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Abstract: Gene expression is under tight regulation from the chromatin structure that regulates
gene accessibility by the transcription machinery to protein degradation. At the transcript level,
this regulation falls on RNA-binding proteins (RBPs). RBPs are a large and diverse class of proteins
involved in all aspects of a transcript’s lifecycle: splicing and maturation, localization, stability, and
translation. In the past few years, our understanding of the role of RBPs in cardiovascular diseases
has expanded. Here, we discuss the general structure and function of RBPs and the latest discoveries
of their role in pulmonary and systemic cardiovascular diseases.
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1. Introduction

Cardiovascular diseases affect both circulations—systemic and pulmonary—and all
cardiac chambers; and they are the main cause of death worldwide [1].

The most common pulmonary and systemic vascular diseases are pulmonary hyper-
tension (PH) and atherosclerosis, respectively. Pulmonary hypertension is characterized
by the increased blood pressure within the pulmonary circulation. Among the different
forms of PH, the mostly commonly studied is pulmonary arterial hypertension (PAH). PAH
arises from the loss of pulmonary vascular bed and narrowing of the lumen of pulmonary
arteries. Together, they lead to right ventricular maladaptive hypertrophy, and over time
to right heart failure and death [2]. Atherosclerosis, the most common systemic vascular
disease, is the hardening and narrowing of arteries due to neointima formation, immune
cell infiltration, and lipid accumulation. It is a cornerstone of cardiovascular mortality
and morbidity [3].

Cardiac disease develops independently or secondarily to vascular disease. In both
cases they are the cause of death. Among them, heart failure (HF), myocardial infarction
(MI), cardiac fibrosis, and cardiomyopathies are the most common. HF is characterized
by changes in the size, shape, and function of the heart that ultimately lead to decreased
cardiac output. MI due to atherosclerotic or thrombotic occlusion of coronary arteries
leads to ischemia in the myocardium and cardiomyocyte death. Rapid reperfusion is the
cornerstone of current MI treatment, but restoring blood flow leads to further damage to the
myocardium by causing ischemia-reperfusion injury (IRI) [4]. Cardiac fibrosis is excessive
extracellular matrix production and contributes to numerous cardiac disorders by impairing
myocardial compliance, contractility, and electrical conductance [5]. Cardiomyopathies
are myocardial disorders characterized by structural and functional abnormalities [6]. In
dilated cardiomyopathy (DCM), the left ventricle is enlarged and exhibits poor contractility,
causing DCM to be a major HF risk factor.

Independent of their underlying causes—genetic or environmental—cardiovascular
diseases all propel profound gene expression modifications. Gene expression is under
tight regulation from the chromatin structure that regulates gene accessibility to protein
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degradation. At the transcript level, this regulation falls on RNA-binding proteins (RBPs).
RBPs are a large and diverse class of proteins involved in all aspects of a transcript’s lifecycle:
splicing and maturation, localization, stability, and translation. Because RBPs regulate
a large part of a cell’s transcriptome, they emerged as a key player in cardiovascular
diseases. RBPs have also attracted attention for their therapeutic potential, and small
molecules are developed to modify their function and counteract their negative role in
disease development and progression.

In this review, we discuss the general structure and function of RBPs, the latest
discoveries of their role in pulmonary and systemic cardiovascular diseases (Table 1), and
their therapeutic potential.

Table 1. Summary of RBPs, their targets, and the resulting phenotype.

Disease RNA-Binding Protein Targets Phenotype

Pulmonary Arterial
Hypertension

SRFS2 BMPR2 Splicing Pathogenesis
HuR Guanylate Cyclase Vasoconstriction

ZFC3H1 BRD4 and HIF1a Proliferation
HNRNPA2B1 Cell Cycle Checkpoints Proliferation

Atherosclerosis

RBM47 BCLAF1 Inflammation
HuR Cathepsin S Plaque Formation

HuR Competition and Cooperation
with miRs Foam Macrophages

Non Ischemic Heart Disease

CPEB4 ZEB1 and ZEBTB20 Cell Growth

HNRNPC Splicing Failing Heart transcriptome
modification

RBM20 Hypertrophy
CELF1 MAPK Resistance to Apoptosis

REGnase Cytokines Inflammation

Myocardial Ischemia &
Ischemia Reperfusion Injury

HuR Belcin1 Apoptosis
METTL3 PTBP1 Fibrosis

Cardiac Fibrosis
PM2/QKI ACTA2 and MMP2 Myofibroblast differentiation

MBNL1 SRF Myofibroblast differentiation
TIAR LncRNA Wisper Fibrosis

Dilated Cardiomyopathy RBM20 mutation Splicing High penetrant DCM
RBM24 ENAH High penetrant DCM

Right Ventricular
Hypertrophy RBM20 Unknown Unknown

2. RNA-Binding Protein Structure and Function
2.1. RNA-Binding Protein Function

RNA-binding proteins have evolved to regulate all aspects of the mRNA life cycle:
splicing, expression, localization, and stability (Figure 1).

