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Abstract: Prognostic markers in routine clinical management of breast cancer are often assessed
using RNA-based multi-gene panels that depend on fluctuating tumor purity. Multiplex fluorescence
immunohistochemistry (mfIHC) holds the potential for an improved risk assessment. To enable auto-
mated prognosis marker detection (i.e., progesterone receptor [PR], estrogen receptor [ER], androgen
receptor [AR], GATA3, TROP2, HER2, PD-L1, Ki67, TOP2A), a framework for automated breast cancer
identification was developed and validated involving thirteen different artificial intelligence analy-
sis steps and an algorithm for cell distance analysis using 11+1-marker-BLEACH&STAIN-mfIHC
staining in 1404 invasive breast cancers of no special type (NST). The framework for automated
breast cancer detection discriminated normal glands from malignant glands with an accuracy of
98.4%. This approach identified that five (PR, ER, AR, GATA3, PD-L1) of nine biomarkers were
associated with prolonged overall survival (p ≤ 0.0095 each) and two of these (PR, AR) were found
to be independent risk factors in multivariate analysis (p ≤ 0.0151 each). The combined assessment
of PR-ER-AR-GATA3-PD-L1 as a five-marker prognosis score showed strong prognostic relevance
(p < 0.0001) and was an independent risk factor in multivariate analysis (p = 0.0034). Automated
breast cancer detection in combination with an artificial intelligence-based analysis of mfIHC enables
a rapid and reliable analysis of multiple prognostic parameters. The strict limitation of the analysis to
malignant cells excludes the impact of fluctuating tumor purity on assay precision.

Keywords: breast cancer; prognosis markers; multiplex fluorescence immunohistochemistry; artificial
intelligence

1. Introduction

Breast cancer is the most prevalent cancer in females worldwide [1]. Although adju-
vant systemic therapy substantially improves patient survival [2,3], a more accurate risk
assessment in breast cancer could further advance the selection of patients for adjuvant
systemic therapy [4,5]. Classical prognostic parameters such as ER, PR, Ki67, nodal involve-
ment, tumor size, and tumor grade [6–9] are often complemented in routine clinical practice
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by multi-gene RNA assays such as Endopredict or Oncotype DX [10,11]. These assays
quantify the RNA expression level of up to 70 genes involved in cell cycle, angiogenesis,
signal transduction, and other pivotal cell functions [12,13]. The main limitation of these
RNA-based assays is the inherent contamination of cancer tissue by an unknown and
variable fraction of non-neoplastic cells with a variable composition of benign epithelial,
immune, or stroma cells [14]. Such contaminations can lead to false positive and nega-
tive results especially in breast cancers with abundant stroma and intermingled benign
glands [14–18].

A cell type specific assessment of multiple molecular markers on breast cancer tissue
sections represents an intuitive solution to address the issue of variable tumor purity. This
is possible by using multiplexed immunohistochemistry. Although currently available
multiplex fluorescence immunohistochemistry (mfIHC) approaches are often limited to six
markers or a small tissue size that hampers translational studies on large tissue microarray
cohorts, more recent mfIHC methods such as CODEX or BLEACH&STAIN have consis-
tently increased the number of possible proteins to more than 20 biomarkers that can be
stained on a single tissue section [19,20]. These methods enable staining of a plethora of
prognosis markers, minimizing the size and amount of tissue that is needed from a biopsy.
However, an algorithm for differentiating benign from malignant epithelial breast cells, i.e.,
automated breast cancer detection that is mandatory for large scale biomarker analysis in
routine clinical practice, is still lacking.

In this study, we utilized mfIHC to develop a framework for automated breast cancer as-
sessment premised on a recently published approach for automated prostate cancer detection
and we evaluated its utility in a combined analysis of nine potential prognostic features.

