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Abstract: In recent years, antibacterial coatings have become an important approach in the global
fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry
have led to a plethora of materials and chemical compounds that have the potential to create
antibacterial coatings. However, insufficient attention has been paid to the analysis of the techniques
and technologies used to apply these coatings. Among the various inorganic coating techniques,
atomic layer deposition (ALD) is worthy of note. It enables the successful synthesis of high-purity
inorganic nanocoatings on surfaces of complex shape and topography, while also providing precise
control over their thickness and composition. ALD has various industrial applications, but its practical
application in medicine is still limited. In recent years, a considerable number of papers have been
published on the proposed use of thin films and coatings produced via ALD in medicine, notably those
with antibacterial properties. The aim of this paper is to carefully evaluate and analyze the relevant
literature on this topic. Simple oxide coatings, including TiO2, ZnO, Fe2O3, MgO, and ZrO2, were
examined, as well as coatings containing metal nanoparticles such as Ag, Cu, Pt, and Au, and mixed
systems such as TiO2-ZnO, TiO2-ZrO2, ZnO-Al2O3, TiO2-Ag, and ZnO-Ag. Through comparative
analysis, we have been able to draw conclusions on the effectiveness of various antibacterial coatings
of different compositions, including key characteristics such as thickness, morphology, and crystal
structure. The use of ALD in the development of antibacterial coatings for various applications was
analyzed. Furthermore, assumptions were made about the most promising areas of development. The
final section provides a comparison of different coatings, as well as the advantages, disadvantages,
and prospects of using ALD for the industrial production of antibacterial coatings.

Keywords: atomic layer deposition; antibacterial coatings; zinc oxide; titanium oxide; silver coatings;
medical implants

1. Introduction

Different nanomaterials can provide strong bactericidal and bacteriostatic effect, i.e., re-
duce the adhesion of individual bacteria and the rate of colony formation, as well as inhibit
their proliferation [1–3]. The global COVID-19 pandemic has dramatically increased interest
in and demand for more effective antimicrobial and antiviral nanocoatings [4,5]. It has also
sparked a wave of innovation. Innovators are using a wide range of approaches, including
traditional biocides, photocatalytic coatings, and new nanocoatings. In addition, research
is actively underway to improve processes for obtaining known antibacterial nanocoatings.

To date, a wide variety of methods have been used to produce antibacterial nanocoat-
ings. These deposition techniques use different physical and chemical processes and
have been reviewed in a number of publications [5–7]. Among these technologies, atomic
layer deposition (ALD) is particularly noteworthy. ALD is a successfully developing
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industrial technology, but it is mainly used in microelectronics [8,9], Li-ion battery mod-
ification [10,11], sensors [12,13], and catalysis [14,15], and it has not yet been practically
applied in the medical industry. At the same time, a significant number of papers have been
published to date in which ALD has been successfully applied to antibacterial coatings. In
recent years, there has been a crisis in the reproducibility of scientific publications [16,17],
whereas ALD is a standardized and automated method and its results are usually well
reproducible in most commercial and handmade equipment [18,19]. Therefore, a literature
review on the synthesis of antibacterial coatings via ALD can provide a fairly reliable
comparative analysis of the results obtained by different research groups and thus provide
new reliable conclusions.

ALD is a method of synthesizing inorganic thin films and coatings based on the reaction
of chemical groups on the substrate surface with reagents in the gas phase [20,21]. A special
feature of the method is the self-saturating nature of such reactions, as the reactive groups on
the substrate surface are depleted. Once saturation is reached, these groups can be recovered
by the next chemical reaction. The self-saturation and recovery processes can be carried
out cyclically, allowing a controlled build-up of the coating with high thickness accuracy
(Figure 1). Since chemical reactions and film growth occur only at the substrate–gas phase
interface, the resulting coatings are characterized by high thickness uniformity, even on
substrates with complex topography and porous substrates (conformality) (Figure 1) [22].
Because the process is based on chemical reactions with the substrate surface, the resulting
coatings are chemically bonded to the substrate and therefore have high adhesion. Another
important feature of ALD is the ability to run the process at relatively low temperatures, in
some cases close to room temperature, which allows the coating of temperature sensitive
substrates such as polymers, fabrics, and various biological substrates.

Antibiotics 2023, 12, x FOR PEER REVIEW 2 of 39 
 

To date, a wide variety of methods have been used to produce antibacterial nano-

coatings. These deposition techniques use different physical and chemical processes and 

have been reviewed in a number of publications [5–7]. Among these technologies, atomic 

layer deposition (ALD) is particularly noteworthy. ALD is a successfully developing in-

dustrial technology, but it is mainly used in microelectronics [8,9], Li-ion battery modi-

fication [10,11], sensors [12,13], and catalysis [14,15], and it has not yet been practically 

applied in the medical industry. At the same time, a significant number of papers have 

been published to date in which ALD has been successfully applied to antibacterial 

coatings. In recent years, there has been a crisis in the reproducibility of scientific publi-

cations [16,17], whereas ALD is a standardized and automated method and its results are 

usually well reproducible in most commercial and handmade equipment [18,19]. There-

fore, a literature review on the synthesis of antibacterial coatings via ALD can provide a 

fairly reliable comparative analysis of the results obtained by different research groups 

and thus provide new reliable conclusions. 

ALD is a method of synthesizing inorganic thin films and coatings based on the re-

action of chemical groups on the substrate surface with reagents in the gas phase [20,21]. 

A special feature of the method is the self-saturating nature of such reactions, as the re-

active groups on the substrate surface are depleted. Once saturation is reached, these 

groups can be recovered by the next chemical reaction. The self-saturation and recovery 

processes can be carried out cyclically, allowing a controlled build-up of the coating with 

high thickness accuracy (Figure 1). Since chemical reactions and film growth occur only 

at the substrate–gas phase interface, the resulting coatings are characterized by high 

thickness uniformity, even on substrates with complex topography and porous sub-

strates (conformality) (Figure 1) [22]. Because the process is based on chemical reactions 

with the substrate surface, the resulting coatings are chemically bonded to the substrate 

and therefore have high adhesion. Another important feature of ALD is the ability to run 

the process at relatively low temperatures, in some cases close to room temperature, 

which allows the coating of temperature sensitive substrates such as polymers, fabrics, 

and various biological substrates. 

 

Figure 1. Diagram showing the main benefits of ALD. 

Due to the nature of the chemical processes, ALD is best suited for the synthesis of 

oxides and their mixtures or nanolaminates. Metals such as Ag, Cu, Au, Ni, and Pt can 

also be produced via ALD, but due to the peculiarities of nucleation, individual nano-

particles usually grow rather than a continuous film growing [23,24]. One of the disad-

vantages of this method is the low growth rate. Since only a fraction of a monomolecular 

layer grows during an ALD cycle of several seconds to several minutes, the normal 

growth rate for most ALD processes does not exceed tens of nanometers per hour. 

Therefore, ultrathin films with thicknesses ranging from a few nanometers to tens of 

nanometers, and in a few cases up to several hundred nanometers, are typically obtained 

via ALD. 

Despite the low growth rate, nanocoatings of inorganic bactericidal materials ob-

tained via ALD can find wide applications in a variety of products such as dental and 

Figure 1. Diagram showing the main benefits of ALD.

Due to the nature of the chemical processes, ALD is best suited for the synthesis of
oxides and their mixtures or nanolaminates. Metals such as Ag, Cu, Au, Ni, and Pt can also
be produced via ALD, but due to the peculiarities of nucleation, individual nanoparticles
usually grow rather than a continuous film growing [23,24]. One of the disadvantages of
this method is the low growth rate. Since only a fraction of a monomolecular layer grows
during an ALD cycle of several seconds to several minutes, the normal growth rate for
most ALD processes does not exceed tens of nanometers per hour. Therefore, ultrathin
films with thicknesses ranging from a few nanometers to tens of nanometers, and in a few
cases up to several hundred nanometers, are typically obtained via ALD.

Despite the low growth rate, nanocoatings of inorganic bactericidal materials obtained
via ALD can find wide applications in a variety of products such as dental and orthopedic
implants [25–28], contact lenses [29], touch screens [30–32], antibacterial textiles [33–36],
and water purification systems [37–39].

Microbiocidal and microbiostatic effects are possible for inorganic oxide and metallic
nanoscale coatings. The microbicidal effect is achieved by various mechanisms such as
the generation of reactive oxygen species (ROS), ion permeation, and the “contact-killing”
mechanism. ROS such as hydrogen peroxide (H2O2), superoxide (O2

−), hydroxyl radical
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(•OH), and singlet oxygen (1O2) cause oxidative stress by directly damaging the lipids of
bacterial cell membranes, resulting in the loss of membrane function [40]. Ions of many
inorganic compounds can penetrate bacterial membranes and disrupt metabolic processes
and ribonucleic acid (RNA) replication [41]. In addition, some nanocoatings, due to their
special morphology and surface topography, can disrupt the integrity of bacterial cell walls
and implement the “contact-killing” mechanism.

The influence of surface hydrophilicity should also be considered when analyzing
antibacterial properties. Unfortunately, it is not possible to say unequivocally which
level of hydrophilicity/hydrophobicity is ideal for the best antibacterial properties. The
optimum surface hydrophilicity depends on the application. For example, in the case
of medical implant coatings, a more hydrophilic surface favors the sorption of various
peptides and biomolecules, host cells, and bone extracellular matrix, and thus microbial
pathogens lose the “race for the surface” [42]. On the other hand, hydrogen bonding and
weak hydrophobic interactions between bacterial peptidoglycan and the surface can easily
facilitate bacterial adhesion on a moderately wettable surface [41]. Surface charge is also
important, as bacterial surfaces are usually negatively charged and a positive surface charge
of coatings favors bacterial adhesion [41]. In addition, surface morphology and topography
can significantly influence bacterial cell adhesion, as a surface with a different morphology
provides different conditions in terms of the size and number of contact sites for bacteria.

At very small thicknesses, typical for ALD coatings, the influence of the substrate on
wettability, structure, and defects is manifested. In addition, due to the significant share of
the defective near-surface layer in the total volume of nanocoatings, their thickness largely
determines their functional properties, including their antibacterial activity.

Therefore, in order to analyze the antibacterial effect of different coatings, not only
should the chemical composition of the coating be taken into account, but also its thick-
ness [43], topography and morphology, hydrophilicity, and surface charge [44], and, in the
case of the photocatalytic mechanism of ROS generation, the crystalline structure of the
coatings is fundamental [45].

In this review, we provide a detailed analysis of the use of various inorganic coatings
produced via ALD as antibacterial coatings. The results section of the review is structured
according to the chemical composition of the coatings, but the following sections also pro-
vide a discussion of the results, with particular emphasis on areas of practical application,
comparing the results for different compounds and analyzing the influence of the above
factors on the antibacterial performance. Finally, in the last section, an attempt is made to
evaluate the future prospects of ALD.

2. Methods
Literature Search

The comprehensive electronic search was carried out using the Scopus database. The
search and analysis of the data was partly conducted using PRISMA (Preferred Reporting
Items for Systematic Review and Meta-Analyses) [46]. The Supplementary File has a
thorough explanation of how we searched the literature, determined which materials to
include or exclude, and analyzed the data.

3. Results
3.1. Titanium Oxide
3.1.1. Photocatalytic Generation of ROS

Despite the ease of obtaining titanium oxide via ALD, there are not many studies
on its antibacterial properties (Table 1). The antibacterial activity of titanium oxide is
strongly dependent on the influence of near ultraviolet (UV) light on the material. TiO2
is a semiconductor with a band gap of about 3.2 eV and therefore electron–hole pairs are
formed under UV irradiation with a wavelength of less than 380 nm. In the presence of
water, the conduction band electrons can react with molecular oxygen to form superoxide
anions (O2

−) but the valence band holes oxidize water to hydroxyl radicals (•OH) [47]
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(Figure 2a). These ROS can readily break down organic matter, disrupting the cell walls of
bacteria and killing them.

Table 1. Results of the study of antibacterial ALD TiO2 coatings.

Motivation Support/Precursors ALD
Temperature/Thickness Bacteria/Irradiation Results Ref.

Examine antibacterial
coatings for purifying water. Si/TiCl4/H2O 100, 200, 300 ◦C/50 nm E. coli/

UV irradiation

Increasing ALD temperature from 200 ◦C
to 300 ◦C improves TiO2 photocatalytic
activity but does not have an impact on

antibacterial activity. E. coli survival:
200 ◦C–61%, 300 ◦C–66%.

