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Abstract: Age-related macular degeneration (AMD) is a leading cause of blindness worldwide.
In late-stage AMD, geographic atrophy (GA) of dry AMD or choroidal neovascularization (CNV)
of neovascular AMD eventually results in macular atrophy (MA), leading to significant visual
loss. Despite the development of innovative therapies, there are currently no established effective
treatments for MA. As a result, early detection of MA is critical in identifying later central macular
involvement throughout time. Accurate and early diagnosis is achieved through a combination
of clinical examination and imaging techniques. Our review of the literature depicts advances
in retinal imaging to identify biomarkers of progression and risk factors for late AMD. Imaging
methods like fundus photography; dye-based angiography; fundus autofluorescence (FAF); near-
infrared reflectance (NIR); optical coherence tomography (OCT); and optical coherence tomography
angiography (OCTA) can be used to detect and monitor the progression of retinal atrophy. These
evolving diverse imaging modalities optimize detection of pathologic anatomy and measurement of
visual function; they may also contribute to the understanding of underlying mechanistic pathways,
particularly the underlying MA changes in late AMD.

Keywords: age-related macular degeneration; confocal scanning laser ophthalmoscope; fundus
autofluorescence; macular atrophy; microperimetry; multifocal electroretinogram; optical coherence
tomography angiography; optical coherence tomography

1. Introduction

Age-related macular degeneration (AMD) has been recognized as one of the leading
causes of vision impairment and blindness in the elderly worldwide [1]. In a meta-analysis
of individuals aged 45–85 years old, the pooled global prevalence of late, and any stage
of AMD was 0.37%, and 8.69%, respectively. The number of individuals globally with
AMD is projected to increase from 196 million in 2020 to 288 million in 2040 [2]. In the
late stage of AMD, significant visual impairment is due to dry AMD with geographic
atrophy (GA), or wet AMD with choroidal neovascularization (CNV). In GA, associated
with dry AMD, the retinal pigment epithelium, choriocapillaris, and photoreceptors are
progressively atrophied [3]; in wet neovasular AMD (nAMD), choroidal neovascularization
penetrates Bruch’s membrane leading to the leakage of fluid, lipid, and blood, resulting in
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retinal fibrosis. Macular atrophy (MA), an anatomic endpoint of AMD representing both
GA in dry AMD and CNV in nAMD, is characterized by the permanent degradation of
the retinal pigment epithelium (RPE) and overlying photoreceptors. Multiple studies have
shown that natural progression to MA is the final common pathway in both nAMD and
dry AMD disease progression [4]. Due to its chronic nature and progressive increase in
vision loss, AMD, and specifically MA, will continue to be a global public health concern
with substantial socioeconomic and healthcare consequences.

The conventional classification of AMD relies on clinical examinations such as the
visual acuity test, the Amsler grid test, dilated ophthalmoscopy, or color fundus photog-
raphy (CFP) [5]. With developments in retinal imaging, a variety of diagnostic imaging
techniques are now accessible to help establish different stages of AMD. The utilization of
optical coherence tomography (OCT), angiography, and other novel multimodal imaging
techniques has provided access to the histological details of AMD, revealing previously
unknown anatomical characteristics (reviewed in [6]). Many of these characteristics, which
pose a threat to vision, are correlated with the likelihood of developing late AMD.

In late-stage AMD, MA is associated with reticular pseudodrusen (RPD), (located
subretinally as yellowish-white net-like patterns), which is a risk factor for progression to
the late stage of AMD in both dry and wet AMD patients [7,8]. MA forms in areas previously
occupied by drusenoid pigment epithelial detachments (PED) and is characterized by
confluent loss of the RPE [9]. It has been proposed that MA development may depend on
the underlying MA phenotype, in which type 3 retinal angiomatous proliferation (RAP)
lesions may have a greater risk of development and progression of atrophy, whereas type
1 lesions are associated with a lower risk of MA progression [10,11]. Currently, there are
no standard and effective treatments for MA despite emerging innovative therapies. With
new therapeutics on the horizon, choosing patients for trials or newly developed therapies
that will improve the clinical course of AMD as well as early detection, may help delay
or halt disease progression. Hence, it is important to detect incidental MA at the first
appearance to identify subsequent progression to central macular involvement over time.
Different detection and imaging modalities are evolving for identifying disease progression
and prognostic factors; these may also contribute to the understanding of pathogenetic
pathways, specifically the underlying macular changes in late AMD. A summary of these
methods is provided below.

2. Clinical Assessment
Clinical Presentation and Examinations

Early asymptomatic AMD is typically diagnosed based on the patient’s age and a
comprehensive dilated eye examination for characteristic signs such as drusen or retinal
pigment changes. The progression of AMD to advanced stages invariably involves the
foveal region, which develops dense and irreversible scotomas, resulting in retinal function
impairment and irreversible vision loss. The Amsler grid can help patients monitor their
changes in central vision distortions. Historically, the progression of visual impairment
and the estimation of ultimate residual visual function are determined by measuring
visual acuity. Standard visual acuity tests, such as best corrected visual acuity (BCVA),
do not fully capture the functional impact of atrophic AMD because lesions frequently
spare the foveal center in the early stage, causing standard vision charts to falsely indicate
that vision is unaffected [12]. Other tests, such as dark adaptation, flicker threshold, and
photostress recovery time are more sensitive than BCVA in detecting early functional loss in
AMD [13–15]; however, they are time-consuming and therefore limited in their clinical use.
The ophthalmic electrophysiology test, electroretinogram (ERG), can detect the functional
abnormalities observed in AMD, such as the early loss of rod photoreceptors and the
loss of central and paracentral perimetric sensitivities. Multiple studies have reported the
efficacy and accuracy of multi-focal ERG (mfERG) in detecting photoreceptor degeneration
and macular function disturbances, which may be beneficial in the early diagnosis and
progression of AMD [16–27].
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3. Assessment Using Imaging

