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Abstract: Eurotium is the teleomorph genus associated with the section Aspergillus. Eurotium com-
prises approximately 20 species, which are widely distributed in nature and human environments.
Eurotium is usually the key microorganism for the fermentation of traditional food, such as Fuzhuan
brick tea, Liupao tea, Meju, and Karebushi; thus, Eurotium is an important fungus in the food in-
dustry. Eurotium has been extensively studied because it contains a series of interesting, structurally
diverse, and biologically important secondary metabolites, including anthraquinones, benzaldehyde
derivatives, and indol diketopiperazine alkaloids. These secondary metabolites have shown mul-
tiple biological activities, including antioxidative, antimicrobial, cytotoxic, antitumor, insecticidal,
antimalarial, and anti-inflammatory activities. This study presents an up-to-date review of the phyto-
chemistry and biological activities of all Eurotium species. This review will provide recent advances
on the secondary metabolites and their bioactivities in the genus Eurotium for the first time and serve
as a database for future research and drug development from the genus Eurotium.

Keywords: Eurotium; Eurotium cristatum; secondary metabolites; anthraquinones; benzaldehyde
derivatives; biological activity

1. Introduction

Eurotium (Eurotiaceae), now renamed Aspergillus, is the sexual generation of the
genus Aspergillus. Despite the renaming, the majority of mycologists prefer adhering to
the established and commonly used nomenclature [1–3]. Eurotium is characterised by its
golden cleistothecia, lenticular ascospores, uniseriate conidial heads in shades of green or
blue, and yellow-, orange- or red-encrusted hyphae [2,4]. The genus Eurotium comprises
approximately 20 species [2], of which Eurotium amstelodami, Eurotium cristatum, and
Eurotium repens have received the most attention [5,6]. All species of Eurotium are hypertonic
fungi, which are widely distributed in nature and human environments, especially in
environments of high salt, high sugar, and low water. Eurotium species are generally
considered to be benign fungi without mycotoxins [7–11]. Therefore, Eurotium species are
widely used in the food processing industry. Katsuobushi is a traditional Japanese food
made from tuna fermented by Eurotium. During the fermentation process, the Eurotium
reduces the fat content of the tuna and turns it to a deep red colour, giving it a milder taste
and a unique flavour [12]. Meju is a traditional Korean fermented soybean product, and
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the dominant fungus at the middle and late stages of its fermentation is Eurotium. During
the fermentation process, the microorganisms break down the large nutrients in soybeans
to form small molecules such as amino acids, small peptides, urea cycle intermediates,
nucleosides, and organic acids, resulting in its unique organoleptic qualities and health
activities [13]. In addition, in the fermentation process of China’s traditional beverage
Fuzhuan brick tea, Eurotium is the most dominant strain, accounting for more than 98% of
all fermentation microorganisms. Eurotium breaks down a variety of compounds in the tea
and forms products such as free amino acids, polyphenolic compounds, purine alkaloids,
and terpenoids, reducing the bitter and astringent flavour, as well as giving the tea a
unique ‘fungal flower’ aroma [14]. Functioning as key microorganisms in these processes,
Eurotium contributes to the degradation of complex molecules into smaller, nutritionally rich
compounds by secreting microbial enzymes. These secondary metabolites not only impart
distinctive flavours to fermented foods but also enhance their potential health benefits.

The exploration of secondary metabolites within Eurotium has a rich history, dating
back to the 19th century when the chemical structure of Eurotium’s pigments was first iden-
tified. Substantial advancements in understanding Eurotium’s secondary metabolites have
been achieved in recent decades [5,6]. Notably, marine environments and fermented food
and drink have become important sources of Eurotium species in recent years, leading to
the identification of numerous novel secondary metabolites [15]. The compounds isolated
from Eurotium species mainly include anthraquinones, benzaldehyde derivatives, and in-
dol diketopiperazine alkaloids. These secondary metabolites exhibit various bioactivities,
such as antioxidative, antimicrobial, cytotoxic, antitumor, insecticidal, antimalarial, and anti-
inflammatory activities [14,16–21]. These physiologically active secondary metabolites are
simultaneously ingested by people along with fermented foods or beverages, resulting in
effects on human health. However, existing studies have mainly focused on food products
related to the fermentation of Eurotium, and there is no review article in English that systemat-
ically summarises the secondary metabolites and physiological activities of Eurotium.

In this context, this review will provide the recent advances on the secondary metabo-
lites and their bioactivities in the genus Eurotium for the first time (Table 1). Meanwhile,
the review outlines future prospects and challenges with a view to providing new insights
into the development of relevant fermented foods.
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Table 1. Secondary metabolites from the genus Eurotium and their biological activities.

NO. Compound Class and Name Bioactivity Source Ref.

Anthraquinones

1 questin

antimicrobial activity Eurotium sp. M30 XS-2012 [11]
E. herbariorum NU-2 [16]
E. chevalieri KUFA 0006 [20]
Eurotium [22]

antioxidative activity E. rubrum [23]

2 physcion
cytotoxic activity
antiviral activity

E. herbariorum NU-2 [16]
E. chevalieri KUFA 0006 [20]
E. repens [24]
E. chevalieri MUT 2316 [25]

3 erythroglaucin antimicrobial activity Eurotium [22]
E. cristatum KUFC 7356 [26]

4 emodin

antimicrobial activity

cytotoxic activity

E. chevalieri KUFA 0006 [20]
Eurotium [22]
E. rubrum [27]
E. cristatum KUFC 7356 [26]
E. rubrum [28]

5 catenarin

E. herbariorum NU-2 [16]
Eurotium [22]
E. rubrum [27]
E. cristatum KUFC 735 [26]

6 rubrocristin
Eurotium [22]
E. rubrum [27]

7 rubrocristin-8-methylether Eurotium [22]

8 rubrocristin-6-acetate Eurotium [22]

9 querstin-6-methylether Eurotium [22]

10 2-O-methyleurotinone antioxidative activity
E. echinulatum [29]
E. rubrum [23]

11 2,12-dimethyleurotinone E. echinulatum [29]

12 eurotinone E. echinulatum [29]
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Table 1. Cont.

NO. Compound Class and Name Bioactivity Source Ref.

13 physcion-10,10′-bianthrone E. herbariorum NU-2 [16]

14 questinol

anti-inflammatory activity

Eurotium sp. M30 XS-2012 [11]
E. herbariorum NU-2 [16]
E. chevalieri KUFA 0006 [20]
E. amstelodami [30]

15 asperflavin
antioxidative activity

cytotoxic activity
antimicrobial activity
anti-inflammatory activity

Eurotium sp. M30 XS-2012 [11]

E. herbariorum NU-2 [16]
E. rubrum [23]
E. cristatum EN-220 [31]
E. repens [24]
E. chevalieri MUT 2316 [25]
E. amstelodami [32]

16 variecolorquinone A Eurotium sp. M30 XS-2012 [26]
E. cristatum EN-220 [31]

17 2-O-methyl-4-O-(α-D-ribofuranosyl)-9-dehydroxyeurotinone antioxidative activity E. rubrum [23]

18 2-O-methyl-9-dehydroxyeurotinone antioxidative activity E. rubrum [23]

19 eurorubrin
antioxidative activity
antimicrobial activity
insecticidal activity

E. rubrum [23]

E. cristatum EN-220 [31]

20 3-O-(α-D-ribofuranosyl)-questin antioxidative activity E. rubrum [23]
E. cristatum EN-220 [31]

21 3-O-(α-D-ribofuranosyl)-questinol antimicrobial activity E. cristatum EN-220 [31]

22 asperflavin ribofuranoside E. cristatum EN-220 [31]

23 9-dehydroxyeurotinone cytotoxic activity
antimicrobial activity E. rubrum [28]

24 acetylquestinol E.chevalieri KUFA 0006 [20]

25 rubrumol cytotoxic activity E. rubrum [27]

Benzaldehyde derivatives

26 2-(2′,3-epoxy-1′-heptenyl)-6-hydroxy-5-(3′′-methyl-2′′-butenyl)-benzaldehyde E. rubrum [33]
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Table 1. Cont.

NO. Compound Class and Name Bioactivity Source Ref.

27 (E)-6-hydroxy-7-(3-methyl-2-butenyl)-2-(3-oxobut-1-enyl)-chroman-5-carbaldehyd E. rubrum [33]

28 2-(1′,5′-heptadienyl)-3,6-dihydroxy-5-(3′′-methyl-2′′-butenyl)-benzaldehyde E. rubrum [33]

29 eurotirumin cytotoxic activity
E. rubrum [33]
Eurotium sp. SCSIO F452 [34]

30 chaetopyranin E. rubrum [33]

31 flavoglaucin

antioxidative activity

antimicrobial activity
antimalarial activity
anti-inflammatory activity

cytotoxic activity

Eurotium [35]
E. cristatum [14]
E. repens [19]

Eurotium sp. SF-5989 [36]
E. rubrum [33]
E. repens [37]

E. cristatum [38]

32 aspergin E. rubrum [33]

33 isotetrahydroauroglaucin anti-inflammatory activity
Eurotium sp. SF-5989 [36]

E. rubrum [33]

34 isodihydroauroglaucin antioxidative activity

Eurotium [35]
E. cristatum [14]
E. rubrum [33]
E. repens [37]

35 2-(2′,3-epoxy-1′,3′-heptadienyl)-6-hydroxy-5-(3-methyl-2-butenyl)-benzaldehyde antimicrobial activity
antimalarial activity

E. cristatum [14]
E. repens [19]

E. rubrum [33]
E. repens [37]

36 2-(2′,3-epoxy-1′,3′,5′-heptatrienyl)-6-hydroxy-5-(3-methyl-2-butenyl)-benzaldehyde
E. rubrum [33]
E. cristatum [14]

37 eurotirubrin A E. rubrum [39]

38 eurotirubrin B E. rubrum [39]
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Table 1. Cont.

