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Abstract: Seaweeds, also known as edible marine algae, are an abundant source of phytosterols,
carotenoids, and polysaccharides, among other bioactive substances. Studies conducted in the past
few decades have demonstrated that substances derived from seaweed may be able to pass through
the blood–brain barrier and act as neuroprotectants. According to preliminary clinical research,
seaweed may also help prevent or lessen the symptoms of cerebrovascular illnesses by reducing
mental fatigue, preventing endothelial damage to the vascular wall of brain vessels, and regulating
internal pressure. They have the ability to control neurotransmitter levels, lessen neuroinflammation,
lessen oxidative stress, and prevent the development of amyloid plaques. This review aims to
understand the application potential of marine algae and their influence on brain development,
highlighting the nutritional value of this “superfood” and providing current knowledge on the
molecular mechanisms in the brain associated with their dietary introduction.

Keywords: marine; algae; brain health; neurology

1. Introduction

Since the brain processes, integrates, and coordinates information from peripheral
sense organs and responds by centrally elaborating instructions appropriately conveyed
back to the peripheral in each body area, it serves as the body’s central control center for
most physiological activities. A few hormones control how the brain and neuronal cells
grow and change in shape. Thyroid hormones (THs) impact the cerebellum’s granule cell
migration and proliferation, cerebellar Purkinje cell dendritic growth, and cerebellar neuron
synaptogenesis [1]. Consequently, the insufficiency of THs during development leads to
disrupted motor coordination in adulthood [1,2]. In the hippocampus, hypothyroidism also
disrupts the migration of granule cells and the dendritic growth of pyramidal cells [3,4],
thus inducing aberrant synaptic function and learning [5].

Diet has an impact on how the brain develops, especially when it comes to certain
molecules that are necessary for brain function. Maintaining synaptic plasticity and neu-
ronal functions can be aided by appropriate dietary factors. A diet high in omega 3, choline,
magnesium, B vitamins, vitamin D, certain amino acids, and phytoderivates (plant or
seaweed-derived compounds) can, for example, preserve mental functions and support
brain health while delaying the onset of mental and neurodegenerative diseases [6,7].
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Numerous macro- and micronutrients, including minerals, amino acids, and vitamin
B, as well as phytochemical compounds important to brain function, are found in sea-
weeds. When incorporated into the diet, they initially interact with the gastrointestinal
tract’s microbiome [8,9]. Small bioactive molecules can be produced due to the interaction
between seaweed and microbiota. The growth-promoting (prebiotic) effects of particular
bacterial genera in producing neurotransmitters like serotonin and gamma-aminobutyric
acid (GABA) affect intestinal ecology and host brain health [6,10]. Experimental evidence
has shown that bioactive seaweed derivatives can reach and enter the brain and modulate
multiple neuronal functions either directly through specific neuronal molecules and an-
tioxidant and anti-inflammatory activities or indirectly through epigenetic mechanisms
affecting the transcription of proteins involved in neurotransmissions, neuronal survival,
and plasticity [7–9,11,12].

Marine algae have many bioactive chemicals that show health benefits. Algae metabo-
lite compounds such as alkaloids, phenolics, terpenoids, phytosterols, carotenoids, and
polysaccharides have been proven to have neuroprotective effects in preclinical models of
neurodegenerative diseases. This compound has anti-inflammatory, antioxidant, and im-
munomodulatory activity associated with improving neurodegenerative diseases [11,13–18].
We review the potential of marine algae and their bioactive compounds for treating brain
diseases through pharmacognosy and pharmacology approaches.

2. Seaweed Chemical Compound and Isolation

Bioactive substances, including polyphenols, carotenoids, vitamins, phycocyanins,
phycobilins, and polysaccharides, abound in seaweeds. Many of these substances have
positive uses for human health. Because of the polysaccharides on their cell surface, which
allow them to retain inorganic marine substances, seaweeds also have an unparalleled
richness of minerals and trace elements. Several of these essential minerals are found in
seaweeds at relatively higher levels than in terrestrial food sources [19,20].

