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Simple Summary: The genetic variants responsible for lethal recurrent breast cancer are not yet
recognized. Five sets of cousins with recurrent breast cancer who belonged to high-risk pedigrees
were sequenced to identify rare, shared candidate predisposition variants in the pedigrees. The
candidates were tested for association with breast cancer risk in other populations, and additional
breast cancer cases were assayed for some of the candidate variants to test for co-segregation of the
variants in pedigrees. One hundred and eighty-one rare candidate predisposition variants were
shared in at least one cousin pair. A rare variant in MDH2 was found to segregate with breast-cancer-
affected relatives in one extended pedigree. This small sequencing study identified a set of strong
candidate variants for inherited predisposition for breast cancer recurrence, including MDH2, which
should be pursued in other resources.

Abstract: A significant fraction of breast cancer recurs, with lethal outcome, but specific genetic
variants responsible have yet to be identified. Five cousin pairs with recurrent breast cancer from
pedigrees with a statistical excess of recurrent breast cancer were sequenced to identify rare, shared
candidate predisposition variants. The candidates were tested for association with breast cancer risk
with UKBiobank data. Additional breast cancer cases were assayed for a subset of candidate variants
to test for co-segregation. Three-dimensional protein structure prediction methods were used to
investigate how the mutation under consideration is predicted to change structural and electrostatic
properties in the mutated protein. One hundred and eighty-one rare candidate predisposition
variants were shared in at least one cousin pair from a high-risk pedigree. A rare variant in MDH2
was found to segregate with breast-cancer-affected relatives in one extended pedigree. MDH2 is an
estrogen-stimulated gene encoding the protein malate dehydrogenase, which catalyzes the reversible
oxidation of malate to oxaloacetate. The molecular simulation results strongly suggest that the
mutation changes the NAD+ binding pocket electrostatics of MDH2. This small sequencing study,
using a powerful approach based on recurrent breast cancer cases from high-risk pedigrees, identified
a set of strong candidate variants for inherited predisposition for breast cancer recurrence, including
MDH2, which should be pursued in other resources.

Keywords: recurrent breast cancer; predisposition; pedigree; UPDB; CHEK2; PMS2; MDH2

1. Introduction

Twenty to thirty percent of breast cancer recurs after initial treatment. Although
recurrence is usually lethal, it is not yet possible to predict those breast cancers most likely
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to recur. While most studies have focused on genetic changes in breast tumors, the focus
here is on identifying inherited variants that segregate in pedigrees that have an excess
of recurrent breast cancer cases. This high-risk pedigree approach used a unique Utah
resource that combines the genealogy of the state with decades of statewide cancer and
death certificate data and the Genetic Epidemiology biorepository. Multiple candidate
variants were tested for association with breast cancer risk and evaluated for co-segregation
with breast cancer.

2. Data/Methods

The Genetic Epidemiology group at the University of Utah has recruited high-risk
cancer pedigrees since the 1970s. The Genetic Epidemiology biorepository includes stored
germline DNA, extracted from whole blood, for ~35,000 individuals who have deep known
genealogy and are members of pedigrees studied for an excess of different cancers, includ-
ing breast cancer, colorectal cancer, prostate cancer, and melanoma. High-risk pedigree
studies remain a powerful mechanism for identification of predisposition genes and vari-
ants [1–4]. Here, we took advantage of unique Utah resources, combined with an unusual
and powerful study design that includes sampled affected cousin pairs, to generate, and
begin to evaluate, a strong list of candidate predisposition variants for recurrent breast
cancer. The strength of our high-risk pedigree approach depends on the hypothesis that the
related recurrent breast cancer cases are members of pedigrees with a significant excess of
recurrent breast cancer cases and, thus, are likely to share an inherited predisposition from
a common ancestor. Since cousins are only expected to share 1/8 of their genetic material,
and these cousins belong to validated high-risk breast cancer pedigrees, any rare vari-
ants shared in these affected cousin pairs likely represent strong candidate predisposition
variants. Analysis of high-risk cancer pedigrees identified in this powerful Utah resource
previously provided the identification of BRCA1 and BRCA2, as well as CDKN2A [5–7],
which remain the most common cancer predisposition genes to be identified; the resource
has identified numerous other predisposition variants for other cancers.

