Table 2.
The impact of different treatment on the rehydration ratio of dehydrated vegetables.
| Species | Pre-treatments methods | Pre-treatments conditions | Drying methods | Drying conditions | Water activity | Rehydration temperature (°C) | Rehydration time (h) | RR/(%)/(d.b.) | References |
|---|---|---|---|---|---|---|---|---|---|
| Cabbage | Blanching | 100 °C, 30 s | HAD | 60 °C | – | 25 | – | ∼7.1 | (Tao et al., 2019) |
| Cabbage | Blanching | 30 s | US + HAD | 60 °C, 492.3 W/m2, 2 h | – | 25 | – | 7.75 | (Tao et al., 2019) |
| Cabbage | Blanching | 30 s | US + HAD | 60 °C, 1131.1 W/m2, 1.75 h | – | 25 | – | ∼7.3 | (Tao et al., 2019) |
| Cabbage | – | – | US + HAD | 60 °C, 492.3 W/m2, 2 h | – | 25 | – | ∼7.15 | (Tao et al., 2019) |
| Cabbage | – | – | US + HAD | 60 °C, 1131.1 W/m2, 1.75 h | – | 25 | – | ∼7.25 | (Tao et al., 2019) |
| Cabbage | – | – | HAD | 60 °C | – | 25 | – | ∼7.07 | (Tao et al., 2019) |
| Red pepper | HHAIB | 110 °C, 35–40% humidity, 30 s | HAID | 65 °C, 14.0 ± 0.5 m/s | – | 60 | 2 | ∼2.0 | (Wang et al., 2023) |
| Red pepper | HHAIB | 110 °C, 35–40% humidity, 60 s | HAID | 65 °C, 14.0 ± 0.5 m/s | – | 60 | 2 | ∼2.1 | (Wang et al., 2023) |
| Red pepper | HHAIB | 110 °C, 35–40% humidity, 90 s | HAID | 14.0 ± 0.5 m/s, 65 °C | – | 60 | 2 | ∼2.5 | (Wang et al., 2023) |
| Red pepper | HHAIB | 110 °C, 35–40% humidity, 120 s | HAID | 14.0 ± 0.5 m/s, 65 °C | – | 60 | 2 | ∼2.3 | (Wang et al., 2023) |
| Red pepper | HHAIB | 110 °C, 35–40% humidity, 150 s | HAID | 14.0 ± 0.5 m/s, 65 °C | – | 60 | 2 | ∼2.4 | (Wang et al., 2023) |
| Carrot | Ethanol + US | 25 kHz, 20 °C, 99.8% ethanol (v/v), 30 min | HAD | – | – | 25 ± 1 | 8 | ∼85% | (Santos et al., 2021) |
| Carrot | Ethanol | 99.8% (v/v) for 30 min | HAD | – | – | 25 ± 1 | 8 | ∼81% | (Santos et al., 2021) |
| Carrot | Water + US | 25 kHz at 20 °C, water, 30 min | HAD | – | – | 25 ± 1 | 8 | ∼55% | (Santos et al., 2021) |
| Carrot | US + OD | 25 kHz, 20 ± 1 °C, 99.8% (v/v) ethanol, 30 min | HAD | 40 °C, 4 h | – | 25 | 8 | ∼85% | (Santos et al., 2021) |
| Pumpkin | – | – | HAD | 60 °C, 16.33 h | 0.438 ± 0.021 | 25 | – | 3.138 ± 0.456 | (Monteiro et al., 2018) |
| 80 | 3.968 ± 0.140 | ||||||||
| Persimmon | 10 US + OD | 45 °Brix sucrose solution, US for 10 min, 35 kHz |
HAD | 60 °C, 1.5 m/s | – | 50 | 0.83 | 1.764 ± 0.032 | (Bozkir et al., 2019) |
| Persimmon | 20 US + OD | 45 °Brix sucrose solution, US for 20 min, 35 kHz |
HAD | 60 °C, 1.5 m/s | – | 50 | 0.83 | 1.949 ± 0.021 | (Bozkir et al., 2019) |
| Persimmon | 30 US + OD | 45 °Brix sucrose solution, US for 20 min, 35 kHz |