[48]

Study the effect of coatings
with different morphology
and structure on osteoblast,

fibroblast functions, and
bacterial activities.

Ti/TDMAT/H2O 120, 160, 190 ◦C/100 nm S. aureus, E. coli,
MRSA

TiO2 inhibit adhesion and growth bacteria
and fibroblast but improve osteoblasts
adhesion and proliferation. The 160 ◦C
sample (amorphous) showed the best
antibacterial activity. An increase in

nanoscale roughness and greater
hydrophilicity contribute to increased

protein adsorption, which may affect the
cellular/bacterial activities.

[49]

The study of photocatalytic
processes in antibacterial

activity TiO2.

Black Si and SiO2
nanopillars/(no data) No data/50 nm E. coli

The increase in the light absorption does
not lead to an increase in ROS production.

TiO2-coated nanopillars arrays made of
SiO2 have 73% higher bactericidal

efficacies than those made of Si.

[50]

Study of the synergic effect
present in mixed

anatase/rutile TiO2 on
antibacterial properties.

Rutile-TiO2 nanotubes
(RTNT)/

TDMAT/H2O

250 ◦C
Annealing—450 ◦C

2 h/10 nm

E. coli/
UV light

irradiation

A considerable increase in photocatalytic
activity and ROS generation using RTNT

coated with anatase-TiO2 compared to
only rutile or anatase. A considerable
increase in bactericidal activity using

RTNT coated with A-TiO2 compared to
single R or A-TiO2 nanotubes.

[45]

Examine surface coating of
nanoporous Al2O3 for

controlled pore
size reduction.

Porous Al2O3
membranes/TiCl4/H2O 300 ◦C/4.3 and 8.6 nm S. aureus, E. coli,

UV irradiation

The 20 nm pore size TiO2-coated
nanoporous alumina membrane inhibited
microbial adhesion while the 100 nm pore

size TiO2-coated membrane did not.

[51]

Examine the efficiency of a
bacteria-resistant coating for
the PDMS cochlear implants.

PDMS 1/TDMAT/O2
plasma 100 ◦C/(10–40 nm) E. coli

TiO2-coated surfaces save the integrity of
polymeric materials and reduce E. coli

colonization and biofilm formation with
protein quantity on ALD- and

lymphoproliferative diseases (LPD) treated
samples being reduced by 44 and 41%.

Confocal laser scanning
microscopy—biofilm reduction of 91% for

ALD-coated surfaces.

[52]

Studies of antibacterial
properties of TiO2 deposited

on polymers used for
catheters and contact lenses.

PU 2 and PDMS/
TiCl4/H2O 80 ◦C/50–200 nm

Candida albicans
UV and

without UV

TiO2 suppressed the yeast hyphal
transition of C. albicans onto PU; however,

a high adhesion of C. albicans was
observed. For PDMS + TiO2, the yeast

adhesion did not change, as observed in
the control. After UV treatment,

TiO2+PDMS had better reduction in the
colony-forming unit CFU (up to 59.5%)

compare to the uncoated PDMS, while no
difference was observed in

TiO2-covered PU.

[29]

Improve the surface
characteristics of
denture PMMA.

PMMA 3/TDMAT/O3 65 ◦C/30 nm Candida albicans
C. albicans reduction reached 63% to 77%

for the attachment test and 56% for
biofilm formation.

[53]

1 PDMS—polydimethylsiloxane. 2 PU—polyurethane. 3 PMMA—polymethyl methacrylate.

The disruption of cell wall integrity due to ROS action can be observed via scanning
electron microscopy. For example, Zhang et al. observed a significant bactericidal effect
due to cell membrane damage of E. coli on the surface of TiO2 nanoarrays after sunlight
irradiation (Figure 2b–e) [39]. In fact, according to a number of studies [29,30,39,54],
significant antibacterial and antifungal activity is only shown when TiO2 is irradiated in
the ultraviolet range. According to the results of Godlewski et al., who tested various
ALD oxides on 16 different strains without additional illumination, TiO2 has significantly
less bactericidal activity than not only ZnO but also ZrO2, HfO2, and Al2O3 [55]. The
question of which types of ROS are the most active and play a more important role in the
antibacterial effect of remains open, but Zhang et al. showed that hydroxyl radicals are
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predominantly formed and determine the activity against E. coli (Figure 2f–h) for TiO2
nanoarrays obtained using combination ALD and solvothermal deposition [39].
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Figure 2. (a) The mechanism of the antibacterial activity of titanium oxide. Adapted with permission
from Ref. [47]. (b–e) Antibacterial activity of the pristine polytetrafluoroethylene (PTFE) and TiO2

composite membranes. Representative SEM images of E. coli cells on (b) pristine PTFE membrane,
TiO2 nanoparticle-PTFE composite membrane, 200 ALD cycles (TiNP200-PTFE membrane), (d) TiO2

nanoarray-PTFE composite membrane, 200 ALD cycles (TiNA200-PTFE membrane), and (e) TiNA200-
PTFE membrane with sunlight irradiation. (f) Relative live cell numbers of E. coli cells after 3 h contact
with different composite membranes, determined by plate-counting CFUs, normalized to the results
of the PTFE membrane that had been presoaked in alcohol, and rinsed for full membrane wetting.
Values marked with an asterisk (*) are significantly different from the value of the random sample
(n = 3; p < 0.05). Under a solar simulator, the illumination intensity was ∼8 × 104 lux. (g,h) Analysis of
antibacterial mechanisms for pristine PTFE and TiO2 composite membranes: (g) cumulative hydroxyl
radical generation over time indicated by the formation of fluorescent 2-hydroxyterephthalic acid
(hTPA) from the reaction with terephthalate; (h) H2O2 concentration measured by red-fluorescing
Amplex Red Assay (10-acetyl-3,7-dihydroxyphenoxazine in the presence of horseradish peroxidase).
Adapted with permission from Ref. [39]. Copyright 2021 American Chemical Society.

However, even when UV radiation is used, the results obtained by different authors
vary considerably. The photocatalytic activity of TiO2 is strongly dependent on impurities
and structural defects, which are particularly abundant in nanocoatings. Thermally gener-
ated defects of TiO2 could reduce the lifetime of the photogenerated electron–hole pairs, so
the use of low temperature processes can help to reduce these defects [56]. In addition, the
thickness of the coatings and the specific surface area can be important factors in increasing
the number of ROS formed. Absorption of UV radiation extends to micron thicknesses but
diffusion of ROS to the surface is only limited by the surface layer of a few nanometers
(Figure 3) [47,50]. For ultrathin nanofilms, the substrate material also plays an important
role, as the efficiency of photocatalytic antibacterial surfaces is limited by the absorption of
light in it [47,50].
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Figure 3. (a) The two loss mechanisms in planar photocatalytic films: reflection of incident light and
recombination of photogenerated charge carriers. Only excitons generated within a few diffusion
lengths from the surface (active layer) reach the surface. (b) TiO2-coated nanopillars that generate
ROS that must diffuse out of the nanostructured valleys before it can damage bacteria. The optical
properties of nanopillars material (base pillar) affect light absorption in photocatalytic coating.
Adapted with permission from Ref. [50]. Copyright 2020 American Chemical Society.

However, there is evidence that nanocoatings can generate ROS even without UV
irradiation because they have many defects in their structure that add new levels to the
forbidden band of the material. The antibacterial and antifungal activity of TiO2 under
dark measurements has indeed been recorded in many studies [29,39,49,52,53,57,58]. How-
ever, the most likely cause of this phenomenon is a change in wettability or other surface
properties after coating. In most of these studies, the authors observed an increase in the
hydrophilicity of the surface, which leads to the realization of the microbiostatic effect, i.e., a
decrease in the adhesion of bacteria and their ability to form a biofilm. This effect is particu-
larly evident for coatings applied to polymeric substrates such as polytetrafluoroethylene
(PTFE) [39], polyamide 66 [58], and PDMS [52]; the initial surface of which is hydrophobic
and with the application of coatings is significantly hydrophilized.

3.1.2. Morphology and Topography of Surface

Surface morphology and topography can also be a critical factor in determining
antibacterial properties. Surfaces with a certain morphology can cause significant stretching
of the bacterial cell membrane, resulting in piercing (Figure 4a). Such a disruption of cell
membranes was observed by Singh et al. on samples of black silicon nanopillars coated
with TiO2 using ALD, spin coating, and spray coating (Figure 4e–p). In addition to the
contact-killing effect, the surface morphology can significantly influence or even determine
the type of bacterial adhesion by changing the area of the contact zones or the charge and
wetting of the surface (Figure 4b–d). For example, the TiO2-coated nanoporous alumina
membrane with a pore size of 20 nm inhibited the adhesion of S. aureus and E. coli, whereas
the TiO2-coated membrane with a pore size of 100 nm did not [51]. A significant influence of
surface morphology has also been reported in [37] where smooth ALD coatings, nanotubes,
and TiO2 nanoparticles were compared. Nanomaterials with more developed surface
morphology showed better antibacterial activity against E. coli.
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Figure 4. General strategies for the development of antibacterial surfaces are based on (a) contact
killing, (b) the area of the contact zones, (c) electrostatic, and (d) wetting of the surface; (e–h) 45◦

view SEM images: (e) Black Si (B-Si) and (f) ALD-coated B-Si (AT_B-Si); mesoporous nanoparticles:
(g) spin-coated (Spin_MT_B-Si) and (h) spray-coated (Spray_MT_B-Si) on B-Si (Scale bar: 1 µm).
(i–p) Scanning electron microscopy images of bacteria on different substrates: (i) undamaged
bacteria on flat Si; (j–l) bacterial cell wall disruption on ALD-, spin-, and spray-coated TiO2 surfaces,
respectively; (m) bacterial cell has been pierced by nanostructures of black Si; (n–p) bacteria have
sunken inside the TiO2-coated pillars, indicating cell death (Scale bar: 1 µm). Blue arrows indicate the
piercing of bacteria by pillars. Red arrows indicate cell wall damaged areas. Yellow arrows indicate
sunken bacteria. Adapted with permission from Ref. [47].

3.1.3. Thickness of the Coatings

As discussed in Section 3.1.1, film thickness plays a significant role in ROS generation.
At present, the literature presents results for ALD of TiO2 films with thicknesses ranging
from 4 to 200 nm. It is difficult to compare results from different papers, but a number of
researchers have considered the influence of thickness experimentally. It has been shown
in [50] that the maximum degradation of methylene blue, which is an effective indicator of
ROS generation, is achieved for titanium oxide on flat silicon at 40 nm and further increases
in thickness have no effect (Figure 5a), as ROS are quite active and their diffusion is only
possible from a thin near-surface layer (Figure 3a).

In the study Pessoa et al., TiO2 coatings of 50 to 200 nm thickness (500–2000 ALD
cycles) on PU and PDMS surfaces were investigated against C. albicans yeasts and no
noticeable difference was observed after UV exposure (Figure 5b) [29]. In the absence of
light, the effect of thickness was recorded, but it was due to changes in surface free energy
(SFE) and surface wettability. Comparative studies of lower thickness films were only
carried out in one study, but it did not reveal any useful information on the thickness effect:
10 nm, 20 nm and 50 nm ALD TiO2-coated polyamide-66 (PA66) fabrics were investigated
by Akyildiz et al. using the agar diffusion plate test with E. coli and S. aureus in both dark
and sunlight exposure. All TiO2-coated fabrics showed no inhibition zone for both S. aureus
and E. coli. However, the TiO2-coated samples were less covered with bacteria compared to
the uncoated samples [58].
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Figure 5. (a) Effect of film thickness on photocatalytic activity of TiO2. Reprinted with permission
from Ref. [50]. Copyright 2020 American Chemical Society. (b) Percentage of reduction in the colonies
of C. albicans on non-covered and TiO2-covered substrates after UV exposure. All the experiments
were conducted in triplicate with average error within 5%. Adapted with permission from Ref. [29].
Copyright 2017 Elsevier.

3.1.4. Crystalline Structure of the Coatings

Titanium oxide has three crystalline modifications (anatase, rutile, brukite), but rutile
and brukite are only formed at relatively high temperatures. In ALD temperature regimes,
only anatase is usually obtained, which is considered to be much more antibacterial than
rutile [45]. However, crystallite formation is only possible from a thickness of about
10 to 12 nm [59], below which the film becomes amorphous regardless of the synthesis
temperature. Lee et al. showed that increasing the synthesis temperature (from 70 to 300 ◦C),
and consequently the crystallinity, improves the antibacterial properties against E. coli for
TiO2 under UV exposure [54]. Molina-Reyes et al. also showed that a 10 nm TiO2 film
with anatase structure deposited on amorphous TiO2 nanotubes significantly reduced the
survival rate of E. coli [45]. However, measurements without additional illumination using
S. aureus showed that crystalline coatings obtained at 190 ◦C were even less antibacterial
than amorphous coatings obtained at 160 and 120 ◦C, and when tested on E. Coli there was
no difference between the samples [49].

