f‘ animals

Article

Analysis on Changes and Influencing Factors of the Intestinal
Microbiota of Alpine Musk Deer between the Place of Origin

and Migration

Baofeng Zhang 10, Minghui Shi !, Shanghua Xu 2, Haonan Zhang !, Yimeng Li 3 and Defu Hu *

check for
updates

Citation: Zhang, B.; Shi, M.; Xu, S.;
Zhang, H.; Li, Y,; Hu, D. Analysis on
Changes and Influencing Factors of
the Intestinal Microbiota of Alpine
Musk Deer between the Place of
Origin and Migration. Animals 2023,
13,3791. https://doi.org/10.3390/
ani13243791

Academic Editor: Maria Teresa

Capucchio

Received: 31 October 2023
Revised: 4 December 2023
Accepted: 5 December 2023
Published: 8 December 2023

School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
Guangxi Forestry Research Institute, Nanning 530002, China

Department of Life Sciences, National Natural History Museum of China, Beijing 100050, China
*  Correspondence: hudf@bjfu.edu.cn

W N =

Simple Summary: The intestinal microbiome structure and diversity of Alpine musk deer in Gansu
(origin) and Sichuan (migration) were analyzed in this study using 16S rRNA high-throughput
sequencing technology. The study revealed that there were no alterations in the dominant intestinal
species between musk deer in the origin and migration areas. However, there were significant
differences in their relative abundance. Therefore, specific measures should be implemented for
the feeding and management of migratory Alpine musk deer. This study provides a theoretical
foundation for expanding artificial populations and reintroducing wild populations.

Abstract: In China, the population of wild musk deer, belonging to the family Moschidae, has
drastically decreased in recent years owing to human activities and environmental changes. During
the 1990s, artificial breeding of Alpine musk deer was conducted in Xinglong Mountain, Gansu
Province, China, and their ex situ conservation was explored for over a decade. Ex situ protection is
beneficial for expanding the population of animals and maintaining their genetic diversity; however, it
can also induce metabolic diseases and parasitic infections and reduce reproductive capacity. The gut
microbiota of animals has a considerable impact on host energy metabolism and immune regulation,
thereby playing a crucial role in the overall health and reproductive success of the host. In this study,
by comparing the differences in the intestinal microbiome of the musk deer according to their place
of origin and migration, the changes in their gut microbiota and the influencing factors were explored
to provide a theoretical basis for monitoring the health status of the musk deer. We used 16S rRNA
high-throughput sequencing technology to analyze the structure and diversity of the gut microbiota
of Alpine musk deer in Gansu (G, place of origin) and Sichuan (S, place of migration). The results
showed that the dominant bacteria and genera in the intestinal microbiome of captive musk deer
were similar in the places of origin and migration, but significant differences were observed in their
relative abundance (p < 0.05). Regarding Firmicutes and Actinobacteria, which are related to plant
cellulose digestion, the relative abundance in group G was higher than that in group S; regarding
Proteobacteria and Verrucomicrobia, which are related to fat and starch intake, the relative abundance
in group S was higher than that in group G; the relative abundance of Bacillus and Clostridium sensu
stricto, which are related to fiber digestibility, was higher in group G than in group S; the relative
abundance of conditional pathogens Acinetobacter and Escherichia—Shigella was higher in group S than
in group G. The results of c and 3 diversity analysis also showed significant differences between the
two groups (p < 0.05). The ACE and Shannon indices of musk deer in group G were considerably
higher than those in group S, and the Simpson index of musk deer in group S was greater than that in
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environment have an impact on the intestinal microbiome. Effective monitoring of the health and
immunity of the musk deer is crucial for ensuring their overall health, which in turn will aid in
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1. Introduction

The Alpine musk deer (Moschus chrysogaster), belonging to the family Moschidae,
is endemic to China. It inhabits the alpine forest and shrub belt above 3000 m on the
Qinghai-Tibet Plateau and the relatively cold and arid mountain forests extending to the
northeast of the plateau [1]. Since the 1950s, China’s musk deer resources have drastically
decreased by more than 90% [2]. However, the Alpine musk deer belongs to a relatively
well-preserved species of Moschidae. In addition to the plateau’s forest shrub belt, Xin-
glong Mountain in Gansu Province (1159 individuals, [3,4]) and Helan Mountain in the
Ningxia Hui Autonomous Region (100 individuals, [5,6]), which are located in the outer,
mountainous regions of the plateau, maintain a certain population of musk deer. In the
early 1990s, musk deer domestication and breeding began in the Xinglong Mountain area,
which became the only source of the Alpine musk deer breeding population [7].

