = 0.0012). For proteins correlating with mir-103-3p, 
the biological process “Negative regulation of inflammatory 
response to antigenic stimulus” (GO:0002862), involving 
IL10 and IL12B, had the highest strength (strength 2.33 
and FDR = 0.0079). In summary, our results suggest that 
increased levels of mir-34a-5p and decreased levels of 
mir-103a-3p may contribute to the chronic inflammatory 
response in CVID-related ImD.

Fig. 4   Correlation of circulating 
mir-34a-5p with inflamma-
tory plasma protein and naïve 
CD4 T cell levels. Deregulated 
miRNAs detected by real-time 
qPCR in plasma (a). Predicted 
protein–protein interactions by 
the STRING database vs 11.5 of 
the inflammatory proteins corre-
lating strongly with mir-34a-5p 
and mir-103a-3p, respectively. 
We used a high confidence 
(> 0.700) for the STRING 
analyses and the line thickness 
indicates the strength of the data 
support. Blue indicates factors 
shared by mir-34a-5p and mir-
103-3p (b). Correlation of mir-
34a-5p with naïve (CD45RA+ 
CD62L+) CD4 T cell numbers 
in CVID patients (c). Differ-
ences in plasma protein levels 
of putative mir-34a-5p targets 
between CVID groups (d). dCq, 
normalized cycle of quantifica-
tion; HC, healthy controls; InO, 
CVID with infection only and 
CVIDC, CVID with immune 
dysregulation complications. 
The Kruskal–Wallis test with 
Dunn correction was used for 
comparisons between multiple 
groups and a t-test for com-
parisons between two groups. 
rs indicates Spearman correla-
tion. Inflammatory factors are 
depicted by their gene names
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Circulating mir‑34a‑5p Correlated with Naïve CD4 T 
Cells in CVID

Low levels of naïve CD4 T cells represent a finding strongly 
associated with CVID-related ImD without a direct connec-
tion to disease-causing genetic variants [7], which support 
that additional mechanisms may contribute to the heteroge-
neity of the clinical phenotype seen in CVID. This led us to 
investigate potential associations between deregulated miR-
NAs and naïve CD4 T cells in CVID patients. We found that 
mir-34a-5p dCq levels correlated negatively with numbers 

of circulating naïve CD4 T cells (Fig. 4c). No such cor-
relation was found for mir-103a-3p (data not shown). We 
next used GeneTrail2 to identify the predicted target genes 
of mir-34a-5p annotated with the ancestral GO biological 
process term “Immune system process” (GO:0002376). The 
putative targets were predicted to be overrepresented in the 
pathway since 176 were detected compared to 113 expected 
(p = 2.0 × 10−8). We next compared the putative mir-34a-5p 
targets with the proteins analyzed in plasma and found that 
four putative mir-34a-5p targets (CD40, CXCL9, IL10, and 
TNF) overlapped (Table S5). The plasma levels of all four 

Table 3   Correlation of plasma protein levels with circulating miRNA dCq levels

dCq, normalized cycle of quantification; C, CVID with immune dysregulation complications; InO, CVID infection only; NPX, normalized pro-
tein expression; SD, standard deviation; r, Spearman correlation

Assay CVID C(n = 10) CVID InO 
(n = 8)

HC (n = 9) mir-34a (n = 27) mir-103a (n = 27) mir-301a (n = 27)

NPX (Log2) Mean SD Mean SD Mean SD r p (-log10) r p (-log10) r p (-log10)