NO. Compound Class and Name Bioactivity Source Ref.

39 auroglaucin
antioxidative activity
antimicrobial activity
antimalarial activity

Eurotium [35]
E. repens [19]

40 tetrahydroauroglaucin

antioxidative activity

antimicrobial activity
antimalarial activity

cytotoxic activity

Eurotium [35]
E. cristatum [14]
E. repens [19]

E. repens [37]

E. repens [24]

41 dihydroauroglaucin

antioxidative activity

antimicrobial activity

antiviral activity

Eurotium [35]
E. cristatum [14]
E. repens [19]
E. repens [37]
E. chevalieri MUT 2316 [25]

42 (E)-2-(hept-1-enyl)-3-(hydroxymethyl)-5-(3-methylbut-2-enyl)-benzene-1,4-diol antimicrobial activity
antimalarial activity

E. repens [19]
E. repens [37]

43 (E)-4-(hept-1-enyl)-7-(3-methylbut-2-enyl)-2,3-dihydrobenzofuran-2,5-diol E. repens [37]

44 (3′S*,4′R*)-6-(3′,5-epoxy-4′-hydroxy-1′-heptenyl)-2-hydroxy-3-(3′′-methyl-2′′-butenyl)-
benzaldehyde Eurotium [40]

45 3′-OH-tetrahydroauroglaucin Eurotium [40]

46 cristaldehyde A anti-inflammatory activity E. cristatum [38]

47 cristaldehyde B E. cristatum [38]

Indole diketopiperazine alkaloids
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Table 1. Cont.

NO. Compound Class and Name Bioactivity Source Ref.

48 echinulin

antimicrobial activity

antioxidative activity
insecticidal activity

E. cristatum [26]
E. cristatum EN-220 [41]
E. cristatum [42]
E. repens [43]
E. repens [24]
E. amstelodami [44]
E. rubrum
E. herbariorum
E. cristatum EN-220 [45]
Eurotium sp. SCSIO F452 [46]
Eurotium [47]

49 neoechinulin A

antimicrobial activity

antioxidative activity

insecticidal activity

anti-inflammatory activity

Eurotium sp. M30 XS-2012 [11]
E. cristatum [26]
E. cristatum EN-220 [41]
E. cristatum [42]
E. rubrum Hiji 025 [48]
E. amstelodami [44]
E. rubrum
E. herbariorum
E. rubrum MA-150 [49]
Eurotium [47]
Eurotium sp. SF-5989 [50]

50 neoechinulin B antioxidative activity

E. herbariorum NU-2 [16]
E. amstelodami [44]
E. rubrum.
E. herbariorum
E. cristatum EN-220 [45]
Eurotium sp. SCSIO F452 [46]

51 preechinulin

E. cristatum EN-220 [41]
E. amstelodami [44]
E. rubrum
E. herbariorum
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Table 1. Cont.

NO. Compound Class and Name Bioactivity Source Ref.

52 neoechinulin E

insecticidal activity
antioxidative activity

E. cristatum [26]
E. amstelodami [44]

E. herbariorum
E. rubrum MA-150 [49]
E. rubrum [51]

53 7-O-methylvariecolortide A caspase-3 inhibitory activity
E. rubrum [52]
Eurotium [53]

54 variecolortide A E. rubrum [52]

55 variecolortide B
caspase-3 inhibitory activity

E. rubrum [52]
E. rubrum MA-150 [49]
Eurotium [53]

56 variecolortide C
caspase-3 inhibitory activity

E. rubrum [52]
E. rubrum MA-150 [49]
Eurotium [53]

57 fructigenine A Eurotium sp. SF-5130 [54]

58 eurocristatine E. cristatum [26]

59 variecolorin J
E. cristatum [26]
E. rubrum [28]

60 12-demethyl-12-oxo-eurotechinulin B cytotoxic activity E. rubrum [28]

61 variecolorin G

cytotoxic activity
insecticidal activity

antioxidative activity

E. rubrum [28]
E. cristatum EN-220 [41]
E. rubrum MA-150 [49]
Eurotium sp. SCSIO F452 [46]

62 eurotechinulin B E. rubrum [28]

63 cryptoechinuline G E. rubrum [28]

64 alkaloid E-7
cytotoxic activity
insecticidal activity

E. rubrum [28]
E. cristatum EN-220 [45]

65 isoechinulin B antioxidative activity
E. herbariorum NU-2 [16]

E. rubrum 31 [28]

66 cristatumin A antimicrobial activity E. cristatum EN-220 [41]
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Table 1. Cont.

NO. Compound Class and Name Bioactivity Source Ref.

67 cristatumin B insecticidal activity E. cristatum EN-220 [41]

68 cristatumin C E. cristatum EN-220 [41]

69 cristatumin D antimicrobial activity E. cristatum EN-220 [41]

70 isoechinulin A

antioxidative activity
insecticidal activity

E. herbariorum NU-2 [16]
E. cristatum EN-220 [41]
E. rubrum MA-150 [49]
Eurotium sp. SCSIO F452 [46]

71 tardioxopiperazine A antimicrobial activity E. cristatum EN-220 [41]

72 cristatumin E antimicrobial activity
cytotoxic activity E. herbariorum HT-2 [55]

73 rubrumazine A E. rubrum MA-150 [49]

74 rubrumazine B insecticidal activity E. rubrum MA-150 [49]
E. cristatum EN-220 [45]

75 rubrumazine C E. rubrum MA-150 [49]

76 dehydroechinulin insecticidal activity

antioxidative activity

E. cristatum [42]
E. rubrum MA-150 [49]
E. cristatum EN-220 [45]
Eurotium sp. SCSIO F452 [46]

77 variecolorin E E. rubrum MA-150 [49]

78 dihydroxyisoechinulin A antimicrobial activity
Eurotium sp. M30 XS-2012 [11]
E. rubrum MA-150 [49]

79 variecolorin L E. rubrum MA-150 [49]

80 tardioxopiperazine B E. rubrum MA-150 [49]

81 L-alanyl-L-tryptophan anhydride antimicrobial activity Eurotium sp. M30 XS-2012 [11]
E. rubrum MA-150 [49]

82 cristatumin F E. cristatum [42]

83 variecolorin O antioxidative activity
E. herbariorum NU-2 [16]
E. cristatum [42]
Eurotium sp. SCSIO F452 [46]
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Table 1. Cont.

NO. Compound Class and Name Bioactivity Source Ref.

84 N-(4′-hydroxyprenyl)-cyclo(alanyltryptophyl) E. cristatum EN-220 [45]

85 isovariecolorin I insecticidal activity E. cristatum EN-220 [45]

86 30-hydroxyechinulin E. cristatum EN-220 [45]

87 29-hydroxyechinulin E. cristatum EN-220 [45]

88 rubrumline M E. cristatum EN-220 [45]

89 neoechinulin C insecticidal activity E. cristatum EN-220 [45]

90 didehydroechinulin insecticidal activity E. cristatum EN-220 [45]

91 variecolorin H E. cristatum EN-220 [45]

92 (11R,14S)-3-(1H-indol-3ylmethyl)6-isopropyl-2,5-piperazinedione E. chevalieri KUFA 0006 [20]

93 variecolortin A antioxidative activity Eurotium sp. SCSIO F452 [56]

94 variecolortin B cytotoxic activity Eurotium sp. SCSIO F452 [56]

95 variecolortin C cytotoxic activity Eurotium sp. SCSIO F452 [56]

96 eurotiumin A antioxidative activity Eurotium sp. SCSIO F452 [46]

97 eurotiumin B antioxidative activity Eurotium sp. SCSIO F452 [46]

98 eurotiumin C antioxidative activity Eurotium sp. SCSIO F452 [46]

99 fintiamin Eurotium [57]

Other compounds

100 chevalone A E. chevalieri [58]

101 chevalone B cytotoxic activity E. chevalieri [58]

102 chevalone C antimicrobial activity
cytotoxic activity E. chevalieri [58]

103 chevalone D antimalarial activity
cytotoxic activity E. chevalieri [58]

104 aszonapyrone A E. chevalieri [58]

105 aszonapyrone B E. chevalieri [58]
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Table 1. Cont.

NO. Compound Class and Name Bioactivity Source Ref.

