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Abstract: Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode (MELAS) syn-
drome, caused by a single base substitution in mitochondrial DNA (m.3243A>G), is one of the most
common maternally inherited mitochondrial diseases accompanied by neuronal damage due to de-
fects in the oxidative phosphorylation system. There is no established treatment. Our previous study
reported a superior restoration of mitochondrial function and bioenergetics in mitochondria-deficient
cells using highly purified mesenchymal stem cells (RECs). However, whether such exogenous
mitochondrial donation occurs in mitochondrial disease models and whether it plays a role in the
recovery of pathological neuronal functions is unknown. Here, utilizing induced pluripotent stem
cells (iPSC), we differentiated neurons with impaired mitochondrial function from patients with
MELAS. MELAS neurons and RECs/mesenchymal stem cells (MSCs) were cultured under contact or
non-contact conditions. Both RECs and MSCs can donate mitochondria to MELAS neurons, but RECs
are more excellent than MSCs for mitochondrial transfer in both systems. In addition, REC-mediated
mitochondrial transfer significantly restored mitochondrial function, including mitochondrial mem-
brane potential, ATP/ROS production, intracellular calcium storage, and oxygen consumption rate.
Moreover, mitochondrial function was maintained for at least three weeks. Thus, REC-donated exoge-
nous mitochondria might offer a potential therapeutic strategy for treating neurological dysfunction
in MELAS.

Keywords: MELAS; rapidly expanding clones (RECs); mesenchymal stem cells (MSCs); mitochon-
drial transfer

1. Introduction

Mitochondrial diseases (MD) are a group of multisystem disorders that occur when
mutations in mitochondria-associated nuclear or mitochondrial DNA (mtDNA) lead to
defective oxidative phosphorylation and impaired energy metabolism [1]. In particular,
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it affects organs with high energy needs, such as the brain [2], where epilepsy, headache,
intellectual deficits, and altered mental status are common clinical manifestations [3,4].
The adenine-to-guanine transition (m.3243A>G) at nucleotide 3243 of the mtDNA in the
MT-TL1 gene coding for tRNAleu(UUR) is one of the most common pathogenic mtDNA
mutations that can cause mitochondrial encephalomyopathy, lactic acidosis, and stroke-like
episodes (MELAS) [5,6]. MELAS is the most common progressive form of MD and is
accompanied by epilepsy, psychopathology, cortical sensory defects, and myopathy [7].
The prevalence of clinically infected individuals harboring the m.3243A>G mutation that
causes MELAS is approximately 1:20,000. However, in the general population, the majority
of asymptomatic carriers have a rate as high as 1:400 [8,9]. Symptom onset, expression, and
clinical severity typically increase with the copy percentage of the m.3243A>G mutation
(heteroplasmy) [10,11]. There is no specific treatment for patients with MELAS, and the
efficacy of some drugs to enhance mitochondrial residual activity, including vitamin B,
Coenzyme Q10, taurine, and arginine, are limited [12,13]. Therefore, a possible strategy for
the treatment or palliation of MELAS is imperative.

The peculiarities of mitochondrial genetics (heteroplasmy phenomena, spontaneous
mutations over time) have led to difficulties in modeling mtDNA-associated MD diseases
in vivo and in vitro [14]. Most MD cell models do not include the nuclear background of
the patient and do not exhibit features of differentiated cells such as post-mitotic neurons,
which is not conducive to the study of disease onset and pathogenesis [15,16]. However,
human induced pluripotent stem cells (iPSCs) of specific origin overcome these limita-
tions. Numerous studies have shown that disease-specific iPSCs can be differentiated into
disease-associated functional cells [17–19]. This specific disease cellular model is helpful
for understanding the genotypic and phenotypic characteristics of the disease, studying
pathogenesis, and providing new ideas for finding effective treatment options and devel-
oping new therapeutic drugs. Thus, disease-specific iPSC-derived neurons have significant
potential for modeling progressive MDs. In this study, we used iPSCs from patients with
MELAS with high levels of heteroplasmy (>60% copy percentage of the m.3243A>G muta-
tion) to establish a MELAS neuron model and evaluate the effects of possible mitochondrial
dysfunction on neurons.

Mesenchymal stem cell (MSC)-based regenerative medicine represents a promising
therapeutic strategy. The ease of obtaining MSCs from multiple sources and their low
immunogenicity indicate that they can be transplanted into both autologous and allogeneic
systems. In a recent study, we reported not only a successful systemic bone regenera-
tion in hypophosphatasia (HPP) by MSC transplantation but also effective suppression of
convulsion, one of HPP-related complications [20]. The paracrine, multidirectional differen-
tiation, and mitochondria-targeted transfer capabilities of MSCs have driven translational
research and clinical trial evaluations for the treatment of common diseases. In addition,
MSCs have been shown to transfer functional mitochondria to recipient cells via multi-
ple pathways, including tunneling nanotubes (TNTs), gap junctions, and microvesicles
(MVs) [21]. This exogenous mitochondrial transfer promotes cytoprotection and restores
mitochondrial function in various target cells. However, routinely isolated MSCs have high
heteroplasmy because of their different proliferation and differentiation functions, leading
to therapeutic limitations [22]. In contrast, our previously reported high-purity MSCs
(named rapidly expanding clones, RECs) showed superior homogeneity and mitochondrial
quality [23,24]. Therefore, this may be a better source of exogenous mitochondria. As an
exogenous mitochondrial donor, RECs have a significant restorative effect on bioenergetics
and mitochondrial function in mitochondria-deficient cells [25]. However, it is unclear
whether RECs donate mitochondria to MELAS neurons and whether these mitochondria
are functional or not.

Therefore, this study aimed to clarify the possible mitochondrial transfer pathway
between RECs and neurons and to explore the effect of exogenous mitochondria on mi-
tochondrial function in MELAS neurons, providing a possible strategy for the treatment
of MELAS.
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2. Results
2.1. Heteroplasmy Ratio in iPSCs and Neurons Derived from MELAS