2.1.1. Splicing

Once transcribed, pre-mRNAs are spliced into mature mRNA. At first glance, intron
splicing is a very inefficient strategy: transcribing sequences only to be removed at the next
stage by the large and intricate machinery that is the spliceosome. But, from an evolutionary
standpoint, introns have been an essential part of genetic coding since the RNA world [7].
Today, the spliceosome is a highly regulated plastic RNA-protein enzymatic complex.
The spliceosome catalyzes intronic exclusion at constitutive splicing sites as well as at
alternative splicing sites. As opposed to constitutive splicing, which is a straightforward
mechanism, alternative splicing is a highly context-dependent mechanism regulated by the
RBP recognition of motifs [8]. One motif can be recognized differently by any given RBP
depending on the protein complex it is in. This motif can also be recognized by different
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RBPs. Finally, the localization of the motif on the mRNA influences the function of the
RBP bound to it: when the binding is within an exon, the adjacent intron is included;
when the binding is within the intron, it is spliced. However, these are general rules, they
can be broken. We now know at least twenty-six RBP splicing regulators but their exact
mechanism of action remains elusive [8].
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Figure 1. Main function of RNA-binding Protein. In the nucleus, once transcribed, the pre-mRNA is
maturated by the binding of RBP at a specific site to recruit the spliceosome and remove the introns.
Then, RBPs will recognize the poly(A) site and recruit the poly(A) polymerase to add the poly(A)
tail. Finally, the mature mRNA will be exported from the nucleus into the cytoplasm with the help of
the RBP complex that will bind both the mature mRNA and the Nuclear pore. In the cytoplasm, the
poly(A) tail will be covered with poly(A) binding protein to protect it from exonuclease. The PABP
will also interact with eiF4E bound to the 5′Cap and circularize it to improve the translation efficiency.
Specific RBP complexes will also recruit dyneins to move the mRNA to a specific location. Finally,
RBPs will recruit the Ccr4-Not deadenylase complex to start the degradation process.

2.1.2. Expression

Polyadenylation, the addition of a poly(A) tail in 3′ is part of the nuclear maturation
process of mRNA before export and cytoplasmic translation. The tail is covered and
protected from degradation with poly(A) binding protein (PABP). PABP also interacts with
eIF4E bound to the 5′-Cap to circularize the mRNA, a critical step to increase translation
efficiency. The circularization promotes the recycling of post-termination ribosomes for
translation reinitiation. Cytoplasmic regulation of the length of the poly(A) tail is thus a
highly efficient mechanism to regulate mRNA translation [9].

During the first developmental stages, gene expression relies only on maternal RNA,
as transcription is absent. During that time, RBPs orchestrate gene expression. In immature
oocytes, the RBP CPEB interacts with the U-rich 3′UTR element and represses transla-
tion. In mature oocytes, after fertilization, CPEB promotes cytoplasmic adenylation and
translation [10]. Cytoplasmic adenylation is not specific to oocytes. It is a widespread
method of gene expression regulation used by yeast, mice, and humans after nuclear
transcription starts [11].

2.1.3. Sub-Cellular Localization

Tightly linked to translation in eukaryotic cells, targeted mRNA localization is integral
to gene expression regulation [12]. Asymmetric mRNA distribution was first observed in
oocytes, where it is essential to establish cell polarity. Since then, it has been observed in
many eukaryotic cells, like neurons and migratory fibroblasts. Localization of a mRNA is
cost-efficient compared to localizing the hundreds of proteins generated by a single mRNA.
Hence, mRNA localization became a fundamental process to fine-tune gene expression and
regulate cell phenotypes.

Different mechanisms exist to localize mRNAs: active transport, protection from
degradation at a specific locus, and passive diffusion. Passive diffusion is only efficient
in small cells. Hence, only bacteria rely on this process [13]. Active transport and mRNA
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protection are both carried out by RBPs. Active transport is carried by RBPs through the
recognition of a specific motif. Once bound to mRNAs, RBPs recruit motor proteins and
move the mRNAs along the myosin chain [14]. The mRNA protection mechanism is based
on the specific localization of an RBP. At the site where the RBP is, the mRNA will be bound
by it, protected from degradation, and translated. In any other locus, the absence of the
protective RBP will lead to rapid mRNA degradation [12].

2.1.4. Stability

The stability of mRNA is regulated by the length of the poly(A) tail. Experimental
evidence supports that deadenylation is the first limiting step of mRNA degradation,
and PABP that covers the poly(A) tail protects it from exonuclease in the vicinity. RBPs
such as Tristetraprolin (TTP) or Pumilio bind to specific AU-rich elements within the
3′UTR and recruit the deadenylation complex, Ccr4-Not that leads to translation silencing
or degradation [15].

Increasing poly(A) tail length stabilizes the mRNA and favors translation. Cytoplasmic
polyadenylation of mRNA is known to occur, but the constant transcription of new mRNA
and the localization-specific adenylation and deadenylation process make it difficult to
investigate in detail [16]. Nonetheless, it is clear that poly(A) tail length is a cornerstone of
gene expression regulation in eukaryotic cells.

