Skip to main content
. 2023 Oct 12;20:100935. doi: 10.1016/j.fochx.2023.100935

Table 2.

The impact of different treatment on the rehydration ratio of dehydrated vegetables.

Species Pre-treatments methods Pre-treatments conditions Drying methods Drying conditions Water activity Rehydration temperature (°C) Rehydration time (h) RR/(%)/(d.b.) References
Cabbage Blanching 100 °C, 30 s HAD 60 °C 25 ∼7.1 (Tao et al., 2019)
Cabbage Blanching 30 s US + HAD 60 °C, 492.3 W/m2, 2 h 25 7.75 (Tao et al., 2019)
Cabbage Blanching 30 s US + HAD 60 °C, 1131.1 W/m2, 1.75 h 25 ∼7.3 (Tao et al., 2019)
Cabbage US + HAD 60 °C, 492.3 W/m2, 2 h 25 ∼7.15 (Tao et al., 2019)
Cabbage US + HAD 60 °C, 1131.1 W/m2, 1.75 h 25 ∼7.25 (Tao et al., 2019)
Cabbage HAD 60 °C 25 ∼7.07 (Tao et al., 2019)
Red pepper HHAIB 110 °C, 35–40% humidity, 30 s HAID 65 °C, 14.0 ± 0.5 m/s 60 2 ∼2.0 (Wang et al., 2023)
Red pepper HHAIB 110 °C, 35–40% humidity, 60 s HAID 65 °C, 14.0 ± 0.5 m/s 60 2 ∼2.1 (Wang et al., 2023)
Red pepper HHAIB 110 °C, 35–40% humidity, 90 s HAID 14.0 ± 0.5 m/s, 65 °C 60 2 ∼2.5 (Wang et al., 2023)
Red pepper HHAIB 110 °C, 35–40% humidity, 120 s HAID 14.0 ± 0.5 m/s, 65 °C 60 2 ∼2.3 (Wang et al., 2023)
Red pepper HHAIB 110 °C, 35–40% humidity, 150 s HAID 14.0 ± 0.5 m/s, 65 °C 60 2 ∼2.4 (Wang et al., 2023)
Carrot Ethanol + US 25 kHz, 20 °C, 99.8% ethanol (v/v), 30 min HAD 25 ± 1 8 ∼85% (Santos et al., 2021)
Carrot Ethanol 99.8% (v/v) for 30 min HAD 25 ± 1 8 ∼81% (Santos et al., 2021)
Carrot Water + US 25 kHz at 20 °C, water, 30 min HAD 25 ± 1 8 ∼55% (Santos et al., 2021)
Carrot US + OD 25 kHz, 20 ± 1 °C, 99.8% (v/v) ethanol, 30 min HAD 40 °C, 4 h 25 8 ∼85% (Santos et al., 2021)
Pumpkin HAD 60 °C, 16.33 h 0.438 ± 0.021 25 3.138 ± 0.456 (Monteiro et al., 2018)
80 3.968 ± 0.140
Persimmon 10 US + OD 45 °Brix sucrose
solution, US for 10 min, 35 kHz
HAD 60 °C, 1.5 m/s 50 0.83 1.764 ± 0.032 (Bozkir et al., 2019)
Persimmon 20 US + OD 45 °Brix sucrose
solution, US for 20 min, 35 kHz
HAD 60 °C, 1.5 m/s 50 0.83 1.949 ± 0.021 (Bozkir et al., 2019)
Persimmon 30 US + OD 45 °Brix sucrose
solution, US for 20 min, 35 kHz
HAD 60 °C, 1.5 m/s 50 0.83 1.875 ± 0.044 (Bozkir et al., 2019)
Persimmon HAD 60 °C, 1.8 m/s, 7 h 80 0.4 1.833 ± 0.023 (Bozkir & Ergün, 2020)
Tomato DW HAD 55 °C, 1.5 m/s 25 ∼2.6 (Obajemihi et al., 2023)
Tomato PW HAD 55 °C, 1.5 m/s 25 2.89 (Obajemihi et al., 2023)
Tomato OD 25.8 °C, 40% sucrose solution HAD 55 °C, 1.5 m/s 25 1.89 (Obajemihi et al., 2023)
Tomato PO HAD 55 °C, 1.5 m/s 25 ∼2.0 (Obajemihi et al., 2023)
Tomato HAD 70 °C, 12 h. Room temperature
12 3.67 ± 0.05 (Tan et al., 2021)
Tomato VFD Frozen at
−80 °C for 12 h, dried
for 48 h
Room temperature
12 3.83 ± 0.21 (Tan et al., 2021)
Mushroom HAD 45 °C, 60 °C,
9 h
