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Simple Summary: The exponential growth in artificial intelligence development, particularly its
application in capsule endoscopy, serves as a compelling model for gastroenterologists. This review
focusses on the latest advancements in capsule endoscopy, analyzing the possible benefits and ethical
challenges that artificial intelligence may bring to the field of minimally invasive capsule panen-
doscopy, while also offering insights into future directions. Specifically in the context of oncological
gastrointestinal screening, there is still a need to explore alternative strategies for enhancing this
process. Artificial intelligence-enhanced capsule panendoscopy has the potential to positively impact
the future by addressing time constraints and improve accessibility through the use of highly efficient
diagnostic models.

Abstract: In the early 2000s, the introduction of single-camera wireless capsule endoscopy (CE)
redefined small bowel study. Progress continued with the development of double-camera devices,
first for the colon and rectum, and then, for panenteric assessment. Advancements continued with
magnetic capsule endoscopy (MCE), particularly when assisted by a robotic arm, designed to enhance
gastric evaluation. Indeed, as CE provides full visualization of the entire gastrointestinal (GI) tract,
a minimally invasive capsule panendoscopy (CPE) could be a feasible alternative, despite its time-
consuming nature and learning curve, assuming appropriate bowel cleansing has been carried out.
Recent progress in artificial intelligence (AI), particularly in the development of convolutional neural
networks (CNN) for CE auxiliary reading (detecting and diagnosing), may provide the missing
link in fulfilling the goal of establishing the use of panendoscopy, although prospective studies are
still needed to validate these models in actual clinical scenarios. Recent CE advancements will be
discussed, focusing on the current evidence on CNN developments, and their real-life implementation
potential and associated ethical challenges.

Keywords: capsule endoscopy; panendoscopy; artificial intelligence; bioethics; green endoscopy

1. Introduction to Panendoscopy and Its Challenges

Capsule endoscopy (CE) is a minimally invasive procedure that was initially conceived
for evaluation of the small bowel and has achieved a high diagnostic yield for the detection
of small bowel lesions [1]. The notion of a panenteric examination (e.g., for Crohn’s
disease assessment) emerged with the development and implementation of colon capsule
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endoscopy [2]. In fact, since CE allows for the evaluation of the whole gastrointestinal (GI)
tract, the concept of a single minimally invasive panendoscopy has become quite a tempting
idea [3]. Technical feasibility and expected favorable patient tolerance both support the use
of this method. Nevertheless, there are several challenges in implementing it.

Firstly, the implementation of capsule panendoscopy (CPE) would further increase
the reading burden of an already time-consuming exam. Without any auxiliary procedural
automation, this would most likely reduce the cost-effectiveness of a gastroenterology
department, not to mention that many medical institutions would lack the experience or
resources required to perform it [4]. More importantly, by considerably increasing the
number of frames that must be reviewed, fatigue and monotony levels would increase,
potentially leading to missed lesions and/or decisive frames.

Secondly, the diagnostic accuracy of CE in assessing the esophagus and stomach is still
suboptimal. In addition to the inability to inflate the lumen, which is an inherent constraint
of CE in any anatomical area, there are other limitations that must be considered. In the
esophagus, the capsule moves quickly, especially if taken in a sitting/orthostat position,
which can reduce the number of mucosal frames and may be associated with incomplete
visualization of the Z-line [5]. In the stomach, which is not a cylindric structure as is the
case for the small bowel, some areas, particularly proximal ones, may be overlooked, since
it is entirely dependent on peristaltic motions, even when dual-headed endoscopic capsules
are used [6].

Lastly, while adequate bowel preparation is one of the most important current concerns
of capsule enteric evaluation, it becomes much more determinant in the scenario of CPE. In
fact, we have yet to find an effective and reproducible method of bowel preparation that is
widely accepted and tolerated by patients, not only for small bowel CE, but also for colon
CE [7]. Even though numerous studies have been conducted in this domain, including
systematic reviews with meta-analysis, it remains challenging to reach a final conclusion
due to heterogeneity in how researchers analyze mucosa cleansing [8,9]. There is currently
no method that fulfils the criteria of the method being non-time-consuming, consistent,
and free of inter-observer variability. Neither the development of operator-dependent
nor color-intensity-based automated methods have fully addressed this issue [7–9]. The
development of a standardized method and its integration in CE reading tools most likely
needs to be the former step, thus facilitating the subsequent design of an appropriate
clinical trial to determine the most beneficial preparation.

2. Wireless Capsule Endoscopy: A Pill-Sized Revolution in Gastrointestinal Imaging

Single-camera capsules were the first to be developed in the early 2000s, initially with
lower resolution and a lower capturing frame rate [1]. Over time, improvements were
made, including to the camara resolution capturing frame rate and battery power, and
software refinement as well as hardware advancements took place with the introduction of
real-time viewers [10]. The progress eventually led to development of adaptative frame rate
technology, where the faster the capsule progresses, the higher the capture rate, reaching a
maximum of six frames per second [10].