106 CJ-12662
antimalarial activity
antimicrobial activity
cytotoxic activity

E. chevalieri
[58]

107 3β,5α-dihydroxy-10α-methyl-6β-acetoxy-ergosta-7,22-diene E.rubrum [59]

108 3β,5α-dihydroxy-6β-acetoxyergosta-7,22-diene E.rubrum [59]

109 (22E,24R)-ergosta-7,22-dien-3β-ol E.rubrum [59]

110 (22E,24R)-ergosta-7,22-dien-6β-methoxy-3β,5α-diol E.rubrum [59]

111 (22E,24R)-ergosta-7,22-dien-3β,5α,6β-triol E.rubrum [59]

112 (22E,24R)-ergosta-7,22-dien-3β,5α,6α-triol E.rubrum [59]

113 (22E,24R)-3β,5α,9α-trihydroxyergosta-7,22-dien-6-one E.rubrum [59]

114 (22E,24R)-3β,5α-dihydroxyergosta-7,22-dien-6-one E.rubrum [59]

115 (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3β-ol E.rubrum [59]

116 (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3β-acetate E.rubrum [59]

117 (22E,24R)-ergosta-4,6,8(14),22-tetraen-3-one E.rubrum [59]

118 euroticin A Eurotium sp. SCSIO F452 [15]

119 euroticin B antioxidative activity Eurotium sp. SCSIO F452 [15]

120 euroticin C antioxidative activity
cytotoxic activity Eurotium sp. SCSIO F452 [60]

121 euroticin D Eurotium sp. SCSIO F452 [60]

122 euroticin E Eurotium sp. SCSIO F452 [60]

123 euroticin F cytotoxic activity
antioxidative activity Eurotium sp. SCSIO F452 [34]

124 euroticin G antioxidative activity
α-glucosidase inhibitory activity Eurotium sp. SCSIO F452 [34]

125 euroticin H cytotoxic activity
α-glucosidase inhibitory activity Eurotium sp. SCSIO F452 [34]

126 euroticin I cytotoxic activity Eurotium sp. SCSIO F452 [34]
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Table 1. Cont.

NO. Compound Class and Name Bioactivity Source Ref.

127 salicylaldehydium A cytotoxic activity Eurotium sp. SCSIO F452 [61]

128 salicylaldehydium B Eurotium sp. SCSIO F452 [61]

129 asperglaucin A antimicrobial activity Aspergillus chevalieri SQ-8 [17]

130 asperglaucin B antimicrobial activity Aspergillus chevalieri SQ-8 [17]

131 citrinin Eurotium [62]

132 ochratoxin A Eurotium [62]

133 gliotoxin Eurotium [62]

134 aflatoxins Eurotium [62]

135 sterigmatocystin Eurotium [62]

136 cyclopenol Eurotium sp. SF-5130 [54]

137 mycophenolic acid E. repens [63]

138 2-(2-methyl-3-en-2-yl)-1H-indole-3-carbaldehyde E. chevalieri KUFA 0006 [20]

139 (2,2-dimethylcyclopropyl)-1H-indole-3-carbaldehyde E. chevalieri KUFA 0006 [20]

140 2-(1,1-dimethyl-2-propen-1-yl)-1H-indole-3-carboxaldehyde Eurotium sp. SCSIO F452 [64]

141 ergosterol E. chevalieri [58]

142 2[(2,2-dimethylbut-3-enoyl)amino]benzoic acid E. chevalieri KUFA 0006 [20]

143 6,8-dihydroxy-3-(2-hydroxypropyl)-7-methyl-1H-isochromen-1-one E. chevalieri KUFA 0006 [20]

144 ergosterol 5,8-endoperoxide E. chevalieri KUFA 0006 [20]

145 (11S,14R)-cyclo(tryptophylvalyl) E. chevalieri KUFA 0006 [20]

146 cinnalutein E. chevalieri MUT 2316 [25]

147 cyclo-L-Trp-L-Ala E. chevalieri MUT 2316 [25]

148 eurochevalierine
antimalarial activity
antimicrobial activity
cytotoxic activity

E. chevalieri [58]

149 sequiterpene E. chevalieri [58]

150 zinniol E.rubrum SH-823 [65]
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Table 1. Cont.

NO. Compound Class and Name Bioactivity Source Ref.

151 butyrolactone I E.rubrum SH-823 [65]

152 aspernolide D E.rubrum SH-823 [65]

153 vermistatin E.rubrum SH-823 [65]

154 methoxyvermistatin E.rubrum SH-823 [65]

155 eurothiocin A α-glucosidase inhibitory activity E.rubrum SH-823 [65]

156 eurothiocin B α-glucosidase inhibitory activity E.rubrum SH-823 [65]

157 7-isopentenylcryptoechinuline D E.rubrum [28]

158 methyl linoleate Eurotium sp. SCSIO F452 [64]

159 cyclo-(L-Pro-L-Phe) Eurotium sp. SCSIO F452 [46]

160 eurotinoid A antioxidative activity Eurotium sp. SCSIO F452 [66]

161 eurotinoid B antioxidative activity Eurotium sp. SCSIO F452 [66]

162 eurotinoid C antioxidative activity Eurotium sp. SCSIO F452 [66]

163 dihydrocryptoechinulin D cytotoxic activity
antioxidative activity Eurotium sp. SCSIO F452 [66]

164 eurotone A Eurotium sp. SCSIO F452 [67]

165 5,7-dihydroxy-4-methylphthalide antimicrobial activity
E. repens
E. repens

[19]
[37]

166 cristatumside A E. cristatum EN-220 [31]

167 eurotiumide A insecticidal activity Eurotium sp. XS-200900E6 [21]

168 eurotiumide B insecticidal activity Eurotium sp. XS-200900E6 [21]

169 eurotiumide C insecticidal activity Eurotium sp. XS-200900E6 [21]

170 eurotiumide D insecticidal activity Eurotium sp. XS-200900E6 [21]

171 eurotiumide E Eurotium sp. XS-200900E6 [21]

172 eurotiumide F Eurotium sp. XS-200900E6 [21]

173 eurotiumide G Eurotium sp. XS-200900E6 [21]

174 viridicatol Eurotium sp. SF-5130 [54]
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Table 1. Cont.

NO. Compound Class and Name Bioactivity Source Ref.

175 monacolin K E. cristatum [68]

176 cristaquinone A anti-inflammatory activity E. cristatum [38]

177 6-O-α-D–ribofuranoside E. cristatum EN-220 [31]
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2. Secondary Metabolites from Eurotium

Nearly 180 compounds have been isolated and identified from Eurotium species
using nuclear magnetic resonance (NMR) spectroscopy. These compounds mainly include
anthraquinones, benzaldehyde derivatives, and indol diketopiperazine alkaloids. These
secondary metabolites are not only derived from food but also produced by some Eurotium
species in other environments, and we have included them in this review for future use in
the fermented food industry.

2.1. Anthraquinones

Anthraquinones, which are formed by the merger of three benzene rings, are the
largest group of natural pigments of quinoids [22]. Typically synthesised by plants and mi-
croorganisms, anthraquinones contribute hues (usually yellow, orange, or brown) to lichens,
as well as the mycelium and fruiting bodies of fungi [23]. Fungal anthraquinones com-
monly feature several side substituents on the benzene ring, with 1,8-dihydroxy and 1,5,8
or 1,6,8 trihydroxy anthraquinone derivatives being prevalent [69]. Anthraquinones have
shown a variety of pharmacological activities, including antibacterial, antiviral, insecticidal,
diuretic, diarrhoeal, immunomodulatory, and anticancer effects [11,27,70].

The exploration of Eurotium anthraquinones commenced in 1980, spearheaded by
Anke et al. [22]. Their comprehensive investigation encompassed the structural analysis of
pigments in 20 Eurotium species, including Eurotium aeutum, Eurotium glabrum, Eurotium
herbariorum, Eurotium pseudoglaucum, E. repens, Eurotium rubrum, Eurotium tonophihtm, Eu-
rotium umbrosum, Eurotium appendiculatum, Eurotium carnoyi, Eurotium echinulatum, Eurotium
niveoglaucum, E. amstelodami, Eurotium chevalieri, E. cristatum, Eurotium heterocaryoticum,
Eurotium intermedium, Eurotium leucocarpum, Eurotium montevidensis, and Eurotium spicu-
losum. They found that these pigments were polyhydroxy anthraquinones, including
questin (1), physcion (2), erythroglaucin (3), emodin (4), catenarin (5), rubrocristin (6),
rubrocristin-8-methylether (7), rubrocristin-6-acetate (8), and querstin-6-methylether (9).
Further, rubrocristin, a new yellow pigment, was first discovered in nature. The production
of these pigments was seriously affected by the concentrations of glucose and salt in culture
medium. It has been proved that the number of hydroxyl groups and their position play an
essential role in the antibacterial activity of these polyhydroxy anthraquinones. In addition,
physcion was supposed to play a role in iron transport or the metabolism of fungal cells [71].
Three anthraquinones, including 2-O-methyleurotinone (10), 2,12-dimethyleurotinone (11),
and eurotinone (12), were isolated from E. echinulatum by Eder et al. [29] These compounds
exhibited antiangiogenic effects, suggesting their potential applications in preventing and
treating malignant diseases. Another strain of interest, E. herbariorum NU-2, isolated dur-
ing the manufacturing of Karebushi (a traditional food in Japan), was investigated by
Miyake et al. [16], who then identified physcion-10,10′-bianthrone (13), questinol (14),
asperflavin (15), as well as questin, physcion, and catenarin, in this fungus. Additionally,
some pigments of anthraquinones, including variecolorquinone A (16), questin, physcion,
erythroglaucin, emodin, catenarin, questinol, and asperflavin, were also found in other
Eurotium strains, such as Eurotium sp. M30 XS-2012 [11] or E. cristatum KUFC 7356 [26].