Utah Population Database: The Utah Population Database (UBDB) combines the
genealogies of the original Utah founders from the mid-1800s and their descendants with
statewide cancer and death certificate data. Almost 3 million individuals are part of at
least 3 generations of genealogy, and their pedigrees can extend to 12 generations. Death
certificate data for the state of Utah from 1904 with all causes of death coded in Revisions 6
to 10 of the International Classification of Diseases coding (ICD) have been record-linked
to the Utah genealogy; 510,739 individual death certificates link to an individual with at
least three generations of genealogy. The Utah Cancer Registry (UCR), established in 1966,
records all independent primary cancers diagnosed or treated in Utah. The UCR became
an NCI Surveillance, Epidemiology, and End-Results (SEER) registry in 1973. A total of
148,886 individuals with a diagnosis of cancer in the UCR are linked to an individual with
at least three generations of genealogy in UPDB; 28,511 of these individuals had a breast
cancer diagnosis in the UCR.

Recurrent breast cancer cases: The UCR does not record information on recurrence
of cancer; all breast cancer diagnoses in the UCR represent independent primary cancers.
Individuals whose breast cancer recurred were defined within the UPDB as females with
a UCR diagnosis of primary breast cancer, who also had a linked Utah death certificate
that included breast cancer as a cause of death, with death occurring at least 10 years after
the original primary breast cancer diagnosis. The Genetic Epidemiology Biorepository
stores DNA samples extracted from over 1000 breast cancer cases and over 6500 of their
relatives in over 500 high-risk breast cancer pedigrees; 129 of these stored DNAs belong to
individuals classified here as recurrent breast cancer cases.

High-risk recurrent breast cancer pedigrees: All of the ancestors of the 129 sampled
individuals identified as recurrent breast cancer cases in the biorepository were analyzed
in order to identify all clusters (pedigrees) including at least two sampled recurrent breast
cancer cases sharing a common ancestor. To identify which of these pedigrees exhibited
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an excess of recurrent breast cancer cases, the population rate of recurrent breast cancer
was determined as follows. All individuals with at least three generations of genealogy
and a linked death certificate were assigned to a cohort based on biological sex, five-year
birth year range, and birth state (Utah or not). Cohort-specific rates of recurrent breast
cancer were estimated as the total number of recurrent breast cancer cases in each cohort
divided by the total number of individuals with a linked death certificate in each cohort.
Each cluster of related, sampled recurrent breast cancer cases (pedigree) was tested for an
excess of recurrent breast cancer by comparison of the observed number of recurrent breast
cancer cases among the descendants in the pedigree to the expected number. The expected
number of cases was estimated by summing the cohort-specific rate of recurrent breast
cancer for each descendant who also had a linked death certificate [8].

Whole Exome Sequence (WES) Data Generation and Analysis: Whole exome sequenc-
ing was performed at the Huntsman Cancer Institute High Throughput Genomics core
on 18 DNA samples extracted from whole blood from recurrent breast cancer cases who
were related in five clusters/pedigrees (some individuals were members of more than one
of these high-risk pedigrees through different ancestors). DNA libraries were prepared
from 1.5 micrograms of DNA using the IDT xGEN Human Exome v2 capture kit. Samples
were run on the Illumina NextSeq instrument. Reads were mapped to the human genome
GRCh38 reference using BWA-mem for alignment and variants were called using Genome
Analysis Toolkit version 4.1.3.0 (GATK) software following Broad Institute Best Practices
Guidelines. Exome capture resulted in an average of 95% of target bases being covered
by greater than 10× coverage across the exome with an average depth of 196×. Variants
occurring outside the exon capture kit intended area of coverage were removed. Variants
were annotated with Annovar, which contains predicted pathogenicity scores from 14 in
silico functional prediction algorithms.

Candidate-variant association with breast cancer risk: The rare, shared candidate
variants identified in the sequencing experiment were analyzed for association with breast
cancer risk in a set of 7746 Caucasian breast cancer cases and 1:1 ancestrally matched
controls from the UKBiobank’s 488,377 total subjects genotyped on the Illumina Omni-
Express SNP array [9]. UKBiobank case and control subjects were matched via principal
components (PCs) using ~27 K independent markers that excluded several genomic regions
known to adversely affect PC analysis [10]. FLASHPCA2 software was used to generate
eigenvectors for control selection [10]. Controls were selected from among 75,447 Caucasian
UKBiobank subjects who were female, over age 70 years of age, and had no cancer diagno-
sis. One control, representing the nearest neighbor based on Euclidean distance of the first
two PCs, was selected for each case. A total of 103 outlier cases and controls were removed,
leaving 7643 breast cancer cases and controls.