However, one of the most interesting effects of crystallinity on antibacterial properties
is the synergistic effect of anatase and rutile, which significantly increases bactericidal
activity due to the intrinsic alignment of the valence and conduction bands between the
anatase and rutile phases. This alignment promotes the separation of photogenerated
electrons and holes and increases their activity to generate ROS [45].

3.1.5. Precursors and ALD Temperature

Three main titanium precursors, titanium (IV) isopropoxide (TTIP) [54,60], titanium
chloride—TiCl4 [29,48,51], and tetrakis(dimethylamido)titanium, TDMAT [34,45,49,52,53]
are used for the synthesis of TiO2 via ALD. The second reagent used is mainly water, but
Darwish et al. used ozone [53] and Goldfinger et al. used oxygen plasma coupled with
TDMAT to modify PMMA and PDMS, respectively [52]. At the same time, coating with
such a strong oxidant resulted in a significant decrease in the wetting angle (from 110
to <20), whereas modifying the PDMS surface with TiCl4/H2O, even with rather thick
films of 100–200 nm thickness, practically does not change the wettability [29]. At the
same time, the use of TiCl4/H2O has a significant disadvantage—chlorine contamination
during synthesis at low temperatures (around 80 ◦C) [29]. In the synthesis of complex
oxide systems, there is also the possibility of chlorine contamination [61]. Titanium oxide
synthesis temperatures can vary considerably. When using temperature sensitive substrates,
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temperatures from 65 ◦C [53] can be used, and, if required, crystalline coatings can be
obtained up to 300 ◦C [48,51] and higher.

3.1.6. Effect of Coatings on Different Strains

The vast majority of studies on ALD TiO2 coatings have been carried out on E. coli
and S. aureus, including methicillin-resistant S. aureus (MRSA). Titanium oxide coatings of
4.3 and 8.6 nm thickness deposited on nanoporous alumina membranes are more effective
against S. aureus than against E. coli [51]; however, Liu et al. showed that 100 nm thick
films deposited on titanium at different temperatures (120, 160, 190 ◦C) have higher activity
against E. coli than against S. aureus and MRSA [49]. However, most studies show no
significant difference in activity against S. aureus and E. coli [30,55,58,62].

The fungal pathogen C. albicans has been used in several studies for the development
of antibacterial materials in contact with the environment: dental implants, catheters, and
contact lenses [29,53,63,64]. TiO2 coatings are effective in UV treatment [29], but even in
dark conditions the adhesion of C. albicans is significantly reduced due to the increased
hydrophilicity of the surface [53]. Another study tested a range of oxide ALD coatings
(ZrO2, ZnO, HfO2, Al2O3, TiO2) using 16 strains of Gram-positive and Gram-negative
bacteria [55]. However, only the disc diffusion method was used and the study lacks depth
and has conflicting results.

3.2. Doped TiO2 and Combined TiO2

The ALD technique permits employing various reagents and their arbitrary mixture
at diverse synthesis stages, making ALD auspicious not just for acquiring pristine oxide
coatings but also for doped oxide systems. Therefore, incorporating reagents besides the
titanium-containing precursor and oxidizing agent enables the doping of titanium oxide
with diverse atoms [65]. Doping of titanium oxide can create further energy levels within
its forbidden zone, generating a potent photocatalytic effect under both UV and visible
radiation. This widens its potential usage as an antibacterial material given that only 4% of
solar energy constitutes UV light [60]. The investigation of doped TiO2 via ALD has only
been conducted in two works by a single scientific team [62,66]. The researchers studied
thin films of TiO2, TiON, TiN, TiAlN, and TiO2:V2O5 tested with E. coli and S. aureus. All
the coatings showed antibacterial activity, even in daylight, but the results were more
effective when exposed to UV radiation. The doped films generally showed superior
performance compared to pure TiO2 [62]. The authors investigated vanadium-doped TiO2
nanofilms on polypropylene (PP) hernia meshes in vitro and in vivo. The coatings were
found to be highly effective in preventing the adherence of S. aureus and E. coli, and they
showed excellent antibacterial activity. The research team of Takoudis et al. investigated
mixed oxide systems consisting of TiO2 and ZrO2 on PMMA surfaces using C. albicans and
S. oralis [63,64]. The TiO2-ZrO2 systems were found to be more effective than single oxides
despite conflicting results on bacterial adhesion and survival.

In recent years, noble metal sensitization has emerged as an effective method for
enhancing the photocatalytic and antibacterial activity of titanium oxide. This process
reduces the recombination of photo-induced carriers at the noble metal/semiconductor
interface [67]. Typically, noble metals such as silver [30,68,69] and gold [60] are deposited
as nanoparticles on pre-synthesized ALD TiO2. While silver has been shown to possess
powerful antibacterial properties due to Ag+ release, the formation of a Schottky hetero-
junction at the TiO2/Ag interface results in reduced electron–hole recombination rates. The
consequence of this is the formation of an increased amount of bactericidal ROS when ex-
posed to stimulated sunlight. Against S. aureus and E. coli, the antibacterial effectiveness of
the TiO2/Ag coating was found to be 98.2% and 98.6%, respectively [30]. Notably, TiO2/Ag
samples demonstrated distinct deformation and cracking in both strains. The authors
suggest that the rupture of membranes is attributed to ROS. However, they also observed
that cell walls of numerous bacteria were destroyed when silver nanoparticles (NPs) were
used without TiO2. In the other study, the results of an almost 100% killing efficiency
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of the TiO2/Ag structures against E.coli was mainly achieved through Ag+ dissolution
(Figure 6a–d) [68].

Antibiotics 2023, 12, x FOR PEER REVIEW 10 of 39 
 

 

Figure 6. (a) The relative viability rate of bacteria after contact with the hybrid membrane surface 

for 3 hours. (b) SEM image of bacterial morphology after contact with the hybrid membrane sur-

face for 3 hours. (c) SEM image of bacterial morphology on a PVDF membrane surface. (d) The 

images and the relative viable bacteria rate of E. coli exposed to PVDF and AgTi/PVDF hybrid 

membranes for 1 h, 2 h, and 3 h, respectively. Adapted with permission from Ref. [68]. Copyright 

2022 Elsevier. 

Furthermore, Au nanoparticles (NPs) can be used as efficient sensitizers. As such, 

tiny amounts of Au NPs that efficiently absorb visible radiation are ideal materials to 

enhance the photocatalytic properties of TiO2 on the surface of polyvinylidene fluoride 

(PVDF) membranes, exhibiting potent antibacterial activity towards E. coli under direct 

solar irradiation [60]. To understand such complex systems, it is necessary to continue to 

study and optimize properties such as the thickness and structure of the TiO2 layer, the 

size of the metal nanoparticles, and the density of the distribution on the surface. For 

example, according to research by Zhang et al., the efficacy against E. coli in dark and 

sunlight conditions is significantly increased as the particle size of Au decreases, resulting 

in an improvement in the antibacterial properties. In addition, the thickness of the TiO2 

film has a significant effect on the hydrophilicity and efficiency of light radiation adsorp-

tion [60]. 

3.3. Zinc Oxide 

3.3.1. Mechanisms of ZnO Bactericidal Effect and Their Role 

ZnO, as well as TiO2, is an n-type semiconductor with a band gap around 3.3 eV [70], 

meaning that absorption starts near the UV and it can generate oxidative ROS [71]. 

However, this is not the only factor that determines the antimicrobial activity of the 

coatings. Zn2+ ions can be released in the aqueous environment, easily transported across 

Figure 6. (a) The relative viability rate of bacteria after contact with the hybrid membrane surface
for 3 h. (b) SEM image of bacterial morphology after contact with the hybrid membrane surface for
3 h. (c) SEM image of bacterial morphology on a PVDF membrane surface. (d) The images and the
relative viable bacteria rate of E. coli exposed to PVDF and AgTi/PVDF hybrid membranes for 1 h,
2 h, and 3 h, respectively. Adapted with permission from Ref. [68]. Copyright 2022 Elsevier.

Furthermore, Au nanoparticles (NPs) can be used as efficient sensitizers. As such,
tiny amounts of Au NPs that efficiently absorb visible radiation are ideal materials to
enhance the photocatalytic properties of TiO2 on the surface of polyvinylidene fluoride
(PVDF) membranes, exhibiting potent antibacterial activity towards E. coli under direct
solar irradiation [60]. To understand such complex systems, it is necessary to continue to
study and optimize properties such as the thickness and structure of the TiO2 layer, the size
of the metal nanoparticles, and the density of the distribution on the surface. For example,
according to research by Zhang et al., the efficacy against E. coli in dark and sunlight
conditions is significantly increased as the particle size of Au decreases, resulting in an
improvement in the antibacterial properties. In addition, the thickness of the TiO2 film has
a significant effect on the hydrophilicity and efficiency of light radiation adsorption [60].

3.3. Zinc Oxide
3.3.1. Mechanisms of ZnO Bactericidal Effect and Their Role

ZnO, as well as TiO2, is an n-type semiconductor with a band gap around 3.3 eV [70],
meaning that absorption starts near the UV and it can generate oxidative ROS [71]. How-
ever, this is not the only factor that determines the antimicrobial activity of the coatings.
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Zn2+ ions can be released in the aqueous environment, easily transported across the cell
membrane, interact with the active protease [72,73], and reduce intracellular adenosine
triphosphate (ATP) levels in bacteria [74]. It has also been reported that nanoscale ZnO can
bind to proteins or carbohydrates on the cell surface, modify the amino acid side chains,
and cause cell death [75]. In addition, ZnO grows in the form of oriented crystallites, the
morphology of which can lead to damage of the cell membrane during bacterial adhesion.
Although the application of ZnO does not usually result in a significant increase in hy-
drophilicity, surface charge and surface energy factors may also be responsible to some
extent for changes in the nature of bacterial adhesion. It is still debated which mechanism is
most important and which is less important. To date, the influence of different mechanisms
on the antibacterial properties of ALD ZnO has been investigated in several studies.

A number of studies show that the antibacterial activity of ZnO is either absent [54,70]
or very low [76] under dark conditions (Figure 7). The importance of ROS is confirmed by
data from Li et al. who investigated the effect of the active ROS scavenger vitamin E on
reducing the antibacterial activity of 46 nm ZnO coatings against E. coli and S. aureus [77].
The question of exactly what kind of ROS are generated when ALD ZnO nanocoatings are
exposed to UV radiation is still open. Park et al. recorded a significant amount of (a) •O2

−,
(b) •OH, and (c) 1O2 upon UV irradiation of 74 nm ZnO films on glass substrates [70].
The concentration of superoxide anions was found to be several orders of magnitude
higher than that of the other ROS. Qian et al. showed that 33 nm coatings deposited on
polypropylene (PP) nonwovens were active against E. coli even without light, but the
activity increased significantly under xenon lamp illumination. In this case, the main ROS
species that are produced under the illumination is the singlet oxygen [78]. However, even
in the absence of illumination, small amounts of ROS can form due to defect structures. The
oxygen vacancies present on the ZnO surface can interact with moisture to form superoxide
radicals and H2O2 [35,79].
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Figure 7. Microscopic images of S. aureus cells under the three conditions: the glass substrate without
ZnO film was exposed to UV light (Control Light), the ALD ZnO specimen was not exposed to UV
light (ZnO Dark), and the ALD ZnO specimen was exposed to UV light (ZnO Light). (a–c) are CLSM
images. Cells with damaged membranes appear in red hue, while intact cells appear in green hue.
(d–f) are field emission scanning electron microscopy (FESEM) images. Arrows indicate cells with
damaged membranes. Reprinted with permission from Ref. [70]. Copyright 2017 Elsevier.
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Despite this, several other studies of ALD ZnO have shown that the influence of UV
exposure is minimal or absent and that the main factor in the antibacterial activity is zinc
ions [58,80,81]. This is also supported by the fact that the deposition of thin layers of Al2O3,
acting as a diffusion barrier on the surface of ZnO, reduces the activity against E. coli [82].
Also, the thicker the Al2O3 coating, the lower the antibacterial activity. This result directly
indicates the importance of dissolution of zinc ions from the surface.