HAD | 60 °C, 1.5 m/s | – | 50 | 0.83 | 1.875 ± 0.044 | (Bozkir et al., 2019) |
| Persimmon | – | – | HAD | 60 °C, 1.8 m/s, 7 h | – | 80 | 0.4 | 1.833 ± 0.023 | (Bozkir & Ergün, 2020) |
| Tomato | DW | – | HAD | 55 °C, 1.5 m/s | – | 25 | – | ∼2.6 | (Obajemihi et al., 2023) |
| Tomato | PW | – | HAD | 55 °C, 1.5 m/s | – | 25 | – | 2.89 | (Obajemihi et al., 2023) |
| Tomato | OD | 25.8 °C, 40% sucrose solution | HAD | 55 °C, 1.5 m/s | – | 25 | – | 1.89 | (Obajemihi et al., 2023) |
| Tomato | PO | – | HAD | 55 °C, 1.5 m/s | – | 25 | – | ∼2.0 | (Obajemihi et al., 2023) |
| Tomato | – | – | HAD | 70 °C, 12 h. | – | Room temperature |
12 | 3.67 ± 0.05 | (Tan et al., 2021) |
| Tomato | – | – | VFD | Frozen at −80 °C for 12 h, dried for 48 h |
– | Room temperature |
12 | 3.83 ± 0.21 | (Tan et al., 2021) |
| Mushroom | – | – | HAD | 45 °C, 60 °C, 9 h |
– | 60 | – | ∼420% | (Xu et al., 2019) |
| Mushroom | – | – | HAD | 55 °C, 60 °C, 9 h | – | 60 | – | ∼442% | (Xu et al., 2019) |
| Mushroom | – | – | HAD | 55 °C, 60 °C, 9 h | – | 60 | – | ∼445% | (Xu et al., 2019) |
| Mushroom | – | – | HAD | 75 °C, 60 °C, 9 h | – | 60 | – | 452.97% | (Xu et al., 2019) |
| Mushroom | – | – | HAD | 60 °C, 2 m/s, 13.5 h | 0.35 ± 0.00 | 40 | 3.33 | 4.64 ± 0.32 | (Zhao et al., 2019) |
| Cabbage | – | – | HAD | 60 °C, 3 m/s, 8.5 ± 0.5 h | – | 80 | 0.25 | ∼7 | (Xu et al., 2020) |
| Mushroom | – | – | FIRD | 60 °C, 2 m/s, 1350 W, 5.8 ∼ 6.2 μm (wavelength), 10.5 h, 0.056 g/g/min | 0.27 ± 0.00 | 40 | 3.33 | 7.31 ± 1.72 | (Zhao et al., 2019) |
| Pumpkin | – | – | MWVD | 1000 W, 300 W, 200 W, 3 ∼ 5 kPa, 1.28 h | 0.342 ± 0.049 | 25 | – | 15.307 ± 0.580 | (Monteiro et al., 2018) |
| Pumpkin | – | – | MWVD | 1000 W, 300 W, 200 W, 3 ∼ 5 kPa, 1.28 h | 0.342 ± 0.049 | 80 | – | 7.176 ± 0.263 | (Monteiro et al., 2018) |
| Pumpkin | – | – | KMFD | 60 °C, 90 °C, 3 ∼ 5 kPa, 3.50 h |
0.385 ± 0.010 | 25 | – | 5.781 ± 0.320 | (Monteiro et al., 2018) |
| Pumpkin | – | – | KMFD | 60 °C, 90 °C, 3 ∼ 5 kPa, 3.50 h |
0.385 ± 0.010 | 80 | – | 6.117 ± 0.125 | (Monteiro et al., 2018) |
| Pumpkin | – | – | HAD + DIC + HAD | 60 °C, 1.2 m/s, 5 KPa, 0.40 MPa, 5 KPa (DIC cycle), 0.08 h | – | – | – | 0.98 | (Benseddik et al., 2019) |
| Pumpkin | – | – | VMFD | 60 °C, 300 KPa, 100 KPa (cycles), 0.42 h | – | – | – | 0.98 | (Benseddik et al., 2019) |
| Cabbage | – | – | MWVD | 6 W/g, 1.1 ± 0.5 h | – | 80 | 0.25 | ∼7.5 | (Xu et al., 2020) |
| Cabbage | – | – | VD | 60 °C, 100 Pa, 7.5 ± 0.6 h | – | 80 | 0.25 | ∼7.1 | (Xu et al., 2020) |
| Cabbage | – | – | MD+ VD |