In 2006, the Chinese government promulgated a species breeding plan to establish
breeding populations and actively promote reintroduction. Several years of the ex situ
breeding practice have shown that the disease and death rates of the relocated population
of the Alpine musk deer are higher than those of the original population, among which di-
gestive tract diseases are particularly prominent. Studies have shown that animal digestive
tract microbiota plays a vital role in host physiology, immunity, and metabolism [8-10].

An imbalance in intestinal microbiota is often accompanied by a reduction in mi-
crobiota diversity. The decreased diversity and richness of animal gut microbiota can
increase the probability of diseases in the affected animals [11,12]. While gut microbiota is
influenced by a variety of factors, food is the most direct factor affecting the diversity of
animal intestinal microbiota [13]. Food is a substrate for microbial fermentation and drives
the composition and metabolism of microbial communities [14].

Therefore, in this study, we compared the characteristics of the intestinal microbiota of
the Alpine musk deer with the same provenance but different food sources and revealed
the changes in the intestinal microbiota of ex situ Alpine musk deer and their possible rela-
tionship with digestive tract diseases. Our findings provide a scientific basis for improving
the gut health of the Alpine musk deer and aid in devising management strategies for their
conservation.

2. Materials and Methods
2.1. Experimental Environment and Experimental Animals

The Gansu musk deer (G musk deer) breeding base is located in Yuzhong County,
which belongs to Xinglong Mountain in the eastward extension of the Qilian Mountains. It
is 2171 m above sea level and has a temperate continental climate with an average annual
temperature of 5.4 °C and an average annual precipitation of 406 mm. The Sichuan musk
deer (S musk deer) breeding base is located in Qingchuan County and belongs to the
northwestern section of Longmen Mountain in the Minshan Mountain System. It has
an altitude of 1100 m and has a subtropical monsoon climate with an average annual
temperature of 13.7 °C and an average annual precipitation of 1027 mm.

Eight healthy adult Alpine musk deer (8 male; 7-8 years old) were selected from both
locations in mid-October 2018. Standardized construction of breeding centers, with all
individuals raised separately. The breeding methods in the two locations were similar,
with a captive breeding group structure. The main feeding plants of G musk deer included
Salix cupularis Rehder, Corylus mandshurica Maxim. and Rupr., Prunus salicina Lindl, Acer
tetramerum Pax, and Prunus tomentosa Thunb, whereas the main feeding plants of S musk
deer included Morus alba L., Ulmus pumila L. cv. Tenue, Styphnolobium japonicum (L.) Schott
and Acer pictum subsp. mono (Maxim.) H. Ohashi, Broussonetia papyrifera (Linn.) L'Hér. ex
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Vent., and Eucommia ulmoides Oliver. The food concentrations and ratios between the two
places were the same, including corn starch, soybean, and bran.

2.2. Sampling and Experimentation
2.2.1. Fresh Feces Collection

Each animal was sampled once, for a total of 16 fresh fecal samples. Disposable sterile
gloves were worn during the sampling process, and fresh fecal samples were immediately
placed in sterile centrifuge tubes for sealed storage. All samples were stored in liquid
nitrogen and shipped back to the laboratory at the earliest time possible, where they were
stored at —80 °C until DNA extraction.