We validated the pluripotency of iPS cell lines from healthy donors (control iPSC) and
patients with MELAS (MELAS-iPSC1, MELAS-iPSC2, and MELAS-iPSC3). Immunofluo-
rescence staining showed high expression of the pluripotency markers OCT4, TRA-1-60,
NANOG, and rBC2LCN in different iPS cell lines (Figure 1A). These data indicate the
pluripotency of the individual cell lines. All iPSC lines differentiated into TUJ1-positive
excitatory neurons within 18 d from the differentiation start in in vitro (DIV) culturing
(Figure 1D). Direct sequencing detected the m.3243A>G mutation in different patient-
derived iPS cells, whereas no mutation was present at this locus in the control iPSCs
(Figure 1B). We tested whether m.3243A>G heteroplasmy changed with differentiation.
While we observed a significant decrease in the level of heteroplasmy (70.6% to 63.8%)
after neuronal differentiation, we confirmed a stable level of heteroplasmy during neuronal
maturation (>60%; Figures 1C and S1).
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Figure 1. Heteroplasmy of iPSC-induced neurons. (A) Immunostaining of pluripotency and surface 
markers (OCT4, TRA-1-60, NANOG, and rBC2LCN) in representative iPSCs (Control-iPSC, ME-
LAS-iPSC1, MELAS-iPSC2, and MELAS-iPSC3). Scale bars, 400 µm. (B) Sequencing chromatogram 
showing the heteroplasmic m.3243A>G mutation in iPSCs from patients with MELAS. Red circles 
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Figure 1. Heteroplasmy of iPSC-induced neurons. (A) Immunostaining of pluripotency and surface
markers (OCT4, TRA-1-60, NANOG, and rBC2LCN) in representative iPSCs (Control-iPSC, MELAS-
iPSC1, MELAS-iPSC2, and MELAS-iPSC3). Scale bars, 400 µm. (B) Sequencing chromatogram
showing the heteroplasmic m.3243A>G mutation in iPSCs from patients with MELAS. Red circles
represent adenine (A)-guanine (G) transitions on mtDNA 3243 nucleotides. (C) Quantification of the
percentage of m.3243A>G heteroplasmy in iPSCs and their induced neurons in each group (n = 3).
(D) Immunostaining for the surface marker TUJ1 in representative neurons (control neurons, MELAS-
N1, MELAS-N2, and MELAS-N3). Scale bars, 100 µm. Data represent the mean ± standard deviation
(SD) of three independent experiments. ** p < 0.01, **** p < 0.0001.
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2.2. High Mitochondrial Transfer Rate of RECs in Contact and Non-Contact Systems

To determine whether RECs and MSCs transferred mitochondria into MELAS neurons,
we established contact and non-contact co-culture systems (Figure 2B). In the contact co-
culture system, REC and MSC mitochondria were stained with MitoTracker Deep Red,
MELAS neuron mitochondria were stained with MitoBright LT Green, and the nuclei
were stained with Hoechst 33342. Sequential observations by fluorescence microscopy
revealed that at 0 h of co-culture, most cells had independent fluorescence signals, but
as the co-culture time increased, some of the MELAS neuron mitochondria with green
fluorescence (white arrowheads) fused with red REC- and MSC-derived mitochondria to
produce orange fluorescence (Figure 2A). In a non-contact co-culture system, both RECs
and MSCs were placed in 0.4 µm (impermeable to mitochondria) and 3 µm (through
mitochondria) cell culture inserts, respectively, and after co-culturing for 8 h under the
same staining conditions we found that 0.4 µm cell culture inserts blocked the vast majority
of mitochondrial translocation, whereas 3 µm cell culture inserts permitted mitochondria
to pass through (white arrowheads) and were received by the MELAS neurons (Figure 2C).
We further examined the differences in the mitochondrial transfer rates of RECs and MSCs
between the two co-culture systems. FCM analysis revealed that the co-culture visualized a
DiO/Mito-Red double-positive population (Figure 2D). In the contact co-culture system,
there was no significant difference in the mitochondrial transfer rate from RECs and MSCs
to MELAS neurons after 4 h of co-culture. In contrast, more mitochondria were transferred
from RECs to MELAS neurons after 8 h of co-culturing. The mitochondrial transfer rates
at 8 and 24 h were similar, indicating that the mitochondrial transfer efficiency peaked
at 8 h of co-culture (Figure 2E). In the non-contact co-culture system, RECs also showed
a higher mitochondrial transfer efficiency after 8 h of co-culture (Figure 2F). These data
suggest that RECs can transfer mitochondria into MELAS neurons more efficiently than
conventional MSCs.
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Figure 2. Mitochondrial transfer between RECs and neurons. The contact and non-contact co-culture
systems are shown in (B). (A) Representative fluorescence microscopy images of MELAS neurons
(MELAS-N) and REC/MSCs in the contact co-culture system at 0, 2, 4, 8, and 12 h. White arrows:
Red fluorescence of mitochondria from MSCs/RECs was expressed in neurons containing green
fluorescence, indicating successful mitochondrial transfer. (C) Representative images of MELAS
neurons and REC/MSC in a non-contact co-culture system (0.4 µm or 3 µm cell culture insert).
(D) Representative distribution of DiO-labeled MELAS neurons and Mito-Red-labeled MSCs/RECs
in co-cultured cells analyzed by flow cytometry. (E) Time course of the mitochondrial transfer
rate between Q2 phase-distributed MELAS neurons and RECs/MSCs is presented, as well as the
percentage of this population over the total MELAS neurons (n = 4). (F) Quantification of the
mitochondrial transfer rate of MSCs/RECs to MELAS neurons in different somatic co-culture systems
(n = 6). Data represent the mean ± standard deviation (SD) of three independent experiments. ns,
not significant. * p < 0.05; ** p < 0.01; **** p < 0.0001.

2.3. Mitochondrial Transfer via TNTs and Cx43-GJCs

Previous studies have shown that F-actin-mediated TNT formation contributes to
the transfer of mitochondria from MSCs to mitochondria-deficient (ρ0) cells and restores
mitochondrial function in ρ0 cells [24,25]. We investigated whether TNTs are involved
in mitochondrial transfer between RECs or MSCs and MELAS neurons in vitro. RECs
and MSCs (red) were co-cultured with MELAS neurons (blue) for 8 h and then stained
with phalloidin (green, selectively labeled F-actin). Fluorescence images showed that TNTs
connected RECs and MSCs with MELAS neurons and REC- and MSC-derived mitochondria
were also found in TNTs (white arrows, Figure 3A). This suggests a potential role of
TNTs in REC- and MSC-mediated mitochondrial transfer. In addition, to verify whether
MELAS neurons could receive mitochondria from RECs and MSCs in the absence of TNT
formation, we treated cells in the contact co-culture system with cytochalasin D (which
inhibits TNT formation without affecting endocytosis) [26], and most TNTs were not formed
(Figure 3B,E). Notably, even after the inhibition of TNT formation, some mitochondria (red
arrows) were still transferred to the MELAS neurons (Figure 3B). Therefore, we analyzed
another possible mitochondrial transfer pathway involving connexin-43-containing gap
junction channels (Cx43-GJCs). Studies have shown that MSC-derived mitochondria
could be transferred to alveolar epithelial cells via Cx43-GJCs in an in vivo model of lung