2.1. Brown Seaweeds

The brown seaweed’s cell wall contains anionic polysaccharides called alginic acid
or alginate. These are insoluble and consist of alternating blocks of 1,4-linked polymer of
β-D-mannuronic acid and α-L-guluronic acid. Sodium, potassium, or ammonium salts
are alginates. By contrast, these fibers’ amorphous, slimy fraction consists mainly of
water-soluble alginates and/or fucoidan [21]. Brown seaweeds are a source of nutrients
different from those obtained from terrestrial plants and bestow many health benefits and
bioprospecting potential [22]. The specific chemical compounds in brown seaweeds are
listed in Table 1.

Table 1. Specific chemical compounds of brown seaweeds.

Brown Seaweed
Species

Chemical Compound
References

Phenol Polyphenol Polysaccharide Carotenoids Flavonoids Others

Saccharina japonica X γ-aminobutyric
acid [23]

Undaria pinnatifid X X X
Amino acid,
Methacrylic

acid
[24]

Alaria esculenta X [25]

Dictyota menstrualis X [26]

Colpomenia sinuosa X X Steroid,
Alkaloid [27]

Fucus spiralis Unsaturated
fatty acid [28]
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Table 1. Cont.

Brown Seaweed
Species

Chemical Compound
References

Phenol Polyphenol Polysaccharide Carotenoids Flavonoids Others

Ecklonia cava X [29]

Pelvetia siliquosa Fucosterol [30]

Eisenia arborea X [31]

Laminaria digitata Hexanal [32]

Sargassum fusiforme X X X alginic acid [33]

Sargassum muticum X X X
Fatty acid,
Terpenoid,

Sterols
[34]

Sargassum naozhouense carbohydrate,
Protein [35]

Sargassum swartzii X X

Terpenoid,
Steroids,

Coumarin,
Sterols,

Oxysterols

[36]

In one study [37], Saccharina japonica whole-plant powder was refluxed with methanol
for 3 h. The total filtrate was then concentrated to dryness in a vacuum at 40 ◦C to produce
methanol (MeOH) extract, which was suspended in distilled water and then partitioned
successively with dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and n-butanol (n-
BuOH). The CH2Cl2 fraction was chromatographed on a silica-gel column using n-hexane:
EtOAc (20:1) to obtain 18 subfractions. The best fraction was then subjected to column
chromatography with a sequential elution of ethanol, MeOH, and acetone to obtain three
subfractions. Repeated column chromatography was performed for the third subfraction
with a solvent mixture of n-hexane and acetone (n-hexane: acetone, gradient 10:1–0:1) to
isolate pheophorbide. Repeated chromatography was conducted on fraction 10 of a silica
gel column to yield fucoxanthin, whose purity was checked by HPLC (P99%) [23].

Sargassum swartzii (S. swartzii) is one of the species of brown seaweed. In one study, the
chemical compound sterols and oxysterols from S. swartzii were isolated first by rinsing the
seaweed with water to remove any dirt, epiphytes, or impurities and then drying them at
room temperature (25 ◦C ± 5 ◦C). The S. swartzii dried seaweeds were chopped, extracted
using methanol, macerated, and stirred at room temperature. The soaking process was
carried out for 24 h, after which the residue was filtered using the Whatman filter paper
no. 1 filter. The S. swartzii filtrate was collected, concentrated under low pressure using a
rotary evaporator, and dried under vacuum to obtain a dry methanol extract. The extract
was then dissolved in a NaCl solution to the desired concentration before use [38].

2.2. Red Seaweeds

Red seaweeds have a variable protein content ranging from 10% to 50% of their
dry weight; this value is higher than the protein content of the macroalgae group and
some foods [39]. Similar to legumes, red seaweeds contain essential amino acids at about
25–50% [40]. Red seaweeds contain the greatest number of phenolic compounds, such as
flavonoids, phenolic acids, and bromophenols; these components have different medical
applications due to their reactions with proteins, such as enzymes or cellular receptors [41].
The specific compounds of red seaweeds are listed in Table 2.
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Table 2. Specific Chemical Compounds in Red Seaweeds.