Manifesting as vision loss as a lesion enlarges and encompasses the foveal center, MA
represents the final morphological stage of a degenerative disease process [28]. The course
of MA in late AMD is characterized by the development of atrophic areas that enlarge
continuously over time with cell death of the RPE, the outer neurosensory retina, and the
choriocapillaris [29]. As imaging technologies evolve, their diagnostic and monitoring
applications for AMD and MA have expanded. Currently, anatomic assessment of AMD
via multimodal fundus imaging is commonly used to diagnose and monitor the disease
(Table 1).

Table 1. Retinal imaging techniques.

Techniques Pros Cons

Color fundus
photography (CFP) • Conventional historical • Low contrast

• Closely resembles clinical ophthalmoscopy
• Experienced photographers and patient

cooperation needed
• Documents a wide range of fundus

abnormalities and AMD-associated
phenotypic changes, particularly
hemorrhages and focal pigmentary changes.

• Difficulties in precisely delineating
lesion boundaries/quantification of
atrophic size

• Sensitive to optical media

Multicolor imaging • High contrast
• Less distinct structures due to

chromatic aberration

• Reveals details of different retinal layers
• Poor distinction between hemorrhages

and pigmentary lesions

Ultra-widefield (UWF) • Visualization of wide field of the retina • Developing tool
• Peripheral abnormalities visible • Limited data available

• Unknown clinical significance of
peripheral lesions in AMD

Fundus fluorescein
angiography (FA) • Visualization of retinal vasculature • Invasive procedures

• Gold standard for NV detection and
quantification

• Limited imaging window after injection

• Excludes presence of concurrent NV • Risk of life-threatening allergic reaction
• Sharper contrast between atrophic and

surrounding non-atrophic areas.
• Other lesions or leakage may obscure

boundary demarcation of atrophy
• No visualization of choriocapillaris

Indocyanine green
angiography (ICG-A) • Visualization of choroidal vasculature • Invasive procedures

• Choroidal imaging for differential
diagnosis of PCV, RAP, CSR, Stargardt
disease and nAMD

• Limited imaging window after injection

• Risk of life-threatening allergic reaction
• Deep choroidal vessels may interfere

with outline of area of atrophy

Fundus
autofluorescence (FAF) • Non-invasive • Sensitive to optical media

• High contrast, good atrophic lesion
boundary discrimination

• Refractile (calcified) drusen at advanced
stage are undetectable

• Quantification of RPE loss
• Overestimates size of atrophic patch

at macula
• Mask an atrophic area due to relative

hypofluorescence of the fovea
• Unable to discern non-RPE

layer features
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Table 1. Cont.

Techniques Pros Cons

Near-infrared
reflectance (NIR) • Non-invasive

• No validation studies in the detection of
late AMD

• Unaffected by luteal pigment in
foveal evaluation

• Complements other imaging techniques

• High sensitivity for reticular pseudodrusen
• Not affected by optical media

Spectral-domain OCT
(SD-OCT)/Swept-source
OCT (SS-OCT)

• Non-invasive
• Scan field depends on optics used in

the system

• Three-dimensional
• Detects morphology of retina layers, RPE,

and choroid
• Detects early AMD features

Polarization-sensitive optical
coherence tomography
(PS-OCT)

• Novel technique • No validation studies

• Assess RPE pigmentation

Optical Doppler
tomography (ODT) • Quantitative imaging of vasculature • Still limited data available

• Functional detection

Phase contrast optical
coherence tomography
(PC-OCT)

• Retinal microvasculature imaging • No consensus yet

Optical coherence tomography
angiography (OCTA) • Non-invasive, no dye injection

• Acquisition time and field when used
with conventional OCT

• Three-dimensional images of vasculature
• Evaluation of choroidal layers
• Lower limitation in detecting slow

blood flow
• Administered at any time

Abbreviations: AMD: age-related macular degeneration; CSR: chronic central serous chorioretinopathy; nAMD:
neovascular AMD; PCV: polypoidal choroidal vasculopathy; RAP: retinal angiomatous proliferation. RPE: Retinal
pigment epithelium.