2. Materials and Methods

Patients and tissues. The study included four tissue microarrays with tissue spots
measuring 0.6 mm in diameter that were made from a total of 1530 primary tumors from
breast cancers of no special type (NST) operated on between 2003 and 2012 at the Academic
Hospital Fuerth and Clinical Center Osnabrueck (for exclusion criteria see technical aspects
of the results section). Detailed histopathological data on grade, pathological tumor stage
(pT), pathological lymph node status (pN), and pathological metastases status were avail-
able from up to 1522 tumors. Clinical follow-up data were available from 627 breast cancers
operated on between 2007 and 2012 with a median follow-up time of 49 months (95% CI
46–49). Manual progesterone (PR) [21], estrogen receptor (ER), GATA3 [22], HER2, and PD-
L1 [23] quantification using conventional brightfield IHC were available. All samples were
from the archives of the Institutes of Pathology Fuerth and Clinical Center Osnabrueck
(Germany). The use of archived remnants of diagnostic tissues for the manufacturing
of TMAs and their analysis for research purposes, as well as patient data analysis, has
been approved by local laws (HmbKHG, §12) and by the local ethics committee (Ethics
commission Hamburg, WF-049/09, 25 January 2010). All work has been carried out in
compliance with the Helsinki Declaration. (For patient characteristics, see Table S1 in the
Supplementary Materials).

BLEACH&STAIN multiplex fluorescence immunohistochemistry (IHC). Multiplex
fluorescence immunohistochemistry was performed using BLEACH&STAIN as previously
described [20]. The 11 + 1 marker BLEACH&STAIN mfIHC was conducted in four se-
quential staining and imaging cycles of three biomarkers counterstained with DAPI and
a bleaching step in between. In brief, freshly cut 4 µm consecutive tissue sections on
X-tra® glass slides (Cat. #3800204AE, Leica, Wetzlar, Germany) were initially boiled in
an autoclave (30 min at 100–120 ◦C) for antigen retrieval. The bleaching step between
every sequential 3 + 1 marker staining included photobleaching (metal halide lamp with
1600 W) combined with slide incubation in 3% hydrogen peroxide for chemical inactivation
of fluorochromes and cooling (4 ◦C) of the slides during the bleaching process. Thus,
11 staining rounds of individual markers using OPAL fluorochromes (AKOYA, Marlbor-
ough, MA, USA), 10 times removal of the bound antibodies via a short microwave treatment
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(5 min at 100 ◦C and 5 min at 93 ◦C), 4 scanning rounds using the Leica Aperio VERSA
8, and, finally, alignment of the digital images using an artificial intelligence-based cus-
tom software written in Python version 3.8 were performed. Details on the used pri-
mary antibodies, antibody retrieval procedures, and fluorescence OPAL dyes are given in
Table S2.

Deep learning-based framework for automated 11 + 1-plex BLEACH&STAIN mfIHC
image analysis. Image analysis was performed using the previously trained [24] deep
learning-based (U-Net) framework for cell detection, cell segmentation, intensity measure-
ment of the used fluorophores (range 0–255, i.e., a continuous numerical value indicating
the fluorescence signal strength), processing the intensity values of 11 markers+ DAPI,
and cell-to-cell distance analysis using Python version 3.8 [25], R version 3.6.1 (The R
foundation, Vienna, Austria) [26] and the Visiopharm software package version 2020.08
(Hoersholm, Denmark). The intensity of each fluorochrome was recorded as raw intensity
for the individual cells and normalized by the mean PanCK intensity on PanCK+ cells.
Additionally, marker positivity (i.e., PR, ER, androgen receptor [AR], GATA3, TROP2,
HER2, PD-L1, Ki67, TOP2A, Myosin, and PanCK) was evaluated via 11 U-Net systems as
described previously [20,24].

Automated breast cancer detection. Invasive breast cancer cells can be differentiated
from benign breast glands through the absence of the myoepithelial cell layer, similarly
to invasive prostate cancer that lacks a basal cell layer. Therefore, a framework for auto-
mated breast cancer detection was structurally based on a prior model for prostate cancer
detection (patent #WO 2023/285518) [24] and has been retrained for the automated detec-
tion of breast cancer (Figure 1). Thus, an algorithm to detect epithelial cells (i.e., PanCK+

