Table 4.
Biotic types | Sources | Diseases | Health effects | Mechanism of action | References |
---|---|---|---|---|---|
Probiotics | Lactobacillus acidophilus and Bifidobacterium infantis | Intestinal infections | Inhibition of Staphylococcus aureus, Salmonella typhimurium, Yersinia enterocolitica, Clostridium perfringens and Aeromonas hydrophila | Production of organic acids, bacteriocins and other primary metabolites, such as hydrogen peroxide, carbon dioxide and diacetyl | Shahani and Chandan, 1979; Laroia and Martin, 1990; Mishra and Lambert, 1996; Van der Meer and Bovee-Oudenhoven, 1998 |
L. casei, L. acidophilus and B. bifidum | Immune enhancement | Data not available | Enhancement in non-specific (e.g. phagocyte function, NK cell activity) and specific (e.g. antibody and cytokine production) host immune responses | Kaila et al., 1992; Schiffrin et al., 1995; Gill, 1998 | |
L. acidophilus, S. thermophilus, B. longum, L. rhamnosus GG and B. bifidum | Diarrhoeal infections | Inhibitions of Escherichia coli, Salmonella, Shigella, Clostridium difficile and rotavirus | Production of organic acids, bacteriocins, hydrogen peroxide, carbon dioxide and diacetyl | Merson et al., 1976; Barefoot and Klaenhammer, 1983; Tojo et al., 1987; Oksanen et al., 1990; Siitonen et al., 1990; Hilton et al., 1997. | |
B. longum, L. casei Shirota, L. acidophilus, Bifidobaterium spp. and L. rhamnosus GG | Cancer | Inhibition of tumour formation and proliferation | Inhibition of carcinogens and procarcinogens, bacteria converting procarcinogens to carcinogens, immune system activation, and reduced faecal enzyme levels | Lidbeck et al., 1991; Reddy and Rivenson, 1993; Goldin et al., 1996; McIntosh, 1996. | |
L. acidophilus | Hypercholesterolaemia | Reduction of cholesterol levels | Assimilation of cholesterol and deconjugation of bile salts | Gilliland and Speck, 1977; Buck and Gilliland, 1994. | |
L. acidophilus, B. angulatum, B. breve, B. bifidum and B. longum | Lactose intolerance | Utilisation of lactose | Production of β-D-galactosidase which hydrolyzes lactose | Kilara and Shahani, 1976; Hughes and Hoover, 1995. | |
L. acidophilus and Bifidobacterium spp. Production of | Reduction of peptic ulcer, gastro-oesophageal reflux, non-ulcer dyspepsia and gastric cancer | Inhibition of Helicobacter pylori | Lactic and acetic acids, bacteriocins etc | Berrada et al., 1991; Lambert and Hull, 1996; Lankaputhra et al., 1996. | |
L. rhamnosus GG | Food allergy | Help to relieve intestinal inflammation and hypersensitivity reactions in infants with food allergies | Hydrolyse the complex casein to smaller peptides and amino acids and hence decrease the proliferation of mitogen-induced human lymphocytes | (Sutas et al., 1996; Majamaa and Isolauri, 1997) | |
Prebiotics | Inulin from chicory roots | - | - | Stimulate the growth of Bifidobacterium | Gibson et al., 1995. |
Neosugar | – | - | Metabolised by the resident microbes in the colon including bifidobacteria, Enterococcus faecalis, E. faecium, Bacteroides vulgates, etc | Desai, 2008; Guarino et al., 2020. | |
Isomalto-oligosaccharides (IMO) from miso, soy sauce and honey | – | Local and systemic Th-1-like immune response and regulation of immune function, balancing the dysbiosis of gut microbiota | Bifidobacterium and the Bacteroides groups can utilise IMO | Kohmoto et al., 1988; Wang et al., 2014. | |
Xylooligosaccharides (XOS) from fruits, bamboo shoots, vegetables, honey, etc. | – | - | B. adolescentis utilizes xylobiose and xylotriose, whereas L. lactis, L. rhamnosus and L. plantarum utilise oat β-glucooligosaccharides | Okazaki et al., 1990. | |
Synbiotics | Food products containing B. animalis and amylose cornstarch | – | - | Promote the growth of bifidobacteria | Bruno et al., 2002. |
Curd containing B. longum and fructooligosaccharide (FOS) | – | Decrease cardiovascular risk factors, metabolic syndrome prevalence and markers of insulin resistance in elderly patients | Promote the growth of B. longum | Hughes and Hoover, 1995; Linares et al., 2017; Cicero et al., 2021. | |
Oral synbiotic preparation containing L. plantarum and FOS | Sepsis in early infancy | Significant reduction in sepsis and lower respiratory tract infections | Promotes growth of L. plantarum ATCC202195 | Panigrahi et al., 2017. | |
Synbiotics containing five probiotics (L. plantarum, L. delbrueckii spp. bulgaricus, L. acidophilus, L. rhamnosus, Bifidobacterium bifidum) and inulin |
– | - | Adult subjects with NASH (non-alcoholic steatohepatitis) demonstrated a significant reduction of IHTG (intrahepatic triacylglycerol) | Wong et al., 2013. | |
Synbiotic products containing L. rhamnosus, Bifidobacterium lactis, inulin and oligofructose | Hepatic conditions | - | Increased level of intestinal IgA, reduced blood cholesterol levels and lower blood pressure | Pathmakanthan et al., 2002; Perez-Conesa et al., 2006. | |
L. rhamnosus CGMCC1.3724 and inulin | Obesity | Weight loss | Reduction in leptin increase in Lachnospiraceae | Sanchez et al., 2014. | |
L. acidophilus, L. rhamnosus, B. bifidum, B. longum, E. faecium and FOS | Obesity | Changes in anthropometric measurements | Decrease in TC, LDL-C and total oxidative stress serum levels | Ipar et al., 2015. | |
L. sporogenes and inulin | Type 2 diabetes | - | Significant reduction in serum insulin levels and homeostatic model assessment cell function | Tajadadi-Ebrahimi et al., 2014. | |
L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. longum, L. bulgaricus and FOS | Insulin resistance syndrome | The levels of fasting blood sugar and insulin resistance improved significantly | - | Eslamparast et al., 2014. | |
L. rhamnosus GG, B. lactis Bb12 and inulin | Cancer | Increase in probiotics in stools and decrease in Clostridium perfringens led to increase in the IL2 in polypectomised patients | Increased production of interferon-ϒ | Safavi et al., 2013. |