Red Seaweed
Species

Chemical Compound
References

Phenolic Polyphenol Polysaccharide Carotenoids Flavonoids Others

Porphyra sp. X
Iron, Vitamin B12,

Phycoerythrin,
Phycocyanin

[42]

Gelidium amansii
Glucose,

Galactose,
3,6-AHG

[43]

Gracilaria gracilis X
Lipid, Sterol,

Phycoerythrin,
Phycocyanin

[44]

Gracilaria verrucosa X X X Steroid, Saponin,
Quinones [45,46]

Gracilariopsis chorda Arachidonic acid [47]

Hypnea musciformis X

Carbohydrate,
Protein,

α-tocopherol,
L-ascorbic acid

[48]

Gloiopeltis tenax X

Vanillylacetone,
Fatty acids,

Tetradecanoic
acid, Linoleic acid,

Oleic acid

[49]

Eucheuma cottonii X Steroid, Alkaloid,
Triterpenoid [50]

Kappaphycus alvarezii X X
Alkaloid,

Carbohydrate,
Terpenoid

[51]

Pyropia orbicularis X X Phycocyanin [52]

Ahnfeltia plicata X X
Alkaloid, Amino

acid, Tannin,
Coumarins

[53]

Most of the cultivated red seaweed agar comes from the Gracilaria genus, but the
Gelidium genus produces agar that is of a better quality than Gracilaria. Unfortunately,
Gelidium is too overexploited, so its cultivation has been limited [54]. A previous study
extracted Gelidium amansii by pouring 95% ethanol into a conical flask containing seaweed
powder and solvent in a ratio of 50:1 (v/w) [43]. The mixture was stirred for 24 h in the
dark on an orbital shaker (200 rpm at room temperature). After centrifuging the shaken
slurry at 10,000 rpm, sterile cotton was used to filter the supernatant. A nitrogen gas stream
was used to dry the filtrate after it had been concentrated using a vacuum. After weighing
the dry ethanol extract, the yield extract (w/w%) was computed [43].

2.3. Green Seaweed

The majority of green seaweeds are regarded as a food source. Green seaweeds
contain compounds such as taurine and lectins, fibers (ulvan sp, vitamins like tocol, etc.),
and antioxidants like carotenoids, chlorophyll, bromophenol, and phloroglucinol. Green
seaweeds also contain phenols, terpenoids, flavonoids, and amino acids like mycosporine
(MAA) [55]. Other compounds found in specific green seaweeds are listed in Table 3.
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Table 3. Specific Chemical Compounds in Green Seaweeds.

Green Seaweed
Species

Chemical Compound
References

Phenolic Polyphenol Polysaccharide Carotenoids Flavonoids Others

Caulerpa lentillifera X X siphonaxanthin [56]

Caulerpa racemosa X X [57,58]

Enteromorpha prolifera X X [59]

Enteromorpha clathrata X [59]

Codium tomentosum X X X phlorotannins,
loliolide [60,61]

Ulva pertusa X ulvan [62]

Codium fragile X X X [63]

Ulva lactuca X X
ulvan, starch,
water-soluble

cellulose
[64,65]

Ulva prolifera X X X

terpenoid,
alkaloid,
peptide,

chlorophyll,
sterol

[66]

Ulva rigida X [67]

Caulerpa sp. is one species of green seaweed with a high phenolic compound content.
In one study, before extraction, fresh seaweed was cleaned of impurities that were still
attached to it and then weighed [53]. The samples were divided into two, namely, fresh
and boiled Caulerpa sp. For the boiled Caulerpa sp., the boiling temperature and time
were 90 ◦C within 5 min. The sample was boiled using mineral water with a ratio of
sample and water 1:4 (w/v). The water was heated first until it reached a temperature
of 90 ◦C, then Caulerpa sp. was immersed in the boiling water for 5 min. The next step
was a proximate, phytochemical, and total phenolic compound analysis. For the fresh
Caulerpa sp., the sample was mashed first with a mortar, weighed, placed in an Erlenmeyer
flask, and added to MetOH in a ratio of 1:2. The sample was soaked in methanol and then
macerated using an orbital shaker for 24 h. The filtrate was then evaporated using a rotary
vacuum evaporator at 40 ◦C. Extraction was carried out three times. The next step was to
analyze the total phenolic compounds [58].

