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As large language models (LLMs) like GPT become increasingly prevalent, it is essential
that we assess their capabilities beyond language processing. This paper examines the
economic rationality of GPT by instructing it to make budgetary decisions in four
domains: risk, time, social, and food preferences. We measure economic rationality
by assessing the consistency of GPT’s decisions with utility maximization in classic
revealed preference theory. We find that GPT’s decisions are largely rational in each
domain and demonstrate higher rationality score than those of human subjects in a
parallel experiment and in the literature. Moreover, the estimated preference parameters
of GPT are slightly different from human subjects and exhibit a lower degree of
heterogeneity. We also find that the rationality scores are robust to the degree of
randomness and demographic settings such as age and gender but are sensitive to
contexts based on the language frames of the choice situations. These results suggest
the potential of LLMs to make good decisions and the need to further understand their
capabilities, limitations, and underlying mechanisms.
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ChatGPT is a sophisticated chatbot application developed by OpenAI, which employs
the state-of-the-art Generative Pre-trained Transformer model (hereafter referred to as
“GPT”). As one of the most representative examples of large language models (LLMs),
GPT uses transformer architecture and deep learning techniques to learn from vast web-
based text corpora that contain 175 billion parameters (1, 2). Thanks to its massive
volume of training data, GPT can generate human-like text with remarkable accuracy
and fluency, to the extent that human evaluators find it difficult to distinguish GPT
output from text written by humans (2). In addition to their natural language-generation
capabilities, LLMs have demonstrated impressive abilities in a wide range of domains.
For instance, they can generate computer code (3), engage in human-like conversations
on various topics (4), solve university-level math problems (5), exhibit theory of mind
ability (6), and possess psychological characteristics similar to humans (7, 8). LLMs have
also shown their aptitude in performing high-level reasoning tasks (9). The impressive
capabilities of LLMs reveal their remarkable potential, which can be likened to the
emergence of a new species: “Homo silicus” (10). Because these achievements signify a
major milestone in the development of LLMs, it is important that we understand how
GPT performs in various high-level reasoning tasks.

Here, we present a study on the economic rationality of GPT. Rationality has
been central to the methodological debate throughout various disciplines and is the
fundamental assumption in economics and related social sciences. Here, we use a classic
notion of economic rationality in revealed preference analysis that captures the extent
to which a decision maker maximizes some well-behaved utility functions for the given
budget constraints (11–17). Prior studies have computed rationality score based on choice
data in risky, intertemporal, and social decision-making in laboratory environments
(18–25) as well as expenditure data from survey and grocery stores in the field (26–
29). Economic rationality has also been measured in children (23, 30), monkeys (31),
rats, and pigeons (32). Moreover, it has been proposed as a measure of decision-making
quality and linked to a wide range of economic outcomes, such as occupation, income, and
wealth differences across individuals, and development gaps across countries (22, 33–39).
Nevertheless, the rationality of GPT remains unexplored.

We instruct GPT to act as a decision maker to make budgetary decisions in choice
environments with varying characteristics. The basic framework contains 25 decision
tasks to allocate 100 points between two commodities with different prices, which is
commonly used in experimental economics. The rationality of GPT is measured by
the consistency of these 25 decisions with the generalized axiom of revealed preference
(GARP), a necessary and sufficient condition under which a set of decisions are in
accordance with utility maximization (11, 12, 14, 15). Therefore, a rationality score
is derived from each group of 25 tasks within a given environment. Building on
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this framework, we construct four environments by specifying the
nature of the two commodities—two risky assets; two rewards
with one for now and 1 for 1 mo later; two payments with one
for the decision maker and one for another randomly paired
subject; and two types of food with meat and tomatoes. Each
environment is repeated 100 times, which generates 10,000
tasks for GPT. This design allows us to systematically measure
GPT’s rationality in different choice domains. Moreover, we
incorporate a series of variations in the randomness of GPT, the
framing of decision tasks (40), the structure of the choice format
(41), and the demographic settings of GPT (42). In order to
compare the economic rationality between GPT and humans,
we conduct a parallel experiment with 347 human subjects from
a representative US sample.

We find that GPT demonstrates a high level of rationality
in all four decision-making tasks concerning risk, time, social,
and food, and it outperforms human subjects in the rationality
score documented in both our human subject experiment
and those reported in the literature. Furthermore, we find
that GPT’s rationality scores are consistent across different
demographic characteristics and invariant to the specification of
the randomness of GPT. However, the level of rationality drops
significantly when we employ a different price framing and when
we use a discrete choice setting. These findings suggest that GPT
obtains high rationality score but has some potential limitations
in its decision-making abilities. Moreover, we estimate the
preference parameters of GPT and human subjects. We find that
the estimated preference parameters of GPT have some minor
distinctions from human subjects and show a substantially higher
degree of homogeneity.