Dual-camera capsules were introduced in 2006 [2]. First-generation designs went
into sleep mode shortly after ingestion due to power saving issues, rewiring only in
the small bowel. The capturing frame rate was poor, resulting in a lower sensitivity in
detecting polyps, compared to second-generation models [2,11]. These later devices became
accessible later in 2009, offered a wider view angle and came with an adaptative frame
rate up to 35 frames per second, which was a valuable inclusion to preserve battery [11].
More recently, in 2016, a third-generation design was introduced which was able to stay
operational without interruption along the entire GI tract [12]. Initially it was intended
to assess inflammatory bowel disease patients more accurately, but it rapidly prompted
discussions of CPE.

Since its introduction, CE has established itself as the first-line method for assessing
the small bowel mucosa. The two main indications for its usage include suspected mid-
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gastrointestinal bleeding and diagnosis/follow-up in situations of suspected/confirmed
small bowel Crohn’s disease [13]. Moreover, it can also be used to monitor hereditary
polyposis syndromes, mainly Peutz–Jeghers, and to rule out small intestine tumors [13].
It is also applicable to the evaluation of nonresponsive or refractory celiac disease cases,
when the diagnosis of celiac disease is uncertain, or in malabsorption syndromes [13].
Additionally, dual-camera capsules have improved the visualization of the colonic mucosa,
by enabling greater visibility of both haustra and areas located behind folds [11]. As a result,
they have improved capsules’ overall diagnostic yield, not only for detecting protuberant
lesions, but also for other mucosal lesions [11]. Consequently, this has become a possible
alternative method for colorectal cancer (CCR) screening, mostly in situations where prior
colonoscopy was incomplete or there was a greater risk of complications or contraindication
to conventional colonoscopy or sedation [14–16].

CE is generally safe and well tolerated, with few contraindications. Caution is war-
ranted in patients with swallowing disorders, due to risk of aspiration [17]. Additionally,
it requires clinical assessment of the risk of capsule retention [13,18]. This is particularly
applicable for patients with established Crohn’s disease (ECD), where the risk of retention
is increased, and whenever obstructive symptoms are observed [13,19]. Given the high
risk of CE retention in Crohn’s disease, the inability to distinguish high-risk from low-risk
patients based on clinical presentation alone, and the indisputable effectiveness of patency
testing, the safest approach would be to pursue patency testing before CE in all ECD
patients [13,19,20]. Moreover, there is also an increased risk of retention in patients with
previous gastrointestinal surgery or radiation therapy of the abdomen and pelvis, as well as
persistent users of non-steroid anti-inflammatories and patients with a personal history of
small bowel tumors [17]. In these cases, a patency capsule might also be considered [17,21].
The use of CE in individuals with implantable cardiac devices (pacemaker, defibrillators
and left ventricular assist devices) should not be contraindicated, since several studies have
shown that is safe [22].

3. Robotic-Assisted Panendoscopy: Advancements and Benefits

In addition to wireless CE, magnetically controlled capsule endoscopy (MCE) has
emerged as an alternative method to evaluate the superior GI tract (Figure 1) [23]. In this
case, the capsule contains a magnet that can be moved in real time by a magnetic field
that is generated outside the patient after swallowing it, using forces of translation and
rotation [24].

Figure 1. Various types of capsule endoscopy devices.

There are three types of magnetic control systems: hand-held magnets, electromag-
netic coil systems (comparable to present-day MRIs) and robotic arms [25–28]. Of these
techniques confined to very few centers, the latter is the most widely used and studied,
mainly for the assessment of the gastric mucosa, given its operability (either manually or
automatically), tolerability (the exam is conducted without patient movement) and ease of
installation (compared to the installation of larger electromagnetic coil systems) [23].
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The development and implementation of MCE for gastric assessment addresses one of
the shortcomings of wireless CE by not depending entirely on stomach peristalsis to move.
Although the protocol is not fully established, patients are typically asked to drink 1 L of
water (generally mixed with an anti-foaming agent) 10 min prior to the start of the exam, to
enhance gastric distention [28]. Then, the capsule is mobilized through this water interface,
enabling evaluation of the gastric mucosa. In fact, there is some evidence that shows that
MCE’s diagnostic accuracy for detecting gastric lesions might be comparable to the gold
standard upper endoscopy, with superior overall agreement in 90% of cases [27]. This, in
turn, may serve as a safe and effective alternative for gastric assessment, besides wireless
CE, in patients who cannot tolerate esophagogastroduodenoscopy.

Furthermore, the implementation of MCE controlled by a robotic arm could also
contribute to panendoscopic evaluation of the whole GI tract. For example, a patient could
ingest the capsule lying down (to maximize the assessment of the esophageal mucosa),
followed by an extensive evaluation protocol of the stomach with the help of magnetic
fields [28]. Then, when the capsule enters the duodenum, the patient would be able
to leave the examination bed and move as in wireless CE, allowing for the remaining
panenteric assessment.