2.2.2. DNA Extraction, Polymerase Chain Reaction (PCR) Amplification, and 165-rRNA
Gene Sequencing

Bacterial DNA was extracted using MN NucleoSpin 96 Soi (Macherey-Nagel, Diiren,
Germany). DNA concentration and purity were measured using the Qubit dsDNA HS
Assay Kit (Life Technologies, Carlsbad, CA, USA). The bacterial 16S rRNA gene fragments
(V3-V4 region) were amplified from 16 fecal samples using the universal bacterial primers
338F (5'-ACTCCTACGGGAGGCAGCA-3') and 806R (5'-GGACTACHVGGGTWTCTAAT-
3") [15]. The PCR volume was 10 uL, containing 5 L. KOD FX Neo Buffer, 0.2 uL. KOD
FX Neo, 2 uL ANTP, 10 uM forward and reverse primers at 0.3 pL each, with 50 ng £ 20%
genomic DNA, and the remaining volume was comprised of ddH,O. The PCR conditions
were as follows: 95 °C for 5 min, followed by 25 cycles of 95 °C for 30 s, 50 °C for 30 s,
72°Cftor 40 s, and 72 °C for 7 min. According to the instructions for using the OMEGA
DNA purification column, the PCR product was added to the purification column and
collected and purified through repeated washing, elution, and centrifugation (Omega
Bio tek, Nocross, GA, USA). Finally, high-throughput sequencing was performed on the
lumina HiSeq 2500 platform (Illumina, Inc., San Diego, CA, USA) at the Biomarker
Technologies Corporation (Beijing, China).

2.2.3. Bioinformatics and Statistical Analyses

The raw data were spliced (FLASH [16], version 1.2.11), the spliced sequences were
subjected to quality filtering (Trimmomatic [17], version 0.33), and chimeras were removed
(UCHIME [18], version 8.1) to obtain high-quality tag sequences. Sequences were clustered
at the 97% similarity level, and 0.005% of all sequences was used as a threshold to filter out.
The bacterial database was obtained from SILVA [19].

Mothur (version v.1.30.2) software was used to evaluate the Alpha diversity index
of the samples and to analyze the richness and diversity index of bacterial communities
in samples [20]. Microbial taxonomic compositions were shown as the mean + SE. The
statistical comparisons were made with the Student’s ¢-test. The level of significance (p)
was set at 0.05. Analysis of variance (ANOVA) was used to test whether the difference of
the a-diversity index between the two groups was significant. Alpha-diversity refers to
the diversity within a specific region or ecosystem. Commonly used indicators to measure
the abundance of microbiota include Chaol and ACE richness estimators. Indicators
used to measure diversity include the Shannon-Wiener diversity index and the Simpson
diversity index. The smaller the value of the Simpson index, the higher the diversity of
the community.

Beta diversity used QIIME 1.9.1 software to evaluate and analyze (https:/ /qiime2.org/
(accessed on 11 December 2022)) [21]. Based on Bray-Curtis, a one-way analysis of similari-
ties (ANOSIM) was performed to determine the differences between the groups. The vegan
package in R version 4.2.2 (https:/ /www.r-project.org (accessed on 11 December 2022)) was
used for the analysis [22], and Python was used to construct the ANOSIM analysis graph.
Linear discriminant analysis effect size (LEfSe) analysis, that is, the analysis of species
with considerable differences between groups, uses linear discriminant analysis (LDA) to
estimate the impact of the abundance of each species on the difference. It is mainly used to
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identify species with considerable differences in abundance between groups. A t-test was
performed on the species abundance data between the groups to obtain the p-value, and
finally the species that caused the difference in the composition of the two groups of the
samples was screened out according to the p-value and the default p < 0.05.

3. Results
3.1. 16srRNA Gene Sequencing Results

Based on Illumina MiSeq sequencing technology, this study amplified the 165 rRNA
sequences of fecal microbiome and obtained 1,279,555 sequences (raw reads) from 16 sam-
ples of Alpine musk deer from Gansu and Sichuan, including 909,531 effective sequences
(effective reads). An average of 56,845.69 effective sequences were obtained per sample
(the average sequence length (AvgLen) was 423.94 bp). A total of 608 operational taxo-
nomic units (OTUs) were obtained at the 97% sequence similarity level, with an average
of 395.06 OTUs per sample. As the sequencing depth increased, the number of OTUs in-
creased, and the OTU dilution curve measured in this study (Figure 1) eventually flattened,
indicating that the amount of sequencing data was reasonable.
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Figure 1. Rarefaction curve. The x-coordinate is the number of sequences sampled, and the y-coordinate
is the number of observed OTUs. Each curve in the graph represents a sample, which is labeled
with a different color. The number of OTUs increases with the sequencing depth. When the curve
becomes stable, the number of detected OTUs does not increase with the expansion of extracted data,
indicating a time when the amount of sequencing data is reasonable.