60 ∼420% (Xu et al., 2019)
Mushroom HAD 55 °C, 60 °C, 9 h 60 ∼442% (Xu et al., 2019)
Mushroom HAD 55 °C, 60 °C, 9 h 60 ∼445% (Xu et al., 2019)
Mushroom HAD 75 °C, 60 °C, 9 h 60 452.97% (Xu et al., 2019)
Mushroom HAD 60 °C, 2 m/s, 13.5 h 0.35 ± 0.00 40 3.33 4.64 ± 0.32 (Zhao et al., 2019)
Cabbage HAD 60 °C, 3 m/s, 8.5 ± 0.5 h 80 0.25 ∼7 (Xu et al., 2020)
Mushroom FIRD 60 °C, 2 m/s, 1350 W, 5.8 ∼ 6.2 μm (wavelength), 10.5 h, 0.056 g/g/min 0.27 ± 0.00 40 3.33 7.31 ± 1.72 (Zhao et al., 2019)
Pumpkin MWVD 1000 W, 300 W, 200 W, 3 ∼ 5 kPa, 1.28 h 0.342 ± 0.049 25 15.307 ± 0.580 (Monteiro et al., 2018)
Pumpkin MWVD 1000 W, 300 W, 200 W, 3 ∼ 5 kPa, 1.28 h 0.342 ± 0.049 80 7.176 ± 0.263 (Monteiro et al., 2018)
Pumpkin KMFD 60 °C, 90 °C,
3 ∼ 5 kPa, 3.50 h
0.385 ± 0.010 25 5.781 ± 0.320 (Monteiro et al., 2018)
Pumpkin KMFD 60 °C, 90 °C,
3 ∼ 5 kPa, 3.50 h
0.385 ± 0.010 80 6.117 ± 0.125 (Monteiro et al., 2018)
Pumpkin HAD + DIC + HAD 60 °C, 1.2 m/s, 5 KPa, 0.40 MPa, 5 KPa (DIC cycle), 0.08 h 0.98 (Benseddik et al., 2019)
Pumpkin VMFD 60 °C, 300 KPa, 100 KPa (cycles), 0.42 h 0.98 (Benseddik et al., 2019)
Cabbage MWVD 6 W/g, 1.1 ± 0.5 h 80 0.25 ∼7.5 (Xu et al., 2020)
Cabbage VD 60 °C, 100 Pa, 7.5 ± 0.6 h 80 0.25 ∼7.1 (Xu et al., 2020)
Cabbage MD+
VD
60 °C, 6 W/g, 100 Pa, 3.4 ± 0.6 h 80 0.25 ∼7.1 (Xu et al., 2020)
Cabbage MD + HAD 6 W/g, 60 °C, 3.0 m/s, 3.6 ± 0.4 h 80 0.25 ∼7.2 (Xu et al., 2020)
Chinese ginger DW IRD 60 ± 2 °C 30 ± 1 4.81 ± 0.38 (Ren et al., 2022)
Potato DW IRD 100 °C, 95% IR radiation 24 ± 1 6.33 78.3% (Rojas & Augusto, 2018a)
Chinese ginger Water + US 40 kHz, 300 W, 25 ± 1 °C for 15
min
IRD 60 ± 2 °C 30 ± 1 3.87 ± 0.28 (Ren et al., 2022)
Potato Water + US 40 kHz, 300 W, 25 ± 1 °C for 15
min
IRD 100 °C, 95% IR radiation 24 ± 1 6.33 77.7% (Rojas & Augusto, 2018a)
Chinese ginger Ethanol 75 % ethanol solution (v/v) IRD 60 ± 2 °C 30 ± 1 5.07 ± 0.30 (Ren et al., 2022)
Potato Ethanol IRD 100 °C, 95% IR radiation 6.33 76% (Rojas & Augusto, 2018a)
Scallion DW 25 ± 1 °C, IRHAD 225 W, 60 ± 2 °C, 2 m/s. 25 0.43 ∼4.5 (Wang et al., 2019)
Scallion Ethanol 25 ± 1 °C, 75% ethanol solution at a ratio of 1:8 (w/w). IRHAD 225 W, 60 ± 2 °C, 2 m/s. 25 0.43 ∼5.3 (Wang et al., 2019)
Scallion Vacuum + Water + VC 25 ± 1 °C, 0.6 bar vacuum IRHAD 225 W, 60 ± 2 °C, 2 m/s. 25 0.43 ∼4.9 (Wang et al., 2019)
Scallion Vacuum + Ethanol + VC 25 ± 1 °C,75% ethanol solution at a ratio of 1:8 (w/w), 0.6 bar vacuum IRHAD 225 W, 60 ± 2 °C, 2 m/s. 25 0.43 ∼5.8 (Wang et al., 2019)
Chinese ginger Ethanol + US
150 mL of 75 % ethanol solution (v/v), 40 kHz, 300 W, 25 ± 1 °C for 15
min
IRD 60 ± 2 °C 30 ± 1 3.02 ± 0.06 (Ren et al., 2022)
Potato Ethanol + US IRD 100 °C, 95% IR radiation 6.33 74.6% (Rojas & Augusto, 2018a)