The difference in the above results can hardly be explained by the influence of the
composition and structure of the obtained zinc oxide. The point is that in all the described
works, diethyl zinc is used as an ALD precursor and, as a result, polycrystalline coatings
with similar morphology are formed irrespective of the synthesis temperature. The coatings
examined usually have a thickness of a few tens of nanometers, which is sufficient for
significant ROS generation. The morphology of the substrate can have a small influence on
the morphology of the ZnO, and indeed the substrates in the above-mentioned studies were
different, but unfortunately no reliable conclusions about the influence of the substrate can
be drawn from the data presented.

A detailed study of the influence of the contribution of different factors was carried out
in the work where arrays of ZnO nanorods with different morphologies were coated with
ALD Al2O3 [83]. It was shown that ZnO is effective even without light (96% inactivation of
E. coli). At the same time, the application of a thin conformal layer of Al2O3 on the surface
of ZnO reduces the antibacterial activity against E. coli, but it remains high (about 54%).
This allowed us to conclude that the main factor in the activity is the relief and morphology
of the surface, as ZnO nanorods can easily stab bacterial cells.

3.3.2. The Effect of Thickness

As zinc oxide is relatively soluble, the thickness of the coatings plays an important
role in the duration of the antibacterial effect. However, excessively thick coatings can have
adverse effects on certain applications, such as medical implants. For example, Wu et al.
showed that relatively thick ZnO films (more than 50 cycles) on mesoporous TiO2 released
too much zinc, which negatively affected the viability, proliferation, and differentiation of
MC3T3-E1 osteoblasts [84]. They also showed that the mesoporous structures overgrow
with relatively thick coatings and cannot fulfil the role of drug carriers. A negative effect
on MG-63 cell proliferation of 195–271 nm thick films was reported [26]. Cytotoxicity
of 26 and 52 nm films on HS-27 fibroblasts was also observed [85]. Our recent work
also showed the negative effect of 40 nm ZnO on the viability of MG-63 pre-osteoblasts
and mesenchymal stem cells FetMSCs [61]. Li et al. found that 76 nm coatings did not
significantly affect the adhesion and viability of MC3T3-E1, but they had a negative effect on
spreading [86]. However, in another study, it was shown that very thin films around 5.3 nm
conversely improved the adhesion and spreading of MC3T3-E1 [87]. Indeed, research into
the biocompatibility of ZnO coatings with varying thicknesses of less than 10 nm using
MC3T3-E1 revealed a two-fold impact on the cytological response. While cell differentiation
significantly increased, cell proliferation decreased with increased coating thickness [43,84].

A similar situation is observed with bacterial cells. Puvvada et al. showed that ultra-
thin zinc oxide films are not only ineffective, they actually promote bacterial growth, but
from a thickness of about 2 to 10 nm (10–50 ALD cycles), the antibacterial effect begins to
manifest itself sharply [36]. A similar threshold of several nanometers (30 ALD cycles) for
E. coli and S. aureus has been reported in another study [43] (Figure 8). At lower thicknesses,
the opposite effect is observed and the authors suggest that Zn2+ at low concentrations acts
as a nutrient for bacterial growth. In general, the vast majority of studies with films thicker
than 5–10 nm confirms that increasing the thickness significantly improves the antibacterial
effect [34,35,54,58,79,84].

However, there are several studies that found no effect of ZnO thickness on E. coli and
S. aureus. For example, no difference in antibacterial activity was found between 26 and
52 nm ALD ZnO according to [85]. Kääriäinen et al. found no difference in antibacterial
properties for 45, 95, and 285 nm thick films [71]. And Basiaga et al. states that no significant
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differences were found in the CFU adhering to the surface of 316LVM steel depending on
the number (500 and 1500) of ALD cycles of ZnO [26]. It can therefore be concluded that
a thickness of a few tens of nanometers is sufficient to achieve a significant antibacterial
effect. The effect is observed even under dark conditions. Therefore, the elution of Zn2+ is
probably responsible for the antibacterial properties of ZnO films.
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Figure 8. (a,b) Antibacterial activity of different samples against E. coli and S. aureus. (a) Antibacterial
ratio of Ti, alkali-heat-treated Ti (AHT), carbon nanotubes/chitosan composites (CNTs/CS), CNTs/CS-
ZnO(30), CNTs/CS-ZnO(100), and CNTs/CS- ZnO(300) against E. coli and S. aureus. (b) SEM images
of the attachment of E. coli and S. aureus cells to the untreated Ti surface, CNTs/CS-ZnO(30), CNTs/CS-
ZnO(100), and CNTs/CS-ZnO(300) after incubation at 37 ◦C for 12 and 24 h, respectively. Bacteria
exhibiting ribbed structures and compromised membranes are highlighted with red arrows. The
scale bar is 1 µm. * p < 0.05 and ** p < 0.01 versus the Ti group. Reprinted with permission from
Ref. [43]. Copyright 2016 Elsevier.

As zinc oxide is soluble in an aqueous medium, it is crucial to focus on the changes in
antibacterial properties that may occur. Lee et al. showed that the significant antibacterial
activity of 55 nm coatings against E. coli was observed within the first few tens of minutes
and reached a maximum after 1 h [54]; however, saturation of zinc dissolution was observed
within the first few days for 100 nm coatings [80]. According to Puvvada et al., the
antibacterial effect increases with time and reaches a maximum at the end of 1 day [36].
Considering that the ALD coatings are very thin, it is important to know how long the
antibacterial effect lasts. Yao et al. showed that thin coatings of about 5 nm on flat polished
Y-ZrO2 are effective in the first days of presoaking, and the activity disappears on days
7 and 14 [87]. At the same time, it remains on the sand-blasted and acid-etched ZrO2
(SLA-ZrO2) surface with an analogue coating. It can therefore be concluded that coatings
of a few nanometers are sufficient for use in medical implants, as significant antibacterial
activity is only required in the initial few days after surgery, whereas thicker coatings are
required, for example, for water purification or antibacterial textiles.
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3.3.3. The Effect of the Deposition Temperature

Several studies have investigated the effect of ALD temperature on the functional
properties of ZnO coatings. According to the results of dynamic tests, Lee et al. showed that
under UV exposure, the number of surviving E. coli decreases significantly in the transition
from weakly crystalline ZnO obtained at 70 ◦C to fairly well crystallized ZnO obtained
at 100 ◦C [54]. Increasing the synthesis temperature further to 125 and 200 ◦C slightly
increases the number of surviving bacteria. Increased survival and improved adhesion of
E. coli and S. aureus when the ALD temperature was increased from 100 to 300 ◦C has also
been reported in [26]. Wang et al. showed that when ZnO was post-annealed between 225
and 275 ◦C, the change in survival of oral bacteria, including S. sanguinis, Bifidobacterium
and Porphyromonas gingivalis, was non-monotonic and decreased between 200 and 250 ◦C,
but it increased at 275 ◦C [80]. This characteristic of the effect of annealing temperature
on survival correlates very well with the release of Zn2+. Thus, although the synthesis
temperature of ZnO has almost no effect on the structural and morphological characteristics,
there is an influence on the antibacterial properties, but it is still poorly understood.

3.3.4. The Effect of the Morphology, Topography, and Wettability

Surface morphology, topography, surface free energy, surface charge, and wettability
are also important surface properties that influence antimicrobial activity. Furthermore,
these characteristics are interrelated and must be considered together. Since the ALD
process produces conformal and homogeneous coatings, the resulting topography and mor-
phology are usually determined by the morphology and topography of the substrate. For
example, Basiaga et al. showed that the polished surface of 316LVM steel with ZnO coatings
was much less favorable for the adhesion of E. coli and S. aureus than the micro-rough
surface obtained via SLA technology and subsequent ALD of ZnO [26]. Indeed, surface
inhomogeneities comparable to the size of the bacteria can favor their adhesion (Figure 4b).
However, nanoscale roughness should enhance the bactericidal properties, since in this
case the specific surface area increases significantly and the release of Zn ions increases
accordingly [80]. Experimental data show that even micro-roughened ZrO2 substrates
obtained by SLA become extremely active against E. coli, S. aureus, and P. gingivalis after
ZnO deposition [87]. In addition, it has been shown that nanostructures with sharp edges or
rods can pierce the cell membrane and lead to bacteria death [83] (Figure 9). Although ALD
produces uniform films, their low thickness means that the influence of the substrate affects
the wettability and surface energy. As a result, depending on the substrate type, ZnO films
can exhibit both hydrophilic properties when grown on inorganic substrates [79,80,84] and
hydrophobic properties when grown on polymeric substrates [43,77,78].
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3.3.5. Effects on Various Types of Bacteria and Viruses

The issue of ZnO’s antibacterial activity against different strains is very interest-
ing. ZnO is very effective against the Gram-negative E. coli and the Gram-positive
S. aureus strains. A comparative analysis of the results shows that in most cases the
antibacterial activity against S. aureus and E. coli is either close [84,85,88] or higher for
S. aureus [26,34,43,58,78]. However, in the dynamic cases, the antibacterial activity against
E. coli was maintained for several hours, while the antibacterial activity against S. aureus
decreased [77]. The authors explain this by the greater sensitivity of the E. coli membranes
to ROS. Similar results were obtained for cellulose fibers coated with Al2O3/ZnO bilayer
nanofilms [76]. E. coli were completely inactivated after only 30 min of UV irradiation,
whereas S. aureus required at least 45 min of light exposure for 100% inactivation.

Of particular interest is the study where ZnO coatings were prepared with a surface
enriched with either zinc or oxygen [79]. The oxygen-enriched surface was found to release
more Zn2+ and ROS, resulting in greater efficacy against S. aureus. At the same time, the
zinc-enriched surface releases more H2O2, which is more active against E. coli (Figure 10).
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Figure 10. Schematic illustration of the differences in the antibacterial mechanisms between
two atomic layers of ZnO (ZnO-O top, ZnO-Zn bottom). Adapted with permission from Ref. [79].
Copyright 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Despite the apparent efficacy against E. coli and S. aureus, ALD ZnO is not effective
against all strains. For example, Skoog et al. showed a lack of activity against Pseudomonas
aeruginosa, Enterococcus faecalis, and Candida albicans [89]. Vaha-Nisi et al. reported a lack of
activity against the bacterium Bacillus subtilis and a fungus Aspergillus niger [82].

Antiviral activity has also been investigated in several papers, but the results are rather
contradictory. Kumar et al. showed the efficacy of ZnO applied to fibrous silk against the
coronavirus and rhinovirus [35], and Dicastillo et al., despite high antibacterial activity
against E. coli and S. aureus, found no activity against the norovirus [90].

3.4. ZnO-Based Nanocomposites and Nanolaminates

As in the case of titanium oxide, noble metal sensitization can also be effective for
zinc oxide. In the work of Di Mauro et al., ALD Ag NPs with sizes ranging from 4 to 25
were synthesized on a previously prepared ALD ZnO ultrathin film (Figure 11a–d) [38].
Such heterogeneous photocatalysis showed high efficiency in the decomposition of various
organic pollutants in aqueous solution, methylene blue (MB), paracetamol, and sodium
lauryl sulfate, but the authors paid very little attention to antibacterial properties. The
obtained ZnO-Ag systems were very effective against E. coli in dark and UV light conditions
(Figure 11f), but unfortunately the authors did not consider the effect of silver particle
size on the bactericidal properties. Akyildiz et al. synthesized photocatalytic systems by
depositing a 20 nm layer of ZnO on cotton fibers followed by photochemical deposition
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of Ag NPs [33]. However, the antibacterial effect of silver was too high to draw any
conclusions about metal sensitization of ZnO. ZnO nanorods decorated with Ag NPs were
very effective against E. coli according to another study [91].
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Figure 11. (a–d) TEM images, in cross view, of Ag nanoparticles deposited on ZnO coatings and
Si substrates using 80 ◦C and varying cycles: (a) 600, (b) 300, (c) 150, and (d) 75. (e) Electron
capture by Ag nanoparticles in contact with ZnO. (f) Normalized percentage of surviving E. coli
bacteria in the dark and when exposed to UV irradiation in contact with PMMA, ZnO/PMMA, and
Ag/ZnO/PMMA samples. The experimental error was around 5%. Experiments were repeated three
times. Adapted with permission from Ref. [38].