3. Mechanism and Effect on the Brain

The reactive oxygen species (ROS) or free radicals produced by the body can cause
chronic human diseases, such as cancer, inflammation, and neurological disorders (in-
cluding Alzheimer’s disease [AD], Parkinson’s, schizophrenia, and depression). The
antioxidants in seaweeds improve drug health by reducing the free radicals in the body
without damaging the body’s organs. Several compounds found in all types of seaweeds
can work as antioxidants, such as phenolic compounds and flavonoids [68]. Some of the
compounds from seaweeds, including fucoidan from Sargassum fusiforme and Sargassum
muticum (brown seaweeds), phycoerythrin from Porphyra sp., Gracilaria gracilis (red sea-
weeds), and loliolide from Codium tomentosum (green seaweeds), have been tested and have
shown effectiveness as antioxidants through various mechanisms. The neurotherapeutic
potential effect of the marine-algae compounds is shown in Figure 1.
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3.1. Phenolic Compounds

Phenolic compounds extracted from seaweed have been identified as possessing
a neuroprotective effect [69] because they have very strong antioxidant properties [70].
Phenolic antioxidants hold significant promise in effectively neutralizing free radicals,
significantly contributing to neuronal damage. As a result, they can have substantial
neuroprotective effects and play a crucial role in managing neurodegenerative diseases [70].

In addition, phenolic compounds can also inhibit the enzymes acetylcholinesterase
(AChE) and butylcholinesterase (BChE) and inhibit Aβ aggregation [69]. They can affect
neurodegenerative diseases such as Alzheimer’s disease. The development of AD is
associated with the disruption of the cholinergic pathway caused by the upregulation of
acetylcholinesterase (AChE) and butylcholinesterase (BChE) [71]. Several studies have
proven the reaction mechanism of phenols as antioxidants.

3.1.1. Hydrogen Atomic Transfer

Hydrogen atom transfer occurs by transferring the hydrogen atoms in the antioxidants,
which is phenol in this case, to the free radicals. Antioxidants containing H atoms are
represented by (AH), which react and give H atoms to free radicals. Consequently, the
free radicals turn into neutral forms, and the antioxidants are converted into free-radical
antioxidants (A*) [72]. The mechanism of hydrogen atomic transfer is in Figure 2.
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3.1.2. Single Electron Transfer

Free radicals with energetically stable odd anions transfer their anions to antioxidants
that are cation radicals so that the odd number of electrons formed in the antioxidants are
distributed in the aromatic ring and throughout the molecule. The ionization potential
becomes an obstacle in this mechanism because this reaction can only run when the
free-radical ionization potential value is smaller than the antioxidant ionization potential,
allowing the electrons in the free radicals to move to the phenolic compounds [73]. The
mechanism of single electron transfer is shown in Figure 3.
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3.1.3. Sequential Proton Loss Electron Transfer

This mechanism begins with releasing protons from phenolic compounds into phenolic
free radicals and anionic compounds according to their proton ability (PA). The PA value
indicates the difficulty level of hydroxyl phenolic compounds to be dephosphorylated. The
electrons or anionic compounds from the antioxidants then donate electrons to the free
radicals. The mechanism of sequential proton loss electron transfer is shown in Figure 4.
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3.1.4. Transition-Metal Chelation

Transition-metal chelation (TMC) is a mechanism of antioxidants to chelate transition-
metal compounds to form a stable metal. Phenolic compounds are good chelators; the
chelation of Fe3+ metal directly reduces the formation of reactive OH free radicals from the
Fenton reaction. As metal chelators with the ability to cross the blood–brain barrier (BBB),
polyphenols can be used to treat neurodegenerative diseases [74].