Taken together, we use tools from revealed preference analy-
sis and experimental economics to study increasingly capable
artificial agents. There is growing interest in understanding
these agents’ behavior (43) and ongoing debate about their
performance compared with humans (44). Even though these
artificial agents exhibit surprisingly excellent performance on
many cognitive tests, some have expressed concern that such
models are still far from achieving human-level understanding
of language and semantics and exhibit considerable levels of
behavioral bias (45, 46). We contribute to the understanding
of the capacities and caveats of LLMs, by demonstrating that
LLMs can act as if they are rational decision makers. We
observe that rationality decreases when alternative price framing
or discrete choice are used. This is line with some studies
which show that GPT response can be highly sensitive to
contexts (7, 10, 45, 47–49). Our study also highlights the need
for more investigation and refinement of its decision-making
mechanisms to ensure reliable and effective decision-making in
various domains.

Methods
We examine GPT’s decision-making in different environments
using the public OpenAI application programming interface
(API). Multiple GPT variants are accessible through this API.
For our exercise, we focus on the GPT-3.5-Turbo, which powers
ChatGPT and is the most popular, stable, and cost-effective
model in the GPT family. We use APIs with Python instead of
ChatGPT, since APIs enable us to adjust the parameters of the
model and conduct massive experiments in an efficient manner.

Below, we describe how we ask GPT to “make decisions” by
introducing the construction of prompts through which GPT
returns a text in response to an input text. We then outline

multiple variations of our design to examine the robustness of
our results.

Design of the Baseline Condition.
Instruct GPT to “make decisions". Each input prompt in GPT-
3.5-turbo includes the specifications of a role (system, assistant,
or user) and corresponding contents. We instruct GPT to make
decisions in three steps. First, we specify the system’s role as
“a human decision maker” and notify the system that “you should
use your best judgment to come up with solutions that you like
most”. Second, we explain the role of assistant with respect to
the decision format: selecting a bundle of commodities from a
standard budget line with varying prices, which will be explained
in detail later, without requesting responses for any decision.
This assists in storing information about the tasks. Afterward, we
assign a series of decision-making tasks to the role of user in order
to ask GPT to make decisions.

Moreover, to confirm that GPT has understood the in-
structions, we ask three testing questions, in which we either
directly ask it to recall the decision format or ask about the
consequence of certain decision scenarios. For each question, we
simulate 25 times and GPT constantly provides correct answers.
This confirms that GPT understands the decision environment.
Detailed prompts to instruct GPT and obtain GPT responses are
provided in SI Appendix.
Decision task. GPT decision tasks follow a typical budgetary
experiment, in which a decision maker (DM) is endowed with
100 points to select a bundle of commodities, commodity A
and commodity B. The prices of the two commodities are
based on different exchange rates between points and payoffs.
Thus, a decision i obtains a tuple

(
pi, xi

)
whereby a DM selects

a bundle
(
xiA, x

i
B
)

under the prices
(
piA, p

i
B
)
. Since measuring

rationality requires a collection of such decisions, we include
25 tasks with randomly generated prices (22). After that,
we measure the economic rationality of these 25 decisions(
pi, xi

)25
i=1, based on the extent to which there exist some well-

behaved utility functions to rationalize them.
To measure rationality across different preference domains, we

vary the commodities in the decision tasks. In the first domain,
the two commodities are specified as two contingent securities,
in which the decisions capture the DM’s risk preference (21). In
the second domain, the two commodities are rewards for today
and 1 mo later, which are designed to examine the DM’s time
preference (19). In the third domain, the two commodities are
payoffs for the DM and another randomly matched subject, and
thus the allocation captures the DM’s social preference (18, 25).
Finally, in the fourth domain, the two commodities are the
amount of meat and tomatoes, which captures the DM’s food
preference (23).

We incorporate four preference domains of decisions, each
consisting of 25 tasks. To examine GPT’s consistency in behavior,
we simulate this process 100 times, resulting in 10,000 tasks for
GPT. We refer to these 10,000 tasks, the 100 GPT observations
in each preferences domain, as the baseline condition. A detailed
description of tasks and parameters for prices are provided in
SI Appendix. We set the temperature parameter to 0 (see the
explanation below) and keep the default values for all other
parameters.

Design of Conditions with Variations. To enrich our under-
standing of GPT’s economic rationality, based on the baseline
condition, we introduce variations in the temperature and the
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decision tasks. We also include demographic information in the
text of the prompt as explained below.
Variations of temperature. Temperature plays a critical role
in regulating the level of stochasticity and creativity in the
responses generated by GPT (50). It ranges from 0 to 1, with
a higher number indicating higher randomness. We set the
temperature to be 0 in the baseline condition, in which the
model gives deterministic answers (7, 9, 10). Some studies on
GPT incorporate the variation in temperature to investigate the
impact of randomness in creating text (3, 51). Following their
practice, we conduct two additional sets of conditions, with the
parameter set to be 0.5 and 1.
Variations of decision task. We design two variations of decision
tasks to change the framing of prices and to switch from
continuous to discrete choice, respectively. A detailed description
is provided in SI Appendix.

In the baseline condition, we use “1 point = X units of
commodity” to present price information, which is used in many
existing experiments with human subjects (18, 19, 33, 35). In
the price framing condition, we change it to “Y points = 1
unit of commodity”, which is an alternative framing used in
the experimental literature (52). Since the budget sets remain
constant, this allows us to examine whether framing affects the
rationality of GPT.