Int. J. Mol. Sci. 2023, 24, 17186 6 of 23

injury [27]. Our in vitro assays showed high expression of the Cx43 protein between RECs
or MSCs and MELAS neurons, suggesting the possible formation of GJC plaques (Figure 3C,
white arrows). To verify the specificity of GJCs, we treated the cells with carbenoxelone
(a gap junction blocker), which effectively blocked the formation of GJC plaques; however,
mitochondria (red arrows) were still transferred into MELAS neurons (Figure 3D). We then
analyzed the effects of these two inhibitors on the mitochondrial transfer rates of RECs
and MSCs. These results show that gap junction blockers had a greater inhibitory effect on
the mitochondrial transfer of RECs (Figure 3F,G). Notably, even with the combination of
these two inhibitors, RECs still exhibited a higher mitochondrial transfer rate than MSCs
(Figure 3F). These results suggest that there may be other essential mitochondrial transfer
pathways for RECs.
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Figure 3. MSCs/RECs connect with MELAS neurons (MELAS-N) via TNTs and Cx43-containing
GJCs. (A) Representative fluorescence microscopy images of MELAS neurons co-cultured with RECs
(I) or MSCs (II). (B) Representative images of MELAS neurons co-cultured with RECs (I) or MSCs (II)
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after the addition of cytochalasin D. Mito-Red labeled RECs or MSCs, Hoechst33342 labeled MELAS
neurons, and F-actin labeled all the cells. White arrowheads: REC/MSC mitochondria in TNTs. Red
arrows: REC/MSC mitochondria were present in MELAS neurons, even without TNT formation.
(C) Representative immunofluorescence images of MELAS neurons co-cultured with RECs (I) or
MSCs (II). (D) Representative images of MELAS neurons co-cultured with REC (I) or MSC (II) after
the addition of carbenoxelone. Mito-Red labeled REC or MSC, Hoechst33342 labeled MELAS neurons,
and Connexin43 labeled all cells. White arrows indicate high Cx43 expression at the cell junctions. Red
arrows indicate reduced Cx43 expression after gap junction inhibition, but REC/MSC mitochondria
are still present in the MELAS neurons. (E) The number of TNTs in cells from each group was
calculated with or without cytochalasin D (n = 10). (F) Quantification of mitochondrial transfer rate of
RECs/MSCs to MELAS neurons in response to inhibitors (cytochalasin D and carbenoxelone) (n = 8).
(G) Inhibitory efficacy of different inhibitors on REC/MSC mitochondrial transfer rate (n = 6). Data
represent the mean ± standard deviation (SD) of three independent experiments. ns, not significant.
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

2.4. Inhibitor Dose Effects on Mitochondrial Transfer

Recent studies have shown that some subtypes of extracellular vesicles (EVs) can
carry mitochondrial components from cell to cell (i.e., mitoEVs) and that complete parallel
transfer of mitochondria can occur via MVs [28]. Dynasore, an inhibitor of the endocytic
pathway, rapidly blocks the formation of coated vesicles, thereby preventing the delivery
and reception of mitochondria as MVs. Therefore, we investigated the effect of dynasore
on REC- and MSC-derived mitochondrial transfer rates at different doses. The REC- and
MSC-donated mitochondrial transfer rate gradually decreased with the incremental dose
(Figure 4A), and at a stoichiometry of 80 µM, the mitochondrial inhibition rate reached the
threshold, and the REC- and MSC-derived mitochondrial transfer was reduced by 86.2%
and 67.1%, respectively (Figure 4B). Carbenoxelone and cytochalasin D also exhibited dose-
dependent effects (Figure 4C,E). GJC inhibitor (carbenoxelone) at a stoichiometry of 100 µM
resulted in a 66.6% and 45.9% reduction in mitochondrial transfer with RECs and MSCs to
MELAS neurons, respectively (Figure 4D). The microtubule/TNT inhibitor (cytochalasin
D) at a stoichiometry of 400 nM resulted in 26.5% and 34.8% reduction in mitochondrial
transfer with RECs and MSCs, respectively (Figure 4F). The mitochondrial transfer rate of
RECs co-cultured with MELAS neurons after treatment with endocytosis inhibitors was
significantly lower than that after treatment with GJC inhibitors and microtubule/TNT
inhibitors (Figure 4G). This suggests that the endocytosis-mediated mitochondrial transfer
pathway is the main pathway involved in REC mitochondrial transfer. In addition, we
verified the predominant mitochondrial transfer pathway of RECs in a 3 µm non-contact
system (Figure 4H). The results showed that almost no mitochondria were transferred
after the addition of endocytosis inhibitors, whereas no significant difference was observed
after the addition of microtubule/TNT or GJC inhibitors (Figure 4I). These indicate that
the major pathway of mitochondrial transfer of RECs in the 3 µm non-contact system is
endocytosis-mediated mitochondrial transfer.
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standard deviation (SD) of three independent experiments. ns, not significant. * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001.

2.5. Restoration of the Cellular Bioenergetics via Mitochondrial Transfer

To investigate the effect of RECs and MSCs on the bioenergetics of MELAS neurons,
we examined the OCR of each group of neurons. The bioenergetic distribution of neurons
in each group is shown in Figure 5A. Coupled and uncoupled respirations were assessed
via oligomycin, maximal mitochondrial respiration was determined via FCCP, and non-
mitochondrial respiration was assessed via antimycin A and Rotenone (AA/Rot) addition.
The results showed that basal respiration, ATP-linked respiration, proton leakage, and maxi-
mal respiration were significantly reduced in MELAS neurons compared to control neurons
and were substantially restored after co-culture with RECs and MSCs (Figure 5B). To fur-
ther elucidate whether the improved mitochondrial function was due to the transferred
mitochondria, we compared the mitochondrial respiratory function of original MELAS
neurons with that of MELAS neurons that received mitochondria (mitochondria isolated
and purified from RECs or Rot-treated RECs). Rot has been used to induce mitochondrial
dysfunction without affecting cell viability at certain doses [29]. Mitochondria isolated
from REC- or Rot-treated (50 nM) RECs were co-cultured with MELAS neurons for 24 h,
and the OCR was measured. The cellular bioenergetic profiles of each group are shown
in Figure 5C. Compared with MELAS neurons, basal respiration, ATP-linked respiration,
proton leakage, and maximal respiration were significantly restored in MELAS neurons
with the addition of RECs and Rot-treated REC mitochondria (Figure 5D). Notably, REC
mitochondria that were not treated with Rot, restored the mitochondrial respiratory func-
tion of MELAS neurons even further (Figure 5D). This demonstrated the benefits of healthy
functional mitochondria in recipient cells.
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Figure 5. Recovery of cellular respiration activity in MELAS neurons receiving REC mitochondria.
(A) Oxygen consumption rate (OCR) of neurons in each group (control neurons, MELAS neurons,
MELAS neurons co-cultured with REC, and MELAS neurons co-cultured with MSC) was measured
over time (min). The order of injection of oligomycin, FCCP, and AA/Rot is shown. (B) Basal
respiration, ATP production, proton leakage, and maximum respiration of the neurons in each group
were calculated (n = 15). (C) OCR of neurons in each group (control neurons, MELAS neurons,
MELAS neurons co-cultured with normal REC mitochondria, and MELAS neurons co-cultured
with REC mitochondria (Rot-treated)) was measured over time (min). (D) Basal respiration, ATP
production, proton leakage, and maximum respiration were calculated for each group (n = 15). Data
represent the mean ± standard deviation (SD) of three independent experiments. ns, not significant.
* p < 0.05; ** p < 0.01; **** p < 0.0001.