When it comes to contraindications, they are similar to those outlined previously in
wireless CE. The presence of a magnetic field adds extra contraindications, comparable
to those applied to MRI, namely the presence of implanted electronic devices, non-MRI-
compatible pacemakers and/or magnetic metal foreign bodies [28].

From a diagnostic standpoint, it should be highlighted that MCE’s ability to eval-
uate the fundus is still incomplete, with some studies reporting impossibility in 20% of
instances [29]. Furthermore, thus far, it is challenging to compare wireless CE and MCE,
given the lack of comparative research between them.

4. Artificial Intelligence in Panendoscopy: Enhancing Diagnostic Accuracy

In recent years, artificial intelligence (AI) has gained relevance in diverse fields of medi-
cal practice, particularly is specialties with a strong imaging and diagnostic component [30].
Gastroenterology has always been marked by ground-breaking achievements, using highly
innovative technologies to improve patient care. As a result, it is not surprising that it is
also leading the way in the advancement of AI technologies in healthcare.

AI-related developments have been achieved in two areas of computational science
over the previous decade: machine learning (ML) and deep learning (DL). These two
fields emerged around the same period. However, the lack of adequate computational
power in the past limited the widespread adoption of DL models. As a result, technology
initially embraced ML algorithms. Their aim was to complete a task by analyzing pat-
terns automatically. Nevertheless, ML requires a supervised phase to ensure proper data
annotation [31].

With the current availability of ample computational resources, DL models have
gained significant momentum in recent years. These models are a subset of machine
learning that are also used for automatic pattern identification but, unlike the former,
do not necessarily require human interaction to train the model, displaying supervised
or unsupervised learning potential [32,33]. They involve neural networks with multiple
layers (three or more), structured in a hierarchical human-brain-inspired architecture,
which is capable of performing more complicated tasks by sequentially combining inputs
from various layers ranging from lower-level to higher-levels ones [34]. One DL model
example is a convolutional neural network (CNN), which, as the name suggests, has a
multilayer neural network structure that is used to automatically analyze complex visual
data, mimicking the neurobiological process [35].

There are some ML-based capsule software add-ons which assist the gastroenterologist
in image-pattern analysis. They were developed for many purposes, including color image
analysis (e.g., automatically detecting blood, as in PillCam’s Suspected Blood Indicator),
topographic segmentation (e.g., automatically recognizing distinct anatomical sections)
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and video adjustment (e.g., reducing duration of a video by displaying frames with the
highest probability of being abnormal, as in PillCam’s Top 100) [36]. These tools helped to
reduce the reading burden, although the percentage of missing lesions is higher compared
to that in developed DL models [37]. Therefore, there has been exponential interest in the
development and validation of DL models for CE. Table 1 provides an overview of the
published work regarding CNN development for CE.

Convolutional neural networks were initially developed using frames from a single-
camera capsules, later expanding to dual-camera capsules. Specific CNNs were applied first
in the small bowel, followed by the colon and rectum, and then, in both anatomical regions,
excelling at detecting a particular lesion [37–54]. Nevertheless, adopting a sequential
approach where each specific CNN is applied one at a time for an AI-assisted review of a
CE video, while logical, might not be the most efficient strategy.

Complex CNNs have started to emerge, offering the capability of detecting multiple
types of lesions at once [55–59]. The first paper in this field was published by Ding et al.
and demonstrates the potential of a CNN-based approach to assisting in the reading of
wireless CE. Indeed, their AI system provides the simultaneous detection of a wide range
of lesions. Despite the novelty of being the first published complex model, the findings of
this study are currently a topic of debate, as this CNN can accurately detect various types of
lesions but fails to differentiate between them [55]. The CNN described in that study serves
as the core technology for the newly developed DL solution (ProScan™, AnX Robotica,
Plano, TX, USA) to be incorporated into the reading software of the NaviCam SB system
(AnX Robotic Corp, Plano, TX, USA). Although the hardware has received clearance by the
Food and Drug Administration (FDA), this clearance has not been granted for ProScan™,
which currently awaits approval for commercial use. Other groups have also developed
DL models which are most often used in the small bowel, but are also capable of being
used in the colon [56–59].

From panenteric AI-enhanced mucosa evaluation, some groups have also tried to
develop DL solutions for assessing the stomach. First, they used MCE capsules [60,61].
Then, there was also a published CNN that used various types of wireless CE capsules, rep-
resenting another important step for pursuing the AI-enhanced panendoscopy vision [62].