Liu et al. synthesized cubic Cu2O particles on the surface conductive and transparent
indium tin oxide (ITO) glass [31]. Then, ZnO coatings were applied for the formation
of the p-n heterojunction which limit recombination of electrons and holes and improve
photocatalytic efficiency. This heterojunction was effective against S. aureus both at dark
and simulated sunlight conditions (Figure 12). The results showed that the bactericidal
effect was achieved due to both a high effective ROS formation and Cu/Zn ions elution.
Sr doped titania nanotubes were coated with 30 cycles of ZnO and then grafted with
octadecylphosphonic acid (OPDA) [44]. Sr-ZnO composites showed high activity against
S. aureus and E. coli, but the OPDA coating decreased activity due to shielding and reducing
the dissolution of Zn ions.

Recently, several mixed zinc oxide-based oxide systems have been successfully ob-
tained. Li et al. synthesized ZnO/FeOx nanolaminates using 200 cycles of ALD (21–25 nm
thickness) consisting of two, twenty, and one hundred alternating layers (Figure 13a) [92].
The nanolaminates were activated using simulated solar light and light-emitting diode
(LED) light. The authors believe that such nanolaminates facilitate the transfer of numerous
photoelectrons from ZnO to Fe2O3 under light irradiation, thus generating a significant
amount of ROS. The best antibacterial activity against E. coli and S. aureus was observed
for the twenty-layer sample in both light regimes (Figure 13b–e). At the same time, the
nanolaminates showed high antiviral activity against H1N1 (Figure 13f–m) and no cytotox-
icity against NIH-3T3 fibroblasts. The obtained heterostructures retain high transparency,
have high abrasion resistance, and can be used as effective antibacterial coatings for touch-
screens. ALD coatings based on ZnO and Al2O3 (AZO), obtained in different ratios but
with the same thickness of 50 nm, were investigated for antibacterial and antifungal prop-
erties [32]. AZO showed high efficacy against bacteria (E. coli and S. aureus) and five
commonly found in real-life molds, both in the presence of natural light and in the absence
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of light. The Zn ion elution of AZO was significantly lower than that of pure zinc oxide,
which is very important for the development of antibacterial moisture barrier films for next
generation flexible touch display functional optical films.
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Figure 13. (a) Thickness measurements of ZnO, Fe2O3 , ZnO(100)–Fe2O3(100), ZnO(10)–Fe2O3(10),
and ZnO(2)–Fe2O3(2) with different numbers of cycles via spectroscopic ellipsometry. (b–m)
Photocatalytic disinfection performance. (b) E. coli counts (all bacterial counts were achieved by
using the bacterial imprinting method) in control, ZnO(100), Fe2O3(100), ZnO(100)–Fe2O3(100),
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ZnO(10)–Fe2O3(10), and ZnO(2)–Fe2O3(2) groups under sunlight irradiation (1 sun) for 2 min and
corresponding SEM morphologies (scale bars = 500 nm for all SEM images) of E. coli in control
and ZnO(10)–Fe2O3(10) groups (they were marked with black color and red color, respectively).
(c) S. aureus counts in control, ZnO(100), Fe2O3(100), ZnO(100)–Fe2O3(100), ZnO(10)–Fe2O3(10),
and ZnO(2)–Fe2O3(2) groups under sunlight irradiation (1 sun) for 4 min and corresponding SEM
morphologies of S. aureus in control and ZnO(10)–Fe2O3(10) groups. (d) E. coli counts in control,
ZnO(100), Fe2O3(100), ZnO(100)–Fe2O3(100), ZnO(10)–Fe2O3(10), and ZnO(2)–Fe2O3(2) groups un-
der LED light irradiation (2 W m−2) for 30 min and corresponding SEM morphologies of E. coli
in control and ZnO(10)–Fe2O3(10) groups. (e) S. aureus counts in control, ZnO(100), Fe2O3(100),
ZnO(100)–Fe2O3(100), ZnO(10)–Fe2O3(10), and ZnO(2)–Fe2O3(2) groups under LED light irradiation
(2 W m−2) for 60 min and corresponding SEM morphologies of S. aureus in control and ZnO(10)–
Fe2O3(10) groups. (f) MDR E. coli counts and corresponding SEM morphologies in control and
ZnO(10)–Fe2O3(10) groups under sunlight irradiation (1 sun) for 2 min. (g) MRSA counts and corre-
sponding SEM morphologies in control and ZnO(10)–Fe2O3(10) groups under sunlight irradiation
(1 sun) for 4 min. (h) H1N1 virus titer and (i) relative NA activity in control and ZnO(10)–Fe2O3(10)
groups under sunlight irradiation (1 sun) for 4 min. (j) MDR E. coli counts and corresponding SEM
morphologies in control and ZnO(10)–Fe2O3(10) groups under LED light irradiation (2 W m−2) for
30 min. (k) MRSA counts and corresponding SEM morphologies (scale bars = 500 nm for all SEM
images) in control and ZnO(10)–Fe2O3(10) groups under LED light irradiation (2 W m−2) for 60 min.
(l) H1N1 virus titer and (m) relative NA activity in control and ZnO(10)–Fe2O3(10) groups under
LED light irradiation (2 W m−2) for 60 min. The red arrows in SEM images mark obvious damage
and deformation of bacteria. Individual data points (n = 3 biologically independent samples) and
the error bars indicate means ± standard deviations. Statistical differences were analyzed through
one-way ANOVA and post hoc Tukey’s test or t-test (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).
Adapted with permission from Ref. [92]. Copyright 2023 Wiley-VCH GmbH.

Recently, we have investigated complex oxide systems based on ZnO and TiO2 (ZTO)
with a thickness of about 40 nm [61]. ZnO and ZTO samples were very effective against
S. aureus, A. baumannii, and P. aeruginosa. In this case, unlike pure zinc oxide, ZTO had no
negative effect on the adhesion of fetal mesenchymal stem cells (FetMSCs).

3.5. Other Binary and More Complex Oxide Compounds

Many other oxide compounds can be produced through ALD, in addition to titanium
oxide and zinc oxide. It is possible that some of these compounds also possess antibacterial
properties. Godlewski et al. compared a series of rather thick films (about 200 nm) of
wide bandgap oxides (ZnO, HfO2, TiO2, ZrO2, Al2O3) deposited on the surface of paper
discs [55]. The authors tested 16 Gram-positive and Gram-negative strains using the agar
disc diffusion method without illumination. No bactericidal effect was found for B. cereus,
S. agalactiae, Streptococcus alpha-hemolytic, E. coli, Klebsiella spp., Salmonella BO, or Yersinia
spp., but an effect was found against B. subtilis, S. aureus ATCC and MRSA, S. epidermidis,
S. pseudintermedius, Streptococcus beta-hemolytic, Proteus spp., and Salmonella DO; most oxides
were active. Compared to ZnO, ZrO2 and HfO2 nanocoatings showed similar or better
antimicrobial activity [55]. ZrO2 is a biocompatible material that stimulates stromal and
mesenchymal cell proliferation and differentiation in the osteogenic direction [93–95], but
20 nm ZrO2 coatings reduce the adhesion of S. mutans and P. gingivalis [96]. Two recent
studies have demonstrated the high efficiency of TiO2-ZrO2 complex oxide systems [63,64]
against C. albicans and S. oralis on the PMMA surface. No significant antibacterial activity
was observed for pure ZrO2.

It is noteworthy that according to Godlewski et al., Al2O3 performed even better than
TiO2 in most of the cases [55]. As shown in [85], Al2O3 coatings of 13.5 and 27 nm thickness
on cellulose-based fibers can also exert an antibacterial effect against S. aureus and E. coli,
which is slightly lower than that of ZnO coatings. At the same time, Al2O3, unlike ZnO,
was shown in the same study not to be cytotoxic against the human HS-27 fibroblast and
human keratinocyte standardized cell line (HaCaT). The antibacterial effect of 12.5 and
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25 nm thick Al2O3 coatings against E. coli has also been demonstrated [82]. In general, all
authors agree that Al2O3 is less active than ZnO [55,82,85].

Of particular interest are pair of papers by Li et al. [86,97]. The authors prepared
two-dimensional porphyrinic zinc and copper containing a metal−organic framework (2D
MOF) coated with Fe2O3 using the ALD. Such materials have been shown to be effective
in vitro and in vivo against various oral pathogens (P. gingivalis, Fusobacterium nucleatum,
and S. aureus) due to both ROS formation and released ions (Figure 14). The enhanced
photocatalytic activity of the ALD modified MOFs results from the lower adsorption energy
and more charge transfer due to the synergistic effect of metal-linker bridging units, abun-
dant active sites, and the excellent light-harvesting network. The in vivo results showed
that these FeOx-modified MOFs can be used in photodynamic ion therapy of periodontitis
with a greater therapeutic effect than the reported clinical treatment with minocycline and
vancomycin. In another study, it was shown that visible light transparent ALD ZnO–Fe2O3
superlattice nanocoatings are effective bactericidal and virucidal materials (H1N1) [92].
The action of such superlattices is based on the photocatalytic mechanism, where ZnO and
Fe2O3 served as electronic donors and receptors, respectively. The heterointerface between
ZnO and Fe2O3 facilitated the transfer of numerous photoelectrons from ZnO to Fe2O3
under light irradiation and promoted the ROS formation.
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Figure 14. Antibacterial mechanism of photodynamic ion therapy. Viabilities of (A) P. gingivalis,
(B) F. nucleatum, and (C) S. aureus treated with CuTCPP and CuTCPP-Fe2O3 under 660 nm laser
illumination for 20 min, followed by incubation in the dark for 2 h. SEM images (scale bars = 500 nm
for all images) and corresponding EDS curves of (D) P. gingivalis, (E) F. nucleatum, and (F) S. aureus
treated with CuTCPP-Fe2O3 under 660 nm light illumination for 20 min, followed by incubation in
the dark for 2 h. Red arrows show obvious damage and deformation of bacteria. Individual data
points (n = 3 biologically independent samples) and error bars indicate means ± standard deviations.
Statistical differences were analyzed through one-way ANOVA and post hoc Tukey’s test (** p < 0.01,
*** p < 0.001, **** p < 0.0001). Adapted with permission from Ref. [97]. Copyright 2021 American
Chemical Society.

Furthermore, in addition to the aforementioned familiar compounds, obscure sub-
stances have exhibited antibacterial properties. For example, Radtke et al. demonstrated
significant inhibition in the staphylococcal colonization and biofilm formation for titanium
oxide nanotubes (TNT) with ALD-coated CaCO3 subsequently converted to hydroxya-
patite [98]. In previous work by this research group, TNT formed on the Ti6Al4V alloy
were shown to have in vitro antibiofilm properties themselves when tested on the S. aureus
model [99]. But the double modified biomaterials exhibited stronger antimicrobial activity
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than the surface with TNT, indicating a synergistic effect of both modifications [98]. A
recent paper by Saha et al. demonstrated the antibacterial activity of conformal MgO
nanocoatings deposited on collagen membranes against polymicrobial biofilm from human
saliva [64].

TaN is widely used for the implant coating material due to its high mechanical strength,
high chemical stability, and high biocompatibility but TaN coating also has a tremendous
antibacterial effect [28]. TaN coating decreased E. coli and S. aureus colony formation due to
the increased water contact angle and hydrophobic properties.

3.6. Silver and Other Metals

Metallic silver is one of the best known and most successful antimicrobial, antifungal,
antiviral, and anti-inflammatory materials [100]. Silver has been used as an antibacterial
and medicinal agent for thousands of years [101], but its importance declined with the
discovery of antibiotics. However, the problem of the emergence of antibiotic-resistant
strains soon arose. This increase in antibiotic resistance has led to renewed interest in the
use of silver as an antibacterial agent [102].

The antimicrobial activity of Ag-coated surfaces is commonly attributed to the strong
oxidative effect of silver in the course of the gradual release of silver ions into the biolog-
ical environment. However, the possible mechanisms of silver’s antibacterial action are
quite diverse. Ag ions induce the oxidative stress effect on cell membranes, damaging
and penetrating them. In addition to its own chemical activity, silver ions can induce
the formation of reactive oxygen species (ROS), which can also damage organelles and
impair their function. Ag ions have many possible ways to disrupt the functioning of cell
organelles and biochemical processes, such as respiratory activity, intracellular ATP levels,
and inhibition of the DNA replication. This is due to the fact that silver ions are Lewis
acids and can easily interact with thiol and amino groups of proteins, nucleic acids, and
others [101]. Such diverse and potent effects make silver effective against Gram-positive
and Gram-negative bacteria. However, this high activity can result in a negative cytotoxic
response of body cells and cause silver accumulation in the internal organs.