In the baseline condition, the DM makes choices under the
continuous budget sets. In the discrete choice condition, we
change these to discrete choices: The DM is presented with
11 discrete options chosen from the budget line and is asked
to choose one of them rather than directly choose from the
budget line (37, 53). Specifically, the third prompt changes to
the following: “In this round, there are 11 options, which are
(A0, B0), (A1, B1), ..., and (A10, B10). Please only tell me your
best option in every round”. This allows us to examine whether
rationality of GPT is robust to the change from continuous to
discrete choice sets.
Response to demographic information. We also investigate
whether the rationality exhibited by GPT varies with the
embedded demographic information. To achieve this, we include
demographic information which varies in gender, age, education
level, and minority group status. We change the input content
of the system’s role in GPT to be “I want to you to act as
a [demographic] decision maker, ...”. Variations are gender:
“female decision maker” versus “male decision maker”; age:
“young child decision maker” versus “elderly decision maker”;
education: “decision maker with an elementary school education”
versus “decision maker with a college education”; and minority:
“Asian decision maker” versus “African American decision
maker”. By doing so, we can examine whether GPT is responsive
to demographic information and whether it performs differently
under different individual characteristics. The responsiveness, if
any, is relevant to the discussion about algorithm bias (42).

Design of the Human Experiment. To obtain a better under-
standing of the behavior of GPT, we also conduct a human
subject experiment with identical decision tasks, in which 347
human subjects from a representative US sample are randomly
assigned to the baseline, price framing, and discrete choice con-
ditions.* We keep the experimental instructions between human
subjects and GPT as similar as possible. SI Appendix provides the
design and instructions of this pre-registered human experiment
(AEARCTR-0011750). This experiment was approved by The

*Variations of temperature are inapplicable among human beings, while variations of
demographics can be naturally obtained in a representative sample.

Institutional Review Board of Finance and Economics Experi-
mental Laboratory in The Wang Yanan Institute of Studies in
Economics, Xiamen University (FEEL230701), and all subjects
provided informed consent before they started the experiment.
SI Appendix, Table S1 shows the demographic characteristics of
our human subjects.

Revealed Preference Analysis.
Generalized axiom of revealed preference. Consider a DM who
selects a bundle xi ∈ RK

+ from a budget line {x : pi · x ≤ pi · xi,
pi ∈ Rk

++}. A dataset O =
(
pi, xi

)N
i=1 represents a collection

of N decisions made by the DM. We say that a utility function
U : Rk

+ → R rationalizes the dataset O if for every bundle xi,
we have:

U (xi) ≥ U (x) for all x ∈ R+K s.t. pi · x ≤ pi · xi.

LetX = {xi}Ni=1 be the set of bundles selected by the DM. We
say that xi is directly revealed to be preferred to xj, denoted by
xi %∗ xj, if the DM chooses xi when xj ∈ X is affordable (i.e.,
pi · xj ≤ pi · xi). We denote �∗ as the relation of directly strictly
revealed preference. We denote %∗∗ as the transitive closure of
%∗, which refers to the revealed preferred relation.

A utility function is well behaved if it is continuous, concave,
and strictly increasing. Afriat’s theorem (11, 14) states that a
dataset O can be rationalized by a well-behaved utility function
if and only if the dataset obeys the generalized axiom of revealed
preference (GARP):

for all xi and xj, xi%∗∗xj implies xj 6�∗xi.

Apart from GARP, two closely related notions are the weak
axiom of revealed preference (WARP): for all xi and xj in a
dataset O, xi %∗ xj implies xj 6%∗ xi., and the strong axiom
of revealed preference (SARP): for all xi and xj in a dataset
O, xi %∗∗ xj implies xj 6%∗∗ xi, which works by exploiting
transitivity. In our setting with two goods, checking WARP is
equivalent to checking SARP (54). In our discrete setting, (23)
shows that a locally non-satiated, strictly monotonic, continuous,
and concave utility may violate GARP and demonstrates the need
to use the assumption of strong monotonicity (see also ref. 55 for
discussions).
Rationality score. Afriat’s theorem provides a powerful tool for
analyzing choice behavior. A popular approach for measuring
the departure from rationality is the critical cost efficiency index
(CCEI) proposed by Afriat (12). A subject has a CCEI e ∈ [0, 1]
if e is the largest number with a well-behaved U that rationalizes
the data set for every xi ∈ X :

U (xi) ≥ U (x) for all x ∈ RK
+ s.t. pi · x ≤ e · pi · xi.

A CCEI of 1 indicates passing GARP perfectly. A CCEI less
than 1—say, 0.95—indicates that there is a utility function for
which the chosen bundle xi is preferred to any bundle that is
cheaper than xi for more than 5%. Put differently, the CCEI
can be viewed as the amount by which a budget constraint must
be relaxed in order to remove all violations of GARP, because
the DM can achieve her utility targets by spending less money
(12, 15). We compute CCEI to obtain a score of rationality for
each domain with 25 decisions.

In the revealed preference literature, there are several other
indices to score rationality (departure from GARP). These indices
include the Houtman–Maks index (HMI) (56), money pump
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index (MPI) (28), and minimum cost index (MCI) (29). We
also compute these indices and report the results as robustness
checks.