The Venn and petal diagrams show shared and unique bacterial species in the fecal
samples of Alpine musk deer from Gansu and Sichuan, and the bacterial taxa shared by
all animals in both groups were regarded as the core microbiota in the hindgut of Alpine
musk deer. There were 554 OTUs in the fecal samples of Gansu and Sichuan musk deer,
with 33 OTUs in the former and 21 OTUs in the latter (Figure 2A); there were 172 OTUs in
Gansu musk deer and 171 OTUs in Sichuan musk deer (Figure 2B,C). Using a microbial
reference database, the main bacteria detected were classified into 14 phyla, 22 classes,
40 orders, 83 families, and 191 genera.
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Figure 2. OTU Venn diagram, flower diagram, and microflora structure (phylum level) pie chart. The
Venn and flower diagrams show the overlapping number of multiple color graphs, which refers to
the total number of OTUs shared by G and S individuals, and the non-overlapping number, which
refers to the unique number of OTUs in each sample. The pie diagrams show different colored blocks
for different types of microbiotas (phylum level), and the numbers on the colored blocks represent
the percentage of the relative abundance of microbiota. (A) The number of OTUs shared by G and
S. (B) The number of OTUs shared within G. (C) The number of OTUs shared within S. (D) The
proportion of phylum relative abundance of S. (E) The proportion of phylum relative abundance
of G.

The pie chart shows the proportions of 14 major bacterial phyla in Gansu and Sichuan
Alpine musk deer fecal samples (Figure 2D,E), while the distribution histogram visually
shows the relative abundance of the top ten bacterial phyla (Figure 3A,C) and the proportion
of bacterial genera (Figure 3B,D) in the fecal microbiome of the two regions. The top ten
phyla in terms of relative abundance were Proteobacteria (G 42.12%; S 53.79%), Firmicutes
(G 34.31%; S 29.97%), Actinobacteria (G 17.28%; S 0.82%), Bacteroidetes (G 5.24%; S 10.78%),
Cyanobacteria (G 0.37%; S 1.85%), Spirochaetes (G 0.34%; S 0.04%), Verrucomicrobia (G 0.24%;
S 2.66%), Acidobacteria Patescibacteria (G 0.05%; S 0.01%), Tenericutes (G 0.02%; S 0.04%), and
Fibrobacteres (G 0.01%; S 0.03%).
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Figure 3. Core microbiota (phylum and genus level) distribution histogram. The x-coordinate
represents sample and group name, and the y-coordinate represents relative abundance percentage.
A color represents a species, and color block length (bar chart) indicates the relative abundance ratio
of the species. The “Others” category represents other species in the top ten with respect to the
abundance level, and “Unclassified” represents species that have not been classified. (A,B) represent
core flora distribution at the phylum level between G and S groups. (C,D) represent core flora
distribution at the genus level between G and S groups.

The top ten genera in terms of relative abundance were Acinetobacter (G 33.16%; S
26.39%), Bacillus (G 11.34%; S 0.59%), Escherichia-Shigella (G 8.23%; S 21.50%), Corynebac-
terium_1 (G 8.00%; S 0.22%), Glutamicibacter (G 5.88%; S 0.09%), Kurthia (G 4.54%; S 0.05%),
uncultured_bacterium_f_Planococcaceae (G 3.12%; S 0.76%), Clostridium_sensu_stricto_1 (G
1.03%; S %), Arthrobacter (G 2.39%; S 0.13%), and Planomicrobium (G 2.32%; S 0.01%).

3.2. Analysis of Intestinal Microbiome Diversity

In this study, different indicators were used to compare the diversity of fecal samples
from the Alpine musk deer in Gansu and Sichuan. «-diversity reflects species richness
and species diversity of a single sample. Chaol and ACE indices were used to measure
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species abundance. There was no significant difference in the Chaol index of the intestinal
microbiome between the Gansu and Sichuan Alpine musk deer, but there was a significant
difference in their ACE index (p < 0.05) (Figure 4). Shannon and Simpson indices were used
to measure species diversity; there were significant differences in the Shannon and Simpson
indices of the intestinal microbiome of musk deer between the two regions (p < 0.05)
(Figure 4). For the same species abundance, the greater the community evenness and the
greater the species diversity of the community were; that is, the greater the Shannon index
value, the smaller the Simpson index value and the higher the species diversity of the
sample were (see Table 1 below). These results showed that the species diversity of the
intestinal microbiome of musk deer in Gansu was higher than that in Sichuan. The integrity
of the sequencing was tested using Good’s coverage, which was close to 99% in this study,
indicating that most of the bacterial species present in the samples had been detected.