The aforementioned examples show the central role of RBPs in gene expression reg-
ulation and underline the role RBP dysregulation may play in cardiovascular disease
development. The ever-growing number of RNA-binding proteins involved in cardio-
vascular disease cannot be exhaustively covered. In the following sections, we present
the implication of RBPs in a wide range of cardiovascular diseases, both systemic and
pulmonary, through a few selected examples.

2.2. RNA-Binding Protein Structure

RNA-binding proteins (RBP) use a modular structure, a fit-for-purpose combination of
RNA-binding Domains (RBDs). RBDs are well-defined structures that recognize a ribonu-
cleotide sequence, a structural motif, or both with weak affinity [17]. The assembly of multi-
ple RBDs within one RBP creates versatile binding surfaces with high affinity and specificity
that accommodate the dynamic equilibrium between binding and unbinding. Furthermore,
each RBD can evolve independently and adapt to poorly conserved motifs [18,19].

Several canonical RBDs exist, each with a specific method to recognize their targets. A
detailed classification of RBDs and their mean-to-bind motifs are available in numerous
curated reviews [20–22]. Here are a few examples of their great variety.

The most common RBD is the RNA recognition motif (RRM). More than 9000 RRMs
have been described [23]. RRMs use aromatic acids of β-sheets to create a stacking in-
teraction with nucleobases. This stacking interaction between aromatic amino acid and
nucleobase creates the single-strand RNA recognition of the RRM but does not provide
sequence-specificity. To achieve specificity, the RRM motif relies on other side chains and
residues in the immediate C-terminal of the RRM [24] (Figure 2).

Another example is the KH domain. Unlike the RRM domain, the KH domain is
built around three α-helices and two β-sheets. As opposed to many other RBDs, KH
does not use stacking interactions to recognize RNA. It uses the protein backbone of the
α-helix to recognize its targets through hydrogen bonds, electrostatic interaction, and shape
complementarity3. For example, in some cases, the KH domain recognizes an adenine
backbone by hydrogen bonded between the protein backbone and the adenines, recreating
the Watson–Crick base pairing pattern [25] (Figure 3).

Another example is the PAZ and PIWI domain adapted for RNA interference and
microRNA processing that recognizes double-strand RNA similarly to DNA recognition by
transcription factors [19,26] (Figure 4). These examples show how different recognition and
binding methods have evolved to recognize a variety of motifs. It is also noteworthy that
the rise of RNA interactome technologies made it apparent that we still underestimate the
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unconventional RBPs that lack known RBDs, and their investigation will most probably
modify our understanding of the cellular function of RBPs [27,28].
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3. RBPs in Vascular Disease
3.1. Pulmonary Arterial Hypertension

Pulmonary arterial hypertension (PAH) is a life-threatening pulmonary vascular
disease that leads to increased pulmonary blood pressure, right ventricular maladaptive
hypertrophy, and overtime to right heart failure and death [2,29,30]. PAH can be idiopathic,
inherited, or associated with other pathological conditions [31]. Increased pulmonary
blood pressure is due to the dysfunction of pulmonary vascular endothelial and smooth
muscle cells. In PAH, pulmonary vascular cell dysfunction originates from a genome-wide
deregulation of gene expression [32]. RBPs play a central role in gene expression regulation
and thus have attracted attention in PAH [33]. Here, we describe a few examples of the
critical implications of RBPs in PAH pathophysiology.

3.1.1. SRSF2 Regulates BMPR2 Splicing

BMPR2 is one of the receptors of the TGFb superfamily [34]. Its mutation is the most
common cause of heritable PAH, but only 20% of BMPR2 mutation carriers develop PAH.
This low penetrance is due to compensatory mechanisms that prevent the phenotypic
manifestation of the mutation [35]. The BMPR2 gene encodes two main isoforms, one
that includes the exon 12 and the other one that excludes it. While doubt exists on the
exact function of exon 12, there is no doubt that it plays a central role in BMPR2 mutation-
dependent PAH [35–39]. Deletion of exon 12 is a common consequence of BMPR2 mutation
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in PAH patients, and mice over-expressing the BMPR2 isoform lacking exon 12 develop
pulmonary hypertension.

The splicing of exon 12 is under the regulation of the RBP SRSF2, which promotes
its inclusion [40]. In most BMPR2 mutation carriers, SRSF2 is expressed at a normal level,
which promotes the inclusion of exon 12 and prevents the development of PAH. When
SRSF2 expression decreases, it leads to a predominant expression of the isoform that lacks
the exon 12 and to the development of PAH [40,41].

3.1.2. HuR Regulates Soluble Guanylate Cyclase

Chronic hypoxia also induces pulmonary hypertension through sustained pulmonary
vasoconstriction [42]. One of the early events of hypoxia exposure is the downregulation of
the soluble guanylate cyclase (sGC) that produces nitric oxide—a potent vasodilator [43].
sGC stability is governed, at least in part, by the RBP HuR that stabilizes its expression.
Under hypoxia, HuR is down-regulated, which results in decreased sGC expression and
sustained vasoconstriction [43].