Structural Estimation for Preferences. In addition to rationality
score, we further examine the underlying preferences using
structural estimation.
Risk and time preferences estimation. In the domain of risk
preference, suppose that the DM chooses the contingent security
(xA, xB), we denote x1 = max{xA, xB} as the high outcome and
x2 = min{xA, xB} as the low outcome. In the domain of time
preference, suppose that the DM chooses the payment schedule
(xA, xB), we denote x1 = xA as the payment for today and x2 = xB
as the payment for 1 mo later. For these two domains, we assume
that the underlying utility function is given by:

U (x1, x2) = �u(x1) + (1− �)u(x2),

where the utility function u(z) =

{
1
�z

�, � ≤ 1(� 6= 0)
ln(z), � = 0

and

� ∈ [0, 1]. For risk preference, � captures the decision weight
placed on the better outcome (24, 57). When � = 0.5, we
have a standard expected utility function and when � > 0.5
(� < 0.5), the better outcome is over(under)-weighted relative
to the objective probability of 0.5. The parameter � captures risk
attitude with the parameter � = 1 − � being the Arrow–Pratt
measure of relative risk aversion.† For time preference, � captures
the weight placed on the payment today (19). When � > 0.5
(� < 0.5), it corresponds to positive (negative) time preference.
The parameter � is the curvature of the period function. When
� = 1, the DM allocates all expenditure to the time period with
lower price, and as � decreases, the DM is more desired to smooth
payments across periods.
Social and food preferences estimation. Regarding social prefe-
rence, suppose that the DM chooses the allocation (xA, xB),
we denote x1 = xA as the payment for self and x2 = xB as
the payment for the other. In the domain of food preference,
assuming that the DM chooses the bundle (xA, xB), we denote
x1 = xA as the consumption of meat and x2 = xB as
the consumption of tomatoes. Moreover, we assume that the
underlying utility function is a member of the CES family and is
given by:

U (x1, x2) = [�x�1 + (1− �)x�2 ]
1
� ,

where � ≤ 1 and � ∈ [0, 1]. For social preference, the parameter
� captures the weight placed on the self’s payment relative to
the other’s payment. � = 1 implies pure selfishness, � = 0.5
indicates fair-mindedness, and � = 0 refers to pure altruistic
(18, 25). � represents the curvature of the indifference curves,
which measures equality efficiency orientation. � = 1 indicates
that the two payments are perfectly substitute with U (x1, x2) =
�x1 + (1 − �)x2, which means that the DM is efficiency
orientated. When � → 0, the utility function approaches the
Cobb–Douglas utility function, and shares of expenditures to self
and to the other are constant. When �→−∞, it approaches to
the Leontief utility function min{�x1, (1− �)x2}, which implies
that the two payments are perfectly complemented and the DM
is equality orientated (18, 25). In a similar vein, the parameter
� in the food preference domain captures the weight placed on

†In our budget set, there is no difference between � > 1 and � = 1, because the DM will
choose corner solutions when � ≥ 1. Therefore, our estimation is conditional on � ≤ 1 in
all the four preference domains. SI Appendix provides further details about the estimation
of corner solutions.

meat relative to tomatoes and the parameter � represents the
curvature of the indifference curves as that for social preference.
We provide further details on estimation methods in SI Appendix.

Results
In this section, we first present the results from the baseline
condition, and then report whether and how the results change
with the variations in the decision tasks.

Results from the Baseline Condition.
Rationality score. Fig. 1 presents the cumulative distributions of
CCEI—the rationality score—for each of the four preference
domains. We find that 95, 89, 81, and 92 out of 100 GPT
observations for risk, time, social, and food preferences exhibit
no violations of GARP; that is, CCEI equals 1. The average
CCEI is 0.998, 0.997, 0.997, and 0.999 for risk, time, social,
and food preferences, respectively. Meanwhile, in our human
experiment, the average CCEI among human subjects is 0.980,
0.985, 0.967, and 0.963 for risk, time, social, and food
preferences, respectively. Fig. 1 displays a consistent trend that
GPT outperforms human subjects in terms of rationality. In
each of the four preference domains, GPT obtains higher CCEI
than human subjects (P < 0.01, two-sided two-sample t-tests).
In addition, we summarize studies in the revealed preference
literature. SI Appendix, Fig. S1 plots CCEI values documented
in prior studies, which range from 0.81 to 0.99 with an average
of 0.918. Consistently, we find that CCEI of GPT also surpasses
those of human subjects in all domains (P < 0.01, two-sided
one-sample t-tests).

To confirm that our chosen parameters have sufficient power
to measure rationality, we adopt the test proposed by Bronars
(58) as a benchmark, in which we generate simulated subjects

Fig. 1. Cumulative distributions of the CCEI values. This figure consists of
four subplots for four preference domains. Each subplot depicts a cumulative
distribution function (CDF) plot, which shows the proportion of CCEI values
less than or equal to a specific threshold. The light dotted lines represent
simulated subjects, the dark dashed lines represent human subjects, and the
solid lines represent GPT observations.
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by uniformly drawing random allocations along each of the
budget lines and examine their rationality. We find that 99.9%
of simulated subjects violate GARP. Fig. 1 shows the cumulative
distributions of CCEI of simulated subjects, which are lower than
both GPT observations and human subjects. We also conduct
the power analysis using the predictive success (59), the Selten
score (29), as well as bootstrapping from the sample of subjects
(18). We show that the chosen parameters have the power to
detect rationality violations, in support of the empirical validity
of our study (see SI Appendix for more information).