600
. G
* —
500 - E
= e
£ 400 -
&
S
£ 300/ - -
= - -
=
=
-, *
«
*
0 T T _Il: T
ACE Chaol Simpson  Shannon

Figure 4. Inter-group analysis of variance (ANOVA) histogram of x-diversity index. ACE: an index
used to estimate the number of OTUs in a community; Chao 1: an index that uses the Chaol algorithm
to estimate the number of OTUs included in a sample. ACE and Chao 1 are commonly used in
ecology to assess the total number of species; Shannon: an index used to estimate microbial diversity
in a sample; Simpson: an index used to quantitatively describe the biodiversity of a geographical
area. * p < 0.05.

Table 1. Statistics of x-diversity indices.

Group Chaol ACE Shannon Simpson
G 482.33 + 10.58 481.16 +10.17 2.99 + 0.08 0.13 +0.01
S 463.53 £10.39 458.69 £ 6.98 2.61+0.14 0.22 +0.03
P >0.05 <0.05 <0.05 <0.05

QIIME 1.9.1 software was used to perform (3-diversity analysis, reflecting the differ-
ences in species diversity among populations by comparing temporal and spatial changes
in microbial composition. Principal coordinate analysis (PCoA) is a dimensionality reduc-
tion sorting method that uses the difference or distance between the samples to represent
differences in species diversity, achieving a quantitative conversion of qualitative data. The
closer the distance on the PC1 vs. PC2 coordinate map, the greater the similarity of the sam-
ples. The results of PCoA analysis of 3-diversity showed that the intestinal microbiome of
Gansu and Sichuan Alpine musk deer can be clearly clustered into two categories (Figure 5).
ANOSIM was used to determine significant differences in 3-diversity between samples
from different groups. In this study, the vegan package in R was used for ANOSIM analysis.
An R-value close to 1 indicates that the difference between the groups is greater than that
within a group, whereas a smaller R-value indicates that there is no considerable difference
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between groups or within a group. The results of ANOSIM analysis of 3-diversity showed
that the differences between groups in the intestinal microbiome of the Alpine musk deer in
the two regions were significantly higher than the differences within the groups (R = 0.917,
p < 0.05) (Figure 6).

PCoA-PC1 vs PC2

e e
o —
1 1

[ ]

S
P
1

PC2-Percent variation explained 11.38%

-O'.l OI.O Ol.l

PC1-Percent variation explained 24.45%
Figure 5. Principal coordinate analysis (PCoA) plot of 3-diversity. Samples in the same group are
represented by the same color and shape. PC1 vs. PC2 is the PCoA plot obtained from the first
and second main coordinates; the x-axis and y-axis represent the first and second main coordinates,
respectively. The percentage of the main coordinates represents the relative contribution of this
coordinate to sample differences, which is a measure of the amount of original information extracted
by this main coordinate. The distances between the sample points represent the similarity of micro-
biota in the samples. A closer distance represents higher similarity; samples that cluster together are
composed of similar microbiota.

R =0.917, pvalue = 0.002

0.45 4

binary_jaccard
°
&
|
|

All between treat] All within treat] G S

Figure 6. Inter-group analysis of similarities (ANOSIM) boxplot of 3-diversity. The y-axis represents
the rank of the distance between samples, and the x-axis represents the results between both groups.
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Intra-group results are shown for each group. R value: R-value range (—1, 1). Actual results are
generally between 0 and 1. An R-value close to 0 represents no significant inter-group and intra-group
differences. An R-value close to 1 shows that inter-group differences are greater than intra-group
differences. p-value: The p-value represents the confidence level of the statistical analysis; p < 0.05
reflects a statistically significant difference. In the plot, the R-value was close to 1, indicating that
inter-group differences were greater than the intra-group differences, and p < 0.05 shows that this
result was statistically significant.