The exploration of bioactive compounds in marine microorganisms has garnered consid-
erable attention in recent years [1]. Li et al. [23] isolated the E. rubrum strain from a marine man-
grove plant Hibiscus Tiliaceus, and then identified four new anthraquinones, as well as three
known anthraquinones (questin, 2-O-methyleurotinone, and asperflavin) in this fungus. These
four new anthraquinones were 2-O-methyl-4-O-(α-D-ribofuranosyl)-9-dehydroxyeurotinone
(17; colourless amorphous powder), 2-O-methyl-9-dehydroxyeurotinone (18; colourless amor-
phous powder), eurorubrin (19; brown amorphous powder), and 3-O-(α-D-ribofuranosyl)-
questin (20; orange amorphous powder). Based on the spectral data, 2-O-methyl-9-
dehydroxyeurotinone is a 9-dehydroxyl derivative of 2-O-methyleurotinone; eurorubrin
is a symmetrical dimeric compound composed of two molecules of asperflavin via a
methylene group; 3-O-(α-D-ribofuranosyl)-questin is a glycoside consisting of questin as
aglycone and one sugar unit. In addition, Du et al. [31] isolated an endophytic fungus
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(E. cristatum EN-220) from the marine alga Sargassum thunbergii, and identified one new
anthraquinone glycoside named 3-O-(α-D-ribofuranosyl)-questinol (21; red amorphous
powder), as well as asperflavin ribofuranoside (22), asperflavin, (+)-variecolorquinone
A, eurorubrin, and 3-O-(α-D-ribofuranosyl)-questin. 3-O-(α-D-ribofuranosyl)-questinol
and 3-O-(α-D-ribofuranosyl)-questin have the same ribose residue. A new anthraquinone
named 9-dehydroxyeurotinone (23; colourless amorphous powder) was also found in
E. rubrum [28]. Zin et al. [20] isolated a new compound named acetylquestinol (24; yellow
crystal), as well as four known anthraquinones, questin, physcion, emodin, and questinol,
from the culture of the mangrove plant Rhizophora mucronata-derived endophytic fungus
E. chevalieri KUFA 0006. Acetylquestinol is a 1,3,6,8-tetrasubsituted 9,10-anthraquinone,
similar to questinol. Further, the metabolites vary greatly between the E. chevalieri KUFA
0006 and soil-derived strain of E.chevalier [58]. Additionally, questinol was also isolated
from the marine-derived E. amstelodami [30].

The endophytes derived from saline-alkali plants are attracting increasing attention
due to the extreme environment of high osmolarity and nutrient deprivation. The chemical
investigation of saline-alkali plant-derived endophytic fungi has just begun compared
with those of marine mangrove plant-derived endophytes. Zhang et al. [27] found a
new anthraquinone named rubrumol (25), as well as emodin, catenarin, rubrocristin, and
2-O-methyleurotinone, in a halo-tolerant endophytic fungus E. rubrum. This fungus is
derived from the salt-tolerant wild plant Suaeda salsa. These anthraquinones displayed
topoisomerase inhibitory activity, which implied that endophytic Eurotium fungi from
saline-alkali plants may be one new reservoir for natural products in the future (Figure 1).
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2.2. Benzaldehyde Derivatives

Benzaldehyde derivatives constitute a class of polyketides synthesised via the combi-
nation of polyketone and terpenoid pathways [40]. It has been reported that benzaldehyde
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derivatives have various bioactivities, including antioxidative, antibacterial, antifungal,
antitumor, antimalarial, and antileishmanial activities [33,36,38]. Benzaldehyde deriva-
tives, which are a kind of natural pigments, are a class of main metabolites in the genus
Eurotium [14]. Over 20 benzaldehyde derivatives have been identified in Eurotium.

Four new and seven known benzaldehyde derivatives were identified from E. rubrum,
an endophytic fungus isolated from the inner tissue of stems in the mangrove plant Hi-
biscus tiliaceus by Li et al. [33] These four benzaldehyde derivatives were 2-(2′,3-epoxy-1′-
heptenyl)-6-hydroxy-5-(3′′-methyl-2′′-butenyl)-benzaldehyde (26; yellowish amorphous
powder), (E)-6-hydroxy-7-(3-methyl-2-butenyl)-2-(3-oxobut-1-enyl)-chroman-5-carbaldehyd
(27; yellowish amorphous powder), 2-(1′,5′-heptadienyl)-3,6-dihydroxy-5-(3′′-methyl-2′′-
butenyl)-benzaldehyde (28; yellowish amorphous powder), and eurotirumin (29; yellowish
amorphous powder). The seven known benzaldehyde derivatives were chaetopyranin
(30), flavoglaucin (31), aspergin (32), isotetrahydroauroglaucin (33), isodihydroauroglaucin
(34), 2-(2′,3-epoxy-1′,3′-heptadienyl)-6-hydroxy-5-(3-methyl-2-butenyl)-benzaldehyde (35),
and 2-(2′,3-epoxy-1′,3′,5′-heptatrienyl)-6-hydroxy-5-(3-methyl-2-butenyl)-benzaldehyde
(36). These four benzaldehyde derivatives possess a penta-substituted benzene ring system
bearing a 3-methyl-2-butenyl at C-5 and a phenolic hydroxyl group at C-6. The structures
of compounds 26 and 35 are similar, except that two olefinic carbon signals of C-3′ and C-4′

in the 13C-NMR of compound 35 are replaced by two methylene signals at C-3′ and C-4′ in
compound 26. The structures of compounds 27 and 30 are similar, except that the signals at
H-6′ and C-6′ in compound 30 are replaced by a carbonyl signal at C-6′ in compound 27.
The structures of compounds 28 and 34 are similar, and the inconsistent position for the two
double bonds in the heptadienyl side chain is the only difference. Li et al. [39] also isolated
two new benzaldehyde derivatives, eurotirubrin A (37) and eurotirubrin B (38; yellow
powder) in E. rubrum in another research work. In addition, auroglaucin (39), tetrahy-
droauroglaucin (40), dihydroauroglaucin (41), flavoglaucin, and isodihydroauroglaucin
were identified from Karebushi-derived Eurotium fungi. All four benzaldehyde derivatives
are disubstituted gentisaldehyde (2,5-dihydroxybenzaldehyde) derivatives with a prenyl
group at C-3 and a seven-carbon unbranched aliphatic chain at C-6 [35]. Bioassay-guided
fractionation of E. repens leads to the isolation of two new benzaldehyde compounds, (E)-2-
(hept-1-enyl)-3-(hydroxymethyl)-5-(3-methylbut-2-enyl)-benzene-1,4-diol (42; yellow solid)
and (E)-4-(hept-1-enyl)-7-(3-methylbut-2-enyl)-2,3-dihydrobenzofuran-2,5-diol (43; yellow
oil), along with five known benzaldehyde derivatives, including flavoglaucin, 2-(2′,3-
epoxy-1′,3′-heptadienyl)-6-hydroxy-5-(3-methyl-2-butenyl)-benzaldehyde, auroglaucin,
tetrahydroauroglaucin, and dihydroauroglaucin. Compounds 42 and 43 showed high struc-
tural similarities except that the carbinol group at C-7 in compound 42 was replaced by a
hemiacetal group in compound 43 [37]. Gao et al. [19] also isolated flavoglaucin, 2-(2′,3-
epoxy-1′,3′-heptadienyl)-6-hydroxy-5-(3-methyl-2-butenyl)-benzaldehyde, auroglaucin,
tetrahydroauroglaucin, dihydroauroglaucin, and (E)-2-(hept-1-enyl)-3-(hydroxymethyl)-5-
(3-methylbut-2-enyl)-benzene-1,4-diol from the fungus E. repens.