The selected UKBiobank case and control subjects were Imputed to ~40 M SNP mark-
ers using the Haplotype Reference Consortium’s (HRC) 67 K background genomes [11].
Beginning with 784,256 observed SNP genotypes, preimputation quality control using
PLINK v1.9 software [12] required sample genotyping of >98% (no subjects removed). A
total of 353,578 markers were removed by filtering for HWE p < 1.0 × 10−5, MAF < 0.005,
duplicated position in the HRC’s reference genome, or site not included in the HRC’s
reference genome. The remaining 430,678 SNPs were converted to human genome B37
forward strand orientation using GenotypeHarmonizer v1.4.20 software [13] and served
as the basis for imputation. Imputation was performed with EAGLE v2.3 software for
phasing [14] and MINIMAC3 software for imputation [15]. Post-imputation quality control
included removing markers with imputation information score (INFO-r2) < 0.7 [16–18].
Genomic coordinates were converted to human genome b38 with UCSC liftover tool [19].

Assay of selected candidate variants in additional breast cancer cases: A total of
129 previously sampled, recurrent breast cancer cases were available in the Genetic Epi-
demiology Biorepository. In addition, sampled breast cancer cases (recurrent status un-
known) and connecting relatives from the Biorepository who were members of the five
high-risk pedigrees from which a cousin pair was sequenced were selected for Taqman
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SNP Genotyping (ThermoFisher, Tokyo, Japan) assay. A total of 205 breast cancer cases and
relatives were assayed for the selected candidate variants. Due to the limited nature of this
study, only 32 candidate variants were selected for assay. Co-author A.W. reviewed the
literature to prioritize the candidate genes identified with regard to their putative function
in metastasis, with particular attention to the “host” genes that might regulate the body’s
ability to keep metastatic recurrence at bay, as well as other plausible contributors.

Variants were submitted to the Thermo Fisher Taqman Functionally Tested SNP
Genotyping database based on dbSNP Id. Variants not found to have a functionally tested
assay were submitted as custom design assays consisting of 600 base pairs 5 prime and
600 base pairs 3 prime of the variant of interest. Assays were performed by the University
of Utah HSC Genomics core.

Protein Structure Simulations: We calculated the 3D structures of the wild type (WT)
and mutated (MUT) MDH2 proteins with the I-TASSER structure prediction software using
full homology modeling [20–23]. We used the canonical sequence for MDH2 from UniProt
entry P40926. The mutated sequence was obtained by manual replacement of the Valine
at position 139 by Isoleucine. The WT I-TASSER predicted structure was compared with
experimental structures [24] and with the AlphaFold prediction [25]. All the structures
were visualized and analyzed using ChimeraX [26,27], which was also used to calculate and
visualize the electrostatic potentials using the default values. The estimated pathogenicity
was also estimated using PolyPhen2 [28].

3. Results

Recurrent breast cancer high-risk cases and pedigrees: Of the 28,511 breast cancer
cases recorded in the UCR with linked genealogy data, 2157 were females with a linked
Utah death certificate indicating breast cancer as a cause of death at least 10 years after
the primary breast cancer diagnosis (termed recurrent breast cancer in this analysis); 129 of
these cases had a stored germline DNA sample in the Genetic Epidemiology Biorepository.
These 129 recurrent breast cancer cases were related in 59 pedigrees, each pedigree included
2–6 related, sampled recurrent breast cancer cases; 18 of these 59 pedigrees exhibited a
significant excess (p < 0.05) of recurrent breast cancer cases and were termed high-risk. One
of these high-risk pedigrees included five related, sampled, recurrent breast cancer cases
that had previously been identified to carry the pathogenic BRCA1 Q1313X variant. This
pedigree was excluded from further study here, but this variant is potentially not only a
strong candidate predisposition variant for breast cancer, but specifically for recurrent breast
cancer. This finding of a known breast cancer predisposition candidate provides solid proof
of concept for the power of this study design in predisposition gene identification.