2.6. Rescued Mitochondria-Reliant ATP Production

We also examined intracellular ATP and lactate levels and inhibited oxidative phospho-
rylation (OXPHOS) by adding oligomycin to determine whether the cellular energy source
was dependent on OXPHOS. The results showed that in the group without oligomycin,
the ATP content of MELAS neurons was significantly reduced, and the lactate content
was significantly elevated compared to control neurons, whereas it was significantly re-
stored to the normal level after co-culturing with RECs (Figure 6A,B). After the addition of
oligomycin to inhibit OXPHOS, both control neurons and REC- and MSC-treated MELAS
neurons exhibited significantly reduced ATP content and significantly elevated lactate
content (Figure 6A,B). This suggests that RECs and MSCs improve cellular respiration by
enhancing OXPHOS. However, under normal physiological conditions, cells maintain sta-
ble cellular ATP levels by altering the rate of ATP production. Therefore, the measurement
of total intracellular ATP levels does not provide dynamic information on cellular activity
and energy demand. Real-time quantitative analysis of ATP production is a potentially
effective method. We assayed mitochondrial OCR and glycolytic extracellular acidification
rate (ECAR) using Seahorse XF, which was converted into mitochondrial respiratory, gly-
colytic, and total ATP production rates. The results showed a 26% decrease, 26% increase,
and significant decrease in the rate of ATP production for mitochondrial respiration, gly-
colysis, and total ATP production, respectively, in MELAS neurons compared to control
neurons (Figure 6C). After co-culturing with RECs and MSCs, the ATP production rate of
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mitochondrial respiration increased by 23% and 13%, respectively, and the ATP production
rate of glycolysis decreased by 23% and 13%, respectively, with a significant increase in
the total ATP production rate in MELAS neurons (Figure 6C). The ratio of mitochondrial
ATP production rate to ATP production from glycolysis was significantly elevated in the
co-cultured MELAS neurons, and RECs were superior to MSCs (Figure 6D). These results
demonstrated a shift in the mode of mitochondrial respiration from glycolysis to oxidative
phosphorylation in treated neurons. In addition, the viability of MELAS neurons was
significantly increased after co-culturing with RECs or MSCs (Figure 6E,F).
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cium-sensitive fluorescent dye fluo-8. More fluo-8 fluorescence intensity and spots were 
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Figure 6. Recovery of bioenergetic in MELAS neurons. (A) Intracellular ATP content was determined
in each group after oligomycin treatment (n = 12). (B) Intracellular lactate levels were determined
in each group after oligomycin treatment (n = 12). (C) Seahorse XFp metabolic flux analysis of
mitochondrial ATP production rates and glycolytic ATP production rates in each group of neurons
(n = 8). (D) XFp ATP rate index calculated from data in panel C (n = 8). (E) Representative images of
neurons from each group. Neurons in the co-culture group were co-cultured with REC/MSCs for
24 h; neurons from each group were collected and seeded into 96-well plates, cultured for 1 week,
and then tested. Scale bars, 100 µm. (F) The CCK-8 assay was used to detect viability in each group
(n = 9). Data represent the mean ± standard deviation (SD) of three independent experiments. ns,
not significant. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

2.7. Recovery of MELAS Neuronal Mitochondrial Function

Mitochondrial reactive oxygen species (ROS) levels were analyzed in each group of
neurons using MitoSOX Red staining. This dye is highly selective for mitochondrial super-
oxide in living cells and produces bright red fluorescence when mitochondrial superoxide
is oxidized. Our results showed a significant increase in MitoSOX Red fluorescence in
MELAS neurons compared to that in control neurons, and MitoSOX Red fluorescence colo-
calized with MitoBright LT Green (Figure 7A, white arrows). In addition, there were intense
fluorescent spots in the nuclei of some MELAS neurons. Superoxide radicals produced by
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the nucleus have been reported to cause DNA base modifications and nick formation in
the DNA strand, thereby affecting normal physiological processes [30]. Quantification of
mitochondrial ROS levels revealed that intracellular ROS levels were significantly reduced
in MELAS neurons co-cultured with either RECs or MSCs, and ROS levels in MELAS
neurons co-cultured with RECs were significantly lower than those in MELAS neurons
co-cultured with MSCs (Figure 7D). Notably, MELAS neurons co-cultured with RECs had
a higher mitochondrial content (Figure 7E), and the ratio of MitoSOX Red to MitoBright
LT Green was also significantly reduced (Figure 7F). Calcium (Ca2+) is a key regulator of
mitochondrial function and is involved in mitochondrial ATP production. Excessive accu-
mulation of ROS induces oxidative stress in cells, which in turn increases the cytoplasmic
calcium concentration, leading to decreased ATP production and apoptosis [31]. Therefore,
we determined the intracellular calcium content by staining with the calcium-sensitive
fluorescent dye fluo-8. More fluo-8 fluorescence intensity and spots were observed in
MELAS neurons than in control neurons (Figure 7B). Quantification of intracellular calcium
concentration showed a significant decrease in MELAS neurons after co-culture (Figure 7G).
In addition, intracellular calcium overload and increased ROS can activate redox-sensitive
ion channels in the inner mitochondrial membrane, such as the permeability transition pore,
inner mitochondrial membrane anion channel, or ATP-sensitive K+ channel. The opening
of these channels disperses MMP [32]. To determine the MMP level in each group of neu-
rons, we stained each group of neurons using JC-1, a dye whose red-to-green fluorescence
intensity ratio decreases when the mitochondria are depolarized. The results showed that
MMP was significantly reduced in MELAS neurons, whereas it was significantly restored
after co-culture with RECs or MSCs, and that RECs were superior to MSCs (Figure 7C,H).
In summary, MMP dynamics were negatively correlated with ROS and elevated intracel-
lular calcium levels. In addition, transmission electron microscopy images showed that
both RECs and MSCs significantly ameliorated mitochondrial damage (including cristae
deletion, disorder, and breakage) in MELAS neurons (Figure 7I, red arrow). Co-culture
with REC or MSC down-regulated the percentage of damaged mitochondria in MELAS
neurons (Figure 7J).
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Figure 7. Recovery of mitochondrial function in MELAS neurons after co-culture in a non-contact
system. (A) Representative fluorescence microscopy images of MitoSOX and MitoBright LT green
staining in each neuronal group. White arrows indicate high intensity MitoSox dyes. (B) Representa-
tive images of fluo-8 (calcium-sensitive fluorescent) staining in each group of neurons. (C) Represen-
tative images of JC-1 (response mitochondrial membrane potential, MMP) staining in each group of
neurons. (D) Quantification of ROS levels by analyzing the fluorescence intensity of MitoSox (n = 6).
(E) Quantification of mitochondrial levels by analyzing the fluorescence intensity of MitoBright LT
green (n = 6). (F) Quantification of mitochondrial ROS in neurons (n = 6). (G) Quantification of
intracellular calcium levels by analyzing the fluorescence intensity of fluo-8 (n = 6). (H) Fluorescence
intensity ratio of MMP levels in groups of neurons (n = 8). (I) Mitochondrial morphology of the
neurons in each group. Red arrows indicate the absence and breakage of mitochondrial cristae.
(J) Quantification of damaged mitochondria in different groups with percentage of mitochondria
showing abnormal cristae. More than 50 mitochondria in each group (52 in Control-N, 50 in MELAS-
N, 55 in MELAS-N w/REC, and 51 in MELAS-N w/MSC) were examined. Data represent the mean
± standard deviation (SD) of three independent experiments. ns, not significant. * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001.