In addition to CCEI, we calculate other indices to measure
rationality including the Houtman–Maks index (HMI) (56),
money pump index (MPI) (28), and minimum cost index (MCI)
(29), and construct cumulative distribution plots for each index
of GPT observations, human subjects, and simulated subjects in
SI Appendix, Figs. S2–S5. Consistent with the observations based
on CCEI, results from these indices show that GPT observations
exhibit a high level of rationality across the four preference
domains and surpass those of human subjects across all domains
(P < 0.1, two-sided two-sample t-tests).
Downward-sloping demand. While GPT exhibits a high level of
rationality, it is possible that its decisions are simply clustered at
the corners or in certain areas. To address such concern, we exam-
ine whether GPT behavior respects the property of downward-
sloping demand, a fundamental principle in the analysis of
consumer behavior whereby the demand for a commodity
decreases with its price (21, 25, 60).

We measure the degree of compliance with downward-
sloping demand for GPT observations and human subjects. This
principle requires that when the relative price of a commodity in-
creases, the consumer should not increase its consumption. More
specifically, we measure whether each DM’s decisions respect this
principle by calculating the Spearman’s correlation coefficient of
ln(xA/xB) and ln(pA/pB) (60). A negative correlation indicates
an appropriate response to price fluctuations, and zero or positive
correlation indicates no response or irregular response to price
changes. Note that ln(xA/xB) is not defined in the corners. We
adjust corner choices by a small constant, 0.1% of the budget,
in each choice (60). We plot the cumulative distribution of the
Spearman’s correlation coefficients of ln(xA/xB) and ln(pA/pB)
as a proxy for the degree of downward-sloping demand for each
of the four preference domains in Fig. 2.

For GPT observations, the coefficients for risk, time, social,
and food preferences have a mean of −0.984, −0.966, −0.951,
and −0.992, while these are −0.826, −0.788, −0.681, and
−0.673 for human subjects, respectively. Overall, GPT is more
responsive to price changes than human subjects in each pref-
erence domain (P < 0.01, two-sided two-sample t-tests). Fig.
2 further illustrates that GPT observations always have negative
Spearman’s correlation coefficients, while human has a lower
proportion having negative Spearman’s correlation coefficients
(96.1% on average). This strengthens our findings based on
the rationality score and suggests that GPT is more capable of
making reasonable responses to the changes in prices than human
subjects.

In addition, for each GPT observation, SI Appendix, Figs.
S6–S9 provide comprehensive visual representations by showing
scatter diagrams and fitted lines of the shares of quantities
xA/(xA + xB) and the log-price ratio ln(pA/pB).
Preference estimation. Since choices of GPT and human subjects
are mostly consistent with well-behaved utility functions, we
proceed to estimate the underlying risk, time, social, and food
preferences.‡ In total, we have eight estimated parameters:
‡We omit GPT or human individuals with a CCEI score below 0.95 (15).

Fig. 2. Cumulative distributions of the spearman’s correlation coefficient
of ln(xA/xB) and ln(pA/pB). This figure contains four subplots for four
preference domains. The dashed (solid) lines represent human subjects (GPT
observations).

decision weight of the better outcome (�r) and utility curvature
(�r) for risk preference, weight of today (�t ) and utility curvature
(�t ) for time preference, weight for self’s payment (�s) and utility
curvature (�s) for social preference, weight for meat (�f ), and
utility curvature (�f ) for food preference. We first estimate
the preference parameters at the aggregate level by pooling all
responses of GPT observations and human subjects, respectively
(SI Appendix, Table S2). Results show that, compared to human
subjects, GPT is closer to an expect-utility maximizer (�r : 0.618
vs. 0.508 for Human vs. GPT) and has a more linear utility
curve (�r : 0.335 vs. 0.488) in risk preference; is more patient (�t :
0.513 vs. 0.504) and has a less linear utility curve (�t : 0.981 vs.
0.466) in time preference; is more other-regarding (�s: 0.735 vs.
0.512) and more efficiency-orientated (�s: 0.330 vs. 0.520) in
social preference; and is less fond of meat (�f : 0.583 vs. 0.501)
and more efficiency-orientated (�f : 0.386 vs. 0.491) in food
preference. Similar patterns can be observed in the individual-
level estimations, in which we estimate preference parameters
for each GPT decision maker and human subject, as shown in
Fig. 3 and SI Appendix, Table S3. Moreover, the scatter plots of
human subjects are more dispersed, which suggests a significantly
higher level of preference heterogeneity among human subjects
than GPT observations.