However, despite these problems, a number of studies have shown that ultrathin
nanosilver coatings do not exhibit this cytotoxicity. The effect of silver on different cells and
tissues depends on both the size of the Ag structures and the cell type being studied in vitro.
Several studies have shown that nanoparticles of 50 nm or less at low concentrations are
not cytotoxic to mouse embryonic stem cells (mESC) [103], human umbilical vein endothe-
lial cells (HUVEC) [104], normal human fibroblasts (FN1) [104], human mesenchymal
stem cells hMSC [105–107], L929 fibroblasts [108,109], and human keratinocyte cell line
HaCaT [110]. However, at high concentrations, such nanoparticles are toxic, as has been
demonstrated in human embryonic kidney HEK293 [111,112], mouse embryonic fibroblast
cells NIH3T3 [113], and human dermal fibroblasts HDFs [114].

The importance of dose and AgNPs size for their toxicity has also been demonstrated
in a number of in vivo studies using different routes of administration (inhalation, intra-
venous, and intraperitoneal) [115–119]. Thus, the issue of nanoparticle size and concentra-
tion, and, in the case of nanofilms, their thickness and morphology, is the most important
issue in studying the medical applications of silver.

3.6.1. ALD of Silver Nanoparticles and Nanocoatings

Although ALD is very good at producing oxides and a number of other binary com-
pounds, there are approaches that allow the production of metallic films. However, contin-
uous metallic nanofilms are not easily obtained via ALD. The problem is that the growth
of metals suffers from poor nucleation and initiates island growth [120,121]. This is par-
ticularly characteristic of silver ALD, where NPs grow in a relatively small number of
cycles (Figure 15). Many ALD cycles are therefore required to obtain a continuous film.
Nevertheless, this feature can be considered positive, as nanoparticles increase the specific
surface area and hence the dissolution rate of silver ions compared to continuous films.
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Although silver has been produced via ALD for a very long time, there are only a
few papers investigating the antibacterial properties of ALD-Ag (Table 2). Radtke et al.
investigated silver NPs with diameters of 7.8–9.2 nm deposited on titanium oxide nanotubes
with diameters ranging from 10 to 84 nm [102]. An inhibitory effect on the biofilm formation
of S. aureus was found using the suspension method of study. The samples with the smallest
diameter of nanotubes were the most effective as they have a large specific surface area.

Table 2. Characteristics of Ag ALD antibacterial coatings.

Support/ALD Conditions Characteristics Bacteria Results Ref.

TiO2 nanotubes 10–84 nm/25 cycles of
plasma enhanced atomic layer

deposition (PEALD) Ag(fod)(PEt3) 1

+H2 (120 ◦C).

7.8–9.2 nm dispersed
Ag particles and
dense Ag layer

S. aureus

Low level of Ag+ releasing the sample with
the smallest nanotube diameter and a

continuous layer of Ag showed the best
bactericidal results.

[102]

3d Ti scaffolds/direct liquid injection
of 0.1 M (hfac)Ag(1,5-COD) 2 in

toluene and propan-1-ol. 500 ALD
cycles (125 ◦C).

Effective layer—13 nm
(NPs 40–90 nm

diameter)

S. aureus (MRSA)
S. epidermidis.

On bare titanium scaffolds, S. epidermidis
growth was slow but on Ag-coated there

were significant further reductions
(two orders of inhibition) in both bacterial

recovery and biofilm formation. MRSA
growth was similarly slow on bare titanium

and not further affected by Ag coating.

[122]

3d Ti scaffolds/direct liquid injection
0.1M (hfac)Ag(1,5-COD) in toluene and
propan-1-ol. 500 ALD cycles (125 ◦C).

Average NPs 49 nm
in diameter

In vivo—implants
in rat tibial defects

No effect of Ag on bone formation and
osseointegration after 2–12 weeks of

implantation. Ag is a part of less toxic
Ag2S within the newly formed bone tissue

adjacent to the implant surface.

[27]

Ti/ALD TiO2 (TiCl4 + H2O) + Ag
(Ag(fod)(PEt3) + H2).

20–28 nm on Si
16–30 nm on Ti S. aureus

The ALD combination of TiO2 + Ag is
significantly more active against S. aureus

than pure TiO2 and Ag.
[57]

N95 medical mask (PP,
polyester)/Ag(fod)(PEt3) +

(CH3)2NH*BH3.

16 nm S. aureus
A 76% reduction in S. aureus CFU was

observed after 24 h. At an early stage (2 h),
Ag had no bactericidal effect.

[123]

1 (2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionato) silver(I) triethyl-phosphine. 2 (hexafluoroacetylaceto-
nato) silver(I)(1,5-cyclooctadiene).

Recently we synthesized larger diameter silver NPs (16–30 nm) on the surface of
flat titanium discs. The results showed the inhibitory effect of silver on the growth of
S. aureus. The ALD synthesis of an additional sublayer of crystalline TiO2 enhanced the
inhibitory effect [57]. A similar synergistic effect on E. coli was observed in [68], where the
antibacterial properties of an ALD layer of TiO2 and Ag NPs prepared via photodeposition
were investigated. This effect has been discussed in more detail in Section 3.2.

Several studies have shown that, in addition to their antibacterial effect, ALD silver
NPs can have a positive effect on the adhesion and proliferation of fibroblast and osteoblast-
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like cells. [57,102,122] In vivo studies of Ag-decorated porous titanium scaffolds in tibial
defects in rats showed that Ag NPs induced robust osteogenesis and angiogenesis with no
evidence of systemic toxicity and silver accumulation in the liver [27,122]. Further in vivo
studies by the authors over 12 weeks showed that Ag accumulation occurs within the
osseous tissue immediately adjacent to the implant surface. TEM and selected area electron
diffraction (SAED) show that silver is part of the less toxic Ag2S within the newly formed
bone. (Figure 16) [27].
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Figure 16. (a) Macroscopic SEM image of the additively manufactured porous titanium scaffold.
High-resolution SEM images of (b) titanium scaffolds and (c) silver-coated titanium scaffolds. (d) Size
distribution histogram of silver particles (125 ◦C for 500 ALD cycles). (e) The nanoscale elemental
mapping of the bone-implant interface showed that silver was present primarily in the osseous tissue
and colocalized with sulfur. TEM revealed silver sulfide nanoparticles in the newly regenerated bone,
presenting strong evidence that the previously in vitro observed biotransformation of silver to silver
sulfide occurs in vivo. Adapted with permission from Ref. [27].

In terms of practical applications, the work [123], in which Ag nanoislands were
obtained on the surface of N95 medical masks at relatively low temperatures (90 and
120 ◦C) via ALD is of great importance. Such coatings can be very effective in increasing
the service life and reliability of personal protective equipment (PPE), as such particles
prevent microbial contamination and accumulation in the membranes and fibers of PPE. In
addition, the prepared Ag nanoparticles were stable to washing. According to the authors,
ALD is ideal for coating PPE because it provides high adhesion of nanoparticles through
chemisorption, does not require the use of capping agents, is performed in the gas phase,
which can be important for liquid-sensitive materials, and avoids blocking the pores and
negatively affecting the air permeability of the mask.

Although the results [123] show an improvement in the suppression of biofilm forma-
tion with smaller silver particles, the effect of particle size on its antibacterial activity and
cytotoxicity/biocompatibility remains controversial. The duration of the silver effect and
the onset of action also remain open, as the results showed that 2 h was not sufficient for
effective bacteria/Ag contact, whereas after a longer time (24 h) effective contact occurred,
resulting in a reduction in biofilm formation [123].

A major problem in silver ALD is the lack of a good precursor. A reproducible and
controlled ALD process requires sufficient vapor pressure and thermal stability of the
precursor. The most successful precursor is (2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-
3,5-dionato) silver(I) triethylphosphine (Ag(fod)(PEt3)). However, to achieve the necessary
vapor pressure, it must be heated to temperatures above 80–100 ◦C, which can lead to the
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slow decomposition of Ag(fod)(PEt3). Furthermore, the optimum growth temperature for
this compound varies within a fairly narrow range of 120–160 ◦C [24].

In addition, most synthesis techniques for Ag production via ALD use hydrogen
plasma as a reducing agent. As has been shown in a number of papers, the use of plasma as
a co-reagent causes problems in the treatment of complex-shaped surfaces [124]. Plasma is
very unstable and quickly “loses its activity” when treating deep channels. Therefore, it is
necessary to carry out studies on the selection of an optimal reducing agent. In [123], borane
dimethylamine complex ((CH3)2NH*BH3) was tested as a co-reagent. The results indeed
showed silver growth in the inner layers of the fibrous structure of the N95 filter media.

3.6.2. ALD of Other Metallic Nanocoatings

Besides silver, several metals including copper, gold, and iron have strong antibacterial
properties [125,126]. These metal layers have been successfully fabricated via ALD, but only
two studies have investigated their antibacterial properties. TiO2 inverse opal structures
were functionalized with an ultrathin ALD Cu layer (1.1 nm Cu loading) [127]. A significant
reduction in the CFU count of S. aureus was observed on the Cu containing samples
pretreated at 550 ◦C to increase the stability of the Cu particles.

Yang et al. conducted an antimicrobial study of a whole series of nanozymes based
on ALD-Pt ultra-small nanoparticles (0.55–2.81 nm) prepared on the surface of carbon
nanotubes (CNTs) (Figure 17) [128]. The nanozymes with a Pt NPs size of 1.69 nm exhibited
much higher antibacterial activity than the others in the presence of H2O2 due to the
effective formation of toxic free radicals. In the absence of H2O2, CNTs/Pt NPs showed a
negligible killing effect against both E. coli and S. aureus.
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Figure 17. Synthesis and structural characterizations of Pt/CNTs nanozymes. (A) Illustration of
the preparation process of Pt/CNTs nanozymes. (B–G) TEM images of 5Pt/CNTs, 10Pt/CNTs,
20Pt/CNTs, 30Pt/CNTs, 50Pt/CNTs, and 70Pt/CNTs, respectively. Note: red circles refer to Pt
nanoparticles. Adapted with permission from Ref. [128].

4. Applications for ALD Antibacterial Coatings

In most of the studies analyzed in this review, the authors focused on specific ap-
plications of the antibacterial coatings produced. Therefore, the antibacterial properties
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were analyzed using different specific bacterial strains and other functional properties of
the materials and coatings were investigated. For implants, in addition to antibacterial
properties, cytotoxicity was evaluated for different host cells such as pre-osteoblasts, fi-
broblasts, and epithelial cells, and an appropriate set of strains was selected depending
on whether the implant was internal or in contact with the environment. For PPE and air
purifying coatings, air permeability was studied and for water purifying coatings, stability
in aqueous media was studied.

4.1. Medical Implants

The development of effective antibacterial coatings for orthopedic implants is no less
important than the development of coatings to accelerate their biointegration. The majority
of orthopedic implant rejections and failures are due to the formation of a biofilm of MRSA
or S. epidermidis that prevents drug penetration to the infected site [122]. Such problems
most often result in the need for costly and often painful reimplantation, and, in some
cases, post-infection morbidity and mortality. It is therefore difficult to solve this problem
by using traditional clinical antimicrobial therapy methods, such as oral administration
or intravenous injection [129,130]. Therefore, coatings that provide sustained release
of antibacterial agents and inhibit biofilm formation are of great practical importance.
Coatings that release metal ions (e.g., Zn2+, Ag+, and Cu2+) are very effective as they have
broad-spectrum antibacterial properties and are effective even against antibiotic-resistant
strains [131,132].

To date, there are about ten studies that have focused on antibacterial ALD coatings
for potential applications in orthopedic implants, and there have been a slightly smaller
number for dental implants. Substrates tested have included flat titanium [28,49,57,96],
ZrO2 [80,87], and stainless steel [26], as well as substrates with deposited carbon nan-
otubes [43], titanium nanotubes [44,98], or rough SLA surfaces [26,87]. In addition, porous
substrates, 3D-printed scaffolds made of titanium [27,122] and iron [86], as well as the den-
ture material PMMA [53,63,64], have been used. Of particular note is the study [133] where
osteopromotive MgO coatings were applied to the surface of collagen, which is an integral
part of bone, cartilage, skin, and tendon tissue. ZnO [26,43,44,80,86,87], TiO2 [53,57,61],
MgO [133], hydroxyapatite [98], ZrO2 [96], TaN [28], Ag [27,57,122], and TiO2-ZrO2 com-
plex oxides [39,40] have been most commonly used as coatings [63,64].