60 °C, 6 W/g, 100 Pa, 3.4 ± 0.6 h | – | 80 | 0.25 | ∼7.1 | (Xu et al., 2020) |
| Cabbage | – | – | MD + HAD | 6 W/g, 60 °C, 3.0 m/s, 3.6 ± 0.4 h | – | 80 | 0.25 | ∼7.2 | (Xu et al., 2020) |
| Chinese ginger | DW | – | IRD | 60 ± 2 °C | – | 30 ± 1 | – | 4.81 ± 0.38 | (Ren et al., 2022) |
| Potato | DW | – | IRD | 100 °C, 95% IR radiation | – | 24 ± 1 | 6.33 | 78.3% | (Rojas & Augusto, 2018a) |
| Chinese ginger | Water + US | 40 kHz, 300 W, 25 ± 1 °C for 15 min |
IRD | 60 ± 2 °C | – | 30 ± 1 | – | 3.87 ± 0.28 | (Ren et al., 2022) |
| Potato | Water + US | 40 kHz, 300 W, 25 ± 1 °C for 15 min |
IRD | 100 °C, 95% IR radiation | – | 24 ± 1 | 6.33 | 77.7% | (Rojas & Augusto, 2018a) |
| Chinese ginger | Ethanol | 75 % ethanol solution (v/v) | IRD | 60 ± 2 °C | – | 30 ± 1 | – | 5.07 ± 0.30 | (Ren et al., 2022) |
| Potato | Ethanol | – | IRD | 100 °C, 95% IR radiation | – | 6.33 | 76% | (Rojas & Augusto, 2018a) | |
| Scallion | DW | 25 ± 1 °C, | IRHAD | 225 W, 60 ± 2 °C, 2 m/s. | – | 25 | 0.43 | ∼4.5 | (Wang et al., 2019) |
| Scallion | Ethanol | 25 ± 1 °C, 75% ethanol solution at a ratio of 1:8 (w/w). | IRHAD | 225 W, 60 ± 2 °C, 2 m/s. | – | 25 | 0.43 | ∼5.3 | (Wang et al., 2019) |
| Scallion | Vacuum + Water + VC | 25 ± 1 °C, 0.6 bar vacuum | IRHAD | 225 W, 60 ± 2 °C, 2 m/s. | – | 25 | 0.43 | ∼4.9 | (Wang et al., 2019) |
| Scallion | Vacuum + Ethanol + VC | 25 ± 1 °C,75% ethanol solution at a ratio of 1:8 (w/w), 0.6 bar vacuum | IRHAD | 225 W, 60 ± 2 °C, 2 m/s. | – | 25 | 0.43 | ∼5.8 | (Wang et al., 2019) |
| Chinese ginger | Ethanol + US |
150 mL of 75 % ethanol solution (v/v), 40 kHz, 300 W, 25 ± 1 °C for 15 min |
IRD | 60 ± 2 °C | – | 30 ± 1 | – | 3.02 ± 0.06 | (Ren et al., 2022) |
| Potato | Ethanol + US | – | IRD | 100 °C, 95% IR radiation | – | – | 6.33 | 74.6% | (Rojas & Augusto, 2018a) |
| Carrot | – | – | VD + PEF | 1.5 kV, 10 ∼ 1000 μs, 3.03 × 104 Pa 25 °C, 3 h | – | 25 | 2.5 | 0.76 | (Liu et al., 2020) |
| Carrot | – | – | VD + PEF | 1.5 kV, 10 ∼ 1000 μs, 3.03 × 104 Pa 25 °C, 1 h | – | 25 | 2.5 | 0.89 | (Liu et al., 2020) |
| Garlic | OD | CaCl2 of concentration 30% (w/v) | US + OD + RHCD | 40 kHz, 600 W, 30 °C, 60 °C, 2 m/s, 5.16 h | – | 25 | 1 | 9 ∼ 10 | (Alolga et al., 2021) |
| Garlic | OD | CaCl2 of concentration 30% (w/v) | V + US + OD + RHCD | 100 mbar, 40 kHz, 600 W, 30 °C, 60 °C, 2 m/s, 4.33 h | – | 25 | 1 | 11 ∼ 12 | (Alolga et al., 2021) |
| Garlic | – | – | VFD | −40 °C, −18 °C, 0.518 mbar, 13.5 ± 0.0 h | 0.3453 | 25 | – | 0.93 | (Feng et al., 2021) |
| Cabbage | – | – | VFD | −40 °C, 60 Pa, 24.0 ± 1.4 h | – | 80 | 0.25 | ∼7.8 | (Xu et al., 2020) |