Two new benzaldehyde derivatives named (3′S*, 4′R*)-6-(3′,5-epoxy-4′-hydroxy-1′-
heptenyl)-2-hydroxy-3-(3′′-methyl-2′′-butenyl)-benzaldehyde (44; yellow oil) and 3′-OH-
tetrahydroauroglaucin (45; yellow oil) were isolated from a gorgonian-derived Eurotium
sp. These two compounds could non-enzymatically transform into pairs of enantiomers
or epimers, respectively, with opposite configurations at C-3′; thus, they are possibly
artifacts formed during the extraction/isolation process [40]. Two new benzaldehyde
derivatives named cristaldehyde A (46; yellow powder) and cristaldehyde B (47; yel-
low powder) were isolated from the fungus E. cristatum in 2019. Compound 46 con-
tains a dibenzannulated 6,6-spiroketal skeleton and is a racemic mixture of easily in-
terconvertible enantiomers [38]. It is worth noting that six benzaldehyde derivatives,
including flavoglaucin, isodihydroauroglaucin, 2-(2′,3-epoxy-1′,3′-heptadienyl)-6-hydroxy-
5-(3-methyl-2-butenyl)-benzaldehyde, 2-(2′,3-epoxy-1′,3′,5′-heptatrienyl)-6-hydroxy-5-(3-
methyl-2-butenyl)-benzaldehyde, tetrahydroauroglaucin, and dihydroauroglaucin, were
discovered in Fuzhuan-brick-tea-derived E. cristatum. E. cristatum is the only dominant
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fungus in Fuzhuan brick tea, which is responsible for the colour, taste, and health benefits
of Fuzhuan brick tea [72–75]. These benzaldehyde derivatives may have a major impact on
the sensory quality and health benefits of Fuzhuan brick tea [14] (Figure 2).
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2.3. Indole Diketopiperazine Alkaloids

Indole diketopiperazine alkaloids constitute a crucial class of important secondary
metabolites, and they are widely distributed in filamentous fungi, especially in the genus
Eurotium [18]. Indole diketopiperazine alkaloids are formed via the condensation of certain
amino acids, including tryptophan, proline, and leucine [76]. Due to their significant
biological activities, including antimicrobial, antiviral, anticancer, immunomodulatory,
antioxidative, and insecticidal activities, indole diketopiperazine alkaloids in the genus
Eurotium are attracting increasing attention [41,42].

Swine-rejected feed was found to have a high propagule density of Eurotium sp. Ad-
ditionally, echinulin (48) was both detected in this feed and isolated from the E. repens
derived from it [43]. Although significant differences in the metabolite composition were
observed between the feed-derived and marine-derived E. repens, the biosynthesis of
echinulin was conserved in E. repens regardless of its origin [24]. Kimoto et al. [48] iso-
lated neoechinulin A (49) from marine fungus E. rubrum Hiji 025, and further synthesised
this compound according to its natural configuration. Slack et al. [44] investigated the
metabolites in E. herbariorum, E. amstelodami, and E. rubrum, which are common in the
built environment of Canadian homes. Neoechinulin B (50) and neoechinulin A were
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the major metabolites, but preechinulin (51), neoechinulin E (52), and echinulin were
the minor metabolites in E. amstelodami and E. rubrum. E. herbariorum also produced a
small amount of neoechinulin E. In addition, a new spirocyclic diketopiperazine alkaloid,
7-O-methylvariecolortide A (53; yellow amorphous powder), was isolated from the man-
grove plant Hibiscus tiliaceus-derived E. rubrum, along with variecolortides A-C (54–56).
Structurally, compounds 53–56 represent the unique spiro-anthronopyranoid diketopiper-
azine skeleton with a stable hemiaminal functional group. Further, a hydroxyl group in
compound 54 is replaced by a methoxyl group at C-7 in compound 53 [52]. Fructigenine A
(57) bearing a reverse-prenyl group was isolated from Eurotium sp. SF-5130 [54].

A new diketopiperazine dimer, namely eurocristatine (58; white crystals), was isolated
and identified from E. cristatum, along with previously reported dioxopiperazine alkaloids
including variecolorin J (59), echinulin, neoechinulin A, and neoechinulin E [26]. The semi-
mangrove plant Hibiscus tiliaceus-derived E. rubrum was cultivated by Yan et al. [28], and
one new dioxopiperazine alkaloid, 12-demethyl-12-oxo-eurotechinulin B (60; colourless
amorphous powder), was further isolated from this fungal strain, along with six known
compounds, including variecolorin J, variecolorin G (61), eurotechinulin B (62), cryptoe-
chinuline G (63), alkaloid E-7 (64), and isoechinulin B (65). The structures of compounds
60 and 62 are similar, except that the Me-C (12) of compound 62 is replaced by a C (12)
=O group in compound 60. Du et al. [41] also found four new alkaloids named crista-
tumins A-D (66–69) in the culture extract of E. cristatum EN-220, along with six known
congeners including isoechinulin A (70), tardioxopiperazine A (71), echinulin, neoechinulin
A, preechinulin, and variecolorin G. This is the first report that the alanine residue in the
2,5-diketopiperazine moiety of compound 49 is replaced by the serine residue in compound
66. The C-20 Me group in compound 48 is replaced by a CH2OH group in compound 67.
Compound 68 is an almost symmetrical molecule consisting of two indole diketopiperazine
moieties. Compound 69 is a ring-opened diketopiperazine derivative of compound 52.
Equally, a pyrrolidinoindoline diketopiperazine alkaloid named cristatumin E (72; yellow
amorphous powder) was isolated from the alga-derived E. herbariorum HT-2 [55].

In 2018, three new indole diketopiperazine alkaloids of isoechinulin type named rubru-
mazines A-C (73–75) and 13 related analogues were isolated and identified from E. rubrum
MA-150, a fungus obtained from mangrove-derived rhizospheric soil collected from the
Andaman Sea coastline in Thailand. These 13 related analogues were dehydroechinulin
(76), variecolorin E (77), dihydroxyisoechinulin A (78), variecolorin L (79), tardioxopiper-
azine (80), L-alanyl-L-tryptophan anhydride (81), echinulin, neoechinulin A, neoechinulin
E, variecolortide B, variecolortide C, variecolorin G, and isoechinulin A. Compounds 73–75
possess an oxygenated prenyl group either at C-7 (73 and 74) or at C-5 (75) [49]. A new
prenylated indole diketopiperazine alkaloid named cristatumin F (82; colourless powder)
was isolated from the Fuzhuan-brick-tea-derived E. cristatum, along with four known com-
pounds, including variecolorin O (83), echinulin, neoechinulin A, and dehydroechinulin.
Structurally, compound 82 is a diketopiperazine congener to compound 48. An alanine
unit in compound 48 is replaced by a valine unit in the 2,5-diketopeperazine moiety in
compound 82 [42]. Four new indole diketopiperazine derivatives (84–87) and nine known
congeners (88–91, 48, 50, 64, 74, 76) were identified from a culture extract of E. cristatum
EN-220. Compounds 84–91 were N-(4′-hydroxyprenyl)-cyclo(alanyltryptophyl) (84), iso-
variecolorin I (85), 30-hydroxyechinulin (86), 29-hydroxyechinulin (87), rubrumline M (88),
neoechinulin C (89), didehydroechinulin (90), and variecolorin H (91) [45]. In addition,
(11R,14S)-3-(1H-indol-3ylmethyl)6-isopropyl-2,5-piperazinedione (92) was isolated from
the culture of E. chevalieri KUFA 0006 [20].

Zhong et al. [56] isolated three pairs of spirocyclic diketopiperazine enantiomers named
variecolortins A-C (93–95) from marine-derived fungus Eurotium sp. SCSIO F452. Compound
93 possesses an unprecedented highly functionalised benzo[f ]pyrazino [2,1-b] [1,3]oxazepine
new carbon skeleton comprising a 2-oxa-7-azabicyclo[3.2.1]octane core. Compounds 94–95 rep-
resent rare examples of a 6/6/6/6 tetracyclic cyclohexene-anthrone carbon scaffold. Further,
Zhong et al. [46] isolated and characterised three new prenylated indole 2,5-diketopiperazine
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alkaloids named eurotiumins A-C (96–98; white crystals, white solid, and yellow oil, respec-
tively) from the Eurotium sp. SCSIO F452 in the same year. Compounds 96 and 97 are a pair
of diastereomers presenting a hexahydropyrrolo[2,3-b]indole skeleton. The structures of com-
pounds 96 and 97 are assigned as 2S,3R,9S,12S-cyclo-2-dimethylallyl-3-hydroxy-L-Trp-L-Ala
and 2R,3S,9S,12S-cyclo-2-dimethylallyl-3-hydroxy-L-Trp-L-Ala, respectively. The structures
of compounds 98 and 50 are similar, except that an olefinic methylene in compound 50 is
transformed into an olefinic methine substituted by a doublet methyl in compound 98. In 2021,
Elsebai et al. [57] found a diketopiperazine indole alkaloid named fintiamin (99) in a marine
sponge Ircinia variabilis-derived Eurotium sp. Compound 99 is a lipophilic terpenoid-dipeptide
hybrid molecule, sharing similar synthetic pathways to compound 48 (Figure 3).
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2.4. Other Compounds