Five of the remaining seventeen sampled, high-risk pedigrees included at least one
pair of closely affected relatives (four pairs of cousins, one aunt/niece pair); these pairs
were selected for whole exome sequencing in our affected-cousin study design. These five
pedigrees included a total of eighteen sampled recurrent breast cancer cases. No sequence
data were available for these five pedigrees prior to this study, and they had not been
previously screened for BRCA1 or BRCA2. Figures 1–5 show the sampled recurrent breast
cancer cases (fully shaded) in the five sequenced high-risk pedigrees (two of the sampled
cases appeared in more than one high-risk pedigree, through different ancestors). The cases
marked with arrows are the related case pairs that were analyzed for variant sharing; the
other recurrent breast cancer cases shown also had WES data generated and were analyzed
subsequently for segregation of candidate variants. The decade of age at primary breast
cancer diagnosis is shown beneath each sequenced recurrent breast cancer case.
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Rare, shared variants: Exome sequencing of the 18 affected individuals in five high-
risk pedigrees identified a total of ~9200 exon specific (synonymous, nonsynonymous,
frameshift, splicing, etc.) variants with MAF < 0.005 in gnomAD 3.0. Removal of synony-
mous variants and poor-quality variants reduced this to ~4600 variants. A total of 181 rare
variants were identified as shared in at least one of the five affected cousin pairs shown
in Figures 1–5. These candidate recurrent breast cancer candidate variants are listed in
Supplemental Table S1. No rare variants were observed in more than one pair of affected
cousins. Two genes had two different variants identified in cousin pairs from two different
pedigrees (NFATC1 and ACTL7A). Five variants were in genes which have been reported to
be associated with breast cancer risk in at least 50 manuscripts in PubMed (DST, CHEK2,
FASN, TNN, and PMS2). The variants in PMS2 and CHEK2 were classified as pathogenic in
ClinVar [29], with reported cancer associations.

Table 1 summarizes the genes in which supporting evidence was identified for rare,
shared variants in either UKBiobank analysis or in assay of additional breast cancer cases.

Table 1. Rare shared candidate predisposition variants with supportive evidence in UKBiobank or
by assay.

Genes with Supportive Evidence from UKBiobank Analysis:

Gene UKBiobank Odds Ratio (OR) UKBiobank p value

Independently associated with brca risk:

BICD2 - 0.03

TPPP2 1.95 0.02

Observed in at least 1 case, but 0 controls:

FBN1 (4 cases) - 0.125

CSGALNACT1 (1 case) - 1.00

ZNF841 (1 case) - 1.00

OR > 2.0 and observed in at least 4 brca cases:

CSMD3 6.00 0.12

MUC5AC 3.01 0.29

TMPRSS12 2.17 0.17

Genes with Supportive Evidence from Assay of Additional BrCa Cases:

number of Additional recurrent brca number of Additional brca

Gene Case carriers in pedigree Case carriers in pedigree

MDH2 2 7

TENM2 2 1

CCDC136 2 2

PMS2 0 2

UKBiobank association analysis: A “recurrent breast cancer” phenotype was not
identifiable in UKBiobank data, so association of candidate variants with “breast can-
cer” risk was tested. UKBiobank data was available for 97 of the 181 rare, shared can-
didate variants; likely due to the low minor allele frequency threshold utilized here
(MAF < 0.005). UKBiobank results are summarized in Supplemental Table S1. No variants
were significantly associated with breast cancer risk in UKBiobank after correction for
multiple testing, but variants in BICD2 (p = 0.03) and TPPP2 (p = 0.02, OR = 1.95) were
independently significant. Variants in BICD2 (six cases), FBN1 (four cases), CSGALNACT1
(one case), and ZNF841 (one case) were observed in at least one UKBiobank breast cancer
case, but not in any controls. Variants observed in at least four cases and with OR ≥ 2.0
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included those in genes CSMD3 (OR = 6.00; p = 0.12), MUC5AC (OR = 3.01; p = 0.29), and
TMPRSS12 (OR = 2.17; p = 0.17).