3.2. Flavonoids

Many pharmacological effects are related to flavonoid antioxidants; their biological
function is maintaining oxidative stress levels below the critical point [75]. The activity of
flavonoids as antioxidants combines several pathways for reducing oxidase enzymes, such
as cyclooxygenase, lipoxygenase, xanthine oxidase, myeloperoxidase, and NADPH oxidase.
Flavonoids act as free-radical scavengers because of their structural stability, which can
weaken highly reactive free radicals, so they turn into less reactive aroxyl radicals. Similar
to phenol, the weakening mechanism of this oxidant is by donating electrons from free
hydroxyl to free radicals so that free radicals can be neutralized [76]. The antioxidant
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capacity of flavonoids depends on the hydroxyl group position, sugar, double bonds, and
molecule polarity [77]. Furthermore, in a model involving brain endothelial cells, it was
found that certain flavonoids and their metabolites penetrated the blood–brain barrier
and localized in the brain, indicating their significance as potential candidates for direct
neuroprotective effects [78,79].

Flavonoids also affect cognitive effects through the cAMP response element-binding
protein (CREB) pathway. They increase CREB phosphorylation in the hippocampus. CREB
forms specific neuronal ensembles that encode new memories through cellular stimula-
tion [80]. Among the many excitatory pathways to CREB, the majority of the cognitive
benefits of flavonoids originate in the MEK → ERK → RSK/MSK → CREB → BDNF
pathway [81]. The reaction mechanism of flavonoids as an antioxidant is shown in Figure 5.

Brain Sci. 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 

Figure 5. Reaction mechanism of flavonoid as an antioxidant. Created with BioRender.com, ac-

cessed on 1 October 2023. 

3.3. Fucoidan 

One of the causes of neurodegenerative disorders is the induction of lipopolysaccha-

ride (LPS) and beta-amyloid (Aβ). Consequently, the body produces proinflammatory cy-

tokines such as IL-1, TNF, PGE2, and NO through the MAP kinase pathway and nuclear 

factor (NF-kβ). Fucoidan blocks the Ikβ degradation and microglia activation stimulated 

by LPS and Aβ, so the above inflammatory factors cannot be produced [82]. It also acts as 

an anti-inflammatory by inhibiting the NF-Kβ and MAPK signaling pathways to suppress 

neuroinflammation and neurodegeneration [83,84]. In addition, fucoidan can penetrate 

the blood–brain barrier by binding to P-selectin on BBB endothelial cells. This, in turn, 

prevents the infiltration of leucocytes into the brain and reduces the inflammatory re-

sponse [83]. The reaction mechanism of fucoidan as an inhibitor of microglia activation 

and NF-kβ is shown in Figure 6. 

Figure 5. Reaction mechanism of flavonoid as an antioxidant. Created with BioRender.com, accessed
on 1 October 2023.

3.3. Fucoidan

One of the causes of neurodegenerative disorders is the induction of lipopolysaccha-
ride (LPS) and beta-amyloid (Aβ). Consequently, the body produces proinflammatory
cytokines such as IL-1, TNF, PGE2, and NO through the MAP kinase pathway and nuclear
factor (NF-kβ). Fucoidan blocks the Ikβ degradation and microglia activation stimulated
by LPS and Aβ, so the above inflammatory factors cannot be produced [82]. It also acts as
an anti-inflammatory by inhibiting the NF-Kβ and MAPK signaling pathways to suppress
neuroinflammation and neurodegeneration [83,84]. In addition, fucoidan can penetrate the
blood–brain barrier by binding to P-selectin on BBB endothelial cells. This, in turn, prevents

