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Abstract: Terpenoids are the broadest and richest group of chemicals obtained from plants. These
plant-derived terpenoids have been extensively utilized in various industries, including food and
pharmaceuticals. Several specific terpenoids have been identified and isolated from medicinal plants,
emphasizing the diversity of biosynthesis and specific functionality of terpenoids. With advances
in the technology of sequencing, the genomes of certain important medicinal plants have been
assembled. This has improved our knowledge of the biosynthesis and regulatory molecular functions
of terpenoids with medicinal functions. In this review, we introduce several notable medicinal plants
that produce distinct terpenoids (e.g., Cannabis sativa, Artemisia annua, Salvia miltiorrhiza, Ginkgo biloba,
and Taxus media). We summarize the specialized roles of these terpenoids in plant-environment
interactions as well as their significance in the pharmaceutical and food industries. Additionally, we
highlight recent findings in the fields of molecular regulation mechanisms involved in these distinct
terpenoids biosynthesis, and propose future opportunities in terpenoid research, including biology
seeding, and genetic engineering in medicinal plants.
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1. Introduction

Medicinal plants are defined by the World Health Organization as plants that contain a
substance in one or more organs that can be used for therapeutic purposes or as a precursor
for the synthesis of a useful drug [1]. The biologically active constituents in medicinal
plants are mainly terpenoids, alkaloids, and phenylpropane compounds [2]. Terpenoids, in
particular, constitute a significant and varied group of natural products that includes both
non-volatile and volatile compounds. Currently, over 80,000 terpenoid compounds have
been identified and are widely used in the pharmaceutical and cosmetic industries [3,4].

All terpenoids comprise five-carbon isoprene units (C5H8). Based on the number of
these units, they can be classified as monoterpenes, sesquiterpenes, diterpenes, sesterter-
penes, triterpenes, tetraterpenes, and polyterpenes [5,6]. Some specific terpenoids with
unique medicinal properties have been identified in certain medicinal plants
(Figure 1). These include cannabinoids (a constituent of Cannabis sativa), tanshinone (a
constituent of Salvia miltiorrhiza), paclitaxel (a diterpenoid compound isolated from Taxus
media), artemisinin (a bioactive compound of Artemisia annua), ginsenoside (a triterpene
compound from Panax ginseng), and ginkgolide (a component of Ginkgo biloba) [7–11].
These terpenoids not only play a significant role in the management of cardiovascular
and cerebrovascular diseases and malaria but can also improve the resistance of plants
to biotic and abiotic stress [12]. In turn, certain stressors and their associated hormones
can promote the accumulation of terpenoids, demonstrating a feedback mechanism in
terpene biosynthesis. In addition, advances in high-throughput sequencing technology
have led to the successful assembly of more than 195 medicinal plant genomes and the
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discovery of the synthetic metabolic pathways of essential terpenoids [13,14]. The ter-
penoids found in medicinal plants are numerous and serve a wide variety of medicinal
functions. In this regard, we have identified several major terpenoids that are well-known
for their benefits in medicine. These include pain-relieving cannabinoids, anti-malarial
artemisinins, anti-cardiovascular tanshinones and ginkgolides, and anti-tumor paclitaxel.
Extensive research has been devoted to studying these terpenoids due to their significant
contributions to human health and their potential in drug discovery. These terpenoids are
among the most potent and promising compounds in the field of medical applications. Our
paper provides a summary of the types and functions of terpenoids in the main medicinal
plants. We specifically focus on the mechanisms of structural genes, transcription factors,
and transporters participating in the regulation of terpenoid biosynthesis. Additionally,
we discuss and compare the terpenoid biosynthesis pathway in these medicinal plants.
Given that medicinal plant terpenoids are numerous and specific, we concentrate on the
terpenoids of several representative medicinal plants, as defined in Figure 1.

Biomolecules 2023, 13, x FOR PEER REVIEW  2  of  17 
 

successful assembly of more than 195 medicinal plant genomes and the discovery of the 

synthetic metabolic pathways of essential terpenoids [13,14]. The terpenoids found in me-

dicinal plants are numerous and serve a wide variety of medicinal functions. In this re-

gard, we have identified several major terpenoids that are well-known for their benefits 

in medicine. These include pain-relieving cannabinoids, anti-malarial artemisinins, anti-

cardiovascular  tanshinones  and  ginkgolides,  and  anti-tumor  paclitaxel.  Extensive  re-

search has been devoted to studying these terpenoids due to their significant contributions 

to human health and their potential in drug discovery. These terpenoids are among the 

most potent and promising compounds  in the field of medical applications. Our paper 

provides a summary of the types and functions of terpenoids in the main medicinal plants. 