3.1. Fundus Photography

Historically, CFP has been the benchmark for documenting funduscopic abnormali-
ties. The conventional classification of AMD systems, the Age-Related Eye Disease Study
(AREDS), relies on clinical examination, or CFP [5]. With its wide range of illumina-
tion, CFP is the imaging modality that most closely resembles clinical ophthalmoscopy.
AMD-related phenotypic alterations (Figure 1A), including drusen, crystalline deposits,
pigmentary changes, lipid, atrophy, and fibrosis, as well as neovascular findings including
hemorrhages, fluid, and exudate, can be detected using CFP. However, CFP contrast is
comparatively low, posing difficulties in the detection and measurement of atrophic lesions
in comparison to alternative imaging modalities. Of note, RPD, as a major risk factor for
progression to late AMD, is overlooked with standard CFP but was detected in more than a
quarter of patients [30]. The precise delineation of atrophic lesion boundaries, especially in
eyes with multifocal lesions that are relatively small, poses challenges in applying CFP to
measure areas of MA and monitor their expansion over time [31]. The sensitivity required
to identify topographic changes at the margins of atrophy zones can be enhanced using
stereoscopic viewing of CFP. Nevertheless, the clinical applicability of stereoscopic image
capture is limited by the need for experienced photographers and patient cooperation.
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Figure 1. Images of geographic atrophy (GA) with dry age-related macular degeneration (AMD). 
(A) Color fundus photography (CFP) shows multifocal retinal atrophy, and drusen without clear 
delineation of atrophic lesion boundaries. (B) Ultra-widefield scanning laser ophthalmoscopy 
shows GA in the presence of dry AMD. (C) Atrophic patches in fluorescein angiography (FA) ap-
pear as well-demarcated, hyperfluorescent areas due to enhanced visualization of choroidal fluo-
rescence caused by the loss of RPE cells (window defect), which would normally diminish the trans-
mission of fluorescein fluorescence. (D) Fundus autofluorescence (FAF) shows focal areas of hypo-
autofluorescence, indicating photoreceptor photopigment loss, and hyperautofluorescence, corre-
sponding to varying degrees of RPE atrophy. (E) Near-infrared reflectance (NIR) image with rela-
tively nonspecific reflectivity. NIR has a higher sensitivity for detecting refractile drusen as glisten-
ing dots (arrow) that are undetectable using FAF. (F) Scan position as indicated by bold green arrow 

Figure 1. Images of geographic atrophy (GA) with dry age-related macular degeneration (AMD).
(A) Color fundus photography (CFP) shows multifocal retinal atrophy, and drusen without clear
delineation of atrophic lesion boundaries. (B) Ultra-widefield scanning laser ophthalmoscopy shows
GA in the presence of dry AMD. (C) Atrophic patches in fluorescein angiography (FA) appear as
well-demarcated, hyperfluorescent areas due to enhanced visualization of choroidal fluorescence
caused by the loss of RPE cells (window defect), which would normally diminish the transmission of
fluorescein fluorescence. (D) Fundus autofluorescence (FAF) shows focal areas of hypoautofluores-
cence, indicating photoreceptor photopigment loss, and hyperautofluorescence, corresponding to
varying degrees of RPE atrophy. (E) Near-infrared reflectance (NIR) image with relatively nonspecific
reflectivity. NIR has a higher sensitivity for detecting refractile drusen as glistening dots (arrow) that
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are undetectable using FAF. (F) Scan position as indicated by bold green arrow line in SD OCT
corresponding to (G) incomplete RPE and outer retinal atrophy (iRORA) at fovea, with hypertrans-
mission under a region of absent RPE and outer retinal bands, as well as an undiscerned outer
nuclear layer (arrow). Parafoveal region shows an elevated drusenoid pigment epithelial detachment
(PED) (asterisk). The retinal pigment epithelium (RPE) with a focal thickening at the apex (reticular
pseudodrusen, RPD), corresponding to hypertransmission in the choroid (arrowhead). RPD, as a
major risk factor for progression to late AMD, is overlooked with standard CFP. (H) Optical coherence
tomography angiography (OCTA) with reduced choriocapillaris identified via an en face slab.

Recently, multicolor imaging has been developed [32]. Multicolor images consist of a
composite image made using confocal scanning laser ophthalmoscopy (cSLO) to capture
three simultaneous laser wavelengths: blue reflectance (486 nm), green reflectance (518 nm)
and infrared reflectance (815 nm) [33]. These various wavelengths of light penetrate and
reveal the details of different retinal layers. Blue reflectance, with the shortest wavelength,
reaches the vitreoretinal interface and inner retina, whereas infrared reflectance penetrates
the deepest to detect structures in the outer retina and choroid. One study reported that
multicolor imaging detected small-sized atrophic AMD lesions [34]. However, retinal
structures become less distinct due to chromatic aberration caused by the differential
focal planes of the three different wavelength lasers. In addition, their optical reflection
properties can hinder the distinction between subtle hemorrhages and pigmentary lesions.
To date, only a few studies using this imaging are available [34–36]. Due to the limitations
of current knowledge, the application of multicolor imaging for atrophic and nAMD should
be optional, as its utility has yet to be demonstrated.

Widefield imaging with a field of view that exceeds 100 degrees enables visualiza-
tion of larger areas of the retina. A consensus group of retinal imaging experts defined
ultra-widefield (UWF) as a single-capture image, centered on the fovea, which captures
retinal anatomic features anterior to the vortex vein ampullae from 110◦ to 220◦ or 97% in
all four quadrants. The utilization of UWF imaging has enabled the monitoring of macular
and peripheral findings in both dry AMD (Figure 1B) and nAMD [37–39]. A meta-analysis
showed that peripheral lesions including early or late retinal atrophic changes were identi-
fied in 82.7% of AMD eyes [39]. This finding suggested that AMD is, in fact, a pan-retinal
and not just a macular disease. Although UWF can monitor peripheral abnormalities to
provide a more complete understanding of AMD [38], the clinical significance of peripheral
lesions in AMD remains incompletely understood.