cells) that were located ≤25 µm adjacent to myosin+ myoepithelial cells was combined
with a deep-learning system for the detection of benign breast glands to differentiate be-
tween benign and malignant epithelial cells. This framework enabled the exclusion of
benign breast glands, stroma cells, immune cells, and other non-cancer components to
analyze biomarker expression exclusively on breast cancer cells. The optimal distance of
≤25 µm between tumor cells and myosin+ myoepithelial cells was evaluated in a test set of
374 annotations of benign and malignant breast epithelium (containing 98,264 benign and
99,229 malignant cells, Figure S1). The DeepLabv3+-based benign gland detection was
trained and validated on 180 breast cancer patients (Figure 2, Table S3). The classification
performances of cell–cell distance analysis, the DeepLabv3+ convolutional network, and
the combination of both approaches were tested on the validation set (n = 613 glands),
showing an accuracy of 98.4% for the combined approach (Figure 2, Table S3).

Marker pattern detection. Three DeepLabv3+ convolutional networks were trained
for the detection of HER2+, ER+, and PR+ patients using 1048 tumor samples. Classification
performances of the three DeepLab3+ convolutional networks were tested on the validation
set (n = 356), showing an accuracy of 96.6% for the detection of HER2+, 96.4% for ER+, and
96.4% for PR+ patients (Figure S3C, Table S4).

mfIHC score. The mfIHC score was calculated by the sum of the min-max normalized
(range 0 to 50) proportion of marker-positive cells and the min-max normalized (range 0 to
50) mean intensity of marker-positive cells for each patient (Figures S2 and S3) following
the immunoreactive score of Remmele and Stegner [27] as well as the Allred score [28].

Prognosis score based on the mfIHC score. A 5-marker prognosis score (PR, ER, AR,
GATA3, and PD-L1) was formed (summation) based on whether a patient was in the high
(1 point) or low groups (0 points) in a univariate analysis that was based on marker
expression level (mfIHC score). The threshold for positivity for a marker in the univariate
analysis was set at the point of the highest slope (and visually corrected) in the distribution
plots (Figure S2C). The deep learning system for marker pattern detection was highly
concordant with the mfIHC-based categorization in high and low groups (Figure S3C).
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Figure 1. Framework for automated prognosis marker assessment in breast cancer. (A–C) The 
BLEACH&STAIN multiplex fluorescence immunohistochemistry technology facilitates high 
throughput staining of 11 biomarkers on 1404 invasive breast cancers of no special type (NST). (D–
F) A deep learning-based framework for automated breast cancer detection, comprising 16 deep 
learning systems, was used to enable automated prognosis markers assessment (schematic illustra-
tions of the neural networks are shown in (D)). 

Figure 1. Framework for automated prognosis marker assessment in breast cancer. (A–C) The
BLEACH&STAIN multiplex fluorescence immunohistochemistry technology facilitates high through-
put staining of 11 biomarkers on 1404 invasive breast cancers of no special type (NST). (D–F) A
deep learning-based framework for automated breast cancer detection, comprising 16 deep learning
systems, was used to enable automated prognosis markers assessment (schematic illustrations of the
neural networks are shown in (D)).
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Figure 2. Approaches for automated breast cancer detection. (A–C) Approach 1 (Deep learning-
based cell detection combined with distance analysis), approach 2 (“stand alone” gland detection 
deep learning system), and approach 3 (combination of approach 1 and 2) are shown by visualizing 
the classification performance in raw images (A,B) and the corresponding visualization of the calci-
fication based on the output data (C). (D,E) Both approach 1 and approach 2 showed a sensitivity 
and specificity ≥0.9. (F) The combined approach 3 performed significantly better in time-depended 
receiver operating characteristic curves than the raw marker expression (p = 0.006). 