3.1.3. ZFC3H1 Regulates BRD4 and HIF 1a

As part of the acquisition of genome-wide deregulation of gene expression in PAH,
pulmonary arterial smooth muscle cells (PASMC) upregulate the transcription factor
HIF1a [32,44] and the epigenetic reader BRD4 [45,46]. Both play a critical role in the
PAH-PASMC phenotype by participating in the phenotypic switch of PASMC toward a
proliferative and synthetic phenotype [31]. In PAH-PASMC, BRD4 and HIF-1a are under
the RBP ZFC3H1 regulation [47]. ZFC3H1 promotes the expression of BRD4 and HIF1a in
PASMC, and its inhibition leads to the down-regulation of BRD4 and HIF1a and the reversal
of the PAH phenotype in a murine model of pulmonary hypertension. The mechanism
by which ZFC3H1 promotes the expression of its targets in PAH is of high relevance, as
ZFC3H1 is known to lead to mRNA degradation as part of the poly(A) tail exosome tar-
geting (PAXT) connection [47,48]. Hence, these data in PASMC point towards an opposite,
cell-specific function of ZFC3H1 that is yet unknown.

3.1.4. HNRNPA2B1 Regulates Cell Cycle Checkpoints in PASMC

RBPs can regulate a large part of the whole cell transcriptome at once. However, up to
now, in PAH, the research focused on the association between one RBP and one—or two—of
its targets. A transcriptome-wide approach was missing. We started to fill this void by
performing the first transcriptome-wide investigation of the role of one RBP, HNRNPA2B1,
in PAH [49]. We demonstrated that in PAH-PASMC, HNRNPA2B1 regulates thousands of
mRNAs at the same time. Most of these genes are implicated in cell cycle regulation—G1/S,
DNA synthesis, G2/M, and Spindle assembly checkpoints, making HNRNPA2B1 a critical
regulator of the PASMC phenotype. In PAH, HNRNPA2B1 was shown to be nuclear and
to stabilize its targets, while in cancer HNRNPA2B1 is known to be cytoplasmic and to
destabilize its targets [49]. Similar to the RBP HuR, the localization of HRNPA2B1 is crucial
for its function.

3.2. Atherosclerosis

Atherosclerosis is the hardening and narrowing of arteries due to neointima formation,
immune cell infiltration, and lipid accumulation. It is a cornerstone of cardiovascular mor-
tality and morbidity [3]. The atherogenesis occurs in four steps: maladaptive morphological
changes to endothelial cells, fatty streak formation and concomitant inflammation, prolif-
eration of the atherosclerotic fibrous plaque and cap, and plaque destabilization [50,51].
Each step is an active cellular process regulated, at least in part, at the transcriptomic
level that mediates changes in immune cells, endothelial cells, and SMC phenotypes [52].
Special interest in RBPs grows toward mitigating atherogenesis. Transcriptomic data re-
vealed 165 differentially expressed RBPs between carotid atheroma and non-atheroma
tissue, and 69 expressed RBPs between stable and unstable atherosclerotic plaques [53].
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As the regulatory functions of RBPs continue to be enumerated, we will highlight a few
promising applications.

3.2.1. RBM47 Regulates BCLAF1

RBPs play a crucial role in the differential expression of transcription factors, specif-
ically within their alternative splicing [51]. BCLAF1 is necessary for SMC survival and
transdifferentiation to the macrophage-like/foam cell phenotype in advanced atheroscle-
rotic plaques and is involved in the inflammatory immune response [54]. Mimicking
cholesterol (ox-LDL) overload in the endothelium during atherosclerosis in vitro, an RBP
RBM47-mediated, significant increase in the alternative splicing of BCLAF1 was shown,
resulting in increased inflammation [51].

3.2.2. Human Antigen R Regulates Endothelial Cell Preservation

Endothelial dysfunction is a precursor of atherosclerosis, as compromising the vascular
barrier enables leukocyte adhesion and lipid uptake [55]. CD62E, also known as endothelial-
leukocyte adhesion molecule 1 (ELAM-1), and cathepsin S, a potent cysteine protease used
to degrade elastin and collagen layers on the arterial wall, are both target mRNAs of RBP
Human Antigen R (HuR) on the CTSS gene [56,57]. The sulfhydration of HuR prevents
its homodimerization and ability to bind to the 3′UTR of the CTSS gene [56]. As a result,
CD62E and cathepsin S target mRNAs are lowly expressed and unstable, causing increased
plaque formation and monocyte adherence51. Current data have shown that sulfhydration
of HuR is significantly attenuated in atherosclerosis. Dietary supplementation or synthetic
organic H2S donors is a promising cyto- and cardioprotective therapy [56,58–60].

3.2.3. HuR Regulates via Competition and Cooperation

The previous examples have demonstrated the capacity of RBPs to enact specific effects
via expression modulation of one or two genes. Yet, beyond its gene regulation effects
mentioned earlier, the RBP HuR can interact competitively and cooperatively with several
microRNAs colocalized at the same 3′UTR of the target mRNA, where competition results
in enhancement or total repression—dependent on microRNA or RBP dominance—and
cooperation result in low expression [61]. For example, these interactions play a role in
HuR’s binding, stabilization, and cytosolic trafficking of cellular cholesterol homeostasis
mRNA ABCA1, which eases foam macrophage-mediated efflux of cholesterol to circulating
ApoAI and HDL [62,63]. ABCA1 mRNA is also post-transcriptionally regulated by multiple
microRNAs, including MiR-33, miR-758, miR-106b, and miR-144, yet it is unclear whether
HuR acts as a competitor or a cooperator in this context [61]. Still, this multi-interactional
role of HuR is at the cross-section of many atherogenic pathways.