BioRender.com
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the infiltration of leucocytes into the brain and reduces the inflammatory response [83].
The reaction mechanism of fucoidan as an inhibitor of microglia activation and NF-kβ is
shown in Figure 6.
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As an antioxidant, fucoidan can reduce the production of ROS stimulated by Aβ, LPS,
and MPP+ and minimize oxidative stress in the brain [85]. The enzymes useful as natural
antioxidants are superoxide dismutation (SOD) and glutathione peroxidase (GSH-Px).
Fucoidan can increase the antioxidant capacity of PC12 cells by increasing the activities
of SOD and GSH-Px. It can also decrease the malondialdehyde (MDA) level, an indicator
of damage due to oxidative stress, by releasing LDH and reducing the concentration of
ROS in PC12 cells [86]. Another study suggested that fucoidan can reduce tGCI-induced
oxidative stress in the CA1 area in the hippocampus by reducing lipid peroxidation and
increasing SOD expression [84,87].

3.4. Phycoerythrin

The antioxidant activity of phycoerythrin was tested by 2,2-azinobis-3-ethylbenzothiazoline-
6-sulfonic acid (ABTS) and ferric-reducing antioxidant power (FRAP) test methods. ABTS is
a reactive free radical, so the ABTS test determines the strength of antioxidant compounds
to reduce or neutralize free radicals. The FRAP test also examined the antioxidant’s power
by looking at its ability to reduce Fe3+ to Fe2+ [72].

The mechanism of phycoerythrin as an antioxidant has yet to be determined, but sev-
eral studies have examined purified phycoerythrin by ABTS and FRAP tests and achieved
good results, such as [88].A study showed that the phycoerythrin purified from Pyropia
yezoensis has an antioxidant effect that can compete with glutathione as an antioxidant. Ac-
cording to [72], another study also reported that the purified phycoerythrin from Spirulina
platensis showed DPPH inhibitory activity of up to 95.3% at a 200 g/mL dose. According to
these two studies, phycoerythrin has a dose-dependent antioxidant effect. Therefore, this
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compound can protect the human body from the damage caused by ROS, such as attacking
macromolecules and DNA, cancer, and neurodegenerative disorders [88].

3.5. Loliolide

Loliolide is a newly discovered metabolite in Codium tomentosum and has promising
pharmacological effects, particularly neuroprotection. Silva et al. (2021) showed that
loliolide works through various pathways, such as protecting nerve cells from the damaging
effects caused by 6-OHDA, preventing mitochondrial dysfunction and apoptosis, and
exhibiting anti-inflammatory effects by inhibiting the NF-kβ signaling pathway to reduce
proinflammatory cytokines such as TNF- and IL-6. Given its mechanism and ability to
cross the blood–brain barrier [89], loliolide might be a treatment for Parkinson’s disease. It
can reduce cell death by protecting cells against damage from 6-OHDA, reducing oxidative
stress, and blocking inflammatory pathways. As a new compound, further studies on the
antioxidant, anti-inflammatory, and neuroprotective effects of loliolide are warranted [61].
The hypothesized mechanism of loliolide in 6-PLWHA that stimulates cell death is shown
in Figure 7.
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4. Pharmacological Potentials of Marine Algae: Evidence from In Vitro and
In Vivo Studies

Several seaweeds have been tested for their activities related to brain health and have
shown promising results for several diseases. The types of seaweed and the diseases that
have been tested are listed in Table 4.
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Table 4. Pharmacological Potentials of Marine Algae.

Species Division Research for Reference

Saccharina japonica Phaeophyta Epilepsy, Anxiety, Schizophrenia, Parkinson, Alzheimer [90]
Undaria pinnatifida Phaeophyta Alzheimer [91]

Alaria esculenta Phaeophyta Parkinson [25]
Pelvetia siliquosa Phaeophyta Alzheimer [92]
Eisenia arborea Phaeophyta Alzheimer [31]

Sargassum fusiforme Phaeophyta Alzheimer [93]
Sargasum swartzii Phaeophyta Depression [38]

Caulerpa lentillifera Chlorophyta Alzheimer [57]
Codium tomentosum Chlorophyta Alzheimer, Depression, Parkinson [60]