3.2. Dye-Based Angiography-Fluorescein and Indocyanine Green Angiography

Fundus fluorescein angiography (FA) utilizes sodium fluorescein dye to illuminate
the retina at a peak wavelength of 490 nm (blue), and then photographically records the
excited fluorescent 530 nm (green) light that is emitted [40]. In FA, atrophic patches ap-
pear as well-defined, hyperfluorescent areas due to enhanced visualization of the normal
choroidal fluorescence caused by the loss of RPE cells (window defect), which would
normally diminish the transmission of fluorescein fluorescence (Figure 1C). Compared
to CFP, this demarcated hyperfluorescent signal provides a sharper contrast between the
atrophic and the surrounding non-atrophic areas. However, other pathologic findings in
dry AMD such as Drusen, or pigmentary changes, or fibrotic tissue in dry AMD; neova-
sularization in nAMD, may also result in an increased fluorescence signal or progressive
dye leakage and therefore obscure the boundary demarcation of atrophy [41,42]. FA is
therefore recommended for the detection, classification, and quantification of NV but not
atrophic changes.

Indocyanine green angiography (ICG-A) utilizes ICG, a molecule that is 98% protein
bound and therefore remains in the fenestrated choriocapillaris longer and leaks less,
relative to fluorescein dye. It is sometimes more useful than fluorescein dye to study
choroidal diseases such as nAMD [43]. In ICG-A, atrophic patches appear as discrete
hypofluorescent areas with a loss of background fluorescence owing to small and medium
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vessel choriocapillaris atrophy [44]. However, the large, deep choroidal vessels may still
be visible, interfering with the outline of the area of atrophy and causing more difficulty
in exact and reliable delineation. While ICG-A is useful in distinguishing polypoidal
choroidal vasculopathy (PCV); chronic central serous chorioretinopathy (CSC); and retinal
angiomatous proliferation (RAP) from classic nAMD [45], ICG-A has a negligible role
for the identification of atrophy in AMD. In addition, both ICG-A and FA are invasive
procedures that carry the risk of local infiltration, extravasation at the injection site, and
allergic reaction to the intravenously administered dye which, though rare, can be severe
and life-threatening [46].

3.3. Fundus Autofluorescence

Fundus autofluorescence (FAF) is a non-invasive method that provides rapid, non-
invasive, high-contrast retinal images that are particularly useful for detecting atrophic
areas, and better atrophic lesion boundary discrimination when compared with CFP [47,48]
(Figure 1D). FAF utilizes the fluorescent properties of lipofuscin, a byproduct of lysosomal
breakdown of photoreceptor outer segments within the RPE cell. When excited by an
appropriate light source, the bisretinoid components of lipofuscin absorb blue light with a
peak excitation wavelength of approximately 470 nm, and emit yellow-green light with a
peak wavelength of 600 nm. A detector is used to record the emissions signals as they are
emitted. A FAF image, then, is a density map of lipofuscin where the brighter “hyperfluo-
rescent” areas represent areas of increased lipofuscin density and darker “hypofluorescent”
areas represent areas of decreased lipofuscin density [49,50].

One of the hallmarks of early and intermediate AMD is macular drusen [51], which
form with RPE aging. Drusen are composed of lipofuscin containing dense lipids; carbohy-
drates; zinc; and proteins, including apolipoprotein B and E, as well as components of the
complement system [52]. Recent grading systems, including the Age-Related Eye Disease
Study (AREDS), and the Beckman Initiative for Macular Research Classification Committee
have classified drusen based on drusen type and size to associate drusen regression with or
without RPE atrophy in CNV or GA of late AMD [53–55].

A recent study classified drusen-associated atrophy stages based on FAF and histo-
logical findings in eyes with late AMD [56]. In stage 2, the earliest stage with detectable
findings, FAF exhibited uniform hyperautofluorescence, indicating photoreceptor pho-
topigment loss, whereas hypoautofluorescence in stages 3 and 4 corresponded to varying
degrees of RPE atrophy. The FAF appearance is initially hyperfluorescent (stage 2), fol-
lowed by a hypoautofluorescent center surrounded by hyperautofluorescent borders when
associated with focal areas of RPE atrophy (stage 3), and hypoautofluorescent lesions with
complete RPE loss (stage 4) [56]. As the disease progresses through stages, the proportion
of lipid within the drusen decreases relative to the proportion of calcification, with 80%
of the drusen being refractile at the advanced stage 4. The refractile drusen appear as
yellowish-white, glistening lesions and are associated with an increased risk of developing
late AMD; however, they are undetectable on FAF alone [57].

Of note, it was reported that cuticular drusen are strongly associated with late
AMD [58]. Eyes with cuticular drusen can develop NV or acquired vitelliform lesions
(AVL) [59], which may regress to GA or RPE atrophy [58]. In longitudinal studies,
GA developed in 19.0% of eyes with cuticular drusen over a mean follow-up period of
40 ± 18 months, whereas GA developed in 28.4% and NV in 12.5% over a 5-year follow-up
period [60]. The cuticular drusen apex is steep and is where the atrophic RPE is located.
FAF is an effective method to detect cuticular drusen with the display of numerous hypoaut-
ofluorescences corresponding to the apex of the cuticle drusen with hyperautofluorescent
rims. However, some FAF imaging cameras with different excitation wavelengths may not
visualize these drusen [61].