3.3. Differences in Microbiome Composition

Analysis of variance (ANOVA) was used to test the significance of difference in
means among multiple samples. At the phylum level, there were significant differences
in Actinobacteria and Cyanobacteria between the fecal microbiota of Gansu and Sichuan
musk deer. The relative abundance of Cyanobacteria in group S was greater than that in
group G, and the relative abundance of Actinobacteria in group G was greater than that
in group S. At the family level, the relative abundance of Micrococcaceae, Marinifilaceae,
and Leuconostocaceae in group G was higher than those in group S. At the genus level, the
relative abundance of Odoribacter in group G was higher than that in group S, and the
relative abundance of Paeonia sp. Sd0052 and Roseburia was higher in group S than in group

G (p < 0.05) (Figure 7).
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0.16 4 0.025
ey . G
% sk
1 [ s
030 0.14
0.020
0.25 0.12
3 0.10
£ o0 8 8 oors |
S 5 5
g ] <
2 § ]
< 2 ]
N 2 008 2
&
= 015 ";’ E
E = =
] S 0010 |
2 0.06 &
0.10
ok
0.04 -
" [
| 0.005 |
0.05 | *k
%] 0.02 -
’,**_‘ "**“ ’7 —‘
0.00 —J 0.0 _ - 0.000 ——
© © & ¢ ¢ ¢ @ & &
é‘é\ @9‘6\ %b““ & «\\bg P & e“'é C}% ‘@e
& & &7 & & & < &7 Nd
¥ S 2 & K & )
A & - S &
& N &
A. Phylum B. Famliy C. Genus

Figure 7. ANOVA of inter-group samples. The plot from ANOVA shows differences in relative
abundance (mean% =+ SD) of two bacterial phyla, four bacterial families, and three bacterial genera.
**p <0.01. (A) Relative abundance at the phylum level. (B) Relative abundance at the family level.
(C) Relative abundance at the genus level.

LEfSe can identify biomarkers with statistical differences among different groups. The
length of the histogram represents the LDA score, which, in turn, represents the impact of
different species. LEfSe analysis identified 41 bacterial taxa that were significantly different
between the two groups of gut microbiota of the musk deer. The relative abundance of
Actinobacteria, Bacillus, Corynebacterium 1, Kurthia, Glutamicibacter, Clostridium sensu stricto
1, and Arthrobacter was considerably higher in group G than in group S. The relative
abundance of Proteobacteria, Verrucomicrobia, Lysinibacillus, Rikenell ACEae RC9 gut group,
Comamonas, and Akkermansia was considerably higher in group S than in group G (Figure 8).
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Figure 8. Linear discriminant analysis (LDA) effect size (LEfSe) of inter-group samples. The length of
the bar column represents the LDA score, and different colors represent different groups of species.
The plot from LEfSe analysis shows the microbial taxa with significant differences between G (blue)
and S (orange) (LDA score > 4).

4. Discussion

Ex situ conservation is an important technique for protecting rare and endangered
wildlife that enables population recovery and rapid expansion. To reduce the risk of
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maladaptive factors in animals due to ex situ conservation, their health status should
be continuously monitored. Intestinal health is a vital factor regulating health, and the
dynamic equilibrium between intestinal microorganisms and the body affects digestion,
absorption of nutrients, metabolism, and immunity [23,24]. Imbalances in intestinal micro-
biota can cause several serious diseases and severe damage to the body [25,26].

Studies have shown that microbial diversity can reflect the health status of animals to
a certain extent [27], and that low intestinal microbiome diversity and a simple mi-crobial
community structure may cause a variety of diseases [27]. In contrast, high micro-bial
diversity indicates stronger intestinal stability [28]. Instability of the microbial com-munity
is a health hazard for the host [29]. In this study, there were significant differences in the -
and 3-diversities of the intestinal microbiome of Alpine musk deer in Gansu and Sichuan.
The abundance and diversity of the intestinal microbiome of Gansu Alpine musk deer were
higher than those of Sichuan Alpine musk deer. The health status of Gansu Alpine musk
deer was better than that of Sichuan Alpine musk deer.

Firmicutes and Actinobacteria in the intestinal microbiome of herbivores are asso-
ciated with the digestion of plant cellulose [30,31]. The abundance of Firmicutes and
Actinobacteria in the musk deer in group G was higher than those in the musk deer in
group S (Figure 3), reflecting the higher cellulose content in the food of Alpine musk deer in
Gansu owing to the presence of rougher plants in the musk deer’s native area. A previous
study found that the relative abundance of Firmicutes in wild Alpine musk deer feces was
considerably higher than that in captive musk deer, whereas that of Bacteroidetes was
considerably lower than that in captive musk deer [32]. Bacillus and Clostridium sensu stricto
in Firmicutes can improve the digestibility of high-fiber diets [33,34]. The abundance of
Bacillus and Clostridium sensu stricto in group G was higher than that in group S (Figure 8).
The cellulose of food source plants is the main factor responsible for the differences in
the abundance of Firmicutes and Actinobacteria. Proteobacteria and Verrucomicrobia
were negatively correlated with fiber intake [35,36] but positively correlated with fat and
starch intake [36,37]. The abundance of Proteobacteria and Verrucomicrobia in group S was
higher than that in group G (Figure 3), which reflected that the Sichuan Alpine musk deer
consumed plants with more nutrients such as carbohydrates and lipids.