4. RBPs in Cardiac Disease
4.1. Non Ischemic Heart Failure with Reduced Ejection Fraction

Heart failure (HF) is characterized by changes in the size, shape, and function of
the heart that ultimately lead to decreased cardiac output. HF is preceded by adverse
cardiac remodeling which encompasses cardiomyocyte hypertrophy, cardiomyocyte death,
inflammation, and fibrosis in the myocardium [64,65]. This adverse remodeling may be
caused by acute stressors like myocardial infarction (MI) or chronic stressors like sustained
hemodynamic overload [66]. A general upregulation of RNA-binding proteins was found
in the myocardium of human and mouse HF, regardless of disease etiology [67]. During
adverse cardiac remodeling and HF, genes of the fetal gene program are re-expressed. A
recent study has shown that in myocardium from HF patients, expression of fetal-specific
isoforms of RNA-binding proteins is reactivated together with re-expression of fetal genes.
It was determined that the fetal-specific genes encode transcripts that likely contain more
RNA-binding protein binding sites [68]
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4.1.1. CPEB4 Regulates ZEB1 and ZBTB20

A multi-omic approach in neonatal rat cardiomyocytes (NRCM) has elucidated a
subset of RNA-binding proteins with altered expression and function at baseline and during
pathological hypertrophic growth [69]. Of note was cytoplasmic polyadenylation element
(Cpe)-binding protein 4 (Cpeb4), which was identified as an RNA-binding protein that
binds and decreases the expression of Zeb1 and Zbtb20 mRNA; two essential transcription
factors in cell growth. At baseline, Cpeb4-knockout mice were shown to express fetal
genes, and exhibit cardiac hypertrophy and diminished cardiac function, demonstrating
the powerful roles RNA-binding proteins play in disease susceptibility. Several RNA-
binding proteins have been discovered to play a role in the regulation of adverse cardiac
remodeling caused by non-ischemic chronic stressors.

4.1.2. HNRNPC in Splicing

The heterogeneous nuclear ribonucleoprotein C (hnRNPC) upregulation was demon-
strated in failing human hearts, both on whole tissue and single-cell RNA sequencing
levels [67]. It was demonstrated that in diseased cardiomyocytes, mechanical stress
associated with adverse cardiac remodeling causes hnRNPC to shuttle out of the nu-
cleus. This subsequently affects the hnRNPC alternative splicing of genes involved
with mechanotransduction.

4.1.3. RBM38 and RBM20 Regulate Cardiac Hypertrophy

RNA-binding Motif protein-38 (RBM38) was shown to be downregulated in cardiac
myoblasts in vitro upon stimulation with pro-hypertrophic stimuli such as Angiotensin II
(AngII) and phenylephrine (PE). The RBM20 overexpression attenuated hypertrophy and
fetal gene expression in these cells by binding and inhibiting liver X receptor (LXRα) thus
reducing lipogenesis [70].

4.1.4. CELF1 Activates MAPK

CUG triplet repeat-binding protein 1 (CELF1) was upregulated in mouse hearts upon
pressure overload induced by transverse aortic constriction (TAC), while CELF1-KO mice
exhibited attenuated cardiac hypertrophy and fibrosis, and improved cardiac function upon
pressure overload. In NRCM stimulated with AngII, CELF1 was upregulated and shown
to directly bind RNA encoding for phosphatidylethanolamine-binding protein 1 (PEBP1),
thereby activating Raf/MAPK signaling [71]. As such, CELF-deficient cardiomyocytes
were more resistant to AngII-induced apoptosis, which was recapitulated in CELF-KO
mouse hearts.

4.1.5. REGnase Family in Inflammation

The Regnase family RNA-binding proteins play important immunomodulatory roles
by regulating the degradation of proinflammatory cytokine mRNAs [72]. Cardiomyocyte-
specific Regnase-1–knockout mice showed severe cardiac fibrosis and immune cell in-
filtration, as well as dilated cardiomyopathy and HF upon TAC-induced pressure over-
load [73]. It was revealed that a higher number of cardiomyocytes express interleukin 6 (Il6)
mRNA, but not other cytokines, in cardiomyocyte-specific Regnase-1–knockout mouse
hearts upon pressure overload. Accordingly, the administration of an anti–Il6 receptor
antibody attenuated cardiac inflammation and cardiomyopathy in cardiomyocyte-specific
Regnase-1–knockout mice.

4.2. Myocardial Infarction and Cardiac Ischemia-Reperfusion Injury

MI due to atherosclerotic or thrombotic occlusion of coronary arteries leads to is-
chemia in the myocardium. While rapid reperfusion is the cornerstone of current MI
treatment, restoring blood flow leads to further damage to the myocardium by causing
ischemia-reperfusion injury (IRI) [4]. An IRI is characterized by oxidative stress, cell death,
inflammation, and fibrosis. A delicate interplay between these processes underlies the bal-
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ance of tissue damage and tissue repair and thus disease outcome. RNA-binding proteins
may govern this interplay.