2.8. Retention of Mitochondrial Function

To determine whether the mitochondrial function of MELAS neurons restored by
REC-transferred mitochondria is stable and sustained, neurons differentiated from iPSC
in patients with MELAS with or without co-culturing with RECs for 24 h were tested
for neuronal mitochondrial function at 1, 7, 14, and 21 d, as shown in Figure 8A. The
results showed that compared to MELAS neurons, co-cultured MELAS neurons maintained
calcium (Figure 8B,C) and MMP homeostasis (Figure 8D,E) for at least 21 d. Notably,
several studies have indicated that GDF-15 is both a diagnostic and severity marker of
MD [33,34]. However, the relationship between our therapeutic interventions and GDF-15
levels remains unclear. Our results showed that the mean level of GDF-15 in the MELAS
neuron medium was 1148.6 ± 366.2 pg/mL, which was significantly higher than that
of the control neurons, which was 294.9 ± 51.1 pg/mL. The levels of GDF-15 after REC
and MSC interventions were 267.9 ± 39.5 pg/mL and 414.1 ± 55.7 pg/mL, respectively
(Figure 8F). The maintenance of GDF-15 levels by RECs lasted for at least 21 d (Figure 8G). In
addition, REC mitochondria showed stable sustainability in maintaining the bioenergetics
of MELAS neurons. After co-culturing with RECs, MELAS neurons maintained a high rate
of mitochondrial ATP production for at least 21 d, and oxidative phosphorylation was the
main mode of energy acquisition (Figure 8H,I).
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Figure 8. Persistency of REC functional mitochondria. (A) Schematic representation of the experiment
used to assess the duration of REC mitochondrial function. (B) Intracellular calcium levels were
quantified in MELAS neurons (MELAS-N) grown on days 1, 7, 14, and 21 (after receiving REC-
donated mitochondria) and in MELAS neurons with high heteroplasmy (n = 9). (C) Representative
fluorescence microscopy images of fluo-8 staining in each group of MELAS neurons on days 1, 7,
14, and 21. (D) Representative images of MELAS and REC-treated MELAS neurons stained with
JC-1 on days 1, 7, 14, and 21. (E) Quantification of JC-1 fluorescence intensity ratios in REC-treated
and untreated MELAS neurons (n = 8). (F) Expression levels of GDF-15 in different groups of
neuronal culture media (n = 7). (G) GDF-15 levels were quantified in MELAS neurons grown on
days 1, 7, 14, and 21 (after receiving REC-donated mitochondria) and in MELAS neurons with high
heteroplasmy (n = 7). (H) Seahorse XFp metabolic flux analysis of mitochondrial ATP production
rates and glycolytic ATP production rates in each group of MELAS neurons (n = 8). (I) XFp ATP rate
index calculated from data in panel H (n = 8). Data represent the mean ± standard deviation (SD) of
three independent experiments. ns, not significant. ** p < 0.01; **** p < 0.0001.
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3. Discussion

Our previous report revealed that exogenous REC-donated mitochondria can be
transferred into mitochondria-deficient (ρ0) cells and restore their mtDNA content and
mitochondrial function through multiple pathways [24,25]. However, the role of exogenous
mitochondria in specific MD and related neurological functions remains unclear. In this
study, we used patient-derived iPSCs with high MD heteroplasmy (>60%, m.3243A>G)
to provide a possible neuronal model (MELAS neurons). We found that MELAS neurons
exhibited the morphology of mature neurons but with destabilized mitochondrial function.
Notably, mitochondria from RECs can be transferred into MELAS neurons via the classical
pathway, providing multiple benefits, including enhanced cellular bioenergetics, restoration
of respiratory function, and OXPHOS-dependent cellular growth, and this functional
restoration is sustained. These findings suggest that the transfer of exogenous mitochondria
can reestablish normal physiological functions associated with healthy mitochondria.

Human mtDNA encodes many key proteins involved in the assembly and activity of
the mitochondrial respiratory complex and is closely associated with MD [35]. The mutation
rate of mtDNA is high because of the lack of histones and effective repair mechanisms in its
structure [36]. The percentage of mutated copies of mtDNA (heteroplasmy) plays a role in
the development of symptoms, as well as the severity of the disease, with high heteroplasmy
(>60%) usually accompanying disease pathogenicity and phenotypic manifestations. Due
to the uniqueness and complexity of mtDNA, the establishment of a stable cellular model of
MD is fundamental to this study [10]. Notably, human iPSCs appear to be a powerful tool
for disease modeling, and because of the natural heteroplasmy of the primitive fibroblast
population accompanied by variations in respiratory chain activity, iPSC reprogramming
produces clones with varying levels of heteroplasmy [37]. This allowed us to use neurons
with appropriate levels of heteroplasmy and respiratory function for disease modeling.
In addition, the m.3243A>G mutation (high level of heteroplasmy), which is strongly
associated with MELAS, may affect mitochondrial protein synthesis by decreasing the
efficiency of amino acid binding during the translation of the 13 mtDNA-encoded proteins
in OXPHOS subcomplexes I-V [38]. OXPHOS complex (I-V) deficiency usually leads to
an imbalance in the cellular redox state accompanied by increased ROS production and
mitochondrial damage [39]. Our study showed that MELAS neurons carrying a high level
of heteroplasmy (m.3243A>G mutation) faithfully replicated the features of respiratory
complex deficiency, including high levels of ROS, OXPHOS defects, respiratory dysfunction,
and decreased cell proliferation. In addition, the dependence on anaerobic glycolysis and
energy deficiency exhibited by MELAS neurons provides clues for understanding the
pathological mechanisms associated with abnormal energy metabolism in the brain.