Studies showed that RPD (also named subretinal drusenoid deposits) are highly
associated with late AMD, such as GA, Type 3 macular NV, and drusenoid PED [62–64].
Soft drusen are located beneath the RPE whereas RPD are found on the surface of RPE [65].
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Studies classify RPD into three types [66,67], in which the ribbon/reticular type is likely to
progress to advanced AMD, including GA and Type 3 macular NV [68–70]. Like cuticular
drusen, eyes with RPD can develop NV, or regress to GA or outer retina atrophy with focal
photoreceptor loss and choroidal thinning [71]. FAF may demonstrate a reticular pattern
in eyes with RPD; however, studies indicate that FAF is not the most specific method for
detecting RPD [72].

Assessing the risk of late AMD depends on stratifying the types of drusenoid deposits
and RPE abnormalities, and requires correctly evaluating imaging characteristics. The high-
contrast differentiation of atrophic versus non-atrophic areas shown by FAF is a reliable
image quantification of lesion area [73]. Currently, conventional blue light excitation
with excitation wavelength of 488 nm is the most popularly used mode for FAF imaging.
However, macular pigment blocks blue light, resulting in a relatively diminished signal
intensity at the fovea, which appears as a zone of hypofluorescence [74]. Therefore, blue-
light FAF may result in an overestimation of atrophic patch size and be mistaken for
central atrophy involvement. The relative hypofluorescence of the fovea could mask
an atrophic area, making it challenging to identify minimal central atrophic changes or
adjacent paracentral atrophic margins [75]. The quality of the blue FAF signal may also be
affected by pupil size or media opacity such as cataracts or vitreous opacity. FAF imaging
systems include cSLO systems and flash fundus camera-based systems. FAF imaging
with two excitation wavelengths (488 nm and 514 nm) is obtained via cSLO, while fundus
camera autofluorescence relies on excitation wavelengths in the green to orange range
(510–610 nm). One study reported that green-light FAF images (514 nm) are superior to blue
autofluorescence (488 nm) for the evaluation of small central GA lesions [74]. Although the
measurement of atrophic lesion size in current clinical studies depends mainly on blue-light
FAF, green-light FAF appears to be a more accurate, and a potentially important evaluation
tool for central MA progression in future studies.

In certain phenotypic variants of GA, the loss of contrast between intact and atrophic
RPE can have an altered FAF appearance, which differs from the markedly hypoautofluo-
rescent images in other forms of GA [76]. In eyes with hemorrhagic nAMD or late nAMD
with MA, the FAF signal may be reduced, and it is difficult to distinguish between atrophy
and areas of fibrosis using FAF alone [67]. Recently, blue-light FAF has been utilized in
conjunction with near-infrared reflectance (NIR), which is unaffected by luteal pigment
and enhances foveal evaluation. NIR is characterized by a long excitation wavelength
(820 nm diode laser) [77], that avoids the absorption of a shorter wavelength of light
(480 nm) by melanin and lipofuscin granules at the RPE level, thereby allowing visualiza-
tion of the retina and choroid [78,79]. Specifically, NIR reveals sub-RPE lesions effectively.
Refractile drusen, for instance, are highly reflective. They are seen as glistening dots using
NIR, but are undetectable using FAF [80] (Figure 1E). Studies have reported that NIR has
a very high sensitivity for detecting RPD [30,72,81,82]. However, systematic validation
studies for NIR alone in the detection of atrophic AMD are still lacking. Hence, FAF com-
bined with other diagnostic modalities such as NIR may improve visibility of the obscured
atrophic demarcated areas compared to using FAF alone. Furthermore, widefield imaging
devices can be used for the acquisition of FAF and both FA and ICG-A.

3.4. Optical Coherence Tomography

A noninvasive imaging modality, OCT, utilizes transversely scanned short coher-
ence length light with interferometry to generate 2-dimensional and 3-dimensional cross-
sectional maps of the retina and choroid with micrometer-level resolution [83]. While FAF
is valuable for quantifying RPE loss in MA, it does not discern non-RPE layer changes [75].
The classic definition of atrophy has been revised to incorporate changes in the outer retinal
layers based on OCT findings [76]. A classification system and criteria for OCT-defined
atrophy associated with AMD has been proposed by the International Classification of
Atrophy Meetings (CAM). According to the CAM study group, the OCT finding of atrophy
undergoes an evolution of four different stages [84]: (1) incomplete outer retinal atrophy;
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(2) complete outer retinal atrophy; (3) incomplete RPE and outer retinal atrophy (iRORA)
(Figure 1F,G); and (4) complete RPE and outer retinal atrophy (cRORA). Of note is that
these terms apply to atrophy in both non-neovascular (dry) and neovascular (wet) forms of
AMD [76]. The correlation between FAF changes and the four distinct atrophy categories
is currently unknown. The correlation between hypoautofluorescence in FAF and the
category of OCT-defined atrophy requires further investigation.