Six meroterpenoid-type terpenoids named chevalones A-D (100–103; colourless crys-
tals, colourless crystals, white solid, and white solid, respectively) and aszonapyrones A-B
(104–105) and a terpenoid pyrrolobenzoxazine named CJ-12662 (106) have been isolated
from E. chevalieri [58]. There were 11 steroids isolated from E. rubrum: 3β,5α-dihydroxy-
10α-methyl-6β-acetoxy-ergosta-7,22-diene (107; colourless crystals), 3β,5α-dihydroxy-6β-
acetoxyergosta-7,22-diene (108), (22E,24R)-ergosta-7,22-dien-3β-ol (109), (22E,24R)-ergosta-
7,22-dien-6β-methoxy-3β,5α-diol (110), (22E,24R)-ergosta-7,22-dien-3β,5α,6β-triol (111),
(22E,24R)-ergosta-7,22-dien-3β,5α,6α-triol (112), (22E,24R)-3β,5α,9α-trihydroxyergosta-7,22-
dien-6-one (113), (22E,24R)-3β,5α-dihydroxyergosta-7,22-dien-6-one (114), (22E,24R)-5α,8α-
epidioxyergosta-6,22-dien-3β-ol (115), (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3β-acetate
(116), and (22E,24R)-ergosta-4,6,8(14),22-tetraen-3-one (117) [59]. There were 13 salicylalde-
hyde derivatives, including euroticins A-I (118–126), salicylaldehydiums A-B (127–128),
and asperglaucins A-B (129–130) isolated from Eurotium sp. SCSIO F452 [15,34,60,61] or
E. chevalieri SQ-8 [17]. In addition, eight mycotoxins were isolated from Eurotium species
contain citrinin (131), ochratoxin A (132), gliotoxin (133), aflatoxins (134), and sterigmato-
cystin (135) from the Eurotium group [62]; a benzodiazepine-type mycotoxin cyclopenol
(136) from Eurotium sp. SF-5130 [54]; and mycophenolic acid (137) from E. repens [63].
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Three indole alkaloids, 2-(2-methyl-3-en-2-yl)-1H-indole-3-carbaldehyde (138), and (2,2-
dimethylcyclopropyl)-1H-indole-3-carbaldehyde (139) were isolated from E. chevalieri
KUFA 0006 [20], and 2-(1,1-dimethyl-2-propen-1-yl)-1H-indole-3-carboxaldehyde (140)
was isolated from Eurotium sp. SCSIO F452 [64].

Other compounds isolated from Eurotium species include ergosterol (141) [58], 2[(2,2-
dimethylbut-3-enoyl)amino]benzoic acid (142; yellow viscous liquid), 6,8-dihydroxy-3-(2-
hydroxypropyl)-7-methyl-1H-isochromen-1-one (143; yellow viscous liquid), palmitic acid,
ergosterol 5,8-endoperoxide (144) [20], (11S,14R)-cyclo(tryptophylvalyl) (145; white crys-
tal), cinnalutein (146), cyclo-L-Trp-L-Ala (147) [25], eurochevalierine (148; yellow needles),
and sequiterpene (149) [58] from E. chevalieri; zinniol (150), butyrolactone I (151), asperno-
lide D (152), vermistatin (153), methoxyvermistatin (154), eurothiocin A (155; colourless
oil), eurothiocin B (156; white amorphous solid) [65], and 7-isopentenylcryptoechinuline
D (157) [28] from E. rubrum; methyl linoleate (158; yellow oil) [64], cyclo-(L-Pro-L-Phe)
(159) [46], eurotinoids A-C (160–162), dihydrocryptoechinulin D (163) [66], and (±)-Eurotone
A (164) [67] from Eurotium sp. SCSIO F452; 5,7-dihydroxy-4-methylphthalide (165) from
E. repens [37]; cristatumside A (166) from E. cristatum EN-220 [31]; (±)-eurotiumides A-G
(167-173) from Eurotium sp. XS-200900E6 [21]; alkaloid viridicatol (174) from Eurotium sp.
SF-5130 [54]; a β-hydroxy acid named monacolin K (175) [68] and a quinone derivative,
cristaquinone A (176) [38], from E. cristatum; and a glycoside isotorachrysone 6-O-α-D–
ribofuranoside (177) from E. cristatum EN-220 [31] (Figure 4).
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3. Bioactivities of Secondary Metabolites from Eurotium

Pharmacological investigations have affirmed that the structurally distinctive com-
pounds extracted from Eurotium species exhibit a spectrum of biological activities, en-
compassing antioxidative, antimicrobial, cytotoxic, antitumor, insecticidal, antimalarial,
and anti-inflammatory properties. We provide a review of these functional secondary
metabolites to provide a scientific basis for the development of functional foods using
Eurotium as a fermentative strain.

3.1. Antioxidative Activity

Numerous studies have demonstrated the exceptional antioxidative activity of metabo-
lites isolated from Eurotium species. Further, the absolute and stereoscopic configurations
affect the antioxidative activity of these compounds [46,56]. Ishikawa et al. [77] discovered
that flavoglaucin (31) was an excellent antioxidant and synergist with tocopherol. The
antioxidative and synergistic effects of flavoglaucin and its derivatives largely depend
on their hydroxy group, which does not form hydrogen bonds with the formyl group in
the molecule. These compounds are found in a variety of foods fermented by Eurotium
and contribute to their functional activity [78]. Li et al. [51] assessed the antioxidative
activity of metabolites isolated from a marine mangrove plant-derived endophytic fun-
gus E. rubrum using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay.
They found that neoechinulin E (52) showed a strong radical scavenging activity with
half maximal inhibitory concentration (IC50) values of 46.0 µM, which were stronger than
that of the well-known synthetic antioxidant butylated hydroxytoluene (IC50 = 82.6 µM).
Eurorubrin (19) and 2-O-methyleurotinone (10) also displayed strong radical scaveng-
ing activity with IC50 values of 44.0 and 74.0 µM, respectively, while 2-O-methyl-4-O-(α-
D-ribofuranosyl)-9-dehydroxyeurotinone (17), 3-O-(α-D-ribofuranosyl)-questin (20), 2-O-
methyl-9-dehydroxyeurotinone (18), asperflavin (15), and questin (1) only showed weak or
moderate activity [23]. In 2009, a study by Miyake et al. [35] demonstrated that isodihy-
droauroglaucin (34), auroglaucin (39), dihydroauroglaucin (41), tetrahydroauroglaucin (40),
and flavoglaucin exhibited the high radical scavenging capacities of DPPH and superoxide
when compared to α-tocopherol (a standard antioxidant for the scavenging capacity). The
structures of 1′-monoene or 1′,3′-diene in the substituent formed by the seven-carbon
aliphatic chain of dihydroauroglaucin and tetrahydroauroglaucin may be related to their
high radical scavenging activity. Subsequently, Miyake et al. [16] found that isoechinulin A
(70) exhibited higher radical scavenging activity than α-tocopherol. Asperflavin, isoechin-
ulin B, neoechinulin B (50), and variecolorin O (83) were found to have a similar activity to
α-tocopherol in respect to DPPH radical scavenging.

The compounds eurotiumin C (98), dehydroechinulin (76), variecolorin G (61), isoech-
inulin A, variecolorin O, neoechinulin B, and echinulin (48) showed significant radical
scavenging activity against DPPH with IC50 values of 13, 19, 4, 3, 24, 13, and 18 µM, respec-
tively. These values were comparable or superior to that of ascorbic acid (Vc) (IC50 = 23 µM).
Further, the diprenylated analogs (compounds 61 and 70) were found to have higher rad-
ical scavenging activity than the monoprenylated ones (compounds 96–98, 83, and 50)
and triprenylated ones (compounds 76 and 48). The absolute configurations of the C-2
and C-3 in eurotiumin A (96) and B (97) may affect their radical scavenging activity [46].
(+)-variecolortin A (93) showed radical scavenging activity against DPPH with an IC50
value of 58.4 µM, while the IC50 value of (-)-variecolortin A (93) was 159.2 µM. This
implied that the stereoscopic configuration affects the biological activities of these two
compounds [56]. In addition, the compounds (±)-eurotinoids A-C (160–162) and dihydro-
cryptoechinulin D (163) showed significant antioxidative activity against DPPH with IC50
values ranging from 3.7 to 24.9 µM, which were more potent than that of the positive control
Vc [66]. The compounds (+)-euroticins B and (-)-euroticins B (119) showed remarkable
DPPH radical scavenging activity with a concentration of 50% leading to maximal effect
(EC50) values of 37.5 and 21.6 µM, which were superior or comparable to that of the positive
control Vc (EC50 = 27.9 µM) [15]. In 2021, Zhong et al. [34] found that (+)-euroticin C and
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(-)-euroticin C (120) showed significant DPPH radical scavenging activity with EC50 values
of 27.00 and 30.27 µM [60], but (±)-euroticin F (123) and G (124) showed weak activity, with
EC50 values ranging from 41.40 to 77.07 µM. In addition, the compound neoechinulin A (49)
showed antioxidative activity against peroxynitrite derived from SIN-1 in neuronal PC12
cells [48]. Nonetheless, the antioxidative activity of the metabolites isolated from Eurotium
species was mainly measured using in vitro experiments, so in vivo tests in animal models
should be encouraged.