MSCs have been shown to repair damaged cells through paracrine effects, such as the
release of immunomodulatory factors, extracellular vesicles, microRNAs, and mitochon-
drial transfer [22]. Multiple mitochondrial transfer mechanisms can restore the bioenergetic
requirements of damaged cells [21]. TNTs, a classical mitochondrial transfer pathway,
consist of a spontaneous tubular membrane protrusion with an extension of the plasma
membrane that permits uni- or bi-directional transport of a wide range of cellular com-
ponents or organelles, including mitochondria [40]. This is consistent with our finding of
mitochondrial transfer in TNTs constructed between RECs and MELAS neurons. Notably,
RECs exhibited a superior mitochondrial transfer rate to MSCs in both our established
contact and non-contact co-culture systems; however, REC-mediated transfer produced
a lower number of TNTs than MSC-mediated transfer. Furthermore, mitochondria from
donor cells remained present in MELAS neurons even after the inhibition of TNT formation
using the actin polymerization inhibitor cytochalasin D, suggesting the possibility and
differences in mitochondrial transfer from RECs and MSCs to MELAS neurons via multiple
pathways. The outward growth and length of TNTs depend on the involvement of F-actin,
which has bending resistance properties [41]. In contrast, cells with low motility usually
accumulate a large number of stress fibers, with F-actin as the main component, accompa-
nied by an increase in cell size [42,43]. Our previous report showed that RECs have a small
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morphology, high migration and proliferation properties, and lower F-actin expression
than MSCs [23]. This explains the low formation of TNTs by RECs and suggests that
TNT-mediated mitochondrial transfer may not be predominant in RECs. In addition, it has
been reported that MSCs and alveolar epithelium restore alveolar bioenergetics by forming
Cx43-containing GJCs to release mitochondria-containing MVs [27]. Our study found high
expression of Cx43 at cell junctions, suggesting the possible formation of GJC plaques. In
contrast, when the cell junction blocker carbenoxelone was added, Cx43 protein expression
was reduced (disappearance of gap junction plaques), and REC and MSC mitochondrial
metastases were significantly reduced, suggesting a potential role for Cx43-GJCs in REC
mitochondrial metastasis. However, even if both mitochondrial transfer pathways, TNTs
and GJCs, are blocked, donor cell mitochondria still exist in MELAS neurons. EVs are
essential intercellular communication vectors for the transfer of bioactive substances be-
tween cells and organs. Recently, abundant evidence has shown that mitochondria-derived
vesicles (MDVs, ~70–150 nm) or intact mitochondrial translocation is mainly mediated
by multivesicular bodies (MVBs, ~30–150 nm) and MVs (~200–1000 nm) and that vesicle
formation as well as release cannot be separated from the role of endocytosis in cells [28].
We used dynasore to inhibit the formation and release of MVBs and MVs, thereby inhibit-
ing mitochondrial transfer and reception. The mitochondrial transfer rate of RECs was
significantly reduced compared to that of MSCs, showing the strongest inhibition efficiency
among multiple inhibitions. This revealed the importance of EVs in the mitochondrial
transfer mechanism of RECs.

Furthermore, mitochondrial replacement therapy (MRT) of oocytes or fertilized eggs,
such as prokaryotic (PNT), spindle (ST), or polar body (PBT) transfer, prevents the second-
generation transmission of mtDNA defects. However, germline gene therapy involves the
permanent correction of mutated genes in germ cells, which can result in the transmission
of alterations to the offspring; therefore, ethical issues, as well as social and legal barriers
to the application of MRT in clinical practice, remain [44]. Because MSCs can donate
mitochondria to recipient cells, they offer potential possibilities for the treatment of MD.
However, there are limitations to the treatment with MSCs. MSCs isolated from human BM
using traditional methods proliferate and differentiate inconsistently, the cell populations
obtained are highly heterogeneous, and autologous BM-derived MSCs are expensive [22].
In addition, the collection of adult BM-derived MSCs is highly invasive and carries a
high risk of infection. In contrast, RECs have low batch-to-batch variability, uniform cell
size, high proliferation rate and mitochondrial content, and no ethical issues [23,24]. Our
results also showed that REC is advantageous in restoring mitochondrial functions, such as
elevated MMP, ATP, OCR, and the regulation of ROS homeostasis. These findings highlight
the advantages of functional mitochondria (RECs) in restoring neuronal mitochondrial
function (Figure 9).

This study had some limitations. Our observations were based entirely on in vitro ex-
periments, and neuropathophysiological correlations should be confirmed through in vivo
experiments. Second, although this study revealed the importance of EVs in REC mi-
tochondrial transfer, this was only initially verified laterally through inhibition experi-
ments, and the specific mechanism of EV-mediated mitochondrial transfer needs to be
further elucidated.
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Figure 9. Schematic diagram of exogenous mitochondrial multiple pathways regulating functions
related to MELAS neuronal regulation. iPSCs from patients with MELAS with high levels of hetero-
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ability of REC to donate mitochondria under the classical mitochondrial transfer pathway (TNTs, gap
junctions, MDVs, and MVs) and the functionality of such exogenous mitochondria. This figure was
made using Figdraw.

4. Materials and Methods
4.1. Culture of Undifferentiated iPSCs

Human control iPSC lines (201B7) and MELAS-iPSC lines (MELAS-iPSC1, MELAS-
iPSC2, and MELAS-iPSC3) were obtained from RIKEN CELL BANK (Ibaraki, Japan) and
cultured in an undifferentiated state without MEF feeder cells in StemFit AK02N medium
(AJINOMOTO, Tokyo, Japan). The iPSCs were dissociated into single cells with TrypLE
select (Invitrogen, Carlsbad, CA, USA) and reseeded at a density of 2 × 104 cells per well
on an iMatrix511- treated (Nippi, Tokyo, Japan) 6-well plate with StemFit AK02N contain-
ing Y27632 (Fijifilm/WAKO, Osaka, Japan). The plate was incubated in an atmosphere
containing 5% CO2 at 37 ◦C. The day after passage, the medium was replaced with StemFit
AK02N without Y27632. Afterward, medium replacement was carried out every 2–3 days.

4.2. In Vitro Neuronal Differentiation of iPSCs

The procedure of in vitro neural differentiation was performed as described previ-
ously [45]. In brief, all iPSCs were cultured in StemFit AK02N medium supplemented with
three inhibitors (3i) (3 µM CHIR-99021 (REPROCELL, Kanagawa, Japan), 3 µM SB-431542
(Fijifilm/WAKO), 3 µM dorsomorphin (Sigma, Carlsbad, CA, USA)) from 3 d after passages.
The StemFit AK02N with 3i medium was changed daily. On day 5, after the 3i treatment,
iPSC colonies were enzymatically dissociated into single cells using TrypLE Select. The
dissociated cells were cultured in a suspension at a density of 1 × 105 cells/mL in cul-
ture dishes with neuronal induction medium consisting of media hormone mix (MHM)
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medium (KBM Neural Stem Cell Kit, KOHJIN BIO, Saitama, Japan) supplemented with
2% B27-Minus vitamin A (Invitrogen), 20 ng/mL bFGF, (Peprotech, Tokyo, Japan), and
2 µM SB431542 in a hypoxic incubator (4% O2; 5% CO2). Three days after neural induction,
3 µM CHIR99021 and 3 µM purmorphamine (Millipore, Darmstadt, Germany) were added.
iPSCs were used to form primary neurospheres (NSs) approximately seven days after
neural induction. To prepare secondary and tertiary NSs, primary NSs were repeatedly
enzymatically dissociated into single cells and suspended in the same neural induction
medium.

For neuronal cell differentiation, dissociated tertiary NSs were plated onto coverslips,
12 mm in diameter, coated with 0.1 mg/mL poly-L-ornithine (PLO, Sigma-Aldrich, St. Louis,
MO, USA) and 10 ug/mL hFibronectin (R&D Systems, Minneapolis, MN, USA). These cells
were cultured in differentiation medium consisting of B-27TM Plus Neuronal Culture System
(GibcoTM, New York, NY, USA), 10 uM DAPT (FIjifilm/WAKO), 10 ng/mL recombinant
human GDNF (FIjifilm/WAKO), 10 ng/mL recombinant human BDNF (FIjifilm/WAKO),
and 200 µM ascorbic acid (Sigma-Aldrich, St. Louis, MO, USA) for 7–28 d in a humidified
atmosphere containing 5% CO2 at 37 ◦C. Half of the medium was changed every 2–3 days.