We specifically  focus on  the mechanisms of structural genes,  transcription  factors, and 

transporters participating  in  the regulation of  terpenoid biosynthesis. Additionally, we 

discuss and compare the terpenoid biosynthesis pathway in these medicinal plants. Given 

that medicinal plant terpenoids are numerous and specific, we concentrate on the terpe-

noids of several representative medicinal plants, as defined in Figure 1. 

 

Figure 1. Several important medicinal plants and their specific terpenoids. 

2. Function of Terpenoids in Human Health 

Recent studies have demonstrated that terpenoids in medicinal plants possess phar-

macological properties that promote human health [15,16]. For example, artemisinin is a 

widely used anti−malarial medicine that is used to protect millions of people from malaria 

every year [17,18]. Ginkgolides are natural antagonists of platelet activation, possess neu-

roprotective and reparative effects, and are crucial  in  the  treatment of  ischemic strokes 

[19]. Cannabinoids have been used for thousands of years for their anxiolytic and anes-

thetic effects [20]. Paclitaxel plays a significant role in anti-tumor therapy by inducing ox-

Figure 1. Several important medicinal plants and their specific terpenoids.

2. Function of Terpenoids in Human Health

Recent studies have demonstrated that terpenoids in medicinal plants possess phar-
macological properties that promote human health [15,16]. For example, artemisinin is a
widely used anti-malarial medicine that is used to protect millions of people from malaria
every year [17,18]. Ginkgolides are natural antagonists of platelet activation, possess neuro-
protective and reparative effects, and are crucial in the treatment of ischemic strokes [19].
Cannabinoids have been used for thousands of years for their anxiolytic and anesthetic
effects [20]. Paclitaxel plays a significant role in anti-tumor therapy by inducing oxidative
stress, and is considered one of the most successful natural anti-cancer drugs available [21].
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Furthermore, terpenoids have been found to have additional biological functions, such as
anti-oxidant and anti-inflammatory effects [22,23].

Terpenoids exert their therapeutic functions through various signaling pathways
and receptors. For example, cannabinoids rely on their ability to interact with the body’s
endocannabinoid system—the G protein-coupled cannabinoid receptors (CB1 and CB2)—to
exert their biological properties, including infection, inflammation, and hard tumors [24].
Due to the complex and diverse involvement mechanisms of terpenoids, we mainly focused
on their signaling pathways in inflammatory and oxidative stress. NF-κB (Nuclear factor-
kappa B) is involved in inflammatory processes, cell proliferation, and defense against
apoptosis [25,26]. Artemisinin has been shown to significantly inhibit the expression of
NF-κB and mitogen-activated protein kinase (MAPK) signaling genes, making it a potential
drug for inflammation treatment [27]. Tanshinone IIA has been reported to play a role in
the inflammatory response through the Toll-like receptor 4 (TLR4)/transforming growth
factor activated kinase-1 (TAK1)/NF-κB signaling cascade [28–30]. Cannabinoids regulate
anti-inflammatory responses by inhibiting NF-κB and other pathways [31]. Ginkgolides can
significantly inhibit the expression of NF-κB, reduce the phosphorylation levels of p38, c-
Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) proteins in the
mitogen-activated protein kinase (MAPK) signaling pathway, and reduce the expression of
pro-inflammatory cytokine genes, thereby exerting anti-inflammatory effects [32]. Similarly,
paclitaxel can inhibit the expression of NF-κB, inhibiting tumor growth and having anti-
tumor effects [33].

Oxidative stress plays a crucial role in antitumor activity, cardiovascular activity, and
atherogenesis [33–36]. Ginkgolide can cross the blood–brain barrier, activating the nuclear
factor E2-associated factor 2 (Nrf2) signaling pathway and upregulating the expression
of oxidative stress-related proteins heme oxygenase-1 (HO-1), quinone oxidoreductase 1
(NQO1), superoxide dismutase (SOD), and Nuclear factor-E2-related factor 2 (Nrf2) to
reduce the cellular damage caused by oxidative stress [31]. Oxidative stress is central
to the mechanism of paclitaxel’s antitumor activity as it increases mitochondrial ROS
production and inhibits endoplasmic reticulum utilization and antioxidant enzymes and
peptides [33–35,37,38]. Recent studies have found that tanshinone IIA prevents oxidative
stress by increasing the activities of total antioxidant capacity (T-AOC), SOD, glutathione
peroxidase (GSH-Px), and catalase (CAT) to reduce atherosclerosis [35,39]. Cannabinoids
regulate antioxidants by activating antioxidant enzymes, regulating glutathione levels, and
inhibiting pro-oxidases to regulate anti-inflammatory properties [40]. Although it has been
discovered that terpenoids can be involved in treating diseases through multiple strategies,
the specific regulatory pathways for disease treatment are not yet fully understood. Further
validation is still required via utilizing more animal models or clinical trials to elucidate
their regulatory mechanisms.