3.2. Antimicrobial Activity

Microbial interference poses a significant threat to human health, and the search
for antimicrobial compounds from Eurotium species represents a promising strategy to
combat the escalating challenges posed by human and plant pathogens, particularly drug-
resistant strains. Further, the antimicrobial activity of Eurotium species may be related
to anthraquinones [79–81]. As early as 1980, erythroglaucin (3) was found to have slight
antibacterial activity against Bacillus brevis, Bacillus subtilis, and Streptomyces viridochromo-
genes. However, rubrocristin (6) and physcion (2) had no significant antimicrobial activity,
indicating that the number and location of the hydroxyl groups might play an important
role in the antibacterial activity of polyhydroxyanthraquinones [22]. Chevalone C (102),
eurochevalierine (148), and CJ-12662 (106) demonstrated antimycobacterial activity against
Mycobacterium tuberculosis with minimal inhibitory concentration (MIC) values of 6.3, 50.0,
and 12.5 µg/mL, respectively [58]. In 2012, Du et al. [41] evaluated the antimicrobial
activities of compounds isolated from E. cristatum against two bacteria (Staphylococcus
aureus and Escherichia coli) and five plant-pathogenic fungi (Valsa mali, Sclerotinia miyabeana,
Alternaria brassicae, Physalospora obtuse, and Alternaria solania). The MIC value of the positive
control chloramphenicol against E. coli and S. aureus was 4 µg/mL. Cristatumin A (66) and
tardioxopiperazine A (71) displayed potent inhibitory activity against E. coli and S. aureus
with MIC values of 64 and 8 µg/mL, whereas cristatumin D (69) and echinulin showed
weak activity against S. aureus, each creating an inhibition zone of 8 mm at 100 µg/disk
(the MICs were not determined). In addition, the compound 9-dehydroxyeurotinone (23)
isolated from E. rubrum showed weak antibacterial activity against E. coli with an inhibition
zone of 7.0 mm at 100 µg/disk, while amphotericin B had an inhibition zone of 11.0 mm at
20 µg/disk as the control [28].

Gao et al. [19] evaluated the antimicrobial activities of isolated metabolites from E. repens
against five bacteria (S. aureus, methicillin-resistant S. aureus, P. aeruginosa, M. intracellulare,
and E. coli) and five pathogenic fungi (Candida. albicans, Candida glabrata, Candida krusei,
Cryptococcus neoformans, and Aspergillus fumigatus). Flavoglaucin, tetrahydroauroglaucin,
and 2-(2′,3-epoxy-1′,3′-heptadienyl)-6-hydroxy-5-(3-methyl-2-butenyl)-benzaldehyde (35)
exhibited antibacterial activity against S. aureus with IC50 values of 14.32, 13.51, and
7.75 µg/mL, respectively; (E)-2-(hept-1-enyl)-3-(hydroxymethyl)-5-(3-methylbut-2-enyl)-
benzene-1,4-diol (42) and compounds 31 and 35 were active against S. aureus with IC50
values of 11.97, 10.41, and 5.40 µg/mL, respectively; auroglaucin, dihydroauroglaucin, and
compounds 35, 40, and 42 showed antifungal activity against C. glabrata with IC50 values
of 7.33, 2.39, 1.13, 6.15, and 7.17 µg/mL, respectively. Compound 35 and 5,7-dihydroxy-4-
methylphthalide (165) showed antifungal activity against C. neoformans with IC50 values
of 5.31 and 18.08 µg/mL, respectively; only auroglaucin exhibited moderate antifungal
activity against C. krusei with an IC50 value of 10.93 µg/mL. In addition, cristatumin E
(72) showed weak antibacterial activity against E. aerogenes and E. coli with IC50 and MIC
values of 8.3, 44.0, and 44.0 µM, respectively [55]. The compounds 3-O-(α-D-ribofuranosyl)-
questinol (21) and eurorubrin showed weak inhibitory activity against E. coli with MIC
values of 32 and 64 µg/mL, while chloramphenicol had an MIC value of 4 µg/mL as
control [31]. Emodin (4) not only showed moderate antibacterial activity against the Gram-
positive bacteria but also exhibited a strong synergistic association with oxacillin against
methicillin-resistant S. aureus (MRSA) [20]. In 2019, asperflavin was found to be active
against S. aureus (MIC of 64 µg/mL) and S. pneumoniae Monza-82 (MIC of 32 µg/mL).
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Dihydroauroglaucin was active against the Gram-positive bacteria with MIC values of 128
µg/mL, 64 µg/mL, and 8 µg/mL on S. aureus, E. faecalis, and S. pneumoniae, respectively.
Compound 41 was previously considered inactive against reference and MRSA S. aureus
strains [25]. Neoechinulin A, L-alanyl-L-tryptophan anhydride (81), dihydroxyisoechinulin
A (78), and questin showed obvious antibacterial activity against B. cereus and P. vulgaris
with MIC values of 1.56 to 25 µM when ciprofloxacin (MIC values of 0.78 and 0.20 µM,
respectively) was used as the positive control and DMSO (25 µM) was used as the negative
control [11]. Asperglaucins A (129) and B (130) exhibited potent antibacterial activities
against Pseudomonas syringae pv. actinidae and B. cereus, with all having MIC values of
6.25 µM. Compound 129 also exhibited a weak inhibitory effect against MRSA with an MIC
value of 25 µM. The activity of compounds 129 and 130 is probably due to their heterocyclic
fraction [17]. Notably, the above intriguing new compounds, which exhibit excellent
antimicrobial properties, could be used as the leading compounds for the development of
new drugs in the future.

3.3. Cytotoxicity and Antitumour Activities

The cytotoxicity and antitumor activities of Eurotium species have been extensively
studied since the 1970s. Podojil et al. [4] reported that physcion had cytotoxicity towards
HeLa cells with an IC50 value of 0.1 µg/mL. Smetanina et al. [24] found that physcion,
asperflavin, and tetrahydroauroglaucin exhibited cytotoxic activity against the sex cells of
sea urchin Strongylocentrotus intermedius at concentrations of 25 µg/mL, 10 µg/mL, and
0.5 µg/mL, respectively. In addition, compounds chevalone C, chevalone D, eurochevalier-
ine, and CJ-12662 had respective IC50 values against BC1 human breast cancer cells of 8.7,
7.8, 5.9, and 7.6 µg/mL, respectively. Compounds chevalone B (101) and eurochevalierine
exhibited cytotoxicity against KB human epidermoid carcinoma cells and NCI-H187 small
cell lung cancer cells with IC50 values in the range of 2.9 to 9.8 µg/mL [58]. In 2012, Yan
et al. [28] investigated the cytotoxic activities of some E. rubrum-derived alkaloids and
anthraquinones against seven tumor cell lines, including MCF-7, SW1990, SMMC-7721,
Hela, HepG2, NCI-H460, and Du145. 9-dehydroxyeurotinone exhibited cytotoxic activity
with an IC50 value of 25 µg/mL against SW1990; variecolorin G exhibited cytotoxic activity
with IC50 values of 20, 22, and 20 µg/mL against HepG2, NCI-H460, and Hela, respectively;
alkaloid E-7 (64) exhibited cytotoxic activity with IC50 values of 20, 20, 20, and 30 µg/mL
against MCF-7, SW1990, SMMC-7721, and Hela cells, respectively; 12-demethyl-12-oxo-
eurotechinulin B (60) exhibited slight cytotoxic activity with an IC50 value of 30 µg/mL
against SMMC-7721, and only emodin exhibited moderate cytotoxic activity with an IC50
value of 15 µg/mL against Du145. Besides, cristatumin E showed cytotoxicity against the
K562 tumor cell line with an IC50 value of 8.3 mM [55].

Rubrumol (25) showed relaxation activity for topoisomerase I, with an IC50 value
of 23 µM [27]. In 2018, Zhong et al. [56] found that (+)-variecolortin B (94) showed mod-
erate cytotoxicity against the SF-268 and HepG2 cell lines with IC50 values of 12.5 and
15.0 µM, while (+)-variecolortin C (95) had the values of 30.1 and 37.3 µM. Compounds
(-)-variecolortin B and (-)-variecolortin C were inactive (>100 µM) for SF-268 and HepG2
cells. In addition, compound (+)-dihydrocryptoechinulin D showed moderate cytotoxi-
city against the SF-268 and HepG2 cell lines with IC50 values of 51.7 and 49.9 µM, and
(-)-dihydrocryptoechinulin D had values of 97.3 and 98.7 µM, respectively. Thus, (+)-
enantiomers exhibited more valid activities than the corresponding (-)-enantiomers [66].
Flavoglaucin displayed weak cytotoxic activity against HepG2 and HeLa with IC50 values
of 41.48 and 33.60 µM, respectively [38]. (-)-Salicylaldehydium A (127) showed cytotoxic ac-
tivity against SF-268 and HepG2 cells with IC50 values of 91.0 and 95.5 µM, respectively [61].
(±)-Euroticin F, (±)-euroticin I (126), and (±)-eurotirumin (29) exhibited moderate cytotoxic
activity with IC50 values ranging from 12.74 to 55.5 µM [34]. Euroticin C exerted moderate
cytotoxic activity against human SF-268, MCF-7, HepG-2, and A549 cells [60]. However, the
compounds’ relative toxicities are unknown; few research works on target organ toxicities
or even side effects exist in the report.
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3.4. Insecticidal Activity