Ulva lactuca Chlorophyta Alzheimer [94]
Ulva rigida Chlorophyta Parkinson, Alzheimer, Antioxidant [95]

Gelidium amansii Rhodophyta Neurodegenerative [96]
Kappaphycus alvarezii Rhodophyta Neurodegenerative [97]

Oxidative stress is a substantial factor in AD’s clinical onset and advancement [98].
Several seaweeds have shown antioxidant properties that could potentially affect AD.
Saccharina japonica reduced serum Aβ levels by 32.0% compared to the control group [90].
Aβ induces oxidative stress in neurons, resulting in elevated levels of hydrogen peroxide
and lipid peroxides [99]. Similarly, Undaria pinnatifida can reduce apoptosis triggered by
Aβ1-42 and increase neurite outgrowth activity at elevated concentrations, thereby display-
ing neuroprotective effects [80]. Fucosterol and two additional sterols, 3,6,17-trihydroxy-
stigmasta-4,7,24(28)-triene and 14,15,18,20-diepoxyturbinarin, all of which were extracted
from Pelvetia siliquosa, exhibited protective effects against oxidative stress induced by car-
bon tetrachloride (CCl4) by increasing the levels of superoxide dismutase (SOD), catalase,
and glutathione peroxidase in the rats exposed to CCl4 challenge [32]. Two phlorotannins,
dieckol and phlorofucofuroeckol were isolated from Eisenia arborea; at 10 µg/mL, these
substances showed strong inhibitory activity against butyrylcholinesterase, a new target
for the treatment of AD. All the compounds showed strong antioxidative properties and
inhibitory activities against acetylcholinesterase, butyrylcholinesterase, and tyrosinase [26].
Acetylcholinesterase inhibitors are an important therapeutic strategy for AD. High acetyl-
cholinesterase activity is associated with cholinergic dysfunction and memory impairment
in AD [100]. Antioxidant activity, which is beneficial for AD, has also been observed for
Caulerpa lentillifera, Codium tomentosum, and Ulva lactuca. Similar findings were reported for
Gelidium amansii and Kappaphycus alvarezii. The neurodegenerative effect is related to the
antioxidant activity [99,100].

24 (R, S)-Saringosterol isolated from S. fusiforme can cross the blood–brain barrier and
might exert modulatory effects on the central nervous system to cope with disorders such
as AD [101]. Ulva rigida has elevated levels of magnesium, which is crucial for the proper
operation of the central nervous system and assists in alleviating the symptoms associated
with Parkinson’s disease and AD [102].

In addition to their potential benefits for AD, certain types of seaweed hold promise
for managing Parkinson’s disease. Alaria esculenta contains molecules that can modify
the folding of the α-synuclein protein and inhibit its transformation into an amyloid
structure. This transformation of α-synuclein from its naturally unfolded state and α-
helical tetrameric form to an amyloid structure is a critical factor in the development of
Parkinson’s disease [103].

S. swartzii has antidepressant effects. Its methanolic extract contains significant bioac-
tive compounds, specifically sulfated polysaccharides and fucoxanthines [104,105]. Fu-
coxanthines, derived from brown seaweeds, such as S. swartzii, can reduce the levels of
inflammatory cytokines, such as TNFα, inducible nitric oxide synthase, and COX-2. These
cytokines play a pivotal role in the development of depression [106].
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5. Safety Aspects

It is crucial to emphasize that, despite the substantial potential advantages of therapies
involving marine algae and their bioactive metabolites, further research is required to
enhance their safety. Research on the safe use of these therapies is limited, and possible
side effects need to be further evaluated. Initial studies indicate that marine algae are
generally considered safe to consume in moderate amounts [107]. Nevertheless, it is worth
mentioning that marine algae that are tainted with harmful elements like heavy metals
could present health risks. Both dried and fresh marine algae can potentially harbor heavy
metals like cadmium, mercury, arsenic, or lead, which varies according to their source
habitat [108]. This is linked to a higher likelihood of developing diabetes, cardiovascular
disease, and neurodegenerative conditions, along with an elevated occurrence of lung, skin,
and bladder cancer [37,109].