In the majority of cases for orthopedic implants, antibacterial properties were evalu-
ated using S. aureus and E. coli, and, less frequently, MRSA [49,122] and S. epidermidis [122].
For dental implants, the set of strains included Porphyromonas gingivalis [80,87,96], S. Sangui-
nis, Bifidobacterium [80], S. oralis [63], C. albicans [53,63,64], and antibacterial polymicrobial
biofilm from human saliva [133]. In addition to the antibacterial properties, in vitro biocom-
patibility studies were performed using osteoblast-like MC3T3-E1 [43,44,84,86,87,96,134],
MG-63 [26,57], and SAOS-2 osteosarcoma [122], fibroblasts (L929) [26,98,134], and gingival
keratinocytes as well as epithelial cells [80,81,122].

In the absolute majority of studies, the coatings showed high antibacterial efficacy
against both standard S. aureus and E. coli, as well as against specific strains, but it is
difficult to compare them, as the studied samples differ greatly in thickness, morphology,
used substrates, and measurement techniques. Nevertheless, it can be stated that zinc
oxide and silver coatings have the strongest antibacterial properties. At the same time,
biocompatibility studies have been ambiguous for zinc oxide coatings. As demonstrated
earlier in the text, most researchers have found that ALD ZnO does not pose a threat to
eukaryotic cells. Nevertheless, our analysis revealed detrimental results of 40 nm thick
zinc oxide on FetMSCs [61]. Basiaga et al. found a negative effect of thicker coatings
on MG-63 proliferation [26], and Zhu et al. found a decrease in the viability of MC3T3-
E1 with increasing coating thickness. In contrast, silver nanoparticles obtained in three
studies showed a rather high biocompatibility and promotive effect on the differentiation
of osteoblast-like MG-63 and FetMSCs in vitro [57] and no negative effect on new bone
formation, robust osteogenesis, and angiogenesis in in vivo [27,122]. In addition to the
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above, only a few studies have used the in vivo approach to evaluate the prospects of ALD
coatings. The similar Wistar rat (Rattus norvegicus) in vivo model was used to confirm
the biocompatibility of ALD MgO nanocoatings and to increase angiogenesis and bone
formation [133]. The thicker coatings (500 vs. 200 cycles) were better candidates for guided
bone regeneration due to the higher release of magnesium ions.

Xue et al. investigated 3D customized earplugs coated with ZnO nanoaggregates
produced by combined ALD and hydrothermal methods [134]. The in vitro study showed
that the coatings were highly effective in preventing the growth of five major pathogens
from patients with otitis media. A study of earplugs pre-impregnated with MRSA solution
in an in vivo rat model showed that the subcutaneous tissue was more infected in the
absence of ZnO coatings.

In addition to antibacterial effects and biocompatibility regulation, ALD coatings, due
to their high quality and homogeneity (Figure 1), can fulfil the role of a reliable biocorrosion
rate regulator for biodegradable implants and scaffolds, which are widely used for bone
repair and regeneration, but they are also used for vascular stents. For example, Li et al.
showed that 76 nm thick ZnO coatings not only have strong antibacterial activity against
both E. coli and S. aureus, they do not significantly affect cytocompatibility with MC3T3-E1
cells, but they also significantly slow down biocorrosion of 3D porous iron scaffolds [135].

4.2. Antibacterial Textile and Personal Protective Equipment

The COVID-19 pandemic has increased interest in the development of antibacterial
textiles and effective PPE, and as a result the number of studies on ALD coatings for
these applications has become very high in recent years. Both natural materials (cotton,
silk) [33,34,36,76,85] and man-made polyamide [58,136], viscose [85], polypropylene [78],
and combinations of natural materials and polymers [35,77] are used as substrates for
coating. In the case of cotton and silk, the problem of bacterial contamination is particularly
acute. These materials absorb large amounts of water and the aqueous environment is very
conducive to the growth of bacteria [34].

In almost all the studies, zinc oxide is used as the coating material, which is signifi-
cantly superior to ALD TiO2 deposited on polyamide 66 [58] and Al2O3 deposited on the
surface of cotton and viscose [85]. Only in the study by Astaneh et al. did the authors
choose silver nanoparticles as the antibacterial material deposited on the surface of N95
masks (the results are described in more detail in Section 3.6.1). Composites of ALD ZnO
and photodeposited Ag nanoparticles deposited on the cotton surface were very effective
against S. aureus and E. coli under the conditions of light irradiation and dark [33].

The thickness of the deposited coatings varied from fractions of 1 nm [15] to 116 nm [34].
Even relatively thick (>100 nm) coatings had little effect on the air permeability of the mate-
rial [34], which is particularly important for PPE and textile applications.

Almost all studies to date have shown some antibacterial activity of ZnO in both light
and dark experiments using E. coli and S. aureus. For relatively thin films (up to 45 nm),
an increase in thickness has a positive effect on the antibacterial activity [35]. In addition
to the antibacterial properties, Kumar et al. investigated the antiviral activity [35]. ZnO
45 nm coatings deposited on electrospun nanofibrous silk showed a 95% reduction in
infectivity for coronavirus (OC43: enveloped) and rhinovirus (RV14: non-enveloped) after
1 h of white light illumination and a 99% reduction for RV14 after 2 h of illumination. It is
worth noting that ZnO coatings with thicknesses of approximately 25 and 50 nm showed
little cytotoxicity towards human fibroblasts and keratinocytes in contrast to similar Al2O3
coatings [85], which is particularly important for textile and PPE applications.

4.3. Purification and Disinfection of Water and Air

The chemical disinfection of water is a very effective, simple, and relatively inexpen-
sive method. However, chemical reactions produce a number of toxic by-products that
are not only health-threatening but also cause the water to taste bad. Therefore, photocat-
alytic ROS-based methods have attracted increasing interest. It is important to note that
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photocatalytic ROS generation not only kills bacteria but also destroys many dangerous
organic molecules and contaminants [37]. So far, the functional properties of both the pure
oxide photocatalysts, ZnO [38] and TiO2 [39], and the composite materials ZnO-Ag [38],
TiO2-Au [60], and TiO2-Ag [68], have been examined. Polymeric porous membranes based
on PVDF, PTFE, and PMMA were commonly used as substrates. Pure oxide systems are less
effective than metal oxide composites both as antibacterial coatings and as photocatalysts
to degrade various organic contaminants such as MB, parecetomol, sodium lauryl sulfate,
and methyl orange [38,60]. Zhang et al. note that although TiO2 nanoarrays prepared via
ALD and solvothermal methods reduce water flux from 350 to 200 L/m2·h with long-term
use, the reduction is compensated by the absence of biofilm overgrowth in the pores of the
PTFE ultrafiltration membrane [39]. In addition to solving membrane biofilm overgrowth,
it should be noted that ALD antibacterial coatings have the important property of high
adhesion, which is very important for the long-term use of ultrafiltration membranes.

The use of ALD antimicrobial coatings also provides an effective solution to the
problem of air purification. Zhong et al. obtained coatings of ALD ZnO seed layers
and hydrothermally grown ZnO nanorods on the surface fiber matrix of ePTFE filters
(Figure 18) [88]. These filters have a high antibacterial activity (>99.0% sterilization rates
against S. aureus and E. coli) and are 40% more efficient in the capture of 0.30 and 1.2 µm
simulated dust particles. Although the densely packed ZnO nanorods significantly altered
the pore structure of the original expanded polytetrafluoroethylene (ePTFE) filter, the
change in flow resistance was negligible. The application of silver nanoparticles to the ZnO
nanorods resulted in even higher antibacterial efficacy (>99.9%) [91].
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4.4. Other Application

The problem of disinfecting various high-frequency touch surfaces can be effectively
solved with stable antibacterial coatings. ALD is a very successful method for the syn-
thesis of ultrafine coatings with a thickness of no more than a few tens of nanometers.
Such coatings have high transparency and can be used for touch screens with permanent
antibacterial properties. In recent years, work has been carried out on the synthesis of com-
plex systems, TiO2-Ag [30], Cu2O-ZnO [31], ZnO-Fe2O3 [92], and Al2O3-ZnO (AZO) [32],
on transparent substrates such as glass (ITO) and polyethylene terephthalate (PET). The
thicknesses of the coatings varied in the range of 10–50 nm and the coatings showed high
transparency in the visible range. At the same time, regardless of the composition, they
showed high activity not only against E. coli, S. aureus [30–32,92], MRD, and MRSA [92] but
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also against several fungi such as Aspergillus brasiliensis, Talaromyces pinophilus, Chaetomium
globosum, Trichoderma virens, and Aureobasidium pullulans [32]. All researchers agree that
external illumination, at least sunlight, is required for the greatest efficiency of coatings,
but Li et al. showed that LED illumination can be a substitute for sunlight and UV for
photocatalytic disinfection using ZnO-Fe2O3 nanolaminates, which is relevant to modern
personal electronic devices with LED backlit screens.

Transparent coatings may also be important for food packaging, although such an
application is only discussed in one publication [82], where ZnO and Al2O3 thin films
were deposited on biaxially oriented polylactic acid (BOPLA) polymer films that were
40 µm thick and 50 µm thick top-side with corona-treated polypropylene. Both types of
coatings showed good oxygen and vapor barrier properties, but ZnO was more active
against E. coli, and some of the ZnO samples were effective against Bacillus subtilis and the
fungus Aspergillus niger.

To date, there have been several studies that have tested antimicrobial ALD coatings
for potential use in treating various diseases and injuries. The idea of using alumina
membranes conformally coated with 8 nm ZnO for the treatment of burns and other skin
wounds was proposed by Skoog et al. in 2012 [89]. In vitro studies with specific strains
showed that the materials were effective against B. subtilis, E. coli, S. aureus, and S. epider-
midis, but they were completely ineffective against P. aeruginosa, E. faecalis, and C. albicans.
Recently, Li et al. found high photocatalytic activity in metal-organic frameworks (MOFs)
coated with ultrathin Fe2O3 layer (20 ALD cycles) [86]. S. aureus, E. coli, and an in vivo
cutaneous MRSA wound infection model were used to validate the prospective applica-
tion of such composites. At 2 days post-infection, the wound in the MOF-Fe2O3 group
showed excellent MRSA killing (99.9995 ± 0.0003%), no obvious inflammatory response,
and complete escharosis in vivo. The group that did not use MOF-Fe2O3 treatment showed
severe suppuration due to heavy MRSA loads in the wounds [86]. Another study by this
research group showed high antibacterial activity of MOF-Fe2O3 against oral pathogens
(Porphyromonas gingivalis, Fusobacterium nucleatum, and S. aureus). The authors believe that
the obtained heterostructures can be effectively used for photodynamic ion therapy of
periodontitis due to the rapid antibacterial activity, alleviated inflammation, and improved
angiogenesis [97].

In addition to the above-mentioned directions, the work of Yang et al. is of interest
as they proposed using a composite of carbon nanotubes and ultra-small ALD platinum
particles to obtain enzyme-like materials—nanozymes [128]. Also of great interest are
the studies of TiO2-coated alumina membranes [51] and mesoporous TiO2/ZnO compos-
ites [84], which the authors suggest could potentially be used for efficient drug loading.

5. Analysis of the Results
5.1. Comparison of Different Antibacterial Coatings

To date, a variety of oxide and metallic ALD coatings with active antibacterial activity
have been obtained and investigated. Depending on where they will be used, coatings may
need to have certain properties like antibacterial effectiveness, ability to work alongside
biological systems, form, crystal structure, resistance to chemical changes, and more.
Material selection must also account for synthesis temperature and growth rate. Table 3
compares different antibacterial ALD materials. The comparison of different coatings
in terms of effectiveness shows that among oxides, zinc oxide [54,55,58] is the most
effective. The antibacterial activity of ZnO is based on several independent mechanisms
(see Section 3.3.1). Therefore, ZnO is the most versatile material and the most commonly
used for ALD antibacterial coatings. Furthermore, ALD of ZnO can be performed at
low temperatures starting from 20 ◦C [81], and its growth rate reaches 0.19–0.20 nm per
cycle [36,135], which is the highest value for all ALD coatings studied. Disadvantages
of ZnO include low biocompatibility and low stability in an aqueous medium, which
limits its potential applications in water purification and disinfection. The effects of these
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drawbacks can be reduced or eliminated by doping or synthesizing complex ZnO-based
oxide systems.

Table 3. Growth and functional characteristics of antibacterial ALD coatings.