IL-12B 7.52 0.46 6.16 0.78 5.05 0.39 0.71 4.63  − 0.65 3.69  − 0.26 0.76
TNFRSF9 8.87 0.52 7.19 0.48 6.27 0.19 0.68 4.17  − 0.63 3.51  − 0.33 1.06
TNF 4.30 0.64 2.83 0.52 2.20 0.35 0.67 4.02  − 0.58 2.90  − 0.22 0.59
IL10 5.85 0.45 4.75 0.62 3.19 0.12 0.66 3.93  − 0.62 3.38  − 0.41 1.52
CDCP1 4.47 0.78 2.44 0.65 1.93 0.32 0.66 3.87  − 0.70 4.50  − 0.31 0.98
CD5 6.44 0.47 4.93 0.35 4.37 0.16 0.66 3.86  − 0.67 4.09  − 0.21 0.56
CST5 5.38 0.46 4.98 0.49 4.60 0.24 0.66 3.83  − 0.70 4.40  − 0.28 0.83
CXCL9 10.00 0.79 7.61 0.92 6.48 0.36 0.65 3.70  − 0.71 4.60  − 0.28 0.84
IL18 9.85 0.85 8.41 0.59 7.66 0.29 0.64 3.57  − 0.52 2.35  − 0.19 0.47
CCL25 6.28 0.39 6.12 0.32 5.70 0.36 0.61 3.19  − 0.56 2.73  − 0.17 0.41
CSF-1 9.99 0.14 9.52 0.15 9.19 0.19 0.60 3.11  − 0.75 5.36  − 0.34 1.12
IL6 4.54 0.75 3.31 0.58 2.27 0.44 0.59 3.03  − 0.74 5.13  − 0.32 1.00
CCL3 6.09 0.65 4.62 0.53 4.02 0.46 0.58 2.90  − 0.53 2.45  − 0.18 0.45
CD244 7.24 0.38 6.40 0.22 6.15 0.36 0.58 2.87  − 0.57 2.79  − 0.13 0.28
IL-15RA 2.06 0.43 1.05 0.33 0.84 0.27 0.57 2.82  − 0.65 3.69  − 0.17 0.42
IFN-gamma 8.76 1.38 5.90 0.91 5.30 0.57 0.56 2.76  − 0.47 1.93  − 0.16 0.37
CXCL10 11.69 0.52 9.41 0.89 8.84 0.36 0.56 2.72  − 0.67 4.06  − 0.20 0.50
CD6 6.86 0.75 4.93 0.56 4.44 0.52 0.54 2.53  − 0.55 2.64  − 0.07 0.15
CD8A 11.62 0.65 10.49 0.72 9.98 0.50 0.54 2.52  − 0.45 1.80 0.00 0.01
CASP-8 1.45 0.27 1.05 0.32 0.64 0.18 0.53 2.40  − 0.71 4.65  − 0.27 0.76
CCL19 11.19 0.69 8.97 0.79 8.68 0.91 0.52 2.37  − 0.44 1.69  − 0.03 0.05
CXCL6 8.71 0.48 7.63 0.67 7.12 0.68 0.50 2.18  − 0.52 2.38  − 0.17 0.41
CD40 11.57 0.40 10.75 0.28 10.57 0.30 0.50 2.14  − 0.63 3.48 0.00 0.01
CCL20 7.64 0.79 6.53 1.15 5.96 0.82 0.48 2.01  − 0.33 1.07 0.14 0.32
LIF-R 3.80 0.31 3.21 0.26 3.13 0.17 0.47 1.91  − 0.46 1.88  − 0.33 1.07
TNFB 5.60 0.41 4.42 0.62 3.81 0.41 0.45 1.82  − 0.42 1.56  − 0.08 0.16
IL-18R1 8.87 0.47 7.84 0.49 7.66 0.36 0.44 1.72  − 0.54 2.55  − 0.11 0.24
PD-L1 6.85 0.37 5.85 0.33 5.72 0.34 0.43 1.68  − 0.57 2.77  − 0.20 0.52
CXCL11 9.63 0.94 7.30 0.58 7.41 0.61 0.43 1.66  − 0.47 1.91 0.04 0.08
TNFSF14 4.50 0.64 3.49 0.27 3.26 0.52 0.39 1.40  − 0.56 2.74 0.05 0.10
MMP-10 8.74 0.35 8.12 0.65 7.78 0.39 0.33 1.08  − 0.64 3.64  − 0.16 0.39
AXIN1 1.70 0.49 1.17 0.74 2.41 1.24  − 0.38 1.31 0.11 0.23 0.40 1.47
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mir-34a-5p targets CD40, CXCL9, IL10, and TNF were all 
significantly higher in CVIDC patients compared to CVIDInO 
patients (Fig. 4d). Together these findings support a potential 
role of mir-34a-5p in CVID-related ImD.

