Skip to main content
. 2023 Dec 8;13:1268041. doi: 10.3389/fcimb.2023.1268041

Table 4.

Therapeutic potential and health benefits of probiotics, prebiotics and synbiotics.

Biotic types Sources Diseases Health effects Mechanism of action References
Probiotics Lactobacillus acidophilus and Bifidobacterium infantis Intestinal infections Inhibition of Staphylococcus aureus, Salmonella typhimurium, Yersinia enterocolitica, Clostridium perfringens and Aeromonas hydrophila Production of organic acids, bacteriocins and other primary metabolites, such as hydrogen peroxide, carbon dioxide and diacetyl Shahani and Chandan, 1979; Laroia and Martin, 1990; Mishra and Lambert, 1996; Van der Meer and Bovee-Oudenhoven, 1998
L. casei, L. acidophilus and B. bifidum Immune enhancement Data not available Enhancement in non-specific (e.g. phagocyte function, NK cell activity) and specific (e.g. antibody and cytokine production) host immune responses Kaila et al., 1992; Schiffrin et al., 1995; Gill, 1998
L. acidophilus, S. thermophilus, B. longum, L. rhamnosus GG and B. bifidum Diarrhoeal infections Inhibitions of Escherichia coli, Salmonella, Shigella, Clostridium difficile and rotavirus Production of organic acids, bacteriocins, hydrogen peroxide, carbon dioxide and diacetyl Merson et al., 1976; Barefoot and Klaenhammer, 1983; Tojo et al., 1987; Oksanen et al., 1990; Siitonen et al., 1990; Hilton et al., 1997.
B. longum, L. casei Shirota, L. acidophilus, Bifidobaterium spp. and L. rhamnosus GG Cancer Inhibition of tumour formation and proliferation Inhibition of carcinogens and procarcinogens, bacteria converting procarcinogens to carcinogens, immune system activation, and reduced faecal enzyme levels Lidbeck et al., 1991; Reddy and Rivenson, 1993; Goldin et al., 1996; McIntosh, 1996.
L. acidophilus Hypercholesterolaemia Reduction of cholesterol levels Assimilation of cholesterol and deconjugation of bile salts Gilliland and Speck, 1977; Buck and Gilliland, 1994.
L. acidophilus, B. angulatum, B. breve, B. bifidum and B. longum Lactose intolerance Utilisation of lactose Production of β-D-galactosidase which hydrolyzes lactose Kilara and Shahani, 1976; Hughes and Hoover, 1995.
L. acidophilus and Bifidobacterium spp. Production of Reduction of peptic ulcer, gastro-oesophageal reflux, non-ulcer dyspepsia and gastric cancer Inhibition of Helicobacter pylori Lactic and acetic acids, bacteriocins etc Berrada et al., 1991; Lambert and Hull, 1996; Lankaputhra et al., 1996.
L. rhamnosus GG Food allergy Help to relieve intestinal inflammation and hypersensitivity reactions in infants with food allergies Hydrolyse the complex casein to smaller peptides and amino acids and hence decrease the proliferation of mitogen-induced human lymphocytes (Sutas et al., 1996; Majamaa and Isolauri, 1997)
Prebiotics Inulin from chicory roots  -  - Stimulate the growth of Bifidobacterium Gibson et al., 1995.
Neosugar  - Metabolised by the resident microbes in the colon including bifidobacteria, Enterococcus faecalis, E. faecium, Bacteroides vulgates, etc Desai, 2008; Guarino et al., 2020.
Isomalto-oligosaccharides (IMO) from miso, soy sauce and honey Local and systemic Th-1-like immune response and regulation of immune function, balancing the dysbiosis of gut microbiota Bifidobacterium and the Bacteroides groups can utilise IMO Kohmoto et al., 1988; Wang et al., 2014.
Xylooligosaccharides (XOS) from fruits, bamboo shoots, vegetables, honey, etc.  - B. adolescentis utilizes xylobiose and xylotriose, whereas L. lactis, L. rhamnosus and L. plantarum utilise oat β-glucooligosaccharides Okazaki et al., 1990.
Synbiotics Food products containing B. animalis and amylose cornstarch  - Promote the growth of bifidobacteria Bruno et al., 2002.
Curd containing B. longum and fructooligosaccharide (FOS) Decrease cardiovascular risk factors, metabolic syndrome prevalence and markers of insulin resistance in elderly patients Promote the growth of B. longum Hughes and Hoover, 1995; Linares et al., 2017; Cicero et al., 2021.
Oral synbiotic preparation containing L. plantarum and FOS Sepsis in early infancy Significant reduction in sepsis and lower respiratory tract infections Promotes growth of L. plantarum ATCC202195 Panigrahi et al., 2017.
Synbiotics containing five probiotics
(L. plantarum, L. delbrueckii spp. bulgaricus, L. acidophilus, L. rhamnosus, Bifidobacterium bifidum) and inulin
 - Adult subjects with NASH (non-alcoholic steatohepatitis) demonstrated a significant reduction of IHTG (intrahepatic triacylglycerol) Wong et al., 2013.
Synbiotic products containing L. rhamnosus, Bifidobacterium lactis, inulin and oligofructose Hepatic conditions  - Increased level of intestinal IgA, reduced blood cholesterol levels and lower blood pressure Pathmakanthan et al., 2002; Perez-Conesa et al., 2006.
L. rhamnosus CGMCC1.3724 and inulin Obesity Weight loss Reduction in leptin increase in Lachnospiraceae Sanchez et al., 2014.
L. acidophilus, L. rhamnosus, B. bifidum, B. longum, E. faecium and FOS Obesity Changes in anthropometric measurements Decrease in TC, LDL-C and total oxidative stress serum levels Ipar et al., 2015.
L. sporogenes and inulin Type 2 diabetes  - Significant reduction in serum insulin levels and homeostatic model assessment cell function Tajadadi-Ebrahimi et al., 2014.
L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. longum, L. bulgaricus and FOS Insulin resistance syndrome The levels of fasting blood sugar and insulin resistance improved significantly  - Eslamparast et al., 2014.
L. rhamnosus GG, B. lactis Bb12 and inulin Cancer Increase in probiotics in stools and decrease in Clostridium perfringens led to increase in the IL2 in polypectomised patients Increased production of interferon-ϒ Safavi et al., 2013.