Results from the Conditionswith Variations. We examine varia-
tions in the temperature, decision tasks, and demographic
information. Fig. 4 presents the mean CCEI values and 95%
CIs across variations, and SI Appendix, Fig. S24 shows the mean
Spearman’s correlation coefficients of ln(xA/xB) and ln(pA/pB)
and their 95% CIs. We report these results in detail below.
Insensitive to variations in temperature. When the temperature
increases from 0 to 0.5 and 1, there is a higher number of
invalid responses, namely, GPT does not provide an answer to the
specified question (invalid response rate is 4.7% for temperature
of 0.5 and 9.8% for temperature of 1). Therefore, we analyze the
data conditional on those providing valid answers. We find that
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Fig. 3. Scatter plots of estimated parameters. This figure contains four
subplots for four preference domains. Each hollow circle (solid square) points
represent a human subject (a GPT observation).

as the randomness increases, the level of rationality is similar to
that in the baseline condition (Fig. 4). For each temperature and
each preference domain, we plot the cumulative distributions of
the CCEI values of GPT observations and simulated subjects
for Bronars’ test in SI Appendix, Fig. S10 and the cumulative
distributions of the Spearman’s correlation coefficients in SI
Appendix, Fig. S11. These findings suggest that randomness
increases the stochasticity and creativity in language presentations
of GPT, but not the rationality score.

There are no significant differences for the estimated Spear-
man’s correlation coefficients of ln(xA/xB) and ln(pA/pB) be-
tween the baseline and the higher temperature (SI Appendix, Fig.
S24) at the 10% level (two-sided two-sample t-tests). Similarly,
the mean of estimated preference parameters is statistically
indifferent to changes in temperature. However, the SDs of some
parameters increase with temperature (�r , �t , �s, �f : P < 0.01,
two-sample Levene tests), which suggests that high temperature
may generate greater heterogeneity in the behavior of GPT.

Fig. 4. Mean CCEI values of GPT observations across different variations.
This figure displays the average CCEI values and 95% CIs for GPT observations
under different conditions: baseline, temperature of 0.5, temperature of 1,
price framing, and discrete choices, and various demographic settings.

Sensitive to variation in the decision tasks. First, we compare the
baseline and the price framing conditions. Changing the price
framing significantly reduces GPT’s rationality level in all four
tasks (Fig. 4). Remarkably, the average CCEI for risk preference
declines to 0.901, with 34% exhibiting a CCEI below 0.9. These
values are 0.884 (48%), 0.698 (88%), and 0.894 (49%) for time,
social, and food preferences, respectively.§ In each preference
domain, CCEI values are significantly higher in the baseline con-
dition than in the price framing condition (P < 0.01, two-sided
two-sample t-tests). Moreover, the downward-sloping demand
property is impaired under the alternative price framing, with the
key Spearman’s correlation coefficients being −0.053, −0.116,
0.267, and −0.499 for risk, time, social, and food preferences,
respectively (SI Appendix, Fig. S24). SI Appendix, Figs. S13–
S16 show the disordered responses of GPT observations to price
changes in the price framing condition, which appear to be flatter
compared to those in the baseline condition.

In SI Appendix, Figs. S17 and S18, we display the CDFs
of CCEI (Spearman’s correlation coefficients) in the four
conditions: baseline and price framing conditions in both the
GPT experiment and the human experiment. We find that the
alternative price framing also reduces the rationality level and
the downward-sloping demand property in the human subjects
experiment (P < 0.05, two-sided two-sample t-tests in risk
and time preferences). However, the figures suggest that these
reductions are larger in the GPT experiment than in the human
experiment, which is further verified in OLS regression analyses
(SI Appendix, Table S4).

Second, we compare the baseline and the discrete choice
conditions. When we present GPT with a set of 11 options,
we also observe a decrease in rationality levels for discrete choices
of GPT observations for all four tasks in Fig. 4 (risk: 0.998 vs.
0.843, P < 0.01; time: 0.997 vs. 0.908, P < 0.01; social: 0.997
vs. 0.871, P < 0.01; food: 0.999 vs. 0.780, P < 0.01, two-
sided two-sample t-tests). Additionally, 51%, 32%, 33%, and
55% of GPT observations demonstrate a CCEI below 0.9 in
risk, time, social, and food preferences, respectively. SI Appendix,
Figs. S19–S22 show the demand curves of GPT observations,
which exhibit significantly more corner solutions. Consistently,
the Spearman’s correlation coefficients are −0.589, −0.497,
−0.519, and −0.533 for risk, time, social, and food preferences
(SI Appendix, Fig. S24; P < 0.01 when compared to the baseline
condition, two-sided two-sample t-tests). These suggest that GPT
is less responsive to price changes under discrete choices than
continuous choices.

SI Appendix, Figs. S23 and S24 shows the CDFs of the
CCEI (Spearman’s correlation coefficients) in baseline and
discrete choice conditions in the GPT experiment and human
experiment. Human subjects’ rationality level and the downward-
sloping demand property reduce in the discrete setting, compared
to the baseline condition (P < 0.05, two-sided two-sample
t-tests in risk and time preferences). As shown in the figures,
these reductions are larger in the GPT experiment than in the
human experiment. We also verify this observation through OLS
regression analyses (SI Appendix, Table S4). These results suggest
that GPT’s decision-making is more significantly affected by both
the framing of prices and discrete choices than human subjects.
Insensitive to demographic information. Comparing the baseline
condition and variations in demographics in the GPT experi-

§Given the low level of rationality exhibited by GPT in the price framing condition, we have
difficulty in determining that GPT’s decisions are consistent with a well-behaved utility
function. Therefore, we refrain from adopting the preference estimation approach under
this condition (15). The situation is identical in the discrete choice condition as described
below.
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ment, we find that CCEI values, Spearman’s correlation coef-
ficients of ln(xA/xB) and ln(pA/pB), and estimated preference
parameters are all insensitive to variations of demographic factors
embedded in the prompts to request responses from GPT (Fig. 4,
SI Appendix, Fig. S24 and Tables S2 and S3).