Assay of selected variants in breast cancer cases: We were only able to assay a subset
of the rare, shared candidate variants in additional sampled recurrent breast cancer cases
as well as to test for segregation to other sampled breast cancer affected relatives in the five
high-risk, recurrent breast cancer pedigrees. Of the 32 candidate variants initially selected,
seven assays failed (in genes NFATC1-both variants, MR1, CHEK2, ACTL7A variant2, DST,
and FASN). Six variants had no additional breast-cancer-affected carriers identified in the
pedigrees they were originally found in (in genes KIF15, TMEM192, MUC5AC, TEP1, ZFX,
and TNN). Eleven variants identified only one additional breast-cancer-affected carrier
in the pedigrees in which they were identified (CHD5, DYSF, GZMA, AKAP11, MED14,
EPHX1, SOX13, ACSS2, ACTL7A variant 1, SLCO1B3, and FBN1). For the variant in
TMEM132C2, two additional breast-cancer-affected carriers were identified in the pedigree
in which they were observed in the recurrent breast cancer case cousin pair. The KIF1C
variant was identified in three assayed breast cancer cases, but they were not related to
the original variant-carrying pair, nor to each other. The ITGA7 variant was identified in
five assayed breast cancer cases, but they were not related to the original variant-carrying
cousin pair, nor to each other.

A known pathogenic variant in CHEK2 as well as a known pathogenic variant in PMS2
were both observed in the affected cousin pair sequenced and shown in Figure 3 with
arrows, but neither variant was observed in the three other sampled recurrent breast cancer
cases that were also sequenced in the pedigree shown in Figure 3. Figure 7 shows only
the portion of the pedigree with the sequenced affected cousin pair (shown with arrows),
and shows other sampled, diagnosed breast cancer cases. As seen, the pedigree member
parent of each of the recurrent breast cancer-affected cousin pair were each diagnosed with
breast cancer (one female and one male), as was one of their uncles, and their grandmother
(who married into the pedigree shown in Figure 3). The sequenced recurrent breast cancer-
affected cousin pair both carried a rare pathogenic variant (PV) in CHEK2 and a rare PV
in PMS2 (shown with “+”). The CHEK2 variant assay failed to perform, but the PMS2
variant was identified in two additional breast cancer cases (shown with “+”) by assay. The
pedigree shown in Figure 7 is also part of a previously studied breast cancer pedigree that
ascends through the male founder shown in the top generation. Sampling and screening
of additional breast cancer cases through multiple different ancestors could be pursued to
trace segregation of these breast-cancer-associated PVs.
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variant (+). The two non-proband breast-cancer-affected cases shown did not have samples available
and were not assayed.

Only three variants were observed not only in the affected cousin pair, but also in
the other recurrent breast cancer cases sequenced in the same pedigree (in genes TENM2,
CCDC136, and MDH2). All three of these variants were observed to co-segregate with all
the sequenced recurrent breast cancer cases in the same pedigree (Figure 1). TENM2 is on
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chromosome 5; CCDC136 (position 128,801,398) and MDH2 (position 76,058,064) are both
on chromosome 7.

Assay of all other sampled breast cancer cases in the pedigree in which the four
sequenced MDH2- and TENM2- and CCDC136-variant-carrying recurrent breast cancer
cases were originally identified (Figure 1) found one additional breast cancer case carrier of
the TENM2 variant, two additional breast cancer case carriers of the CCDC136 variant, and
seven additional carriers of the MDH2 variant (one inferred). The MDH2 variant provided
the most evidence for segregation with breast cancer risk; this pedigree is the extension of
the pedigree in Figure 1 and is shown in Figure 8.
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Figure 8 shows the segregation of the rare candidate MDH2 variant in the four original
sequenced recurrent breast cancer cases (shown with arrows), as well as the additional six
breast cancer cases (one is a male breast cancer), and one inferred breast cancer case; decade
of age at diagnosis is shown below each case. The founders of this pedigree were born in
the early 1800s in Denmark and have over 11,600 descendants represented in the UPDB
today. Among all descendants there is a significant excess of breast cancer (83 observed,
60.1 expected, p = 0.003), colorectal cancer (44 observed, 29.3 expected, p = 0.006), uterine
cancer (23 observed, 13.2 expected, p = 0.009), melanoma (54 observed, 41.9 expected,
p = 0.04), pancreas cancer (14 observed, 7.3 expected, p = 0.018), thyroid cancer (24 observed,
15.8 expected, p = 0.03), and prostate cancer (78 observed, 53.0 expected, 7.7 × 10−4). These
other cancer cases are not shown, but among the ancestors of variant carriers who are
shown in Figure 8, other cancers observed include one pancreas cancer and one prostate
cancer; one of the breast cancer case variant carriers was also diagnosed with thyroid cancer.
UPDB pedigrees only have linked UCR cancer data from 1966, so cancer cases are typically
only identified in the most recent generations.