It is crucial that high resolution 3-dimensional OCT help identify the early phase of
the atrophic process prior to lesion detection in 2-dimensional FAF [76–80]. The high axial
resolution of Fourier-domain OCT devices, including spectral-domain OCT (SD-OCT) and
swept-source OCT (SS-OCT), allows for the study of atrophy to quantify specific retinal
layer loss. The wide application of SD-OCT has revolutionized the diagnosis and manage-
ment of nAMD as it can provide assessment of risk and treatment prognosis, including
the need for repeated anti-VEGF injections and other therapeutic interventions [85]. OCT
has evolved into an effective imaging modality for evaluating early AMD changes. High-
resolution OCT detects the presence of drusen and pigmentary changes in the early stages of
AMD [53,86,87], but SD-OCT provides important information regarding changes in retinal
layers such as the outer plexiform layer (OPL); inner nuclear layer (INL); external limiting
membrane (ELM); and ellipsoid zone (EZ). Unlike previously reported non-unique risk
factors for the development of atrophy, such as hyperreflective foci and particular drusen
characteristics (including heterogeneous internal reflectivity, and maximum drusen height
and choroidal thickness beneath the drusen) [88,89], SD-OCT may detect unique early fea-
tures such as the subsidence of the OPL and INL, and a hyporeflective wedge-shaped band
within the limits of the OPL, that are present prior to development of drusen-associated
atrophy and represent significant risk and [90]. In addition, SD-OCT can detect early mor-
phological changes before conventional diagnostic instruments. For instance, in one study,
SD-OCT showed that drusen-associated atrophy was already present in 2.9% of patients’
eyes classified as having intermediate AMD using color fundus photography [55,90]. In
another study, the pathological SD-OCT features occurred approximately one year prior to
the development of definitive drusen-associated atrophy [90]. This may enable treatment
to halt the progression of atrophy to be considered at an earlier time point [91–93], before
late atrophic changes are detectable via conventional diagnostic methods.

A consensus was reached on the descriptions of imaging characteristics associated
with atrophy or atrophy progression risk in eyes with AMD [84]. OCT features associ-
ated with risk for atrophy include intraretinal hyperreflective foci; extracellular deposits
(soft drusen, drusen with hyporeflective cores, cuticular drusen, drusenoid PED, and
subretinal drusenoid deposits); hyperreflective crystalline deposits in the sub-RPE basal
lamina (BL) space; and acquired vitelliform lesions [81,88,89,94–98]. As drusen regress,
the overlying retinal layers progress to atrophy that can be detected by OCT imaging.
Outer retinal atrophy features included INL and OPL subsidence; ELM descent; a hy-
poreflective wedge-shaped band within the Henle fiber layer, often accompanied by RPE
disturbance and increased signal hypertransmission into the choroid; and ELM and EZ
disruption [90,99–101]. For iRORA to be present, three OCT features, including photorecep-
tor degeneration; RPE attenuation or disruption; and increased signal transmission into the
choroid are required [102]. However, a minimum size limit for iRORA was not proposed.
The study further reported that iRORA will progress and develop into cRORA over a
variable time period ranging from months to years [102]. A model was then developed
to estimate potential future atrophy growth regions and identify predictive biomarkers.
The most predictive SD-OCT biomarkers were thickness loss of bands; reflectivity of
bands; thickness of RPD; GA projection image; increased minimum retinal intensity map;
and GA eccentricity, based on quantitative characteristics of GA [103]. SD-OCT can ulti-
mately detect presence of fluid accumulation within and beneath the retina, as observed in
CNV cases.

The anatomical correlations of the individual bands identified utilizing an SD-OCT line
scan are well established [104]. The distance interval between scans must be small enough
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to avoid missing pathologic characteristics such as drusen, RPD, and pigment migration
into the inner retina. Scanning with a spacing of 125–250 µm is suggested for the detection of
RPD. This can indicate rapid atrophy progression and the volume rendering of outer retinal
tubulations [105,106]. However, a less dense scan is typically preferred in longitudinal,
large-scale clinical trials as a trade-off to achieve a shorter acquisition time [30]. In contrast
to SD-OCT, which employs an interference spectrum acquired through spectral splitting
and a low-coherence light source, SS-OCT typically utilizes a broad band sweep source in
which the wavelength of the light source fluctuates over time [107]. The longer wavelengths
of SS-OCT enable better penetration into the choroid, and excellent reproducibility and
repeatability of choroidal thickness measurements [108,109]. Using SS-OCT imaging to
detect hypertransmission into the choroid, cRORA [84] and iRORA [102] can be identified
via an en face slab with boundaries beneath the RPE.

Recent polarization-sensitive optical coherence tomography (PS-OCT) was utilized
to estimate the melanin content of RPE, with the surface of the atrophy area having high
entropy (low melanin) [110]. In contrast, standard imaging tools, such as CPF or FAF, are
incapable of determining the degree of RPE pigmentation. Entropy values in PS-OCT are
suggested as a detective tool to assess the degree of RPE pigmentation and, hence, the
health of RPE; however, further research is needed to validate this. OCT imaging system
combined with laser doppler flowmetry = optical doppler tomography (ODT), allows
the quantitative imaging of fluid flow in a highly scattering medium [111]. In addition
to traditional structural OCT, ODT evaluates tissue function in AMD eyes with possible
abnormal ocular circulation. However, clinical applications of this functional OCT are
still in their early stage of development. Similarly, an angiogram without fluorescent
dye injection, phase contrast optical coherence tomography (PC-OCT), was developed to
image retinal microvasculature [112]. In the atrophic area of GA, a PC-OCT angiographic
image showed large choroidal vessels and loss of the overlying superficial choriocapillaris.
However, there is still no consensus whether patients with GA truly have an absence of
flow or only a reduction in flow [113]. Hence, these findings warrant further clarification.