These are in contrast to results of our human experiment
(SI Appendix, Tables S5 and S6) and prior studies where
rationality score and preference have been shown to differ across
demographic groups (22, 28, 61). The fact that GPT’s decision-
making process remains consistent across demographic variables
suggests that GPT does not exhibit algorithmic bias in terms of
decision-making quality, which provides a measure of reassurance
regarding its fairness and consistency across diverse user groups.

Discussion
We conduct a study to assess the rationality of GPT, a popular
large language model, using revealed preference analysis. Our
findings demonstrate that GPT is able to display a high level of
rationality in decision-making related to risk, time, social, and
food preferences. We also observe that increasing the randomness
of GPT does not significantly impact its performance. Further-
more, our analysis reveals that the level of rationality of GPT
remains constant across different demographic characteristics,
which indicates that it does not exhibit an algorithm bias.
However, we observe a significant drop in rationality when we
use a less standard presentation of prices or change the choice set
from continuous to discrete. This suggests that GPT may have
limitations in terms of sensitivity to contexts and frames.

Our study contributes to the ongoing discussions of the
performance of GPT in various domains; these include reasoning,
logic, math, language processing, and identifying factual errors
(45). In addition to cognitive techniques and practical skills, some
researchers have explored whether GPT can exhibit human-like
decision-making abilities or perceive others’ thoughts (6, 10).
Our study adds to these parallel studies by subjecting GPT
to traditional decision-making tasks and employing a set of
measures to systematically describe its behavior. Our work aligns
with recent calls to study machine behavior to “reap their
benefits and minimize their harms” (43). By providing insights
into GPT’s decision-making capacity, we can better under-
stand how to optimize its performance and address potential
limitations.

Our study is situated within the growing literature on AI-
based decision support tools. Many researchers have explored
the usefulness of leveraging AI in various decision-making
domains, such as bail decisions (62); clinical diagnosis (63); work
arrangements (64); stock price forecasts (65); job recruitment
(66); product or content consumption (67, 68); and mathematics
development (69). Unlike these algorithms, which require data
input and training, GPT is a language-based model that provides
a direct question-and-answer service for normal users. Given
its high level of rationality in decision-making across various
domains, our study proves the potential of GPT as a general
AI-based decision-support tool. The user-friendly interface and
versatility of GPT render it a promising option for individuals
and organizations seeking easy-to-use AI-based advice.

Our paper makes contributions to the literature on rationality
and experimental methods. First, we demonstrate the effective-
ness of experimental economics methods in studying choice
behavior of artificial intelligence (43), which adds earlier studies
of children (23, 30), monkeys (31), rats, and pigeons (32).
Second, our work highlights the potential of large language

models like GPT to streamline experimental research and yield
new data and insights (10). Finally, studying the choice behavior
of artificial intelligence can provide an important benchmark
for understanding natural intelligence. For example, our under-
standing of how LLMs make decisions could help reveal general
principles that govern both language intelligence and decision
intelligence (70). By synthesizing insights from these various
domains, our paper offers a unique perspective on the nature
of rationality and broadens the methods that can be used to
study it.

As an initial assessment of the economic rationality of GPT,
our study has several limitations. First, our study examines the
choice behavior of GPT but does not explore the mechanisms
that underlie our observations. For example, we find that GPT
responses are highly sensitive to contexts and frames. This may
be due to the reflection of biases presented in the existing data
(71, 72), the insufficient training of texts of the alternative
contexts and frames (3, 5), or the tendency for LLMs to exploit
spurious correlations or statistical irregularities in the data set
under dissimilar tasks (73). In particular, ref. 74 suggests that a
significant source of LLMs bias originates from a corpus-based
heuristic using the relative frequencies of words. The “50-50
split” or “equal split” are high-frequency texts in allocation set-
tings, and GPT can adapt this corpus-based heuristic and exhibit
the tendency to choose the midpoint under an “unfamiliar” task
with the alternative price framework. Similarly, “all or nothing”
can be high-frequency texts under the presentation of options
context, so GPT exhibits the tendency to choose the first or
last option under an “unfamiliar” discrete choice condition.
Recent studies have documented similar patterns in different
environments (7, 10, 48, 49, 75).

In addition, our study reveals that demographic factors do not
significantly impact GPT’s rationality or estimated preference
parameters. This contrasts with the majority of the empirical
literature, including our human subject experiment, where
demographic factors often play a significant role. The lack
of responsiveness to demographics aligns with the concept of
hyperaccuracy distortion (76), which refers to the distortion
resulting from the extensive efforts to align LLMs with human
ethics such as the censorship of demographic information to
reduce and prevent problematic outputs. In conclusion, with
some speculative conjectures, we leave it to future studies to
explore the mechanisms that underlie GPT’s choice behavior
and open the black-box of this technology.