3. Functions of Terpenoids in Biotic Stress

On an evolutionary level, it seems that there are complex and diverse combinations
of terpenoids with remarkable structural diversity that can fulfill a variety of ecological
roles [41]. The terpenoids in medicinal plants also serve an ecological role in defending
the plants themselves against herbivorous insects and pathogens. Terpenoids can attract
natural enemies of aphids, such as predators and parasitoids. Increasing the cannabinoid
content in C. sativa leaves can improve resistance to mites, especially T. urticae [42]. In
A. annua, a high level of artemisinin increases the resistance of Pseudomonas syringae, while a
low level reduces resistance to Botrytis cinerea [43]. When attacked by aphids, A. annua also
produces artemisia ketone and (E)-β-farnesene to resist them [44]. These results suggest
that biotic stress can induce A. annua to produce more and diverse types of artemisinin to
enhance the plant’s resistance. Terpenoids not only protect plants themselves, but also act
as alarm signals at interspecific, intraspecific, and intraplant levels. These signals trigger
defense responses in nearby plants or tissues that have not yet been attacked [45]. Therefore,
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due to their low environmental risk and resistance to pests and pathogens, terpenoids can
be effectively used as biopesticides, playing a vital role in environmental protection.

4. Effects of Environmental Factors on Terpenoid Accumulation

Synthesized and accumulated terpenoids are tightly regulated by changing abiotic
environments (Figure 2) [46,47]. Light plays a critical role in terpenoid accumulation, which
cannabinoid synthesis is a wonderful example. To achieve a consistent production of
cannabis products, it is increasingly being grown indoors using Light Emitting Diode (LED)
light, which is more energy efficient than traditional high-pressure sodium (HPS) light
sources. Higher cannabinoid concentrations are measured under LED lighting compared to
HPS [48]. Similarly, cannabigerolic acid (CBGA) was accumulated up to 400% more during
LED treatments compared to HPS [49]. Moreover, combining LED light and metal halide
lamps increased bud yield and cannabinoid concentrations [50]. Blue light LED can also
lead to increased cannabinoid concentration in C. sativa [51–53]. The dynamic spectrum LED
treatment leads to increase in yield and significant improvement in cannabinoid content
compared to fixed full-spectrum white light [54].When plants are exposed to a strong
light intensity or ultraviolet-B (UV-B) radiation, they can initiate the terpenoid metabolite
biosynthesis for antioxidant defense [55]. For instance, there is a positive association
between UV-B radiation and cannabinoid content in C. sativa [56]. After exposure to UV
light for 24 h and 48 h, the terpenoid content increased by 10.0% to 21.9% in G. biloba [57].
Artemisinin accumulation also correlates positively with light intensity, with the highest
concentration observed at 3000 Lux when exposed to a standard fluorescent lamp [58].
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Figure 2. Terpenoid-mediated plant-environment interactions. Medicinal plants produce terpenoids
to inhibit insect feeding and pathogen attack, whereas UV-B radiation, drought, salt, and temperature
stress can induce terpenoids accumulation in medicinal plants.

Cold stress, such as chilling (0–15 ◦C) and freezing (<0 ◦C), adversely affects plant
development, but facilitates terpenoid accumulation [59]. The artemisinin content increased
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by 27.16% upon exposure to cold stress and overnight frost in A. annua [60,61]. In addition,
cold stress (4 ◦C) also significantly increased the terpenoid content in G. biloba, reaching a
maximum at 8 d and increasing by 14.5% compared to the control [62].

Salt stress can increase the content of artemisinin by 14.68%, but prolonged salt stress
decreases artemisinin accumulation [63]. In C. sativa, an increase in NaCl concentration was
also found to result in a subsequent decrease in cannabinoid content [64,65]. Drought can
enhance terpenoid accumulation in medicinal plants (e.g., sesquiterpene content of Salvia
dolomitica) [66]. The emission rates of terpenoid compounds are higher in cork oak and
gum rock with increasing summer drought [67]. Similarly, there was a significant increase
in the amount of (E)-β-caryophyllene in O. vulgare subsp. virens due to the drought [68].
Controlled drought stress can boost cannabinoid content in C. sativa [69]. Further research
has shown that under drought stress, tanshinone enhances the photosynthetic capacity and
prevents oxidative damage, thus improving drought stress resistance in S. miltiorrhiza [70].

Although the existing studies have discovered various external factors that can regu-
late terpenoid synthesis in medicinal plants, research on the regulatory pathways affected
by these environmental factors is still very limited. Due to the importance of the environ-
ment in promoting the accumulation of terpenoids, further research should be conducted in
the future to investigate various environmental factors and their combinations that regulate
terpenoids accumulation in medicinal plants. By considering the characteristics of different
medicinal plants, the most advantageous combination of environmental factors for ter-
penoid accumulation should be optimized and selected. This will provide valuable insights
for the future development of high-quality medicinal plants through factory cultivation.