Carrot VD + PEF 1.5 kV, 10 ∼ 1000 μs, 3.03 × 104 Pa 25 °C, 3 h 25 2.5 0.76 (Liu et al., 2020)
Carrot VD + PEF 1.5 kV, 10 ∼ 1000 μs, 3.03 × 104 Pa 25 °C, 1 h 25 2.5 0.89 (Liu et al., 2020)
Garlic OD CaCl2 of concentration 30% (w/v) US + OD + RHCD 40 kHz, 600 W, 30 °C, 60 °C, 2 m/s, 5.16 h 25 1 9 ∼ 10 (Alolga et al., 2021)
Garlic OD CaCl2 of concentration 30% (w/v) V + US + OD + RHCD 100 mbar, 40 kHz, 600 W, 30 °C, 60 °C, 2 m/s, 4.33 h 25 1 11 ∼ 12 (Alolga et al., 2021)
Garlic VFD −40 °C, −18 °C, 0.518 mbar, 13.5 ± 0.0 h 0.3453 25 0.93 (Feng et al., 2021)
Cabbage VFD −40 °C, 60 Pa, 24.0 ± 1.4 h 80 0.25 ∼7.8 (Xu et al., 2020)
Garlic IRHAD 60 °C, 2 m/s, 350 W, 2.8 ∼ 3.1 μm, 3.8 ± 0.3 h 0.3394 ∼ 0.3453 25 ∼2.0 (Feng et al., 2021)
Garlic PVD 0.01 MPa, 60 °C, 4.8 h 25 1.82 ∼ 2.00 (Feng et al., 2021)
Garlic RHCD 37% humidity, 60 °C, 2 m/s, 4.6 ± 0.1 h ∼0.35 25 0.93 (Feng et al., 2021)
Lotus (Nelumbo nucifera Gaertn.) seeds US 6.08 W/cm2, 10 min MVD 15 W/g, 20 kPa 60 3.33 ∼0.62 d.b. (Zhao et al., 2021)
Lotus (Nelumbo nucifera Gaertn.) seeds US 8.39 W/cm2, 10 min MVD 15 W/g, 20 kPa 60 3.33 ∼0.70 d.b. (Zhao et al., 2021)
Lotus (Nelumbo nucifera Gaertn.) seeds US 10.84 W/cm2, 10 min MVD 15 W/g, 20 kPa 60 3.33 ∼0.85 d.b. (Zhao et al., 2021)
Edamame HD 70 °C 0.484 ± 0.006 25 2 1.17 d.b. (An et al., 2022)
Edamame MRD 600 W, 30 °C 0.493 ± 0.003 25 2 1.30 d.b. (An et al., 2022)
Edamame HMRD 600 W, 60 °C 0.479 ± 0.004 25 2 1.23 d.b. (An et al., 2022)
Edamame PSMVD ≤ 2500 Pa 0.464 ± 0.004 25 2 1.50 d.b. (An et al., 2022)
Edamame VFD ≤ 10 Pa 0.401 ± 0.005 25 2 1.67 d.b. (An et al., 2022)
Garlic HAD 60 °C, 2 m/s Normal rehydration: 25 2 Normal rehydration: ∼2 (Zhou et al., 2021)
Vacuum rehydration: 25 Vacuum rehydration: ∼3.1
Garlic HAD 60 °C, 5.9 h 25 1.82 (Zhou et al., 2021)
Garlic VFD 0.518 mbar vacuum, cold-trap temperature of – 85 °C, 60 °C, 2 m/s 25 2 Normal rehydration: ∼1.7 (Zhou et al., 2021)
Vacuum rehydration: 25 Vacuum rehydration: ∼2.9

Note: HAD: hot air drying; VFD: vacuum freeze-drying; MD: microwave drying; IRHAD: infrared hot air drying; IRD: infrared drying; FIRD: far infrared radiation drying; MWMFD: microwave multiple flash drying; MWVD: microwave-vacuum drying; KMFD: conductive multiple flash drying; DIC: drying with instant controlled; VMFD: vacuum multiple flash drying; US: Ultrasound; VD: vacuum drying; PEF: pulsed electric fields; PVD: pulse vacuum drying; RHCD: relative humidity convective drying. HAID: Hot air impingement drying; ΔE: color difference; RR: Rehydration ratio; HHAIB: High-humidity hot air impingement blanching; EP: Electroplasmolysis; US: Ultrasound; DW: distilled water; PW: plasma functionalized water; OD: osmodehydration; PO: plasma functionalized water and osmotic dehydration; ∼: represent approximate.