| Garlic | – | – | IRHAD | 60 °C, 2 m/s, 350 W, 2.8 ∼ 3.1 μm, 3.8 ± 0.3 h | 0.3394 ∼ 0.3453 | 25 | – | ∼2.0 | (Feng et al., 2021) |
| Garlic | – | – | PVD | 0.01 MPa, 60 °C, 4.8 h | – | 25 | – | 1.82 ∼ 2.00 | (Feng et al., 2021) |
| Garlic | – | – | RHCD | 37% humidity, 60 °C, 2 m/s, 4.6 ± 0.1 h | ∼0.35 | 25 | – | 0.93 | (Feng et al., 2021) |
| Lotus (Nelumbo nucifera Gaertn.) seeds | US | 6.08 W/cm2, 10 min | MVD | 15 W/g, 20 kPa | – | 60 | 3.33 | ∼0.62 d.b. | (Zhao et al., 2021) |
| Lotus (Nelumbo nucifera Gaertn.) seeds | US | 8.39 W/cm2, 10 min | MVD | 15 W/g, 20 kPa | – | 60 | 3.33 | ∼0.70 d.b. | (Zhao et al., 2021) |
| Lotus (Nelumbo nucifera Gaertn.) seeds | US | 10.84 W/cm2, 10 min | MVD | 15 W/g, 20 kPa | – | 60 | 3.33 | ∼0.85 d.b. | (Zhao et al., 2021) |
| Edamame | – | – | HD | 70 °C | 0.484 ± 0.006 | 25 | 2 | 1.17 d.b. | (An et al., 2022) |
| Edamame | – | – | MRD | 600 W, 30 °C | 0.493 ± 0.003 | 25 | 2 | 1.30 d.b. | (An et al., 2022) |
| Edamame | – | – | HMRD | 600 W, 60 °C | 0.479 ± 0.004 | 25 | 2 | 1.23 d.b. | (An et al., 2022) |
| Edamame | – | – | PSMVD | ≤ 2500 Pa | 0.464 ± 0.004 | 25 | 2 | 1.50 d.b. | (An et al., 2022) |
| Edamame | – | – | VFD | ≤ 10 Pa | 0.401 ± 0.005 | 25 | 2 | 1.67 d.b. | (An et al., 2022) |
| Garlic | – | – | HAD | 60 °C, 2 m/s | – | Normal rehydration: 25 | 2 | Normal rehydration: ∼2 | (Zhou et al., 2021) |
| Vacuum rehydration: 25 | Vacuum rehydration: ∼3.1 | ||||||||
| Garlic | – | – | HAD | 60 °C, 5.9 h | – | 25 | – | 1.82 | (Zhou et al., 2021) |
| Garlic | – | – | VFD | 0.518 mbar vacuum, cold-trap temperature of – 85 °C, 60 °C, 2 m/s | – | 25 | 2 | Normal rehydration: ∼1.7 | (Zhou et al., 2021) |
| Vacuum rehydration: 25 | Vacuum rehydration: ∼2.9 |
Note: HAD: hot air drying; VFD: vacuum freeze-drying; MD: microwave drying; IRHAD: infrared hot air drying; IRD: infrared drying; FIRD: far infrared radiation drying; MWMFD: microwave multiple flash drying; MWVD: microwave-vacuum drying; KMFD: conductive multiple flash drying; DIC: drying with instant controlled; VMFD: vacuum multiple flash drying; US: Ultrasound; VD: vacuum drying; PEF: pulsed electric fields; PVD: pulse vacuum drying; RHCD: relative humidity convective drying. HAID: Hot air impingement drying; ΔE: color difference; RR: Rehydration ratio; HHAIB: High-humidity hot air impingement blanching; EP: Electroplasmolysis; US: Ultrasound; DW: distilled water; PW: plasma functionalized water; OD: osmodehydration; PO: plasma functionalized water and osmotic dehydration; ∼: represent approximate.