5. Accumulation Characteristics of Terpenoids and Their Transport

The specific sites of terpenoid synthesis, storage, and utilization vary among medicinal
plants. Multicellular glandular trichomes, which are outgrowths on the epidermal, possess
the ability to secrete or store significant amounts of terpenoids. Glandular secretory
trichomes, located on the surface of the leaves, are where artemisinin is synthesized and
stored. Thus, the density of glandular trichomes affects artemisinin accumulation [71].
Cannabinoids are present in all C. sativa aerial plants and the resin is the most highly
concentrated. Cannabinoids were originally synthesized in the trichoid in the form of
cannabic acid. Since acidic substances are highly toxic to plant cells, the final stage of their
synthesis takes place outside the cells of the trichosomes [72]. The roots of C. sativa also
contain triterpenoids’ active compounds [73].The high concentrations of monoterpenoids
occur in capitate glandular trichomes in bracts; cannabinoids are also stored in the glandular
trichome secretory cavity, but they are found predominantly in female flowers [24]. In
T. media, taxol exhibits special mechanisms for synthesis and storage to prevent toxic
effects on its source plant. Taxol can be isolated from nearly all its plant tissues, but its
content is higher in the stems, primarily accumulating in the outer bark, compared to the
roots and needles [74]. The present studies also reveal that taxol is stored in hydrophobic
bodies within the wood parenchyma rays and phloem. This storage can help protect
living cells from the cytotoxic effects of taxol [75]. By contrast, in G. biloba, the terpenoids
are primarily extracted from the leaves. However, experiments using 14CO2 and (U-14C)
glucose-labeled revealed that their biosynthesis site is not in the leaves but in the roots [76].
The content of terpenoids found within the cortex (bark) was 1.75 to 2.07 times higher
than that found in the leaves. GbLPS, GbIDS2, GbDXR2, GbDXS2, and GbGGPPS, the core
genes in the ginkgolide biosynthetic pathway, exhibited a high level of expression in roots,
confirming that the roots are the main site of terpenoid biosynthesis [77,78]. Metabolic
profiling and gene expression analysis indicate that ginkgolides are biosynthesized in
the root fibrous and main root periderm tissues, and subsequently transported to the
leaves [78]. Similarly, several major bioactive compounds have been extracted from the
roots of S. miltiorrhiza, including cryptotanshinone and tanshinone IIA. The genes relevant
to transhinone synthesis, particularly SmKSL1, SmCPS1, and 19 candidate SmCYPs, are all
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highly expressed in root periderm tissue [79,80], confirming that tanshinone accumulation
mainly occurs in the S. miltiorrhiza root phloem.

Since some terpenoids are produced and stored at different sites in plants, it is nec-
essary to study their transport [81]. However, the transport mechanisms of terpenoids
have not been extensively researched in medicinal plants. ATP-binding cassette (ABC)
transporters are present in most eukaryotic organisms, and can be categorized into eight
subfamilies (ABCA to ABCH). They can drive the influx or efflux of secondary metabolites
into cells [82,83]. A few transporters from the ABCG subfamily are implicated in terpenoid
transport. The pleiotropic drug resistance (PDR) transporters, belonging to the ABCG sub-
family, were found to be responsible for the membrane transport of terpenoids in medicinal
plants [84,85]. In P. ginseng, PgPDR3 has been implicated in corresponding ginsenoside
accumulation [85]. Similarly, in A. annua, AaPDR3 is involved in both the formation and
transport of β-caryophyllene [86]. Additionally, the genome of S. miltiorrhiza contains a
total of 114 genes that encode ABC transporters [83]. Combined with analyzing their expres-
sion in different tissues and their co-expression with key enzymes involved in terpenoid
synthesis, several ABCG transporter genes, such as SmABCG46, SmABCG40, and SmABCG4,
have been identified as potentially participating in tanshinone transport [83]. Although
numerous terpenoid transporters have been identified in medicinal plants, validating their
functions and determining their specificity for substrates remains challenging.

6. Terpenoid Biosynthesis Pathway and Regulation

Despite their substantial differences in structure and functionality, the terpenoids all
originate from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP).
These IPP and DMAPP units can be biosynthesized via the mevalonate (MVA) or the
methylerythritol phosphate (MEP) pathway [87–89]. However, the downstream genes
integrated into the terpenoid biosynthetic pathways, and the regulatory mechanisms, are
specific to different medicinal plants (Figure 3).