A study leveraging four large datasets of mouse and human MI and HF found that
up to 17% of genes that are upregulated in diseased compared to control myocardium
are annotated as having RNA-binding ontology [67]. In human hearts from ischemic
HF patients, the RNA-binding proteins DDX52, RRS1, FCF1, DHX15, POLR1D, GNL2,
RSL24D1, and EBNA1BP2 were found to be downregulated as compared to control hearts,
while LSG1 and GRWD1 were upregulated in ischemic HF myocardium. Additionally,
a recent study in mouse IRI myocardium demonstrated differential expression of RNA-
binding proteins together with important alterations in splicing events of genes in pathways
related to myocardial function [74].

4.2.1. HuR Regulates Beclin1

The functional roles of a few specific RNA-binding proteins in MI or IRI have been
reported thus far. The RNA-binding protein ELAV-like protein 1 (ELAVL1) also known as
human antigen R (HuR), is upregulated in mouse myocardium upon IRI as well as in car-
diomyocytes subjected to hypoxia-reoxygenation in vitro [75]. ELAVL1 promoted reactive
oxygen species (ROS) and reduced myocyte viability by directly binding and stabilizing
Beclin1 mRNA, thus promoting ferroptosis, an iron-dependent form of cell death.

4.2.2. METTL3 Regulates PTBP1

The RNA-binding protein methyltransferase-like 3 (METTL3), a subunit of the methyl-
transferase complex, was upregulated in the myocardium of mice with chronic, non-
reperfused, MI [76]. Cardiac-specific METTL3 silencing attenuated cardiac fibrosis and
improved cardiac function and contractility upon MI. Another upregulated RNA-binding
protein in mouse MI myocardium is polypyrimidine tract binding protein 1 (PTBP1) and
cardiac LV-specific silencing of PTBP1 resulted in reduced MI-induced fibrosis in mice [77].

4.3. Cardiac Fibroblasts and Fibrosis

Cardiac fibrosis is characterized by excessive extracellular matrix production and
is observed in numerous cardiac disorders where cardiac fibrosis critically contributes
to disease progression by impairing myocardial compliance, contractility, and electrical
conductance [5]. A key pathophysiological event in cardiac fibrosis is the activation of
cardiac fibroblasts (CF) and subsequent differentiation into myofibroblasts. Recently, it
was demonstrated in CF explanted from human cardiac biopsies that about one-third of all
gene expression changes in activated CF are subject to posttranslational regulation and that
these genes are strongly enriched for targets of RNA-binding proteins [78].

4.3.1. PUM2, QKI and MBNL1 Regulate Myofibroblast Differentiation

Data on RNA-binding proteins in myofibroblast differentiation have started emerg-
ing. In vitro cell studies have demonstrated several RNA-binding proteins to play roles
in myofibroblast differentiation. Silencing of Pumilio RNA-binding family member 2
(PUM2) and Quaking (QKI) in explanted human CF inhibited TGFβ-induced myofibroblast
differentiation as characterized by lower expression of ACTA2 and MMP2 secretion [78].

RNA-binding protein muscleblind-like1 (MBNL1) was also shown to promote my-
ofibroblast differentiation in neonatal mouse CF by directly binding a network of differ-
entiation and matrix-assembly transcripts, including the transcriptional regulators serum
response factor (SRF) and twist, as well as TGFβ receptors I and II76. Accordingly, MBNL1
overexpression promoted ANGII/PE-induced cardiac fibrosis in mice [79].

4.3.2. TIAR and LncRNAs

The RNA-binding protein TIA1-related protein (TIAR), under the control of the long
non-coding RNA Wisper, was shown to control the expression of a profibrotic form of
lysyl hydroxylase 2 (PLOD2) in adult mouse CF77. Previously, PLOD2 was implicated in
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collagen cross-linking and ECM stabilization. The RNA-binding protein HuR was shown
to bind a duplex consisting of long non-coding RNA Safe and SFRP2 RNA, enhancing their
stability [80]. HuR silencing in adult mouse CF downregulated Safe-SFRP2 expression
and thereby inhibited TGF-β-induced myofibroblast differentiation. RNA-binding protein
PTBP1 promotes TGF-β1-induced collagen accumulation and proliferation in Cfs [77].
PTBP1 was shown to bind nuclear receptor Nur77 mRNA to destabilize its expression,
subsequently inhibiting the fatty acid-binding protein 5 (FABP5) pathway and thereby
myofibroblast differentiation.

Demonstrating the powerful roles RNA-binding proteins play in disease susceptibility,
in vivo, it was shown that RNA-binding motif 24 (RBM24) overexpression in otherwise-
healthy mice was sufficient to cause extensive cardiac fibrosis, as well as expression of
genes associated with the immune response and myofibroblasts activation, demonstrating
the powerful roles RNA-binding proteins play in disease susceptibility [81].