Marine algae are also among the most abundant dietary sources of iodine, a trace
element essential in small quantities by the body. The recommended dietary allowance
(RDA) for iodine in adults is 150 micrograms per day, with a tolerable upper limit of
1100 micrograms [109]. Excessive iodine intake can decrease thyroid hormone production
and cause hypothyroidism. Research has indicated that consistent consumption of seaweed
(several servings per week) can lead to elevated levels of thyroid-stimulating hormone,
considered a risk factor for hypothyroidism [110]. In general, excessive iodine intake does
not typically result in health issues for most individuals who are in good health. However,
certain populations may be more susceptible to the adverse effects of excessive iodine and
should consider restricting their consumption of seaweed products. These groups comprise
individuals with pre-existing thyroid conditions, such as hypothyroidism (underactive
thyroid) or hyperthyroidism (excessive thyroid hormone production), school-aged children,
and infants [111]. Moreover, it is necessary to conduct further research to assess possible
interactions with other drugs that patients with brain diseases may use. Marine-algae
therapy may sometimes affect drug metabolism and trigger unwanted side effects [112].

6. Challenges and Future Perspective

The need for seaweed biomass is rising due to the increasing uses of seaweed; this
demand cannot be satisfied by simply gathering them from the wild. Finding a suitable
nutrient source that can support the large-scale production of marine algae remains a major
bottleneck despite the need for more reports on nutrient sources for land-based cultivation.
Aquaculture techniques must be strengthened to produce the greatest amount of seaweed
biomass, and strong management strategies must be considered.

The source of the extraction process, synthesis, molecular weight, the presence of
coextracts, the makeup of sugars, the degree of branching, etc. all impact the biological
actions of the compounds found in marine algae. The metabolites’ biological actions and
potential applications in the pharmaceutical, cosmeceutical, and nutraceutical industries
could be enhanced through chemical or enzymatic modification. Therefore, defining these
influencing parameters is necessary to successfully apply marine-algae products for human
and animal nutritional and health benefits.

Using marine-algae compounds in food-contact packaging requires a cost-effective
and sustainable supply of premium metabolites with bioactive qualities that can extend
food storage without compromising nutritional value or quality. Moreover, the metabolite
must be free of harmful substances from any microbes that may reside on the algal surface
to develop edible food-packaging materials. Therefore, rigorous protocols must be planned
to isolate and purify its metabolites to guarantee quality and purity.

Furthermore, the low bioavailability and limited water solubility of natural products,
their physicochemical instability, their rapid metabolism, and their ability to cross the blood–
brain barrier are some challenges and limitations that may impact their clinical efficacy.
Furthermore, the blood–brain barrier restricts the amount of naturally occurring substances
that can enter the brain and travel to the site of action. This will limit the distribution
to brain tissues and result in low bioavailability. Delivering natural products and their
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isolated compounds through nanotechnology and nanocarrier-based techniques may help
improve therapeutic responses and enhance their effectiveness. The bioavailability of
natural products and their compounds can be increased by adding nanoparticles to the
delivery system.

7. Conclusions

The study of marine algae and their bioactive metabolites presents a promising avenue
for developing novel therapeutics for brain diseases. The rich diversity of marine ecosys-
tems and the multifaceted pharmacological actions of these compounds provide a robust
foundation for the further exploration and development of marine algae in pharmacognosy
and pharmacology. Research has demonstrated the neuroprotective potential of marine-
algae-derived compounds. They can mitigate oxidative stress, reduce neuroinflammation,
modulate neurotransmitter levels, and inhibit the formation of amyloid plaques, which are
crucial factors in the development and progression of brain diseases. Understanding the
pharmacological mechanisms underlying the effects of marine-algae-derived compounds
on brain diseases is essential. These mechanisms include anti-inflammatory, antioxidant,
antiapoptotic, and neurotrophic actions, which collectively contribute to the therapeutic
potential of these compounds.
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