Gene tandem duplication is a prominent feature in the biosynthesis pathways of
key secondary metabolites. Two strains of A. annua with varying levels of artemisinin
were used to assemble chromosome-level haploid maps. Genomic analyses revealed
that multiple copies of the AaADS (amorpha-4, 11-diene synthase) gene exist in the A.
annua genome. A strong positive association was found between artemisinin levels
and the number of copies of AaADS [71]. ADS catalyzes the initial and critical step in
the artemisinin biosynthetic pathway, the conversion of farnesyl diphosphate (FDP) to
amorpha-4, 11-diene [90]. Overexpression of AaADS can enhance artemisinin production
in transgenic A. annua plants, suggesting the important role of AaADS in artemisinin
biosynthesis [91,92]. Then, the cytochrome P450 enzyme CYP71AV1, along with the cy-
tochrome P450 reductase CPR1 and cytochrome b5 (CYB5), effectively converts amorpha-
4, 11-diene into artemisinic alcohol71 [93]. The overexpression of AaCYP71AV1 and
AaCPR (redox partner for CYP71AV1) in A. annua can increase the artemisinin content by
2.4-fold in comparison to the wild-type [94,95]. Several other genes which are impor-
tant for artemisinin synthesis have also been identified, including AaHMGR, AaDBR2,
AaDXR, and AaFPS [96,97]. The co-transformation of the two important synthetic genes
(e.g., AaADS and AaHMGR genes, AaFPS and AaHMGR genes) can significantly promote
artemisinin content [96]. In particular, the co-overexpression of AaFPS, AaCYP71AV1,
and AaCPR can dramatically increase the artemisinin concentration in A. annua [98]. In
addition, most of these genes can be activated with UV light, cold, or heat shock, which
correlates with higher artemisinin content [43,99–103].
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Figure 3. Biosynthetic pathways of terpenoids in several important medicinal plants. Artemisinin
(purple), cannabinoids (orange), ginkgolide (pink), paclitaxel (yellow), tanshinones (green). One solid
arrow indicates one step, two solid arrows represent more than one step, and the dashed arrows show
hypothetical steps. Abbreviations: AACT, acetoacetyl-CoA synthase; HMGR, HMG-CoA reductase;
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HMGS, hydroxymethylglutaryl (HMG)-CoA synthase; MVK, mevalonate kinase; PMK, phospho-
mevalonate kinase; MVD, mevalonate diphosphate decarboxylase; FPPS, farnesyl diphosphate
synthase; DXR, 1-deoxy-D-xylulose-5-phosphate reductase; DXS, 1-deoxy-D-xylulose-5-phosphate
synthase; HDR, 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase; HDS, 1-hydroxy-2-
methyl-2-(E)-butenyl-4-diphosphate synthase; CMK, 4-diphosphocytidyl-2-C-methyl-D-erythrito
kinase; MCT, 4-diphosphocytidyl-2-C-methyl-D-erythrito synthase; MDS, 2-C-methyl-D-erythritol-
2, 4-cyclodiphosphate synthase; GGPPS, geranylgeranyl diphosphate synthase; ADS, amorpha-4,
11-diene synthase; ALDH1, aldehyde dehydrogenase 1; DBR2, artemisinic aldehyde ∆11(13) reduc-
tase; LPS, levopimaradiene synthase gene; CYP450, cytochrome P450; TS, taxadiene synthetase;
T5αH, taxadiene 5-α-hydroxylase; T2αH, taxoid 2-α-hydroxylase; T7βH, taxoid 7-β-hydroxylase;
TBT, 2-α-hydroxytaxane 2-O-benzoyltransferase; BAPT, baccatin III amino phenylpropanoyl-13-O-
transferase; DBTNBT, 3′-N-debenzoyltaxol-N-benzoyltransferase; T13αH, taxane 13-α-hydroxylase;
KSL, kaurene synthase-like; CPS, copalyldiphosphate synthase; AAE, acyl-activating enzyme; OLS,
olivetol synthase; GOT, olivetolate geranyltransferase; THCAS, tetrahydrocannabinolic acid synthase;
CBDAS, cannabidiolic acid synthase; CBCA, cannabichromenic acid synthase. Dashed square frames
represent terpenoid biosynthesis sites.