Characteristics TiO2 Doped TiO2 ZnO Ag ZrO2 Fe2O3 Al2O3

Antibacterial efficacy + ++ +++ +++ 0 + 0

Biocompatibility +++ ++ + + ++ + +

ALD temperature From 65 ◦C From 65 ◦C From RT 120–160 ◦C ~200 ◦C ~180 ◦C From RT

Growth rate, uniformity,
and conformality ++ ++ +++ + ++ ++ +++

Morphology of the coating Dense
coating

Dense
coating

Dense
nanocrystalline

coating
NPs Dense

coating
Dense

coating
Dense

coating

Stability in aqueous
environment +++ ++ + + +++ + +++

+++—maximum performance. ++—high performance. +—average performance. 0—minimal or no effectiveness.
RT—room temperature.

In contrast, TiO2 has excellent biocompatibility and stability, and it grows successfully
at low temperatures but has a slower growth rate (0.03–0.06 nm per cycle, depending on
the synthesis temperature and the type of precursor and substrate). However, the main
disadvantage of titania is its much lower antibacterial activity compared to ZnO [54,55,58].
Titanium oxide is bactericidal only in the presence of ambient light (mainly UV), but it
can also be bacteriostatic in the dark. Bacteriostatic TiO2 coatings are biocompatible and
non-toxic to the organism and may therefore be preferable for implant applications. The
problem of low antibacterial activity of TiO2 can be solved by doping, synthesis of mixed
oxide systems, and noble metal sensitization (see Section 3.2).

Iron oxide (Fe2O3), like titanium oxide, is not an active bactericidal oxide, but in the
form of coatings for MOFs it shows high photocatalytic activity and can be considered to
be a promising antibacterial material. However, in our opinion, iron oxide is less promising
than titanium oxide because of the difficulties in growing it via ALD. Other oxides such
as ZrO2, Al2O3, and HfO2 are also very easily obtained via ALD, but they are expected to
have weak antibacterial activity mainly due to their bacteriostatic effect and, in our opinion,
have limited prospects of application in areas where specific properties such as bioinertness
(Al2O3) or high mechanical properties (ZrO2) are required.

Metallic silver, like zinc oxide, is a very potent bactericidal material with multiple
mechanisms of action. Unlike oxides, silver is grown via ALD in the form of nanoparticles,
resulting in high Ag+ release. In particular, ALD Ag has been reported to have high
antibacterial activity against S. aureus and MRSA, while being non-toxic for eukaryotic cells
in vitro and in vivo. However, synthesis difficulties (unstable precursors, its low vapor
pressure, low reactivity, and need to use non-standard co-reagents) limit the prospects of
using this method to produce silver-based antibacterial coatings via ALD.

When comparing different antibacterial ALD coatings, it is very important to consider
the influence of the substrate. The type and morphology of the substrate determines the
morphology of the coatings, and for coatings with a thickness of a few tens of nanometers or
less, wettability, surface charge, and surface energy are influential. However, the influence
of the substrate is not limited to this. Because ALD is a process based on reactions between
chemical groups on the substrate surface and gaseous reagents, the chemical composition
of the substrate surface determines which functional groups will react. For example, there
are many hydroxyl groups on the surface of cotton and silk, and only amide groups on
polyamide [58], which can greatly affect the growth rate and continuity of the coating. For
example, the samples of ALD TiO2-coated polyamide-66 substrates contain the nitrogen
peaks in the X-ray photoelectron spectroscopy (XPS) spectra, indicating a non-cohesive
film or the presence of a thinner film than expected. At the same time, for ZnO coatings,
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nitrogen is not observed in the XPS spectra, which means that the coating is continuous [58].
In the case of metals, even on inorganic substrates with a large number of hydroxyl groups
on the surface, the density of growing NPs can vary greatly (Figure 15).

5.2. Advantages, Disadvantages, and Perspectives of ALD

The main advantages and disadvantages of the ALD method have been described
in numerous review articles [18,20,22,137,138] and these remarks are applicable when
considering the application of ALD for the synthesis of antibacterial coatings. All oxide
films deposited are characterized by high uniformity and conformality. These properties
make ALD very promising for coating surfaces with complex topography, such as 3D
implants and scaffolds. In this context, ALD coatings are very promising for regulating
the biocorrosion rate of biodegradable implants as shown by Li et al. [135]. Drug release
control and active antibacterial ion release control can also be achieved by applying high
quality ALD coatings [139]. Membranes and filters for water and air purification have high
specific surface areas and also require the use of coating technologies with high uniformity
and conformality.

Another feature of ALD is the cyclic nature of the growth and the small growth per
cycle, which allows the thickness of the films to be controlled with high precision. This
advantage is particularly important when considering zinc oxide and silver coatings, as
the antibacterial effect and biocompatibility are highly dependent on the thickness and
particle size of the coating. In addition, for a number of applications, such as nanozymes, it
is necessary to control the particle size/thickness as precisely as possible. For example, in
the study of Yang et al., the optimal size of platinum nanoparticles for Pt/CNTs composites
was sought for a range of particle sizes in the range 0.55–2.81 nm, which is difficult to
achieve by methods other than ALD [128].

Due to the low growth per cycle, ALD is not suitable for producing films with thick-
nesses greater than a few hundred nanometers, and other methods should be used to
produce relatively thick films and structures. However, even in this case, ALD can be effec-
tive for the synthesis of seed layers. Indeed, in a large number of studies, ALD TiO2 [39] and
ZnO [88,134,136] have been used as effective methods to create a homogeneous surfaces
on which thicker layers of arrays of nanorods and other structures have been deposited
(Figure 19), which due to their morphology and high specific surface area can be used as
effective antibacterial ultrafiltration membranes, air filters, or implants.

It should also be noted that in addition to their application value, uniform and confor-
mal ALD coatings can play an important role in basic research to identify and separate the
various factors that determine different antibacterial effects. For example, Jeong et al. used
15 and 30 nm Al2O3 layers to regulate and separate the effect of chemical action of ZnO
rods and their morphology on antibacterial properties [83].

When considering ALD coatings, it is rarely mentioned that the high adhesion of such
coatings compared to coatings produced by other methods is a very important feature for
many applications. The high adhesion is due to the chemical bond between the coating
materials and the substrate. In addition, the excellent mechanical properties of ALD
coatings have been noted. In particular, Darwish et al. studied ALD TiO2 coating on
PMMA using the denture cleanser challenge test and showed the high stability, mechanical
strength, and adhesion of titanium oxide. According to Konopatsky et al. [69], low adhesion
is one of the main problems of noble metal-sensitized metal nanoparticle TiO2, as noble
metals obtained via liquid phase deposition suffer from the gradual removal from the
surface and reduce the efficiency of photocatalysis. In our recent work [57], we have
successfully obtained similar hybrid structures of TiO2 nanocoatings/Ag NPs using only
ALD. Such structures should exhibit higher adhesion. Thus, we have shown that such
complex structures can be obtained in a single ALD process, which simplifies the synthesis
and reduces the risk of poor adhesion of Ag nanoparticles [69] and is likely to increase
interest in such structures in the future.
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Figure 19. Schematic of the preparation process of the Ag@ZnO-functionalized PTFE filters and the
SEM images of the filters at different stages of production: (a) pristine PTFE, (b) ZnONPs@ PTFE,
(c) ZnO-NRs@PTFE, (d) schematic of the preparation of Ag/ZnO-NRs@PTFE, and (e) Ag/ZnO-
NRs@PTFE; the inset is a high magnification micrograph of Ag/ZnO-NRs@PTFE. Reprinted with
permission from Ref. [91]. Copyright 2017 Elsevier.

The ALD of mixed oxide systems, as well as multilayer or complex oxide–metal struc-
tures, has great research potential and may yield new promising results. In this direction,
encouraging results have already been obtained in recent years, showing the synergistic
effect of combinations of different oxides [63,64] and noble metal sensitization [30,60]. The
ALD opens up great prospects for the synthesis of a wide variety of coatings of different
compositions due to the possibility to flexibly vary the reagents used at different stages
of the coating growth. Unfortunately, most studies so far use common bacteria like E. coli
and S. aureus. For specific applications, more detailed studies are needed using specific
strains. To develop coatings for medical implants, it is necessary to conduct more detailed
studies in vivo. Finally, it is necessary to briefly discuss the prospects for the practical
application of the ALD technologies and approaches described in this review. Most of the
work presented requires additional reproducibility testing as well as additional in vitro
and in vivo studies; some of the work requires the investigation of a number of other
functional properties. Nevertheless, many of the coatings obtained can be used in practice
and in industry after careful evaluation of their cost effectiveness. Although ALD has
already become an industrial method in microelectronics and is even successfully used in
the medical industry for surface modification of titanium implants [140,141], ALD is still a
very expensive and complex technology with a very low coating growth rate. However,
technical advances in recent years suggest that the impact of these negative factors can be
reduced. In particular, we should note the development of technically simpler technologies
such as atmospheric pressure ALD [142,143] and faster roll-to-roll ALD, spatial ALD [19], as
well as the emergence of techniques that avoid the use of plasma to produce silver [123,144].
We believe that the advancement of these technologies could greatly augment the likelihood
of extensive application of ALD in the manufacturing of antibacterial-coated materials
within the industry.

6. Conclusions

This review details the results of using ALD for the synthesis of antibacterial coatings
based on metals and oxides. The results of the analysis showed that the ALD method can
be successfully applied to obtain a variety of different antibacterial nanocoatings on various
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inorganic and polymeric substrates. The influence of coating preparation conditions and
their properties such as thickness, crystal structure, morphology, surface charge, wettability,
etc., on the antibacterial properties was discussed in detail. It has been shown that for oxide
coatings, increasing the thickness improves the antibacterial effect up to a certain limit,
while for zinc oxide, increasing the thickness can induce a cytotoxic effect on eukaryotic
cells. The surface topography, its charge, and wettability are closely related and also have a
significant influence on the antibacterial properties, mainly by achieving a bacteriostatic
effect. It was also found that ALD coatings with a thickness typical for this method
(not more than a few tens of nanometers) are characterized by a significant influence
of the substrate. In addition, a significant influence of the ambient illumination factor
on the bactericidal activity of photocatalytic coatings based on pure titanium and zinc
oxides, as well as mixed and complex systems based on them, was shown. The analysis
of the results showed that mixed oxide systems and composite materials based on oxides
and noble metals are the most promising as antibacterial ALD coatings for a wide range
of applications.

The results of the review showed that ALD coatings have wide application prospects
due to ALD features such as high uniformity, conformality, precise composition and
thickness control, and high adhesion. In particular, the most active and successful research
is in the areas of antibacterial ALD nanocoatings for dental and orthopedic implants, water
and air purification systems, and antibacterial textiles. Some progress is also being made in
the field of ultra-thin transparent coatings for touch screens and the treatment of various
diseases and injuries.
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Abbreviations

alkali-heat-treated (AHT); atomic layer deposition (ALD); adenosine triphosphate
(ATP); biaxially oriented polylactic acid (BOPLA); colony-forming unit (CFU); carbon
nanotubes/chitosan composites (CNTs/CS); expanded polytetrafluoroethylene (ePTFE);
field emission scanning electron microscopy (FESEM); fetal mesenchymal stem cells (FetM-
SCs); human mesenchymal stem cells (hMSC); 2-hydroxyterephthalic acid (hTPA); human
umbilical vein endothelial cells (HUVEC); indium tin oxide (ITO); light-emitting diode
(LED); lymphoproliferative diseases (LPD); methylene blue (MB); mouse embryonic stem
cells (mESC); metal-organic framework (MOF); methicillin-resistant S. aureus (MRSA);
nanoarray (NA); nanoparticles (NPs); octadecylphosphonic acid (OPDA); polyamide-66
(PA66); polydimethylsiloxane (PDMS); plasma enhanced atomic layer deposition (PEALD);
polyethylene terephthalate (PET); polymethyl methacrylate (PMMA); polypropylene (PP);
protective equipment (PPE); polytetrafluoroethylene (PTFE); polyurethane (PU); polyvinyli-
dene fluoride (PVDF); ribonucleic acid (RNA); reactive oxygen species (ROS); selected area
electron diffraction (SAED); surface free energy (SFE); sand blasted and acid etched (SLA);
tetrakis(dimethylamido)titanium (TDMAT); titanium oxide nanotubes (TNT); titanium (IV)
isopropoxide (TTIP); ultraviolet (UV); X-ray photoelectron spectroscopy (XPS).
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