3.5. Optical Coherence Tomography Angiography

Imaging capable of providing appropriate visibility of the choriocapillaris and choroid
has improved our understanding of atrophic and nAMD. While FA allows visualization
of the retinal vasculature but not the choriocapillaris, ICG-A has not been widely uti-
lized for choriocapillaris visualization in AMD due to its lack of depth resolution and
inability to differentiate between choriocapillary blood flow and that of deeper choroidal
vasculature [114–116]. In contrast, OCTA allows depth-resolved imaging of the retinal,
choriocapillarial, and choroidal vasculatures. OCTA generates three-dimensional images
of vasculature without dye injection. Repeated imaging of stationary tissue with OCTA
produces a series of identical B-scans; when there is motion due to blood flow, the repeated
B-scans will alter, and the changes can be quantified [117–120]. Recent OCTA studies
demonstrated choriocapillaris loss across a spectrum of AMD phenotypes, including soft
drusen, RPD [121–124], and CNV [125]. OCTA also allows for the evaluation of choroidal
layers within and around atrophic lesions (Figure 1H). Some studies found that the area
surrounding the GA margin has greater choriocapillaris flow loss than the area of RPE
atrophy or GA [126], indicating that choriocapillaris degeneration may occur prior to the
development of GA and may be a prognostic factor for atrophic progression [127–130].
However, there are conflicting findings that choriocapillaris loss was linearly related to or
less than RPE loss in GA [131], leading to the conclusion that the RPE appeared to be the
primary target in GA [132,133]. In the GA region, it may be difficult to distinguish chorio-
capillaris flow impairment from atrophy due to OCTA’s lower limitation in detecting slow
blood flow. Increasing the interscan time can increase the sensitivity of OCTA to slow flows,
but it also increases eye motion artifact noise [134]. Hence, both the sensitivity to slow
flow and the potential artifacts must be considered when interpreting OCTA data [131]. In
addition, OCTA limitations include acquisition time and field when used with conventional
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OCT. Therefore, dense, high-quality SS-OCT scans are required to obtain reliable OCTA
results. The Consensus on Atrophy (CAM) study group recommended OCTA may be
optionally included in studies on non-neovascular and neovascular AMD for exploratory
purposes [135].

4. Current Approach and Future Directions

In this review, we attempt to correlate relevant diagnostic tools to corresponding
features of AMD and findings that emerge prior to the formation of MA, based on consen-
sus definitions.

4.1. Imaging Algorithm

For AMD-affected eyes with no clinical indication of active or regressed CNV; a
baseline CFP; or UWF imaging, OCT, FAF, and FA is recommended. Throughout the
follow-up, CFP, FAF, OCT can be performed at regular intervals to monitor progression.
Angiography (FA, ICG-A and OCTA) may be indicated in the event that a neovascular
process is suspected in follow-up. For patients with macular atrophy from nAMD, CFP
(Figure 2A); UWF (Figure 2B); FA (Figure 2C); FAF; SD-OCT; and OCTA is recommended
at baseline and selected follow-up visits (1–3 months) [136]. ICGA (Figure 2D) would be
considered in differentiation of RAP, PCV, or CSC [137].

For optimal detection and measurement of late AMD atrophy and associated char-
acteristics of MA, multimodal imaging is advised in clinical settings. Imaging includes
CFP; FAF (Figure 2E); and confocal NIR (Figure 2F), and high-resolution OCT volume
scans (Figure 2G) or OCTA (Figure 2H) should be acquired at regular intervals throughout
the study to detect, quantify, and monitor progression of atrophy. The most important
differential diagnoses of atrophic late AMD are the gene ABCA4, PRPH2, and BEST1
inherited macular dystrophies [138], including Stargardt disease (STGD1), Best disease
(BD), or pseudo-Stargardt multifocal pattern dystrophy (PSPD) in late atrophic stages [139].
The atrophic lesions in inherited macular dystrophies makes diagnosis challenging when
relying on similar fundus appearance. In contrast, machine learning algorithms can serve
as a very useful tool in the automated quantification of pathologic characteristics [85].
A study indicated that a deep learning model to classify atrophy on FAF imaging can
accurately differentiate atrophy caused by GA from that caused by inherited macular
dystrophies [140]. Recently, machine learning (specifically deep learning techniques), has
been applied to FAF and OCT imaging to detect and classify GA [140–143]. More recently,
a deep learning model using convolutional neural networks was developed and validated
for segmentation of the 13 most common features related to early and late nAMD [144]. In
addition, the application of deep learning algorithms to the prediction of progression to
nAMD has favorable results [145]. The utilization of artificial intelligence, such as the deep
learning model in automated OCT analysis, could potentially facilitate the early detection
and predict progression of AMD [146], thereby expanding the future therapeutic window
of opportunity. As the deep learning model further develops, it may be able to predict the
risk of developing MA, offer early detection and provide customized treatment strategies.
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Figure 2. Images of macular atrophy (MA) with neovascular age-related macular degeneration
(nAMD). (A) Color fundus photography (CFP) shows large area of coalesced retinal atrophy with
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sparse areas of intact RPE without delineation of atrophic lesion boundaries. (B) Ultra-widefield
scanning laser ophthalmoscopy shows MA in the presence of nAMD. (C) Atrophic patches in fluores-
cein angiography (FA) appear as demarcated hyperfluorescent areas, whereas (D) in indocyanine
green angiography (ICG-A), they appear as minimally discernable hypofluorescent areas. (E) Fundus
autofluorescence (FAF) shows a demarcated region hypoautofluorescence surrounded by a rim of
weak hyperautofluorescence. (F) Atrophic patches, including some that are undetectable usingFAF,
are discernable using near-infrared reflectance (NIR). (G) Spectral-domain optical coherence tomog-
raphy (SD-OCT) scan position as indicated by bold green arrow line with corresponding scan in
the (right panel) that shows disrupted inner and outer retinal bands with region of complete retinal
pigment epithelium atrophy (cRORA) (asterisk) with intraretinal fluid (arrow). (H) Optical coherence
tomography angiography (OCTA) with reduced choriocapillaris (right panel), deep (middle panel),
and superficial retinal plexus (left panel) identified via an en face slab.