The technological readiness level of these algorithms in CE is currently situated in the
initial stages of development, spanning from experimental to demonstration pilots, with
some still in the research phase focused on concept validation. To fully understand the
potential of AI during CE, prospective and multicentric studies are still required since most
research conducted so far has been retrospective. The role of this DL-based technology in
the identification of esophageal lesions by CE is still to be explored. CE is associated with a
scarcity of esophagus images, which limits the establishment of esophageal-only databases.
Nevertheless, the development of these types of models may be a pivotal step towards
minimally invasive AI-enhanced CPE.
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Table 1. Overview of the published work regarding convolutional neural network (CNN) development for capsule endoscopy.

Publication,
Author, Year

Study
Aim

Capsule
Types

Centers
n

Exams
n

Frames n Types of
CNN

Dataset
Methods

Analysis
Methods

Classification
Categories

Performance Metrics

Total Lesion SEN SPE AUC
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N
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r
Sm
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Aoki, 2020
[37] Detection of blood SB2

SB3 1 66 38,055 6711 ResNet Frame labeling of all datasets
(normal vs. blood content)

Train–test split
(73–26%) Blood 97 100 100

Afonso, 2021
[38] Detection of blood SB3 2 1483 23,190 13,515 Xception

Frame labeling of all datasets
(normal vs. blood or hematic

residues)

Staged incremental frame with
train–test split (80–20%)

Blood/hematic
residues 98 98 100

Leenhardt,
2019
[39]

Detection of angiectasia SB3

French
national
of still
frames

database
(from

13 centers)

NA 1200 600 YOLO
Previous manual annotation of all

angiectasias for the French
national database

Deep feature extraction of dataset
already manually annotated (300
lesions and 300 normal frames)
Validation with classification of

new dataset (300 lesions and
300 normal frames)

Angiectasia 100 96 NK

Tsuboi, 2020
[40] Detection of angiectasia SB2

SB3 2 169 12,725 2725 SSD Manual annotation of all
angiectasias

CNN is trained exclusively in
positive frames (2237 with

angiectasias)
Validation on mixed data with
positive and negative frames

(488 angiectasias and
10,000 normal frames)

Angiectasia 99 98 100

Houdeville,
2021
[41]

Detection of angiectasia SB3
Mirocam NA NA 12,255 613 YOLO Previous trained on SB3 devices

Validation with 626 new SB3 still
frames and 621 new Mirocam still

frames

Angiectasia (SB3) 97 99 NK
Angiectasia
(Mirocam) 96 98 NK

Ribeiro, 2021
[42]

Detection of vascular
lesions + categorization

of bleeding potential
SB3 2 1483 11,588 2063 Xception

Frame labeling of all datasets
(normal (N) vs. red spots (P1V) vs.

angiectasia or varices (P2V))

Train–test split
(80–20%)

with 3 × 3 confusion matrix

N vs. all 90 97 98
P1V vs. all 92 95 97
P2V vs. all 94 95 98

Aoki, 2019
[43]

Detection of ulcerative
lesions

SB2
SB3 1 180 15,800 5800 SSD Manual annotation of all ulcers or

erosions

CNN is trained exclusively in
positive frames (5630 with ulcers)

Validation on mixed data with
positive and negative frames

(440 lesions and 10,000 normal
frames)

Ulcers or
erosions 88 91 96

Klang, 2020
[44]

Detection of ulcers
+ differentiation from

normal mucosa
SB3 1 49 17,640 7391 Xception Frame labeling of all datasets

(normal vs. ulcer)
5-fold cross-validation

with train–test split (80 vs. 20%)

Ulcers
(mean of

cross-validation)
95 97 99

Barash, 2021
[45]

Categorization of
severity grade of ulcers SB3 1 NK

Random
selection of
1546 ulcer

frames from
Klang dataset

ResNet

Frame labeling of all datasets
(mild ulceration (1) vs. moderate
ulceration (2) vs. severe ulceration

(3))

Train–test split (80–20%) with
3 × 3 confusion matrix

1 vs. 2 34 71 57

2 vs. 3 73 91 93
1 vs. 3 91 91 96
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Table 1. Cont.

Publication,
Author, Year

Study
Aim

Capsule
Types

Centers
n

Exams
n

Frames n Types of
CNN

Dataset
Methods

Analysis
Methods

Classification
Categories

Performance Metrics

Total Lesion SEN SPE AUC

Afonso, 2021
[46]

Detection of ulcerative
lesions + categorization

of bleeding potential
SB3 2 2565 23,720 5675 Xception

Frame labeling of all datasets
(normal (N) vs. erosions (P1E) vs.

ulcers with
uncertain/intermediate bleeding

potential (P1U) vs. ulcers with
high bleeding potential (P2U))

Train–test split
(80–20%)

with 4 × 4 confusion matrix

N vs. all 94 91 98

P1E vs. all 73 96 95
P1U vs. all 72 96 96
P2U vs. all 91 99 100

Saito, 2020
[47]

Detection of protruding
lesions

SB2
SB3 3 385 48,091 38091 SSD

Manual annotation of all
protruding lesions (polyps,
nodules, epithelial tumors,

submucosal tumors, venous
structures)