Non-classical RNA-binding proteins have also been implicated in cardiac fibrosis. The
non-classical RNA-binding protein cytoskeleton-associated protein 4 (CKAP4) was down-
regulated in the fibrotic right atrium in patients with cardiac valvular disease compared
to healthy atrial tissue. Bioinformatics revealed that CKAP4 preferentially binds to long
non-coding RNAs (lncRNAs) in the fibrotic atrium than in normal atrial tissue. CKAP4
was experimentally validated to have stronger binding to lncRNAs LINC00504, FLJ22447,
RP11-326N17.2, and HELLPAR in fibrotic atrium compared to control atrial tissue80. The
non-classical RNA-binding protein METTL3 was demonstrated to promote TGFβ-induced
CF proliferation and myofibroblast transition by modifying N6-methyladenosine on fibrosis-
related RNA transcripts, such as fibroblast growth factor 2 (FGF2), fibronectin (FN1), and
several collagen isoforms [76].

4.4. Dilated Cardiomyopathies

Cardiomyopathies are myocardial disorders characterized by structural and functional
abnormalities [6]. In dilated cardiomyopathy (DCM), the cardiac left ventricle is enlarged
and exhibits poor contractility, causing DCM to be a major HF risk factor. Both genetic and
non-genetic causes may underlie DCM. It was recently shown that natural genetic variations
influence translational regulation in human DCM myocardial tissue and that these genetic
variations were predicted to affect RNA-binding protein function [82]. One of the best-
characterized RNA-binding proteins in DCM is RNA-binding motif protein 20 (RBM20),
with ample clinical and experimental data to support its crucial role. Mutations in RBM20
are known to cause highly penetrant DCMs. RBM20 mutations are thought to explain up
to 2–6% of all genetic DCM cases [83]. RBM20 is a splicing regulator with over 30 validated
splicing targets to date [84]. In particular, RBM20 regulates splicing of sarcomeric genes
(TTN, FHOD3, MYOM1), but also calcium handling and signaling (CACNA1C, RYR2,
CAMK2D) and contraction (TNNT2). Miss splicing of Titin (TTN), a Z disc protein crucial
for myocardial contraction, is thought to be one of the primary underlying mechanisms
of RBM20-associated DCM. Similarly, RNA-binding motif protein 24 (RBM24) regulates
a subset of genes associated with cardiomyopathies such as sarcomere z-disc genes TTN,
nebulette (NEBL), and enah actin regulator (ENAH).

Global splicing profiling showed that RBM24 regulated more than 500 isoform switches
in mouse DCM hearts [85]. Accordingly, cardiomyocyte-specific RBM20-knockout mice
exhibited rapidly progressive DCM and HF85. Another study performing translatome
profiling in the hearts of DCM patients revealed that key network hubs include the RNA-
binding proteins Pumilo family member 2 (PUM2) and Quaking (QKI), however, their
functional role was not assessed [78].

4.5. Right Ventricular Disease

While the role of RNA-binding proteins has begun to surface in left ventricular disease,
little is known about their role in right ventricular (RV) disease. Failure of the right ventricle
is an important predictor of morbidity and mortality in a number of diseases affecting
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the heart and/or lungs such as PAH [86], yet there have been no studies investigating
RNA-binding proteins in right ventricular disease, to our knowledge. The increasing
availability of genome-wide datasets allows for unbiased interrogation of RNA-binding
proteins, especially for tissues that may be difficult to procure for research. In the largest
study to date in human right ventricular tissue from patients with PAH [87], Boucherat
et al. performed multiomic profiling of RV tissues including transcriptomics of seven
decompensated and 11 compensated RVs from PAH patients and 14 control RVs. They
identified a panel of proteins upregulated in both RV and plasma of patients with PAH
with decompensated RVs and further identified latent transforming growth factor beta
binding protein 2 (LTBP-2) as a novel plasma biomarker in PAH that correlates with RV
function and predicts long-term survival. We interrogated their transcriptome-wide dataset
to identify RNA-binding proteins that might be dysregulated in PAH RVs. We intersected
415 RBPs from the RBP database with differentially expressed genes (DEGs) from this
dataset and found that 217 RBPs were dysregulated (FDR < 0.05) in decompensated PAH
RVs vs. control RVs and 180 RBPs were dysregulated (FDR < 0.05) in decompensated
PAH RVs vs. compensated PAH RVs, with 174 RBP DEGs overlapping and directionally
consistent between these two comparisons. These findings suggest that RBPs may play
an important role in the RV and that their dysregulation is associated with RV disease,
such as decompensated RV function in patients with PAH. While most of the top RBP
DEGs have not been previously implicated in RV disease, RBM20 was a top downregulated
DEG that has been reported to have a link to RV disease, in addition to its well-described
role in DCM of the LV discussed above (Figure 5). Specifically, Malakootian et al. [88]
performed whole-exome sequencing to identify a pathogenic variant in RBM20 in a family
with heritable DCM. Cardiac magnetic resonance imaging of one of the affected family
members revealed an enlarged right ventricle with reduced right ventricular function. This
report suggests that mutations in RBM20 may be pathogenic for not only LV disease but
also RV disease. However, further studies are needed to investigate the role of RBM20 and
other RBPs in RV disease.
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Figure 5. RBP expression in Compensated and Decompensated human right ventricle. (A) Venn
diagram showing differentially expressed genes (DEGs) coding for RNA-binding proteins overlap-
ping between two human RV comparisons: decompensated PAH vs. control, and decompensated
PAH vs. compensated PAH. DEGs were determined by DESeq2. (B) Scatter plot showing correlation
of Wald statistic of genes coding for RNA-binding proteins from DESeq2 DEG analysis between
two human RV comparisons: decompensated PAH vs. control (y-axis), and decompensated PAH vs.
compensated PAH (x-axis). Higher absolute Wald statistic indicates stronger differential expression.
Larger size and lighter blue dots indicate stronger false discovery rate-corrected p-values (combined
by Wilkinson’s method between the two comparison). Select genes are labeled.
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5. Therapeutic Strategies