Figure 2. Approaches for automated breast cancer detection. (A–C) Approach 1 (Deep learning-based
cell detection combined with distance analysis), approach 2 (“stand alone” gland detection deep
learning system), and approach 3 (combination of approach 1 and 2) are shown by visualizing the
classification performance in raw images (A,B) and the corresponding visualization of the calcification
based on the output data (C). (D,E) Both approach 1 and approach 2 showed a sensitivity and
specificity ≥ 0.9. (F) The combined approach 3 performed significantly better in time-depended
receiver operating characteristic curves than the raw marker expression (p = 0.006).
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Statistical analysis. Statistical calculations were performed with R version 3.6.1 (The
R foundation) [26,29] and JMP Pro 15 software package (SAS Institute Inc., Cary, NC,
USA) [30]. Contingency tables and the chi2 test were used to search for associations
between molecular parameters and tumor phenotype. Survival curves were calculated
according to Kaplan–Meier. The log-rank test was applied to detect significant survival
differences between groups. Cox proportional hazards regression analysis was performed
to test the statistical independence and significance between pathological, molecular, and
clinical variables. Time-dependent areas under receiver operating characteristic curves
were used to estimate the prognostic performance of the automated prognosis marker
analysis (R “riskRegression” [31] package). Unsupervised cluster analysis using custom
R scripts based on “gplots,” and “hclust,”, and unsupervised X-shift clustering [32] were
applied to differentiate patient subgroups based on their marker expression pattern and
MCL clustering was applied to investigate the relationship between the markers. All
p-values were two-sided, and p-values < 0.05 were considered as significant).

3. Results

Technical aspects. A total of 1404 (92%) of 1530 samples of breast cancers of no special
type (NST) were successfully analyzed in this study. The remaining 126 tumor samples
were excluded due to the lack of tissue or representative cancer cells. The combine approach
of both the distance-based and the DeepLabv3+-based breast cancer detection showed an
accuracy of 98.4% (95% confidence interval [CI]: 97.4–99.3) and was thus used in this study
(Figures 1 and 2, Table S3). Receiver operating characteristic curves (ROC) confirmed a sig-
nificantly improved prognostic performance of PR, AR, and GATA3 expression quantified
by our approach for automated breast cancer detection compared to an assessment of these
markers without using the approach (each p < 0.0197, Figures 2F and S4). In addition, a
comparison of the fully automated marker assessment in this study with manually assessed
data using conventional brightfield immunohistochemistry from previous studies showed
a high concordance for PR, ER, GATA3, HER2, and PD-L1 assessment (each p < 0.0001,
Figure S5).

Breast cancer prognosis. A high expression level (mfIHC score) of PR, AR, GATA3,
and TROP2 was significantly linked to low pT stage and low tumor grade (p ≤ 0.0002
each, Table 1). Accordingly, high expression of PR, ER, AR, GATA3, and PD-L1 was also
associated with prolonged overall survival in the univariate analysis (p ≤ 0.0095 each,
Figure 3). In contrast, high levels of HER2, Ki67, and TOP2A were linked to high tumor
grade (p < 0.0001 each, Table 1), but they were unrelated to overall survival (Figure 3). In
a multivariate analysis including pT, pN, and tumor grade, a high expression level of PR
(mfIHC score > 15 vs. <15, HR 0.55, p = 0.0149) and AR (mfIHC score > 23 vs. <23, HR 0.54,
p = 0.0151) expression were independent predictors of overall survival (Table S5).

Marker interplay and prognosis scores. MCL clustering, t-SNE, and the Spearman’s
correlation analysis revealed a strong link between PR, ER, AR, and GATA3 as well as
between the proliferation markers TOP2A and Ki67 (Figures 4A,B and S6). Accordingly,
unsupervised hierarchical clustering revealed that the risk for a reduced overall survival
increased continuously (Cluster a, b, c) along with the loss of PR, ER, AR, and GATA3
expression (Figures 5A,B and S5). The combined assessment of PR, ER, AR, GATA3, and
PD-L1—as a manually predefined five-marker prognosis score—showed strong prognostic
relevance (p < 0.0001, Figure 5C) and was an independent risk factor (p = 0.0034) in a
multivariate analysis including pT, pN, and tumor grade. A high TOP2A labeling index
was significantly linked to HER2 positivity (p < 0.0001, Figure 4C) and three out of four
patients with the highest TOP2A labeling index were also HER2 positive (Figure 4D).
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Table 1. Association between biomarkers and breast cancer NST phenotype.