CNN is trained exclusively in
positive frames (30,584 with

protruding lesions)
Validation on mixed data with
positive and negative frames

(7507 lesions and 10,000 normal
frames)

Protruding
lesions 91 80 91

Saraiva, 2021
[48]

Detection of protruding
lesions + categorization

of bleeding potential
SB3 1 1483 18,625 2830 Xception

Frame labeling of all data
(normal (N) vs. protruding lesions

with uncertain/intermediate
bleeding potential (P1PR) vs.
protruding lesions with high

bleeding potential (P2PR))

Train–test split
(80–20%)

with 3 × 3 confusion matrix

N vs. all 92 99 99

P1PR vs. all 96 94 99
P2PR vs. all 97 98 100

Sp
ec

ifi
c

C
N

N
fo

r
C

ol
on

ic
Le

si
on

s

Yamada,
2021
[49]

Detection of colorectal
neoplasias COLON2 1 184 20,717 17,783 SSD

Manual annotation of all
colorectal neoplasias (polyps and

cancers)

CNN is trained exclusively in
positive frames (15,933 with

colorectal neoplasias)
Validation on mixed data with
positive and negative frames

(1805 lesions and 2934 normal
frames)

Colorectal
neoplasias 79 87 90

Saraiva, 2021
[50]

Detection of protruding
lesions COLON2 1 24 3640 860 Xception

Frame labeling of all datasets
(normal vs. protruding lesions:

polyps, epithelial tumors,
subepithelial lesions)

Train–test split
(80–20%)

Protruding
lesions 91 93 97

Ribeiro, 2022
[51]

Detection of ulcerative
lesions COLON2 2 124 37,319 3570 Xception Frame labeling of all datasets

(normal vs. ulcer or erosions)

train–validation (for
hyperparameter tuning)–test split

(70–20–10%)

Ulcers or
erosions 97 100 100

Majtner,
2021
[52]

Panenteric (small bowel
and colon) detection of

ulcerative lesions
CROHN 1 38 77,744 2748 ResNet Frame labeling of all datasets

(normal vs. ulcer or erosions)
Train–validation–test (70–20–10%)

with patient split
Ulcers or
erosions 96 100 NK

Ferreira,
2022
[53]

Panenteric (small bowel
and colon) detection of

ulcerative lesions
CROHN 2 59 24,675 5300 Xception Frame labeling of all datasets

(normal vs. ulcer or erosions)
Train–test split

(80–20%)
Ulcers or
erosions 98 99 100

Saraiva, 2021
[54] Detection of blood COLON2 1 24 5825 2975 Xception

Frame labeling of all datasets
(normal vs. blood or hematic

residues)

Train–test split
(80–0%)

Blood or hematic
residues 100 93 100
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Table 1. Cont.

Publication,
Author, Year

Study
Aim

Capsule
Types

Centers
n

Exams
n

Frames n Types of
CNN

Dataset
Methods

Analysis
Methods

Classification
Categories

Performance Metrics

Total Lesion SEN SPE AUC

C
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C
N

N
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r
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c
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d
C
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on
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Le
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Ding, 2019
[55]

Detection of abnormal
findings in the small

bowel without
discrimination capacity

NaviCam 77 1970

158,235
+ vali-

da-
tion
set

NK ResNet

Frame labeling of training set
(inflammation, ulcer, polyps,
lymphangiectasia, bleeding,
vascular disease, protruding
lesion, lymphatic follicular
hyperplasia, diverticulum,

parasite, normal)

Testing with 5000 independent CE
videos

Abnormal
findings 100 100 NK

Aoki, 2021
[56]

Detection of multiple
types of lesions in the

small bowel
SB3 3 NK

66,028
+ vali-

da-
tion
set

44,684
Combined
3 SSD + 1
ResNet

Manual annotation of all mucosa
breaks, angiectasias, protruding

lesions and blood contents

CNN is trained on mixed data
with positive and negative frames
(44,684 lesions and 21,344 normal

frames)
Validation on 379 full videos

Mucosal brakes
vs. other lesions 96 99 NK

Angiectasias vs.
other lesions 79 99 NK

Protruding
lesions vs. other

lesions
100 95 NK

Blood content vs.
other lesions 100 100 NK

Saraiva, 2021
[57]

Detection of multiple
types of lesions in the

small bowel +
categorization of

bleeding potential

SB3
OMON 2 5793 53,555 35,545 Xception

Frame labeling of all data
(normal (N) vs. lymphangiectasias

(P0L) vs. xanthomas (P0X) vs.
erosions (P1E) vs. ulcers with

uncertain/intermediate bleeding
potential (P1U) vs. ulcers with

high bleeding potential (P2U) vs.
red spots (P1RS) vs. vascular

lesions (angiectasias or varices)
(P2V) vs. protruding lesions with
uncertain/intermediate bleeding

potential (P1P) vs. protruding
lesions with high bleeding
potential (P2P) vs. blood or

hematic residues)