Discussion

This study is, to our knowledge, the first to delineate the 
circulating miRNAome in CVID and to correlate the find-
ings to CVID-related ImD. We found various miRNAs that 
distinguished the CVID patients with severe ImD compli-
cations (CVIDC) from the infection-only CVID phenotype 
(CVIDInO), as well as the CVID groups from healthy con-
trols. The burden of non-infectious complications in CVID 
was assessed by a clinical severity scoring system assessing 
lymphoproliferation, autoimmunity, and gastrointestinal 
complications [10]. The accuracy of the scoring system was 
validated using the more extensive CVID disease severity 
score published by Ameratunga in 2018 [30]. Incomplete 
data of mild manifestations should not affect the results 
significantly since mild manifestations only generated a 
score of 1 using the Ameratunga scoring system. Twenty-
four miRNAs were altered between CVIDC patients and the 
controls, and 24 between CVIDInO patients and the controls. 
Several genes involved in adaptive immune mechanisms, 
including a gene involved in type 2 interferon signaling, 
were predicted candidate gene targets of deregulated miR-
NAs in the CVIDC group. We and others have previously 
shown that IFN-γ correlates with CVID-related ImD [10, 
32]. The top predicted gene targets in the CVIDInO group 
were merely associated with inflammatory processes and 
innate immunity. Low naïve CD4 T cells are associated 
with severe disease and a poor outcome in CVID. Targeted 
analysis with qPCR showed a negative correlation between 
naïve CD4 T cell numbers and mir-34a-5p expression, and 
the plasma levels of four putative mir-34a-5p gene targets, 
i.e., CD40, CXCL9, IL10, and TNF, were elevated in CVIDC 
compared to CVIDInO patients. Determining correlations 
between miRNAs and clinical and laboratory findings may 
provide new mechanistic insights into CVID-related ImD 
since circulating miRNA transcripts reflect intracellular gene 
network activity in tissues [26].

The majority of CVID cases are sporadic and the onset can 
occur at any age. A few pathogenic gene variants have been 
associated with CVID [14, 15]. However, only a minority of 
CVID cases appear to be the result of a monogenic variant. 
Instead, transcriptional and post-transcriptional modifications 
may contribute to the clinical penetrance of genetic variants 
in CVID, alone or in combination with other triggers such 
as infections [16]. Increasing evidence indicates that miR-
NAs play a key role in biological processes by their modu-
lation of gene expression [33]. While the plasma miRNA 

profiles clearly discriminated between CVID patients and 
healthy controls, the differences between the CVIDC- and 
the CVIDInO patients were less pronounced. However, the 
distinct circulating miRNA profiles found in CVIDC- and 
in CVIDInO patients compared to the controls suggest that 
deregulated expression of circulating miRNAs may contrib-
ute to the heterogeneity of CVID phenotypes. In addition, 
ORA of differently expressed miRNAs identified several 
potential gene targets involved in T- and B cell homeostasis 
in CVID patients with severe ImD. These findings imply that 
miRNAs may contribute to the changes in T- and B-cell pop-
ulations found in this group of CVID. For instance, DAPK-1 
was one of the most highly predicted gene targets in the 
CVIDC group compared to the controls. DAPK-1 is a tumor 
suppressor induced by IFN-γ [34, 35] and can also influ-
ence the expression of IFN-γ [36]. Altered DAPK1 activity 
may impair CVID T cell functionality, seeing that DAPK1 
has been linked to the regulation of T cell function [37, 38]. 
WNT5A was another predicted target when comparing the 
miRNA profiles of CVIDInO patients with healthy controls. 
WNT5A, like DAPK1, is a tumor suppressor which can also 
modulate T cell activation [39–41]. Taken together, dysregu-
lation of DAPK1 and WNT5A may contribute to the hetero-
geneity of the immune defects observed in CVID.

When comparing the plasma miRNA profiles of the two 
CVID groups, the highest upregulated miRNA in CVIDC 
was mir-224-5p. Mir-224 expression is upregulated via 
NFΚB and has been reported to attenuate the inflammatory 
responses by interaction with the acute phase protein pen-
traxin 3 [42, 43]. The CVIDC group had low levels of mir-
1-3p, and this miRNA has been found to modulate immune 
cell functions and contribute to inflammatory damage in an 
experimental model of sepsis [44, 45]. Increased expres-
sion of miR-224-5p and reduced expression of miR-1-3p 
may regulate the inflammatory response in CVID related 
ImD. Bioinformatic analysis of deregulated miRNA in the 
CVIDC group compared to the CVIDInO group identified 
several putative gene targets such as NOTCH2, which is 
important for T cell responses [46], the PIK3CA, part of the 
PI3K signaling pathway [47], and the inflammatory caspase 
3, a key protein in apoptosis and pyroptosis pathways [48]. 
In summary, deregulated miRNA in CVID may potentially 
modulate fundamental cellular processes and thereby influ-
ence CVID-related ImD.