Predicted functional alteration of MDH2 V139I: The MDH2 variant considered here
(V139I) is reported as benign in PolyPhen 2 (Figure S1 in the Supplementary Material)
and ClinVar [29]. These results are not surprising, because of the close structural and
electrostatic properties of Valine and Isoleucine. This is also consistent with the comparison
of the 3D (predicted) structures of the WT and mutant (MUT) proteins, which are compared
in Figure S2. It should be noted that the I-TASSER predicted structure for MDH2 (WT)
compares well with the experimental structure of MDH2 in the quatrimer complexed
with NAD [24] (RMS for 311 pruned pairs of 0.565 Å, for all 314 pairs 0.652 Å) and with
the predicted structure of AlphaFold (RMSD between 297 pruned atom pairs is 0.541 Å,
across all 338 pairs: 10.851 Å). The graphical comparison of these structures is depicted in
Figure S3.

The previous results appear to indicate that there are not key structural differences
between the WT and MUT structures of MDH2 considered here, but further insight can be
found when considering the structure of NAD bound to MDH2 [24], which clearly shows
that the V139I mutation is inside of the NAD binding pocket of MDH2 (see Figure S4). This
observation prompted us to examine the electrostatic potential in the region of the V139I
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mutation and the NAD binding pocket in more detail. The comparison of the coulombic
potential in the region of the pocket and the V139I mutation is depicted in Figure 9. It is
apparent from the figure that the mutation V139I significantly changes the electrostatic
potential, as it appears that there is a much more open and largely bipolar pocket in the
WT protein, while the pocket in the MUT protein appears much more narrow and mostly
positive.
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4. Discussion

While there are many informative collections of studied breast cancer families, we are
not aware of other existing resources for pedigrees at high risk for recurrent breast cancer
(recurrence here is defined as death from breast cancer at least 10 years after diagnosis
of primary breast cancer). In addition, while most studies can identify clusters of related
cases, they do not typically have the necessary population-level data to determine which, if
any, of those clusters (or pedigrees) have a significant excess of cases, rather than merely
representing a chance cluster of cases. The statewide data combined in the UPDB allowed
the identification of pedigrees that exhibit a statistically significant excess of recurrent
breast cancer cases over expected rates. The Genetic Epidemiology DNA repository further
allowed the identification of stored DNA samples from recurrent breast cancer cases who
are members of these high-risk pedigrees; these combined data and resources resulted in
the unique study presented here. In this concise sequencing study, a robust method was
employed, leveraging previously sampled recurrent breast cancer cases from high-risk
pedigrees. The study successfully pinpointed a collection of compelling candidate variants
that may contribute to the predisposition of recurrent breast cancer. Since validation
of segregation and risk association was based partially on the breast cancer phenotype,
rather than on the rarer (and remaining unknown for most cases) phenotype of recurrent
breast cancer, conclusions may therefore be limited to breast cancer, rather than recurrent
breast cancer, pending further study. These findings warrant further investigation across
other breast cancer resources to validate their significance. One variant in MDH2 showed
strong evidence for segregation with recurrent breast cancer, as well as breast cancer, in the
extended pedigree in which it was discovered.
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The protein structure predictions and the difference in the electrostatic potential
observed between the WT and the MUT species in the NAD binding region strongly
support the hypothesis that the NAD binding energies are different, leading to alterations
in the NAD+/NADH ratio in the MUT state compared to the WT state. This suggests higher
binding energies required in the MUT state compared to the WT state. This finding may
explain why the individuals with the variant are more susceptible to treatment resistance
than those with the WT.