Train–test split
(80–20%)

with 11 × 11 confusion matrix

N vs. all 92 96 99

P0L vs. all 88 99 99
P0X vs. all 85 98 99
P1E vs. all 73 99 97
P1U vs. all 81 99 99
P2U vs. all 94 98 100
P1RS vs. all 80 99 98
P2V vs. all 91 99 100
P1P vs. all 93 99 99

P2P vs. all 94 100 99
Blood vs. all 99 100 100

Saraiva,
2022
[58]

Detection of
pleomorphic lesions or

blood in the colon
COLON2 2 124 9005 pl5,930 Xception

Frame labeling of all datasets
(normal (N) vs. blood or hematic
residues (B) vs. mucosal lesions
(ML), including ulcers, erosions,

vascular lesions (red spots,
angiectasia and varices) and
protruding lesions (polyps,

epithelial tumors, submucosal
tumors and nodes))

Train–test split
(80–20%)

with 3 × 3 confusion matrix

N vs. all 97 96 100

Blood vs. all 100 100 100
ML vs. all 92 99 90
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Table 1. Cont.

Publication,
Author, Year

Study
Aim

Capsule
Types

Centers
n

Exams
n

Frames n Types of
CNN

Dataset
Methods

Analysis
Methods

Classification
Categories

Performance Metrics

Total Lesion SEN SPE AUC

Xie, 2022
[59] Detection of multiple

types of lesions in the
small bowel +

differentiation from
normal mucosa

OMON 51 5825 757,770 NK EfficientNet
+ Yolo

Frame labeling of all datasets
Protruding lesions (venous

structure, nodule, mass/tumor,
polyp(s)), flat lesions (angiectasia,
plaque (red), plaque (white), red

spot, abnormal villi), mucosa
(lymphangiectasia, erythematous,

edematous), excavated lesion
(erosion, ulcer, aphtha) and

content (blood, parasite)

CNN is trained on mixed data
with positive and negative frames

Validation on 2898 full videos

Venous structure
vs. all 98 100 NK

Nodule vs. all 97 100 NK
Mass or tumor vs.

all 95 100 NK

Polyp vs. all 95 100 NK
Angiectasia vs.

all 96 100 NK

Plaque (red) vs.
all 94 100 NK

Plaque (white) vs.
all 95 100 NK

Red spot vs. all 96 100 NK
Abnormal villi vs.

all 95 100 NK

Lymphangiectasia
vs. all 98 100 NK

Erythematous
mucosa vs. all 95 100 NK

Edematous
mucosa vs. all NK NK NK

Erosion vs. all NK NK NK
Ulcer vs. all NK NK NK

Aphtha vs. all NK NK NK
Blood vs. all NK NK NK

Parasite vs. all NK NK NK

C
om

pl
ex

C
N

N
fo

r
G

as
tr

ic
Le

si
on

s Xia, 2021
[60]

Detection of multiple
types of lesions +

differentiation from
normal mucosa

NaviCam
MCE 1 797 1,023,955 NK ResNet

Frame labeling of training set
(erosions, polyps, ulcers,

submucosal tumors, xanthomas,
normal)

testing with 100 independent CE
videos

Pleomorphic
lesions 96 76 84

Pan, 2022
[61]

Detect in real time of
both gastric anatomic

landmarks and different
types of lesions

NaviCam
MCE 1 906

34,062
+ vali-

da-
tion
set

NK ResNet

Frame labeling of all datasets
(ulcerative (ulcer and erosions),
protruding lesions (polyps and

submucosal tumors), xanthomas,
normal mucosa)

Prospective validation on 50 CE
exams

Gastric lesions 99 NK NK

Anatomic
landmarks 94 NK NK

Saraiva,
2023
[62]

Detection of
pleomorphic gastric

lesions

SB3
CROHN
OMON

2 107 12,918 6074 Xception Frame labeling of all datasets
(normal vs. pleomorphic lesion

(vascular, ulcerative or protruding
lesion or blood/hematic residues))

Train–test split
(80–20%)

with patient split design and
3-fold cross-validation during

training set

Pleomorphic
lesions

(mean of
cross-validation)

88 92 96

Pleomorphic
lesions

(test set)
97 96 100
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5. Integrating Robotic Systems and Wireless Capsules: A Synergetic Approach

As previously discussed, CPE allows for visualization of the whole GI system, par-
ticularly if proper bowel preparation is carried out [58]. This could be a valuable asset in
evaluating cases of inflammatory bowel disease and overt GI bleeding [63–65]. Moreover,
with AI advancements, CPE could become a cost-effective cancer screening method. Given
the different types of capsules already available, it is debatable whether technology should
advance towards wireless CE panendoscopy or robotic MCE panendoscopy.