4.3. Mesenchymal Stem Cells (MSCs) and Rapidly Expanded Clones (RECs)

The bone marrow (BM)-derived MSCs were purchased from Lonza (Basel, Switzer-
land). RECs were purchased from PuREC Co., Ltd. (Izumo, Japan). Three different
RECs and MSCs clones were prepared separately. RECs and MSCs were cultured in
DMEM/F-12 medium (FIjifilm/WAKO) supplemented with 15% HyClone fetal bovine
serum (FBS, Cytiva, Tokyo, Japan), 1% L-Alany-L-Glutamine Solution (FIjifilm/WAKO),
1% penicillin–streptomycin (FIjifilm/WAKO), 0.25mM L-Ascorbic Acid Phosphate Magne-
sium Salt n-Hydrate (FIjifilm/WAKO), and 10 ng/mL basic fibroblast growth factor (bFGF,
AJINOMOTO, Tokyo, Japan) in a humidified atmosphere containing 5% CO2 at 37 ◦C, until
80% confluent. The medium was changed every 2–3 days. MSCs and RECs from passage 4
were used for further experiments.

4.4. Immunofluorescence

Cells in each group were fixed with 4% paraformaldehyde (PFA) for 10 min, washed
with PBS, permeabilized with 0.1% TritonTM X-100 (Fijifilm/WAKO, Osaka, Japan)/PBS
solution for 10 min, and blocked with blocking buffer (0.1% BSA/PBS) for 1 h. Blocking
solution was aspirated and the cells were incubated overnight at 4 ◦C with diluted primary
antibodies (Nanog (D73G4) XP® Rabbit mAb (1:200, Lot:4903P, Cell Signaling Technology,
Danvers, MA, USA), Oct-4A (C30A3) Rabbit mAb (1:500, Lot:2840S, Cell Signaling Technol-
ogy), TRA-1-60(S) (TRA-1-60(S)) Mouse mAb (1:150, Lot:4746S, Cell Signaling Technology),
and Connexin 43 rabbit mAb (1:1000, Lot:83649S, Cell Signaling Technology)). Cells were
washed with PBS and stained with goat anti-mouse IgG Alexa FluorTM 488 (1:1000, Lot:
A21042, Invitrogen), goat anti-rabbit IgG Alexa FluorTM 555 (1:1000, Lot: A27039, Invitro-
gen), and goat anti-rabbit IgG Alexa Fluor 488 (1:500, Lot: A27034, Invitrogen) antibodies
for 1 h at room temperature (RT). After washing twice with PBS, the cells were mounted
with 1 µg/mL Hoechst 33342 (Invitrogen, Carlsbad, CA, USA). Immunofluorescent staining
results were visualized using a BZ-X710 microscope (BZ-X810; KEYENCE, Osaka, Japan).

4.5. m.3243A>G mutation Analysis

Genomic DNA was extracted from each cell group using a QIAamp DNA Micro Kit (Qi-
agen, Hilden, Germany). The forward and reverse primers were -GGACAAGAGAAATAA
GGCC- (m.3130-3149) and -AACGTTGGGGCCTTTGCGTA- (m.3130-3149). To determine
the presence of the m.3243A>G mutation in iPSCs derived from patients with MELAS.
PCR amplification products from each cell set were then sequenced (Applied Biosystems).
The level of heteroplasmy for the m.3243A>G mutation was determined according to
a previously described method using PCR–restriction fragment length polymorphism
(RFLP) [46]. Briefly, using the primers shown above, the wild-type mtDNA amplified a
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fragment of 294 bp. In the presence of the m.3243A>G mutation, the PCR product was
cleaved by ApaI (Thermo Fisher Scientific, Vilnius, Lithuania) restriction endonuclease into
two fragments of 178 and 116 bp. The ApaI-digested PCR product was electrophoresed on
2% agarose gel. The proportion of the m.3243A>G heteroplasmy (%) could be calculated
by analyzing the electrophoretic bands using the formula: Proportion of mutant = mutant
band density/(mutant band density + wild-type band density) × 100%.

4.6. Direct Contact Co-Culture System

Before co-culturing, RECs and MSCs were labeled with 200 nM MitoTracker Deep Red
(Invitrogen, Carlsbad, CA, USA) and 1 µg/mL Hoechst 33342 (Invitrogen, Carlsbad, CA,
USA) for 20 min at 37 ◦C. MELAS neuron cells were labeled with 0.1 µmol/L MitoBright
LT-Green (Dojindo, Kumamoto, Japan) and 1 µg/mL Hoechst 33342 for 15 min at 37 ◦C. The
cells were co-cultured in a B-27TM Plus Neuronal Culture System (GibcoTM, New York, NY,
USA) supplemented with 1% L-glutamine and 1% penicillin–streptomycin. Cell viability
was determined using a 4% trypan blue solution, and the results were frequently greater
than 95%. After 0, 2, 4, 8, and 24 h of co-culture, the mitochondrial fluorescence transfer of
RECs and MSCs was observed by fluorescence microscopy (BZ-X810, KEYENCE, Osaka,
Japan). Flow cytometry (CytoFLEX, BECKMAN COULTER, Indianapolis, IN, USA) was
performed to analyze the mitochondrial reception of RECs and MSCs by MELAS neurons.
After sorting of 5 µL/mL VybranTM DiO-labeled MELAS neuron cells (Green, Invitrogen,
Carlsbad, CA, USA) and MitoTracker Deep Red-labeled RECs/MSCs, mitochondrial trans-
fer rates were calculated for the Q2 phase (double-positive) distribution as a percentage
of total MELAS neuron cells and normalized to the data. The data were analyzed using
FlowJoTM software (Version 10, BD, Ashland, OR, USA).

4.7. Non-Contact Co-Culture System

After labeling REC/MSC mitochondria with 200 nM MitoTracker Deep Red (Invit-
rogen, Carlsbad, CA, USA), REC/MSC were collected and placed in 0.4 µm or 3 µm cell
culture inserts for 4 h of incubation. Neuronal cells of each group were labeled with
0.1 µmol/L MitoBright LT-Green mitochondrial labeling solution (Dojindo, Kumamoto,
Japan) and 1 µg/mL Hoechst 33342 (Invitrogen, Carlsbad, CA, USA), inoculated in 24-well
plates, and co-cultured with REC/MSC in 0.4 µm or 3 µm cell culture inserts.

4.8. Microscopic Image

To observe possible mitochondrial transfer pathways (microtubules/TNTs) of RECs
or MSCs in a direct co-culture system, mitochondria of REC/MSC were stained using
200 nM MitoTracker Deep Red (Invitrogen, Carlsbad, CA, USA) at 37 ◦C for 20 min before
co-culture, and 1 µg/mL Hoechst 33342 (Invitrogen) was used to stain neuronal cells of
each group for 15 min at RT. After two washes with PBS, the cells were trypsinized and
co-cultured for 6 h in 24-well plates. The cells were fixed with 4% paraformaldehyde (PFA)
in PBS at RT for 15 min and permeabilized with 0.1% TritonTM X-100 in PBS for 5 min.
Microtubules/TNTs were detected by staining the fixed cells with 1X Green Fluorescent
Phalloidin Conjugate working solution (Abcam, ab112125, Cambridge, UK) for 45 min at
RT. After gentle washing twice with PBS, the cells were visualized under a fluorescence
microscope (BZ-X810; KEYENCE, Osaka, Japan).