In S. miltiorrhiza, tanshinone biosynthesis is initiated by the bicyclization of geranylger-
anyl diphosphate (GGPP), a common diterpene precursor, and catalyzed by CPP synthases
(CPSs), resulting in copalyl diphosphate (CPP). The subsequent cyclization or rearrange-
ment reaction of the alkene is catalyzed by kaurene synthase-like enzymes (KSLs) to
produce an olefin. The final production of diterpenoids requires the insertion of oxygen
from cytochrome P450 mono-oxygenases (CYPs) [104,105]. In the genome of S. miltiorrhiza,
82 terpene synthase genes, which are responsible for producing hemi-, mono-, sesqui-, or
di-terpenes, were identified [106]. Physical clustering of terpene synthase genes and CYPs
is often linked to consecutive enzymatic actions in the biosynthesis of terpenoids. Four
terpenoid synthase genes/CYP pairs have been found in the S. miltiorrhiza genome. Among
these, SmCPS1 and SmCPS2 are, respectively, responsible for the tanshinone biosynthesis
in roots and leaves, and both are accompanied by genes from the CYP76AH subfamily. It
is worth highlighting that one of these members, CYP76AH1 and CYP76AH3, was previ-
ously identified as playing an important role in tanshinone biosynthesis, confirming the
functional role of these biosynthetic gene clusters in the biosynthesis of tanshinone [107].
In addition, biochemical and genetic experiments have also demonstrated the crucial role
of several CYP450 genes implicated in tanshinone biosynthesis, including SmCYP76AH1,
SmCYP76AH3, and SmCYP76AK1 [108–110].

In Taxus species, the biosynthesis pathway of toxoids is very complex and involves
approximately 19 enzymatic steps. The process begins with the precursor GGPP and in-
cludes several key enzymes such as a taxadiene synthase (TS), five P450s (T2aOH, T5aOH,
T13aOH, T7bOH and T10bOH), five acyltransferases (BAPT, DBAT, DBTNBT, TAT and
TBT), and two extra enzymes (PAM and T2′αOH) [111,112]. The TS catalyst facilitates the
cyclization of GGPP to form taxadiene. The expression of the TS gene through heterolo-
gous transformation in tobacco can significantly increase taxadiene production [113]. The
enzymes taxoid 2α-hydroxylase and taxoid 7β-hydroxylase utilize taxusin as a substrate to,
respectively, produce 2α-hydroxytaxusin and 7β-hydroxytaxusin [114]. Overexpression
of the gene encoding DBTNBT increased paclitaxel yield by 37% in the transgenic Taxus
species cells [115]. To establish a foundational pathway for toxoids, the genome of T.
wallichiana was assembled and has been found to have a genome size of 10.6 Gb. In this
genome, a number of genes involved in the biosynthesis of paclitaxel (terpene synthase
family TPS002, cytochrome P450 family CYP725, and transferase family TRF004) were
found to have undergone significant expansion [114]. These findings suggest that tandem
duplication could be the primary mechanism driving the complex paclitaxel biosynthetic
pathway. Through tandem duplication, an increasing number of enzymes were created to
modify toxoids, ultimately leading to the production of paclitaxel.

There are several key synthetic genes that have been reported in the ginkgolides path-
way, including 1-deoxy-D-xylulose-5-phosphate synthase (DXS), 1-hydroxy-2-methyl-2-(E)-
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butenyl-4-diphosphate reductase (HDR), geranyl geranyl diphosphate synthase (GGPPS),
and the levopimaradiene synthase (LPS) gene [62,77]. The GbLPS was cloned, and it was
demonstrated that it could catalyze the synthesis of ginkgolides [116]. Overexpression
of GbHDR2 in N. tabacum also elevated the diterpenoid duvatrienediol content at least
sixfold [117]. In addition, CYPs genes are considered to be linked to ginkgolide biosynthe-
sis, as the suppression of the GbCYPs genes can inhibit ginkgolide biosynthesis [118]. In
recent research, the first steps of ginkgolide biosynthesis have been revealed through the
exploration of gene clusters and co-expression analysis. Five CYPS genes (GbCYP7005C1,
GbCYP7005C3, GbCYP867E38, GbCYP867K1, and GbCYP720B31) were identified in close
proximity to the GbLPS gene. These genes encode multifunctional enzymes with atypical
catalytic activities, resulting in the formation of the tert-butyl group and one of the lactone
rings, which are characteristic of all trilactone terpenoids [117].

The biosynthetic pathway of cannabinoids differs slightly from that of other terpenoids.
Cannabinoid biosynthesis begins with the polyketide pathway’s synthesis of olivetolic
acid (OLA) and geranyl pyrophosphate (GPP). Subsequently, an enzyme known as olive-
tolate geranyltransferase (GOT) facilitates the alkylation of OLA and GPP, resulting in
the synthesis of cannabigerolic acid (CBGA) [118,119]. This CBGA can be converted to
neutral cannabinoids (THCA, CBDA, and CBCA) through heating, drying, and other non-
enzymatic decarboxylation reactions [120]. There is also a variant pathway for cannabinoid
production, where divarinolic acid (DA) and GPP generate the cannabinoid precursor,
cannabigerovarinic acid (CBGVA), which is then catalyzed by a series of enzymes to
eventually form the annabigerovarin (CBGV), ∆9-tetrahydrocannabivarin (THCV), and
cannabivarin (CBV). The genes encoding CsTHCAS, CsCBDAS, and CsCBCAS are regarded
as key genes in the synthesis process. Among them, CsTHCAS and CsCBDAS have been
shown to promote cannabinoid synthesis in glandular trichosomes [121].