Clinical
Parameter n PR mfIHC Score p-Value ER mfIHC Score p-Value AR mfIHC

Score p-Value

pT <0.0001 0.45 <0.0001
pT1 674 40 (±21) 38 (±30) 46 (±20)
pT2 570 32 (±23) 39 (±33) 41 (±22)
pT3-4 116 26 (±24) 35 (±32) 36 (±23)

pN <0.0001 0.57 0.0009
pN− 619 38 (±22) 38 (±31) 45 (±20)
pN+ 471 31 (±23) 37 (±31) 41 (±22)

Metastasis <0.0001 0.0042 <0.0001
M− 179 41 (±19) 40 (±29) 46 (±17)
M+ 93 20 (±20) 29 (±29) 33 (±24)
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Table 1. Cont.

Clinical
Parameter n PR mfIHC Score p-Value ER mfIHC Score p-Value AR mfIHC

Score p-Value

Grade <0.0001 <0.0001 <0.0001
1 172 47 (±16) 34 (±27) 48 (±15)
2 733 40 (±21) 43 (±30) 45 (±19)
3 493 24 (±22) 30 (±32) 37 (±25)

Clinical
parameter n GATA3 mfIHC

score p-value TROP2 mfIHC
score p-value HER2 mfIHC

score p-value

pT <0.0001 0.0002 0.9525
pT1 674 67 (±21) 83 (±26) 3 (±13)
pT2 570 61 (±25) 78 (±30) 3 (±12)
pT3-4 116 53 (±27) 73 (±31) 3 (±12)

pN 0.0008 0.13 0.74
pN− 619 65 (±23) 81 (±27) 3 (±12)
pN+ 471 60 (±24) 79 (±28) 4 (±13)

Metastasis <0.0001 0.0576 0.29
M− 179 64 (±18) 79 (±29) 5 (±14)
M+ 93 49 (±26) 72 (±34) 3 (±10)

Grade <0.0001 <0.0001 <0.0001
1 172 73 (±14) 88 (±20) 1 (±4)
2 733 68 (±20) 81 (±27) 2 (±10)
3 493 52 (±28) 74 (±32) 6 (±16)

Clinical
parameter n PD-L1 mfIHC score p-value Ki67

labeling index p-value TOP2A
labeling index p-value

pT 0.11 0.0044 <0.0001
pT1 674 10 (±15) 7 (±10) 1 (±3)
pT2 570 9 (±14) 9 (±10) 2 (±3)
pT3-4 116 8 (±17) 9 (±12) 2 (±4)

pN 0.0001 0.071 0.0002
pN− 619 11 (±16) 7 (±10) 1 (±2)
pN+ 471 7 (±12) 8 (±10) 2 (±3)

Metastasis 0.10 0.0021 <0.0001
M− 179 7 (±14) 6 (±8) 1 (±2)
M+ 93 5 (±9) 10 (±12) 2 (±3)

Grade 0.0953 <0.0001 <0.0001
1 172 11 (±14) 5 (±9) 0 (±1)
2 733 9 (±14) 6 (±8) 1 (±2)
3 493 10 (±17) 13 (±12) 3 (±4)
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pervised MCL cluster of the analyzed prognostic markers. (B) Correlation heatmap of the analyzed
prognostic marker. (C) Association of TOP2A-positive patients with the DeepLabv3+-based HER2 status
(p < 0.0001). (D) Association of TOP2A labeling index with the DeepLabv3+-based HER2 status.
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Figure 5. Combined marker assessment as prognosis scores. (A) Unsupervised cluster analysis of
nine biomarkers revealed three clusters (a–c) with distinct expression patterns. (B) The Kaplan–
Meier estimate of the three clusters based on the unsupervised cluster analysis. (C) The five-marker
prognosis score was calculated as a numeric score for each patient based on the expression of the
progesterone receptor (PR), estrogen receptor (ER), androgen receptor (AR), GATA3, and PD-L1. For
each marker that was highly expressed (high mfIHC score), one point was added and results were
recorded in a five-marker prognosis score (ranging from 0 to 5). (D) The Kaplan–Meier estimate
showed strong prognostic impact of the five-marker prognosis score.
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4. Discussion

In this study, a framework for automated breast cancer assessment was developed
based on our recently published approach for automated prostate cancer detection to
investigate the prognostic relevance of nine different prognosis markers in breast can-
cer of no special type (NST) using 11 marker BLEACH&STAIN multiplex fluorescence
immunohistochemistry.