From a global perspective, wireless CE is more widespread, in contrast to MCE, which
is only found in very few centers currently. Although there are published CNNs for both
modalities for the detection of gastric lesions, there are more groups working with AI on
wireless CE. Although there are no studies comparing diagnostic performance between
wireless CE and MCE, it is possible that panendoscopy based on wireless CE could be more
affordable and effective. In fact, wireless panendoscopy has the potential advantage of
having the capability to be performed in homecare, without the patient having to be in a
clinic or hospital.

Nonetheless, in countries with high prevalence of stomach cancer, choosing robotic
panendoscopy to screen both gastric and colorectal cancer could be a reasonable approach,
taking into account the MCE features previously discussed. Having available both wireless
and robotic CE expands and diversifies the toolkit of minimally invasive CE. Robotic
CE has the potential to address specific limitations of wireless CE, offering enhanced
stomach visualization. Moreover, it could create possibilities for tissue sampling and even
therapeutic interventions, given the increased control over capsule propulsion [66].

6. Overcoming Limitations: AI-Assisted Navigation in Panendoscopy

The implementation of ever less invasive diagnostic/therapeutic procedures has
contributed to the evolution of medicine. As a result, it may be anticipated that progress
will be made in the development of alternative diagnostic modalities to assess the digestive
system, in addition to the currently gold standard upper and lower endoscopy. The thought
process is that, whereas CE classically focuses on the small bowel, it may be capable of
assessing the whole GI tract, starting from the esophagus and progressing through the
stomach to the small bowel, colon and rectum.

CPE has the potential to change the way GI diseases are evaluated. The case of GI
oncological screening is a challenge worth mentioning, since colorectal and gastric cancers
are two of the top five malignancies affecting countries with a high human development
index [67]. Although CE could serve as an alternative non-invasive screening method and
be able to assess these two anatomical locations at once, it would be too time-consuming
and would probably result in non-negligible false negative rates. In this clinical scenario,
this would only be possible with the aid of AI technology, significantly reducing CPE’s
health-related burden (Figure 2) [68].

Aside from being a procedure that consumes a considerable amount of time and
incurs increased costs, it is important to note CPE’s additional constraints of being a
single-use procedure and not being able to perform therapeutic interventions (can robotic
CE change this?) [66]. However, despite these limitations, its noteworthy disruptive
potential warrants emphasis that, in the long run, with DL technology optimization, it
might be a suitable alternative (cost-effective) to opt for CPE as the preferred populational
oncological screening method for the GI tract. This is based on the notion that its diagnostic
accuracy would be comparable to the current gold standard, making it more likely to be
accepted by most patients, as it is less invasive and does not require air inflation, radiation
or sedation. Consequently, upper and lower endoscopy would mostly be used to clear
diagnostic uncertainties, obtain tissue for histological and molecular analysis and treat
CPE-detected lesions.
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Figure 2. Conventional reading time vs. artificial intelligence (AI)-enhanced capsule endoscopy
assessment.

On top of this, by adopting a more interventional approach for conventional upper
and lower endoscopy, gastroenterology could work towards becoming greener [69]. In fact,
this is one of pressing concern of this field, as it involves an elevated amount of single-use
disposable materials and a large number of resources for adequate device disinfection [70].
If AI-assisted CPE proves to be cost-effective, then it has the potential to significantly
reduce the number of unnecessary exams, particularly those with a primary diagnostic aim,
lowering endoscopy’s carbon footprint.

7. Improving Patient Experience: Wireless Capsule Endoscopy vs. Traditional Endoscopy

The importance of upper and lower endoscopy in advancing the field of gastroen-
terology cannot be overstated, as they successfully combine diagnostic and therapeutic
functionalities. Nonetheless, they are invasive procedures with a not insignificant compli-
cation risk [71]. Furthermore, they may cause discomfort in a proportion of patients and
may even be poorly tolerated by some individuals [72].

These procedures can certainly be supplemented with sedation techniques, serving to
both improve patient comfort while also empowering the gastroenterologist’s diagnostic
and therapeutic proficiencies. However, these might also lead to a higher risk of complica-
tions, increase recovery times for patients and escalate costs (including the loss of working
days) [72].

When compared to traditional endoscopy, CPE may improve patient experience. Pa-
tients would still need to follow a low-fiber diet for a few days, and take an oral bowel prepa-
ration whose substance, timing and dose have yet to be established and optimized [21,73].
Following the ingestion of the capsule, the patient would need to check the capsule’s transit
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from stomach (or to complete a robotic capsule gastric protocol), and to administer an addi-
tional booster once the capsule has reached the duodenum (0 and 3 h after) [68]. However,
it is important to acknowledge that wireless CPE could be more easily incorporated into a
widespread daily routine. Moreover, it can potentially decrease the reluctance of patients
as is less invasive and does not require air inflation, radiation or sedation [3].