Additionally, the proliferation of Proteobacteria can cause metabolic disorders [38,39],
and high-fat diets can lead to a considerable increase in abundance of Proteobacteria in the
intestinal tract of mice [40]. The abundance of Proteobacteria in the intestinal tract of the
Sichuan Alpine musk deer was higher (Figure 3), which shows that compared with the
place of origin Gansu, the subtropical plants ingested by the Alpine musk deer in group
S had higher fat content. Both Acinetobacter and Escherichia—Shigella under the phylum
Proteobacteria are opportunistic pathogenic bacteria [41,42], which had higher abundance
in the musk deer in group S (Figure 3) and can cause intestinal diseases through food.
The high relative abundance of Proteobacteria is an important reason for imbalance in the
intestinal microbial flora of animals [39] and can lead to the increase of pathogenic bacteria,
thereby adversely affecting the health of the host [27,43]. Proteobacteria are the dominant
bacteria in the intestines of white-tailed deer [44] and American bison [45]. However, the
relative abundance of Proteobacteria in the two groups in the present study was higher
than that in other ruminants [46-48], which may be related to the artificial addition of
high-fat concentrate feed to musk deer farms.

Actinobacteria are vital not only for maintaining the homeostasis of the intestinal
barrier [49] but also for regulating the host health and enhancing the immune function [50].
Studies have found that Actinobacteria can regulate the bile acid content and virulence of in-
testinal pathogens, which is beneficial to the intestinal health of the host [51]. Actinobacteria
and their genera are mostly beneficial to the host because they produce active metabolites,
such as antibiotics, enzymes, and antitumor substances in the gut [52], which can inhibit
and eliminate most pathogens in the animal gut [53]. Bacillus improves flora imbalance
and anti-intestinal inflammation and helps to reduce intestinal mucosal damage caused
by diseases. Some strains are also used to treat metabolic disorders [54]. Supplementation
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of animal feed with specific strains of Bacillus promotes digestion, growth performance,
microbiota modulation, and immune function [55]. The abundance of Actinobacteria and
Bacillus in group G was higher than that in group S (Figure 3), which indicated that the
musk deer was more adapted to living conditions at the place of origin, as they were
conducive to maintaining its intestinal homeostasis and immunity.

Ex situ conservation is an important means of protecting endangered species [56], but
it also leads to a series of issues [21]. Artificial feeding may cause wild animals to lose
their original gut microbes [22,57], thus reducing the diversity and cellulose degradation
capacity of the microbes [58]. Long-term captivity affects the adaptability of animals in
the wild. In order to rapidly restore the population size of the Alpine musk deer and
achieve wild reintroduction, scientifically formulating a comprehensive conservation plan
and promoting its ex situ conservation should become the main trend in the future. Our
research data reveal the importance of dietary differences in the migration Alpine musk
deer sites. By optimizing the diet of the Alpine musk deer, we can increase the richness of
its intestinal microbial community, thereby ensuring intestinal health during the process
of breeding in different places. The implementation of this strategy will help researchers
to explore ways to improve survival rates, thus providing necessary technical support for
population recovery.

5. Conclusions

In summary, it is of great significance to maintain the diversity and stability of the gut
microbiota of captive Alpine musk deer after migration. This study utilizes gut microbiota
to monitor the health status of the population, providing a theoretical basis for expanding
artificial populations of Alpine musk deer and reintroducing wild populations. However,
in order to comprehensively understand the health status of the migrant population, further
research is needed to combine factors such as feeding status and activity level of Alpine
musk deer. By comprehensively analyzing these factors, we can more accurately assess
the health status of Alpine musk deer populations and take corresponding conservation
measures to promote their population recovery and wild reintroduction.
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