Approach and mfIHC score. A key feature of our approach was an automated tumor
cell detection using a combination of pan cytokeratin (PanCK) for the detection of epithelial
cells and a myoepithelial cell marker (Myosin H11) for exclusion of adjacent normal epithe-
lial cells. Thus, this approach mimicked the way pathologists operate in routine clinical
practice in order to identify breast cancer cells that are not accompanied by myoepithelial
cells. Such an automated breast cancer identification approach facilitates the quantification
of various prognosis markers in tumor cells for which both the fraction (number of positive
tumor cells divided by all tumor cells) and the intensity level (fluorescence intensity as
a surrogate for protein expression level) were assessed. Given that both the number of
marker-positive tumor cells and the protein expression level drives the prognostic rele-
vance, the mfIHC score was calculated and used in this study. Involving both parameters
is in line with the immunoreactive score as described by Remmele and Stegner et al. [27] as
well as the Allred score which is still used in routine breast pathology [28]. Several studies
have shown that computerization of cumbersome manual quantification can improve
the quality of a biomarker assessment and thus increase the predictive performance of
prognosis markers [24,33]. Accordingly, several other prognostic systems that incorporate
artificial intelligence-based analyses of H&E morphology and/or clinicopathological data
have been shown to enhance the prognostic prediction of breast cancer [34,35].

Validation by prognostic relevance. Indirect validation of our approach was provided
by the significant associations between high levels of progesterone receptor (PR), estrogen
receptor (ER), androgen receptor (AR), GATA3 expression, and favorable tumor features
as well as prolonged overall survival. High levels of PR, ER, and AR expression are well-
established markers for a favorable prognosis of breast cancer patients [36,37]. The fact
that GATA3 expression constituted a strong prognostic feature in our study was also in line
with data from several recent studies which also suggested a strong link between reduced
GATA3 expression and poor survival in breast cancer patients [22,38].

Ki67 and HER2. It is of note that a prognostic role was not seen for the Ki67 labeling
index and HER2 expression in this study. Both HER2 overexpression/amplification [39,40]
and high Ki67 labeling index (LI) [41] had been found to be strongly associated with poor
patient survival in earlier studies. That both parameters are features of aggressive breast
cancer is supported by their strong associations with high tumor grade in this study. The
lack of a prognostic role of the Ki67-LI and HER2 expression in our cohort was most likely
caused by the effect of an appropriate therapy in contemporary patients. Patients with
HER2 overexpressing tumors are now effectively treated by anti-HER2 antibody drugs and
cancers with a high Ki67-LI respond particularly well to cytotoxic chemotherapy [42,43]. In
line with our data, studies on more recent cohorts (enrolled between 2002 and 2013) showed
that the prognostic relevance of Ki67 was rather limited as compared to its predictive value
for response to chemotherapy [42,44]. For HER2, studies involving adequately treated
contemporary patients showed either a similar prognosis of both HER2-positive and HER2-
negative patients [45] or even a more favorable outcome for HER2-positive patients [46].

TOP2A. TOP2A is another protein that is expressed during the G2/M phase of the
cell cycle and is therefore regarded as a proliferation marker [47]. The fact that the subset
of tumors with highest TOP2A positivity were mostly HER2-positive is consistent with
a coamplification of these genes [48]. The TOP2A gene is known to be located at 17q21,
which is only ~700 kb telomeric to HER2 [48,49]. The HER2 amplicon is known to include
TOP2A in about 40% of HER2 amplified cases [50]. Several studies had earlier reported as-
sociations between a high expression of TOP2A and poor prognosis in breast cancer [49,51].
Irrespective of whether these findings were due to a link with the (prognostic) HER2 ampli-
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fication or the role of TOP2A as a parameter for high tumor cell proliferation, the lack of
a prognostic impact of TOP2A expression in our patients is again consistent with HER2-
and/or proliferation-associated treatment effects. The fact that a high TOP2A expression
level was also related to aggressive tumor features such as grade and pT stage is consistent,
however, with a prognostic role of this parameter in untreated patients.