Because RBPs regulate every aspect of transcripts’ life, they are attractive therapeutic
targets. We use three main strategies to target them: Small interfering RNA, small molecules,
and Nucleotide aptamer. All these approaches are at the pre-clinical stage in cardiovascular
disease despite being at the clinical stage in numerous other diseases.

Si-RNA attracted a lot of attention as they have the innate advantage of being quick to
develop compared to small molecules. Nonetheless, in their native form, they have poor
stability and pharmaco-kinetic [89]. Numerous modifications of Si-RNA are now known to
improve stability and pharmacokinetics and open their use as a therapy. A few Si-RNA are
in clinical trials for cardiovascular diseases, though none targets RBPs yet [90].

Small molecules are the main therapeutic tools of modern medicine. Numerous have
already been developed to target RBPs and are currently in clinical trials, mainly in cancer.
For example, small molecules bind to the RBP HuR (MS-44, Okicenone, and Dehydro-
mutacin) [91] are in pre-clinical trials in liver diseases [92]. In cancer, Hippuristanol—an
inhibitor of the EiF4A is a promising anti-neoplasmic agent [93]. In addition, splieceostatin
A and other SF3b inhibitors have attracted attention as anti-cancer drugs. SF3b is a subunit
of the spliceosomal U2 small nuclear ribonucleoprotein. Its inhibition prevents proper
splicing and leads to massive nonsense-mediated decay [94] and cell death.

Another approach uses an aptamer that mimics the motif recognized by the RBP [95].
The RBP will bind to the aptamer and become inactive. This approach has the advantage of
only targeting the function of the RBP linked to its binding to one specific motif. RBP can
recognize multiple motifs and/or different modifications, and Si-RNA or small molecules
could alter other unintended functions of the RBPs. Again, no clinical trials using the
aptamer are underway in cardiovascular diseases, but numerous clinical trials are ongoing
in other diseases [96].

The examples above show that RBPs are relevant therapeutic targets in many diseases,
but their use in cardiovascular diseases is still at its dawn. Before we can harvest their
potential, we need a better understanding of their specific function.

6. Perspectives

Our understanding of the role of RBPs in cardiovascular health and disease develop-
ment is at its infancy. A few limitations may block the natural course of RBP therapies.

One is the context-dependent function of RBPs. Among all the potential targets of an
RBP, the ones expressed by a cell at a given point will determine the role of the RBP on the
cell phenotype. One other layer of complexity is that an RBP has no activity per se, but is
part of an enzymatic complex (recruitment of the ribosome, the CCr4-Not complex, etc.). One
RBP can be part of multiple complexes and thus lead to different end-points for a given
pool of mRNAs. For example, HNRNPA2B1 in healthy pulmonary arterial smooth muscle
cells is cytoplasmic and leads to mRNA degradation. However, in PAH pulmonary arterial
smooth muscle cells, HNRNPA2B1 is nuclear and promotes the stability and expression of
its targets [49].

The approaches we used so far also greatly limited our understanding. Much of the
work focused on a limited number of targets because of limited access to transcriptomic
data, bioinformatic tools, and the computational power needed for transcriptome-wide
analysis of their function. However, to harvest the full therapeutic potential of RBPs, it
is necessary to go beyond individual targets [49]. The advent of single-cell RNA-seq is a
promising avenue to decipher the cell and disease specificity of RBPs function and thus
refine our use of RBPs for therapeutic purposes. One limitation, though, is that single-cell
RNA-seq depth is not as deep as bulk RNA-seq and RBPs as transcription factors mRNAs
tend to be kept at a low transcript number to maintain a tight control over their protein
expression. Nonetheless, technologies are evolving faster than ever and this limitation may
soon be removed.



Cells 2023, 12, 2794 14 of 18

We can expect that the therapeutical use of RBP will, in the long term, greatly improve
life quality and survival, as they can specifically target a given pool of mRNA and influence
the entire transcriptome.

7. Conclusions

Here, we summarize some of the noteworthy evidence presented for the role of RBPs in
systemic and pulmonary cardiovascular diseases. We also highlight the complexity of inves-
tigating RBPs mechanism of action, as they have a highly cell-specific and context-specific
function. We are just beginning to understand the function of RBPs in the cardiovascular
system and much remains to be discovered before we grasp the full scope of RBP regulation.
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