MiRNA raw count means, significant fold change 
between the CVIDC- and CVIDInO groups, and putative 
involvement in IFN-γ signaling were factors considered in 
the selection of miRNAs for the validation assay with real-
time PCR. Among the miRNAs in the validation assay, we 
found correlating levels of mir-103a-3p with mir-34a-5p 
and mir-301a-3p. In addition, both mir-103a-3p and mir-
34a-5p correlated with inflammatory plasma proteins such 
as CXCL9, IL10, and IL12B. Protein–protein-interaction 
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(PPI) network analysis indicated proteins regulating 
immune responses to be overrepresented in the mir-
103a-3p cluster and the mir-34a-5p clusters. Experimen-
tal models have suggested that mir-103a-3p both promotes 
and ameliorates inflammatory responses [49, 50] and that 
this miRNA is upregulated in rheumatoid arthritis and 
connected to disease activity [51]. We found a negative 
correlation of mir-103a-3p with inflammatory proteins, 
which may be indicative of an anti-inflammatory activ-
ity in CVID. It is unlikely that mir-103a-3p specifically 
counteracts IFN-γ driven inflammation since plasma levels 
were similar in the two CVID groups. The net effect of mir-
103a-3p in CVID remains to be determined.

Increased levels of mir-34a-5p have previously been 
reported in the whole blood of lung cancer patients [52] 
and in the plasma of people living with HIV, even after pro-
longed control of viral replication [53]. Functional in vitro 
studies have shown that mir-34a-5p modulates T cell sign-
aling and the expression of IFN-γ induced CXCR3 ligands 
such as CXCL9, CXCL10, and CXCL11, which are chem-
oattractants for activated T cells; hence, mir-34a-5p may act 
as a major hub of T cell regulatory networks [54–56]. These 
findings support a role for mir-34a-5p in the pathogenesis of 
CVID-related ImD, which is associated with upregulation of 
the Tbet-CXCR3-axis with increased numbers of T-helper 
1 skewed T cells and increased IFN-γ-production [10, 32]. 
Moreover, PPI analysis of plasma proteins correlating with 
mir-34a-5p predicted the enrichment of factors involved in 
a chronic inflammatory response, and the highest levels of 
mir-34a-5p were found in CVIDC patients, which may also 
imply a role of mir-34a-5p in CVID related ImD. Among 
the predicted immune system process gene targets of mir-
34a-5p, we analyzed the plasma levels of four gene products 
(CD40, CXCL9, IL10, and TNF). They were all increased 
in CVIDC patients compared to CVIDInO patients and this 
may reflect upregulated mir-34a-5p activity. CXCL9 and 
TNF are Th1 cytokines. Mir-34a-5p is considered a tumor 
suppressor acting by augmenting Th1 T cell responses and 
preventing cancer cell immune checkpoint upregulation 
and subsequent immune evasion [57, 58]. Hence, it can be 
hypothesized that mir-34a-5p contributes to the enhanced 
CD4 T cell differentiation in CVID-related ImD, which is 
supported by negative correlations of naïve CD4 T cells and 
mir-34a-5p levels in this study. If the significance of mir-
34a-5p in CVID-related ImD can be verified in functional 
studies, blocking of mir-34a-5p may potentially be a new 
therapeutic approach to consider.

Our study has some limitations. First is the restricted 
number of patients included and their heterogeneity when it 
comes to the clinical manifestations of CVID. Despite this, 
we identified differences in miRNA profiles when comparing 
CVID patients with- and without severe ImD that predicted 
enrichment of target genes involved in IFN-γ signaling. 

Furthermore, the distribution of male vs female in the infec-
tion only group was highly skewed towards male, which is 
a limitation, but when exploring the whole cohort, we did 
not find any significant differences in dCq-levels of miRNAs 
between male and female participants, so it should have a 
limited impact on the study. Moreover, it is an explorative 
study, and the findings need to be validated by longitudinally 
analyzing a larger study cohort, and an alternative study 
design is required to dissect the potential mechanistic role 
of miRNAs in the development of CVID-related ImD.

Conclusions

In conclusion, we identified several circulating miRNAs 
that were associated with CVID-related ImD, which were 
predicted to target genes involved in IFN-γ-driven inflamma-
tion. Levels of mir-34a correlated with inflammatory factors 
and decreased numbers of naïve CD4 T cells. Collectively, 
our data show that miRNAs correlate with the inflammatory 
response in CVID and may help us understand the patho-
genesis of CVID-related ImD. However, further studies are 
needed to elucidate the role of miRNAs in the development 
of CVID-related ImD.
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