PD-L1. PD-L1 positivity in tumor cells was also significantly linked to favorable tumor
phenotype and prolonged survival in NST carcinomas that were all treated before 2019,
when checkpoint inhibitors were approved for use in breast cancer patients in Germany. In
line with our data, multiple earlier studies have described associations between tumoral
PD-L1 expression and a high density of tumor-infiltrating lymphocytes (TILs) in breast
cancer [52–54] and in other tumors such as head and neck cancer [55], non-small cell lung
cancer [56], and gastric cancer [57] as well as a link between a high density of TILs and
favorable prognosis in breast cancer [58] and several other tumor entities [59]. Given the
current use of immune checkpoint therapy in the first-line treatment of locally advanced or
metastatic PD-L1-positive triple-negative breast carcinoma and a potentially expanding
spectrum of therapeutic indications, it seems likely that the prognostic impact of PD-L1
expression on disease outcome in future studies will be different from our findings.

Prognosis score. The successful identification of five parameters that were linked
to overall survival enabled us to define multiparametric prognosis scores in this study.
Prognostic scores were identified both based on the manually defined prognostic groups
in univariate analyses and by using hierarchical clustering in combination with time-
dependent receiver operating characteristic curves of the R “riskRegression” 12 package.
Although both approaches suffered from limitations such as the lack of a separation in test
and training sets, it is notable that our five-parameter score of PR, ER, AR, GATA3, and
PD-L1 provided strong prognostic information that was independent of tumor grade, pT,
and pN status in multivariate analysis. We consider these observations as evidence for the
feasibility of developing robust prognostic tests based on multiplex immunohistochemistry.
It is generally accepted that clinically relevant prognostic tests are likely to require the
simultaneous analysis of multiple gene products. The currently established test systems
such as OncotypeDX, EndoPredict, MammaPrint, Prosigna, Breast Cancer Index, or Mam-
mostrat [10,11,60] are all based on RNA expression analysis which suffers from the variable
admixture of multiple components of non-neoplastic tissues which prevents the evaluation
of pure tumor tissue [14–18]. It appears highly likely that this shortcoming will be overcome
by multiplex immunohistochemistry, especially since methodological advancements enable
the parallel analysis of a continuously rising number of antibodies [19,20].

Limitations. A limitation of this study is the lack of data on adjuvant therapy of
patients as this can have an impact on the prognostic value of some of the investigated
markers such as HER2, ER, or PR [46,61]. Moreover, the number of evaluable tumors was
limited. Larger cohorts of patients might facilitate the analysis of an increased number of
prognosis markers, especially given that the technical progress will enable the analysis of
20 or more prognostic biomarkers simultaneously.

5. Conclusions

The data from this study show that automated breast cancer detection in combination
with an artificial intelligence-based analysis of multiplex fluorescence immunohistochem-
istry enables a rapid and reliable analysis of multiple prognostic parameters. The major
advantage of this method is the strict limitation of the analysis to malignant cells that
cannot be achieved using RNA-based panel analysis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11123175/s1, Figure S1: Optimal distance for auto-
mated breast cancer detection by normal gland exclusion, Figure S2: Quantification of nine prognosis
markers, Figure S3: Calculation of the mfiHC Score, Figure S4: Time-dependent receiver operat-
ing characteristic (ROC) curves for overall survival 4 years after surgery, Figure S5: Validation of
mfIHC expression analysis, Figure S6: Association between prognostic marker expression and clinic-
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histopathological features, Table S1: Patient characteristics of the TMA cohort, Table S2: List of the
used antibodies, antigen retrieval (AR), dilutions, and opal dyes for multiplex fluorescence immuno-
histochemistry, Table S3: Classification performance of three different approaches for automated
breast cancer detection on the validation set (n = 613 glands), Table S4: Classification performance of
three DeepLabv3+ convolutional networks for the detection of HER2+, ER+, and PR+ patients on the
validation set (n = 356), Table S5: Multivariate analysis of mfIHC scores of the progesterone receptor
(PR), estrogen receptor (ER), androgen receptor (PR), GATA3, TROP2, HER2, PD-L1, and the fraction
of Ki67 and TOP2A with regards to tumor stage (pT-Stage), nodal stage (N-Stage), and tumor grade
(n = 350).
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