Brine shrimp (Artemia salina), known for their high sensitivity to toxins and ease of
cultivation, serve as a model organism frequently employed by researchers for screening
substances with insecticidal activity [45,49]. In 2012, Du et al. [41] reported that cristatumin
B (67), isoechinulin A, and variecolorin G exhibited moderate lethal activity against brine
shrimp with median lethal dose (LD50) values of 74.4, 16.9, and 42.6 µg/mL, respectively.
The structure–activity relationships indicated that the number and substituted position of
the isoprenic chains are important for the insecticidal activities of these compounds. As
for lethality against brine shrimp, eurorubrin exhibited moderate activity with a lethal
rate of 41.4% at a concentration of 10 µg/mL [31]. Rubrumazine B (74), dehydroechinulin,
and neoechinulin E exhibited potent activity against brine shrimp with LD50 values of
2.43, 3.53, and 3.93 µM, respectively, which were lower than that of the positive control
colchicine (LD50 19.4 µM) [49]. In addition, Du et al. [45] showed that isovariecolorin I (85),
neoechinulin C (89), alkaloid E-7, and didehydroechinulin (90) displayed potent activity
against brine shrimp with ] LD50 values of 19.4, 70.1, 19.8, and 27.1 µg/mL, respectively.

Some Eurotium-derived compounds were evaluated for their antifouling activities
against the larval settlement of the barnacle Balanus amphitrite, which is one of the represen-
tative marine fouling organisms. Compounds (±)-eurotiumides A-D (167–170) inhibited
the barnacle larval settlement with EC50 values < 25.0 µg/mL, which was lower than
the standard requirement established by the U.S. Navy. Specifically, (+)-eurotiumide B,
(-)-eurotiumide B, (+)-eurotiumide D, and (-)-eurotiumide D with cis configurations of
H-3/H-4 exhibited better antifouling activities (EC50 values of 1.5, 0.7, 2.3, and 1.9 µg/mL)
than the corresponding (+)-eurotiumide A, (-)-eurotiumide A, (+)-eurotiumide C, and
(-)-eurotiumide C (trans configurations of H-3/H-4; EC50 values of 19.4, 22.5, 20.2, and 23.2
µg/mL). This suggested that the relative configuration of H-3/H-4 might be an important
factor affecting antifouling activity [21]. In addition, the compounds neoechinulin A and
echinulin inhibited the barnacle larval settlement with EC50 values of 15.0 and 17.5 µg/mL,
respectively [47].

3.5. Antimalarial Activity

In 2012, Gao et al. [19] measured the antiprotozoal activity of secondary metabolites from
the fungus E. repens in vitro against chloroquine-sensitive and chloroquine-resistant strains
of Plasmodium falciparum. The compounds flavoglaucin, 2-(2′,3-epoxy-1′,3′-heptadienyl)-6-
hydroxy-5-(3-methyl-2-butenyl)-benzaldehyde, auroglaucin, tetrahydroauroglaucin, and (E)-2-
(hept-1-enyl)-3-(hydroxymethyl)-5-(3-methylbut-2-enyl)-benzene-1,4-diol exhibited moderate
antimalarial activities with IC50 values in the range of 1.1–3.0 µg/mL, among which com-
pound 39 displayed the highest antimalarial activity. This suggested the three consecutive
double bonds in compound 39 might contribute to the enhancement of antimalarial activity.
In addition, chevalone D, eurochevalierine, and CJ-12662 exhibited antimalarial activity
against Plasmodium falciparum with IC50 values of 3.1, 3.4, and 6.5 µg/mL, respectively [58].

3.6. Anti-Inflammatory Activity

Kim et al. [50] demonstrated that neoechinulin A had an anti-inflammatory effect on
lipopolysaccharide-stimulated RAW264.7 macrophages. Further, compound 49 blocked
the activation of nuclear factor-kappa B (NF-κB) by inhibiting the phosphorylation and
degradation of inhibitor kappa B-α, and decreased p38 mitogen-activated protein kinase
(MAPK) phosphorylation. The anti-inflammatory effect of compound 49 was thus at-
tributed to the inhibition of the NF-κB and p38 MAPK pathways. In addition, the com-
pounds flavoglaucin, isotetrahydroauroglaucin (33), and asperflavin were found to inhibit
the production of pro-inflammatory mediators and cytokines, including tumor necrosis
factor-α, interleukin-1β, interleukin-6, nitric oxide (NO), prostaglandin E2, nitric oxide
synthase, and cyclooxygenase-2 [30,32,36]. Cristaldehyde A (46) and cristaquinone A (176)
inhibited the NO production in lipopolysaccharide-induced RAW264.7 cells, with IC50 val-
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ues of 12.26 and 1.48 µM when paclitaxel was used as a positive control, with an IC50 value
of 41.00 µM [38].

3.7. Other Activities

Several isolated compounds have certain unique biological activities, including a
good binding affinity for human opioid or cannabinoid receptor activity, inhibiting protein
tyrosine phosphatase 1B activity, alleviating insulin resistance activity, inhibiting caspase-3
activity, inhibiting α-glucosidase activity, and antiviral activity.

The compounds flavoglaucin, auroglaucin, tetrahydroauroglaucin, (E)-2-(hept-1-enyl)-
3-(hydroxymethyl)-5-(3-methylbut-2-enyl)-benzene-1,4-diol, and (E)-4-(hept-1-enyl)-7-(3-
methylbut-2-enyl)-2,3-dihydrobenzofuran-2,5-diol showed a good binding affinity for
human opioid or cannabinoid receptors. This finding may contribute to the discovery
of new selective ligands for opioid or cannabinoid receptors [37]. Fructigenine A (57),
viridicatol (174), echinulin, flavoglaucin, and cyclopenol (136) were found to inhibit protein
tyrosine phosphatase 1B activity with IC50 values of 10.7, 64.0, 29.4, 13.4, and 30.0 µM,
respectively. This indicated that these compounds had potential for the treatment of type
2 diabetes and obesity [54]. In addition, eurocristatine (58) alleviated insulin resistance by
increasing glucose consumption, glucose uptake, and glycogen content in high-glucose-
induced HepG2 cells in vitro. Further, compound 58 improved glucose metabolism and
alleviated insulin resistance in db/db diabetic mice by activating the phosphatidylinositol
3-kinase/protein kinase B signaling pathway [82].

The compounds 7-O-methylvariecolortide A (53), variecolortide B (55), and varie-
colortide C (56) showed an inhibitory effect on caspase-3 in vitro, with IC50 values of
1.7, 0.8, and 15.7 µM, respectively, when Ac-DEVD-CHO was used as a positive control
(IC50 = 13.7 µM) [53]. Secondary metabolites isolated from the fungus E. rubrum SH-823
were examined for their α-glucosidase inhibitory activity. Eurothiocin A (155) and euroth-
iocin B (156) showed potent inhibitory potential (IC50 of 17.1 and 42.6 µM, respectively).
Further, compounds 155 and 156 were competitive inhibitors of α-glucosidase [65]. In
addition, compounds (±)-euroticin H (125) and (+)-euroticin G (124) exhibited significant
inhibition against α-glucosidase with IC50 values of 16.31 and 38.04, which are even better
than that of the positive control acarbose (IC50 of 32.92 µM) [34]. It is worth mentioning that
significant antiviral activity for physcion and dihydroauroglaucin was discovered against
two important human viral pathogens (herpes simplex virus 1 and influenza A virus) [25]
(Figure 5).
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4. Conclusions

Eurotium, a crucial genus within the Aspergillus family, has emerged as a significant
source of bioactive compounds. Several factors contribute to its importance, including its
widespread distribution, its role as a key microorganism in the fermentation of traditional
foods and beverages (e.g., Fuzhuan brick tea), and its abundant production of secondary
metabolites with promising bioactivities. Approximately 180 chemical components have
been isolated from Eurotium species, spanning anthraquinoes, benzaldehyde derivatives,
indol diketopiperazine alkaloids, and some other compounds. Various pharmacological
activities, including antioxidative, antimicrobial, cytotoxic, antitumor, insecticidal, anti-
malarial, and anti-inflammatory activities, have been demonstrated in Eurotium species
using numerous test models. However, further research employing in vivo models is im-
perative. In addition, secondary metabolites with health benefits should be introduced into
the food industry to develop new functional foods. Most of the research has focused on
three Eurotium species—E. amstelodami, E. cristatum, and E. repens—and should be further
expanded to discover other species in the genus Eurotium from natural environments, such
as the sea, with a view to introducing new strains for food fermentation. The other species
in genus Eurotium the should be further studied, and this study will also provide informa-
tion on the taxonomic relationships between Eurotium species. In addition, more attention
should focus on the discovery of new secondary metabolites and their biological activities
from fermented food/drink-derived and marine-derived Eurotium species. Delving into the
pathways responsible for the formation of these metabolites is equally crucial for advancing
our understanding of their potential applications.
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