4.2. New Modalities for Imaging MA-Microperimetry, Adaptive Optics, Home-Based OCT

Microperimetry is an automated perimetry system with a non-invasive technique to
spatially map retinal sensitivity. Reductions in retinal sensitivity occur rapidly and precede
visual acuity changes in AMD [147–149]. Microperimetry has eye tracking capability that
measures differential light sensitivity (DLS), which is the minimum luminance of a white-
spot stimulus that can be perceived on a white superimposed background of uniform
luminance. Mean sensitivity (MS) quantifies the average DLS across all stimulus locations.
Localized decreases in retinal sensitivity have been reported in GA precursor lesions [150],
in which the deterioration of visual function can occur months to years before the patient
experiences visual problems [148]. Microperimetric sensitivity has also been associated
with drusen volume, RPD, and extent of pigmentary changes [151]. In eyes affected by
GA, microperimetry detects an increasing number of scotomatous points and a decline
in MS over time, which correlates anatomically with an increase in atrophic size [152]
and a reduction of the inner segment–outer segment junctional layer of photoreceptors
suggesting disease progression [153,154]. Eyes with atrophic AMD were found to have
decreased sensitivity in all retinal regions, including those at the GA margin or outside
atrophic lesions, indicating that patients with GA have a more extensive functional deficit
than those with mild/intermediate AMD [155]. Currently, anatomic assessment of AMD
via multimodal fundus imaging is commonly used to diagnose and monitor the disease;
however, microperimetry can identify dysfunction in patients with AMD and quantify
late-stage progression by measuring local functional deficits in the retina.

Adaptive optics (AO) imaging systems improve resolution compared to traditional
retinal imaging by eradicating the strong signal from photoreceptor outer segments and
the highly scattered nerve fibers and vessels [156]. Recently, AO has been incorporated in
flood illumination fundus cameras, cSLO and OCT [157,158] to detect weakly reflective
structures such as photoreceptor inner segments, RPE and retinal ganglion cells [159,160].
In late AMD eyes, the boundaries of atrophic areas may appear clearly defined or ill-defined
on AO imaging. The hyporeflective nature of distinct borders indicates the existence of
melanin clusters. Melanin redistribution is pronounced in late AMD [161,162], with the
presence of hyporeflective clusters (HRCs) that are presumed to be detached RPE cells [161],
microglia [163], or monocyte macrophages that have phagocytized RPE cells [164]. HRCs
are dispersed within and around atrophic regions of the RPE layer. Additionally, time-lapse
photography demonstrated the dynamic nature of the HRC redistribution. HRCs were
identified during their developing stages, indicating that they developed concurrently
with, or even before, the start of MA [165]. When monitoring AMD patients, comparing
subsequent AO images can demonstrate MA progression.

Home-based OCT monitoring allows disease monitoring from the comfort of patients’
homes and has emerged as a tool for the timely detection and management of late-stage
AMD. The feasibility of home-based OCT monitoring with self-scanning, coupled with
image analysis software for detecting fluid volume in nAMD, was shown to be highly
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correlated with manual human grading [166]. This provides clinicians with valuable data
to monitor treatment strategies and reduces the burden of disease follow-up for patients,
their caregivers, and providers. However, challenges such as patient adherence, data
interpretation, and the need for clinician oversight remain significant hurdles. Despite these
challenges, the integration of home-based OCT monitoring holds promise in enhancing
the overall management of nAMD and reducing treatment burden on healthcare systems.
Interestingly, home-based OCT is currently only being studied to monitor eyes with nAMD;
monitoring non-nAMD fellow eyes may also be beneficial.

With increasing life expectancy and an aging global population, late AMD poses a
considerable and expanding threat to society, and the resulting visual impairment of MA
represents an enormous resource burden. To identify the optimal combination of imaging
modalities, it will be crucial to conduct validation studies accordingly. As novel imaging
technologies emerge in the future, it will be essential to revise these recommendations
consequently. The visual outcomes of patients with nAMD have improved due to the de-
velopment of anti-VEGF medication [167–170]. Novel therapeutic techniques, such as gene
therapy using recombinant adeno-associated virus vectors delivering VEGF-inhibitory com-
pounds, and subsequent expression for long-term nAMD control, are emerging [171,172].
However, a staggering percentage of nAMD patients stabilized via anti-VEGF treatment
still go on to develop MA: more than 98% at 7 years in some studies [173]. New treatments
for GA in dry AMD include complement pathway C3 and C5 inhibitors [174–177]. In all of
these efforts, the ability to utilize advances in imaging modalities to detect and document
early disease findings remains a critical stepping-stone to future therapies.
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