Second, we focus on economic rationality as defined by
revealed preference analysis, whereas rationality is often defined
more broadly in the literature to include various decision rules
and heuristics (40, 77, 78). Third, we use a simple experimental
environment with only two commodities to present budgetary
decisions. However, studying rationality in more realistic settings,
such as shopping behavior in a supermarket and portfolio choices
in the financial markets would be more challenging yet important.
Our study shows that economic rationality can emerge in GPT
when decision contexts are simple and framed in specific ways.
Future research is needed to investigate the broader applications
of artificial intelligent agents as they continue to evolve.

Materials and Methods

Preference Utility Estimation. Once the DM’s CCEI is sufficiently to justify
treating the data as generated utility functions of well-behaved behavior, another
interest is to estimate the preference parameters of the DM. Our estimations
will be made for each DM separately on the assumption of the underlying utility
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function commonly employed found in the prior literature to capture risk, time,
social, and food preferences.
Risk preference. For the DM’s choice of contingent securities x : (xA, xB),
referring to ref. 24, we assume x1 is the better outcome, x1 = max{xA, xB}, and
x2 is the worse outcome, x2 = min{xA, xB}. We estimate the risk preference
of the DM by a functional form of disappointment aversion (DA) introduced by
ref. 57:

U(x1, x2) = �u(x1) + (1− �)u(x2),

where u(z) is the CRRA utility function:

u(z) =

{
1
� z

� � ≤ 1(� 6= 0)
ln(z) � = 0.

The parameter � ∈ [0, 1] is the weight placed on the better outcome. For
� > 0.5 (� < 0.5), the better (worse) outcome is over weighted relative to the
objective probability (of 0.5). If � = 0.5, we have a standard expected utility
decision maker. The parameter � = 1− � ≥ 0 is the Arrow–Pratt measure of
relative risk aversion.
Time preference. Following the method of ref. 19, we use a time separable
period utility function to estimate the DM’s time preference from intertemporal
decisions of the payoff between today and 1 mo later x : (xA, xB), with the
assumption that background income is zero:

U(xA, xB) = �u(xA) + (1− �)u(xB),

where u(z) is the period utility function:

u(z) =

{
1
� z

� � ≤ 1(� 6= 0)
ln(z) � = 0.

The parameter � ∈ [0, 1] is the weight placed on the today. For � > 0.5
(� < 0.5), today is over weighted relative to 1 mo later. The parameter � ≤ 1
is the curvature of the period utility function.
Social preference. For capturing DM’s social preferences in choice x : (xA, xB),
the payoff of self and the other, following the method of refs. 18 and 25, we
assume that U(xA, xB) is a member of the CES family. It is given by

U(xA, xB) = [� (xA)
� + (1− �) (xB)

�]1/�
.

The CES specification is very flexible, spanning a range of well-behaved utility.
The parameter � ∈ [0, 1] represents the relative weight on the payoff for the
self of the DM. � = 0.5 indicates fair-mindedness, whereas � = 1 indicates
pure selfishness and � = 0 indicates pure selflessness. The parameter � ≤ 1
represents the curvature of the indifference curves (equality-efficiency tradeoffs,
an important implication in social preference).�→ 0 indicates a Cobb–Douglas
function. When � → 1, the utility approaches perfect substitutes: �xA+
(1− �)xB; when �→ −∞, the utility approaches Leontief: min{�xA, (1 −
�)xB}. � represents “equality–efficiency” trade offs. � > 0 (� < 0) indicates
toward efficiency (increasing total payoffs) because the expenditure decreases
when the relative price increases.

Food preference. For DM’s choice x : (xA, xB) in food preference, the quantities
of meat, and the quantities of tomatoes, we assume that U(xA, xB) is a member
of the CES family. It is given by:

U(xA, xB) = [� (xA)
� + (1− �) (xB)

�]1/�
.

The parameter � ∈ [0, 1] represents the relative weight on the utility of
meat. The parameter � ≤ 1 represents the curvature of the indifference curves.
�→ 0 indicates a Cobb–Douglas function, which implies that expenditures on
meat and tomatoes are equal to fractions � and 1 − �, respectively. � > 0
(� < 0) indicates a decrease in the relative price of meat and tomatoes (pA/pB)
lowers (raises) the fraction of tomatoes in total expenditure.
Econometric specification. For the four utility functions above, the first-order
conditions at the optimal choice (xA, xB), given (pA, pB)¶, can be written as
follows:

ln(xA/xB) =
1

�− 1

[
ln(pA/pB) + ln

1− �
�

]
.

Because ln(x1/x2) is not well defined in corner solutions, referring to the
method of refs. 25, 38, and 39, the demand function is given by:

xA =

[
g

(pA/pB)r + g

]
E
pA

,

where E is the expenditure, r = �/(1 − �), and g = [�/(1− �)]1/(1−�).
This generates the following econometric specification: pAxA

E =
g

(pA/pB)r+g .

Note again that expenditure shares are bounded between zero and one. We
can generate estimates of g and r using nonlinear tobit maximum likelihood
and use this to infer the values of the underlying � and � for four preference
domains.

Data, Materials, and Software Availability. Code and data for the cur-
rent study are publicly available through https://www.dropbox.com/scl/fo/
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