MDH2 encodes mitochondrial malate dehydrogenase 2, which converts malate into
oxaloacetate using NAD+ ≥ NADH, H+ as part of the citric acid cycle, and therefore regu-
lates NADH [30]. Our molecular modeling studies suggest that the MDH2 variant found in
recurrent breast cancer cases may lead to lower [NADH] and elevated NAD+, reducing
oxygen consumption and ATP production during the mitochondrial respiration cycle—or,
in other words, augmentation of anerobic glycolysis, which has been found to contribute to
cancer cell proliferation [31,32]. Other studies have shown that the increased intracellular
oxygen concentration, because of altered MDH2 activity, regulates stability of HIF-1α,
which is critical for cell survival under hypoxic conditions [30,33]. Altered metabolism
caused by mutations in MDH2 has been implicated in various cancers, including an asso-
ciation with metastasis in pheochromocytomas and paragangliomas [34], and a germline
splice site mutation leading to reduced MDH2 activity has been identified in a familial case
of paraganglioma [35]. It has been published that MDH2 is an estrogen-regulated gene and
that MDH2 promotes proliferation, migration, and invasion of endometrial cancer cells
while suppressing their apoptosis [36]. While MDH2 mutations have not previously been
observed in breast cancer cases, decreased expression of MDH2 has been observed in triple-
negative breast cancer cases compared to HER2-positive breast cancer cases, supporting
a role of MDH2 in breast cancer [37]. Thus, mutations in MDH2 have multiple functions
in modulating cell growth and can inhibit or stimulate cancer growth by deregulating the
citric acid cycle.

Pedigree studies based on the UPDB have previously provided the identification of
BRCA1 and BRCA2 [5–7], and more recently have identified additional rare cancer predis-
position variants (GOLM1 [38]; CELF4 [39]; FANCM [40]; ERF [41]; LRBA [42]; FGF5 [43]) in
similar sets of sampled high-risk pedigrees. The identification of the known pathogenic
PMS2 and CHEK2 variants as well as the initial BRCA1 Q1313X-variant-segregating pedi-
gree found in the present study provide additional validation of this predisposition gene
identification approach in high-risk pedigrees. Even with the small number of available
sampled pedigrees that were screened here, likely variants were identified to explain some
high-risk breast cancer pedigrees. This validation supports the further ascertainment and
analysis of Utah high-risk breast cancer pedigrees, as well as the further analysis of the
other candidate variants identified here as likely predisposing to recurrent breast cancer.

Strengths of this study include the validation of breast cancer case status with the UCR,
the validation of death from breast cancer from Utah death certificates, the existing Utah
DNA biorepository, and the extensive genealogy data. The linked data available in the
UPDB allowed identification of pedigrees with a significant excess of recurrent breast cancer
cases, something most breast cancer family studies are not able to confirm. Limitations
of this study include the limited number of sampled high-risk recurrent breast cancer
pedigrees and cases analyzed. While the UPDB data resource has been validated in many
studies, it must be noted that genealogy data do not always indicate biological relationships.
Reliance on a combination of a UCR cancer diagnosis of breast cancer, followed by a death
certificate at least 10 years later that noted breast cancer as a cause of death to identify
“recurrent breast cancer cases” was not ideal, and it is likely that some recurrent breast
cancer cases remained unidentified. Because the Utah founders with available genealogy
are primarily of Northern European ancestry, the findings cannot be extended to other
populations without independent validation.
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5. Conclusions

Identification of genetic variants predisposing to recurrent breast cancer could allow
early intervention and potential prevention of fatal outcomes for breast cancer for sus-
ceptible individuals. The use of protein structure simulations greatly complements the
epidemiological studies by generating a plausible pathogenicity hypothesis that can be
further explored by more refined, albeit much more computationally demanding, molecular
simulation methods. These further investigations include studies of the binding energies
using docking and molecular dynamics simulations, and functional studies, which we
consider outside the scope of this work, to further understand the pathogenic mechanisms
of this mutation.

Large-scale case and pedigree studies strongly suggest that other common cancer
predisposition genes may not remain to be identified, and that, rather, most familial
cancer predispositions might be the result of many, varied, rare predisposition genes and
variants [4]. Whether or not this is the case, studies such as this one, that analyze related
affected individuals who are members of high-risk pedigrees, have shown the strong
potential to identify many candidate predisposition genes and variants for many different
phenotypes. Such studies should be pursued, and the candidate predisposition variants
identified are worthy of further exploration.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15245851/s1, Figure S1. PolyPhen2 prediction of pathogenic-
ity of the MDH2 V139I variant; Figure S2. Comparison of the 3D (predicted) structures of the WT
and MUT MDH2 proteins, which show an agreement RMSD between 318 pruned atom pairs that is
0.644 angstroms (across all 338 pairs: 1.202); Figure S3. Comparison of the I-TASSER predicted
structure for the WT of MDH2 with the experimental and AlphaFold Predicted one; Figure S4. Bind-
ing of NAD to MDH2: Note that NAD binds exactly in the region of the mutation V139I. Table S1:
Candidate recurrent breast cancer variants.
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