7. Regulation of Terpenoid Biosynthesis by Transcription Factors

Transcription factors (TFs) are DNA-binding proteins that control the transcription
of particular genes, thereby controlling their expression within the cell. Several previous
studies have identified various TFs that are important in regulating terpenoid biosynthesis
(e.g., MYB, WRKY, bHLH, AP2/ERF, and bZIP TFs) (Figure 4).
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MYB serves as a key TF that affects the metabolism of terpenoid compounds. Several
MYB TFs were shown to play an important role in terpenoid biosynthesis in medicinal
plants. In S. miltiorrhiza, the transcripts of SmDXS, SmGGPPS, and SmKSL1 can be signif-
icantly upregulated by SmMYB9b, and an overexpression of SmMYB97 and SmMYB98
significantly increases the tanshinone content, indicating that these MYB may play a pos-
itive regulatory role in tanshinone biosynthesis [122–124]. In Taxus species, TmMYB3, a
phloem-specific R2R3-MYB, was identified to activate the transcripts of TmTBT and TmTS
to enhance paclitaxel biosynthesis [125]. In A. annua, AaTAR2 (MYB TF) and AaMYB17
serve as positive regulators for the glandular trichome, and, in turn, increase the level of
artemisinin [5,126], while AaMYB15 directly binds to and represses the transcriptional
activity of AaORA, thus suppressing artemisinin biosynthesis [127]. In C. Sativa, CsMYB1
can bind CsCBCAS and CsCBDAS promoters, negatively regulating cannabinoid accumula-
tion [128]. Overexpression of CsMIXTA (R2R3-MYB TF) in N. tabacum promotes trichoid
development, suggesting that it may promote cannabinoid production by increasing the
formation of cannabis glandular trichoid [129].

WRKY TFs are specific to plants and have significant functions in defending against
pathogens, responding to abiotic factors, and regulating secondary metabolism [130]. Re-
cently, researchers have successfully isolated WRKY genes from various medicinal plants.
For example, an overexpression of AaWRKY1 in A. annua can significantly activate the
expression of artemisinin biosynthetic genes [131]. The overexpression of the AaWRKY4
gene in A. annua has the potential to regulate the metabolism of artemisinin, leading to an
enhancement in artemisinin biosynthesis [87]. To categorize their impacts on taxol biosyn-
thesis in Taxus species, six representative TcWRKYs have been selected [74]. Overexpression
experiments demonstrated that the six TcWRKYs had diverse effects on taxol biosynthesis.
Specifically, TcWRKY8 and TcWRKY47 significantly and substantially enhanced the expres-
sion levels of taxol biosynthesis-related genes [132]. In addition, experimental evidence
has shown that TcWRKY33 has the ability to bind to the w-boxes in the TcDBAT promoter,
resulting in the promotion of its expression [133]. In S. miltiorrhiza, SmWRKY1 was found
to bind directly to the promoter of SmDXR [134], while SmWRKY2 binds to the SmCPS pro-
moter to promote tanshinone biosynthesis [135]. In C. sativa, CsWRKY1 can also influence
cannabinoid synthesis by modulating the expression of CsCBCAS and CsCBDAS [128].

AP2/ERF (APETALA2/ethylene-responsive element binding factors) TFs are a large
family in the plant kingdom, and specific AP2/ERF members are essential for terpenoids
formation [136,137]. Through experiments like EMSA and transient expression assay, it
has been demonstrated that AaERF1, AaERF2, and TAR1 are responsible for regulating
sesquiterpenoid biosynthesis in A. annua through binding to both AaADS and AaCYP71AV1
promoters [138]. In S. miltiorrhiza, SmERF6, SmERF8, SmERF128, and SmERF1L1 have also been
shown to activate tanshinone biosynthesis [110,137–139]. The overexpression of SmERF1L1 can
greatly enhance tanshinone accumulation in transgenic S. miltiorrhiza hairy roots by extensively
upregulating SmDXR, which is important for the tanshinone biosynthetic pathway [139]. It
was further confirmed that SmERF1L1 can bind directly to the promoter of SmDXR, regulating
the biosynthesis of tanshinone. In addition, TcERF15 was found to bind and activate TcTASY,
encoding a key enzyme in Taxus species, thereby enhancing paclitaxel biosynthesis [140],
as well as CsAP2L1, which can promote the transcript levels of CsCBCAS and CsTHCAS,
suggesting that it promotes cannabinoid biosynthesis [128].