8. Ethical Considerations and Challenges in AI-Assisted Panendoscopy

AI’s widespread acceptance is dependent on addressing three main groups of bioethi-
cal challenges, encompassing data acquisition (input), model development (AI tool) and
the impact of AI-generated responses on clinical practice (output) (Figure 3) [74].

Figure 3. Essential criteria for development of trustworthy AI in capsule endoscopy.

In the first place, it is important to acknowledge that the process of developing a CNN
is a complex test that requires the acquisition and standardization of an extensive volume
of data. With information becoming more readily available and possibly collected without
individuals’ knowledge, privacy concerns may arise. Moreover, as cyberattacks become
more frequent, there is also an obvious need for appropriate data protection (e.g., respecting
the General Data Protection Regulation 2016/79 in E.U), as well as non-traceability [75,76].
Current innovations in healthcare blockchain may mitigate these concerns, given the
decentralized data framework using chronological and immutable blocks [77].

Furthermore, we must deal with the inherent selection bias present in the dataset
used to train the deep learning model [78]. On the one hand, the effectiveness of an AI
algorithm is directly related to the quality of its training data. If this is insufficient or
inaccurate, it might lead to inappropriate CNN development [78]. On the other, even with
a high-quality dataset, the model’s training population may lack proper representation,
impacting its external validity [74]. In addition, extended training in one population may
result in model overfitting, in which it may not yield equivalent diagnostic performance
outcomes when exposed to different data [79]. Assuring data quality is a pivotal role of the
medical community in AI-related research.
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There are also two clinical scenarios one must consider when discussing these. The first
is related to the “black-box” nature of this AI technology, since it may detect patterns (in this
case, lesions) that physicians cannot notice [80]. Although this explainability problem arises
in other aspects of modern medicine (e.g., drugs that improve a patient’s prognosis without
knowing the exact mechanism), decisions based on AI that are not made by humans face
greater resistance [74]. The second is when the model fails at detecting a relevant lesion,
resulting in a false negative. In fact, there may still be an accountability problem, since the
absence of a human decision will not exempt someone from taking responsibility for an
untoward event [74].

Even if AI-assisted CE performance proved to be equivalent to that of experienced
endoscopists in assessing full-length CE videos in prospective validation studies, it is
still necessary to discuss which of the following modes of presentation is better: while
reading the video (e.g., square lesion delimitation while the video is playing) or prior to
this (e.g., DL software analyses of the full-video, selecting the most relevant frames for the
physician) [81]. In the first case, the model is simpler to understand, but there is a risk of
ignoring surrounding areas, and the reading time reduction would be lower. In the other,
this would be a less biased approach to image assessment, although there is a higher risk of
incomplete visualization of the video. Moreover, the gastroenterologist may struggle to
comprehend the model’s frame selection. Emerging solutions like heatmaps may address
this by delimitating the area with the maximum probability of lesion presence (Figure 4).

Figure 4. Examples of generated heatmaps.

AI integration in real practice requires well-regulated channels. Some technologies
have previously received FDA clearance, such as AI/ML-Based Software as a Medical
Device (SaMD). In general, regulation is written in such way that any changes made after
the original market authorization would require premarket FDA review [82]. Nonetheless,
since CNNs evolve and adapt quickly, is essential to recognize that new frameworks
capable of adequately regulating them are still necessary.

9. Concluding Remarks—Enabling the Goal of Establishing the Use of Panendoscopy:
Robotic and Wireless Capsule Endoscopy Assisted by Artificial Intelligence

The exponential growth of AI publications demonstrating excellent diagnostic accu-
racy, while demonstrating proficient processing power, has the potential to disrupt the
current paradigm.

In a short time, gastroenterologists will possess two major tools to provide better care
for patients. One is conventional endoscopy, whose therapeutic potential is pushing its
traditional boundaries beyond imagination. The other involves the ongoing advancements



Cancers 2023, 15, 5861 14 of 18

in AI technology in this specialty. While the first factor is widely acknowledged as one of
the primary factors motivating doctors to pursue it, the second one is still seen with high
levels of caution.

The medical community may be concerned about the ongoing technological advance-
ments. Still, this should be embraced as a new era, comparable to changes seen after
industrialization and the emergence of the global web and search engines. The integration
of AI and big data knowledge into medical professionals’ core curriculum is an important
step, as well. On the one hand, doctors must partner with engineers and data scientists
to craft such technology, since medical expertise is crucial to the development of valid
databases. On the other, even without direct involvement in model creation, doctors should
understand AI studies to know if their findings are applicable to their patients.

Currently, the majority of studies concerning deep learning model development in CE
are based on still frames or video segments. Moreover, there is still no SaMD approved by
FDA that is capable of multiorgan evaluation and suitable for various devices. Conducting
prospective and multicentric studies and assessing AI models with full videos, in real
clinical scenarios, are a necessary steps before considering CPE’s implementation in daily
routine. This milestone must be fulfilled before considering the use of AI-assisted minimally
invasive CPE.
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