The bHLH TFs have been identified in the regulation of plant growth and development
as well as secondary metabolism. Among them, the MYC type in bHLH is the most
thoroughly studied transcription factor. In A. annua, AabHLH1 and AaMYC2 are positive
regulatory factors for artemisinin biosynthesis. Overexpression of AabHLH1 and AaMYC2
can significantly increase the levels of genes associated with artemisinin biosynthesis,
such as AaADS, AaCYP71AV1, and AaDBR2 [140,141]. Overexpression of SmbHLH10 and
SmbHLH148 in S. miltiorrhiza can enhance the tanshinone content. Yeast one-hybrid results
indicate that SmbHLH10 and SmbHLH148 can directly bind to G-box elements on the
promoter of enzyme genes to activate their expression, thereby controlling the tanshinone
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biosynthesis. Further qRT-PCR analysis of the overexpression lines revealed that SmDXS,
SmDXR, SmCPS, and SmJRB were greatly induced [142,143]. In contrast, some bHLH TFs
suppress terpenoid biosynthesis; SmbHLH3 negatively control tanshinones biosynthesis
and downregulates related genes, such as SmDXR, SmDXS3, SmHMGR1, SmCPS1, SmKSL1,
and SmCYP76AH1 [57]. Similarly, TcJAMYC1, TcJAMYC2, and TcJAMYC4 negatively
regulate Taxus species paclitaxel biosynthesis [144].

There are several other TFs implicated in terpenoid biosynthesis in medicinal plants.
Overexpression of AaNAC1 has been demonstrated to increase the artemisinin levels in A.
annua [43]. AaHY5 and AabZIP1, which belong to the bZIP family, are reported to exert
positive control on artemisinin biosynthesis in A. annua [145,146]. SmJAZ3 and SmJAZ9,
which belong to the JAZ family, can inhibit the expression of tanshinone biosynthesis
genes [147]. In S. miltiorrhiza, SmGRAS1 and SmGRAS2, which encode GRAS TFs, can
upregulate the transcription of SmKSL1 to increase the tanshinone levels [112,148]. An
increasing number of TFs were identified that are involved in the regulation of terpenoids
biosynthesis in medicinal plants. These TFs can act independently or cooperatively to
simultaneously regulate terpenoids biosynthesis. However, validating their function and
determining their substrate specificity are also significant challenges.

8. Conclusions and Perspectives

Over the past decade, advancements in next-generation sequencing techniques, molec-
ular biology techniques, and multi-omics techniques have greatly enhanced our compre-
hension of the synthesis and regulation of terpenoids in medicinal plants. Environmental
factors, structural genes, transcription factors, and transporters have been identified as the
pivotal factors influencing the accumulation of terpenoids in these plants. Currently, the
development and utilization of key genes or technologies to enhance terpenoid biosynthesis
in medicinal plants has become a hot research topic.

However, our knowledge of terpenoids remains incomplete due to the complex and
specific nature of their biosynthesis. To further advance our knowledge of terpenoids,
future research should focus on several areas: (1) Although several genes upstream of
terpenoid biosynthetic pathways have been isolated and cloned, their precise function in
the regulation of terpenoid biosynthesis still needs further experimental validation. In
addition, little information is available on the downstream terpenoid biosynthetic pathways
in medicinal plants, especially regarding CYP450 family genes. Some specific terpene
synthesis pathways still need to be improved. (2) Callus, hairy root, and/or transient
overexpression/silencing have been used to assess the functions of terpenoid genes in
medicinal plants. However, stable genetic transformation systems are not available for
various medicinal plants, such as S. miltiorrhiza, G. biloba, and T. media. Therefore, stable
genetic transformation and gene editing systems such as the CRISPR-Cas9 system need to
be established to achieve biotechnology breeding. (3) Transporters play an essential role in
the transport of terpenoids since the biosynthesis and application sites of terpenoids are
different in some medicinal plants. Therefore, it is crucial that we identify and characterize
transporters of terpenoids in medicinal plants, which are essential for enhancing the
accumulation of terpenoids. (4) Genomics, transcriptomics, and metabolomics analyses
have provided insights into terpenoid synthesis in medicinal plants. In the future, more
attention should be given to the mechanisms of transcriptional regulation in terpenoid
synthesis, as well as the construction of networks of transcriptional and post-transcriptional
regulation. Additionally, the influence of epigenetics on terpenoid synthesis should also be
considered. (5) The development of biosynthetic techniques, such as the use of yeast and
other microorganisms, can facilitate the accumulation of specific terpenoids compared to
those produced by plants themselves. However, when multiple terpenoids work together
to exert medicinal effects, it becomes challenging to achieve similar outcomes through
synthesis. In this regard, plants, capable of producing multiple terpenoids, offer additional
advantages. Therefore, future research should focus on enhancing biosynthetic techniques
to synthesize multiple terpenoids. These studies will be of great significance for the
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breeding of medicinal plants with high terpenoid content through biotechnology, as well as
the production of terpenoid compounds through bioengineering.
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