4.9. Drug Dose Dependency

Analysis of the effects of different dose gradients of different inhibitor compounds on
the donor mitochondria of RECs and MSCs. RECs and MSCs were stained with 200 nM
MitoTracker Deep Red (Invitrogen, Carlsbad, CA, USA) before co-culture. MELAS neurons
were stained with 5 µL/mL VybrantTM DiO. Subsequently, the inhibitory compounds
dynasore (Biovision, Milpitas, CA, USA), carbenoxelone (Sigma-Aldrich, Saint Louis, MO,
USA), and cytochalasin D (Sigma-Aldrich, Saint Louis, MO, USA) were added separately
during co-culture. After co-culturing with CytoFLEX (BECKMAN COULTER, Indianapolis,
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IN, USA), the Q2 phase (double-positive) distributions were calculated as a percentage of
the total number of MELAS neuron cells. The data were analyzed using FlowJoTM software
(Version 10, BD, Ashland, OR, USA).

4.10. Transmission Electron Microscopy

Neuronal cells (2 × 105) from each group were seeded in 35 mm dishes. After 24 h,
cells were pre-fixed in 2.5% glutaraldehyde electron microscopy solution (FIjifilm/WAKO),
2% PFA, and 0.1 M phosphate buffer (FIjifilm/WAKO) for 2 h at RT and washed thrice with
washing buffer. Fixed cells were dehydrated sequentially in ethanol (50%, 70%, 90%, 95%,
and 100%), then infiltrated and embedded in epoxy resin before left to harden at 60 ◦C for
24 h. Ultrathin sections were obtained using a diamond knife and copper grids (400 mesh;
NISSHIN EM, Tokyo, Japan). Sections were stained with uranyl acetate, and neuronal
mitochondria from each group were visualized using a transmission electron microscope
(Topcon EB-002B, Tokyo, Japan).

4.11. Measurement of Mitochondrial Membrane Potential (MMP)

After 8 h of non-contact co-culture, the MMP of the different groups was assessed using
a JC-1 Detection Kit (Dojindo, Kumamoto, Japan), which exhibits potential fluorescence
characteristic changes in the mitochondria. The red/green fluorescence intensity ratio of
JC-1 decreased in depolarized mitochondria owing to the disruption of red fluorescent J-
aggregates. Briefly, 7 × 104 cells/mL were incubated with 1 mmol/L JC-1 working solution
for 40 min at 37 ◦C. The supernatant was discarded, and cells were washed twice with
HBSS (GibcoTM; Paisley, UK). An imaging buffer solution was added, and the cells were
observed under a fluorescence microscope (BZ-X810; KEYENCE, Osaka, Japan). The ratio
of mitochondrial JC-1 red (590 nm) to green (530 nm) was considered representative of cell
MMP. Cellular MMP for each group was detected using a GloMax® Discover Microplate
Reader (Promega, WI, USA) based on the red-to-green fluorescence intensity ratio.

4.12. Measurement of Reactive Oxygen Species (ROS)

MitoSOXTM Red fluorescent probe (Life Technologies, Carlsbad, CA, USA) was used
to visualize mitochondrial superoxide production according to the manufacturer’s protocol.
Briefly, cells (1 × 105) grown on 24-well plates were washed twice with PBS to remove the
medium and incubated with 5 µM MitoSOX working solution for 10 min at 37 ◦C. After
three gentle washes with warm buffer (HBSS; Gibco, Paisley, UK), the cells were imaged
immediately under a fluorescence microscope (BZ-X810; KEYENCE, Osaka, Japan). To
confirm the mitochondrial localization of MitoSOX, cells were labeled with 0.1 µmol/L Mi-
toBright LT-Green (Dojindo, Kumamoto, Japan) for 15 min at 37 ◦C. The mean fluorescence
intensities of MitoSOX-Red and MitoBright LT-Green were determined using a GloMax®

Discover Microplate Reader (Promega).

4.13. Detection of Intracellular Calcium

Intracellular calcium levels were measured in each group using the Fluo-8 Calcium
Flux Assay Kit (Abcam, ab112129). In brief, cells were incubated with Fluo-8 for 30 min at
37 ◦C and 30 min at RT in HHBS buffer (Sigma-Aldrich, St. Louis, MO, USA), according to
the manufacturer’s instructions. Fluorescence was measured using a GloMax® Discover
Microplate Reader (Promega) with a filter set of Ex/Em = 490/525 nm. The calcium fold
change was calculated using no stimulation data as the standard value.

4.14. Seahorse XF Analysis

A Seahorse XF HS mini analyzer (Seahorse Bioscience, Agilent, CA, USA) was used
to assess the key parameters of mitochondrial function by directly measuring the cellular
respiratory index of oxygen consumption rate (OCR) and the glycolysis index of extracel-
lular acidification rate (ECAR). According to the manufacturer’s protocol, cells in each
group were seeded onto an XFp cell culture microplate (Seahorse Bioscience, Agilent,
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Santa Clara, CA, USA) at a density of 30,000 cells per well for 24 h. On the day of the
experiment, the culture medium was replaced with Seahorse XF RPMI medium (Seahorse
Bioscience, Agilent, CA, USA) supplemented with 10 mM glucose, 2 mM l-glutamine,
and 1 mM sodium pyruvate (pH 7.4) and transferred to a non-CO2 incubator for 60 min.
The final concentration used for mito stress assay (Agilent, CA, USA) was processed by
sequential addition of 1.5 µM/well oligomycin (Olig, port A), 1 µM/well FCCP (port B),
and 0.5 µM/well rotenone/antimycin A (AA/Rot, port C). For the ATP production rate
assay (Agilent, Santa Clara, CA, USA), the final concentrations used were 1.5 µM/well
oligomycin (Olig, port A) and 0.5 µM/well rotenone/antimycin A (AA/Rot, port C). The
OCR and ECAR values were normalized to the total number of cells per well. XFe Wave
software 1.0.0-532 (Seahorse Bioscience, Agilent, Santa Clara, CA, USA) was used to analyze
the results (Seahorse Bioscience, Agilent, Santa Clara, CA, USA).

4.15. Intracellular ATP Content

Intracellular ATP content was measured in each group of neuronal cells with the
Intracellular ATP Assay Kit version 2 (TOYOIN<GROUP, Tokyo, Japan), according to the
manufacturer’s specifications. After co-culturing in 24-well plates for 8 h, the cells in
each group were washed twice with PBS, 400 µL ATP extraction reagent was added and
stirred for 5 min at RT. 10 µL of ATP extraction suspension was mixed with 100 µL of ATP
assay reagent. The luminescence of each group of cells was measured using the GloMax®

Discover microplate detector (Promega).

4.16. Intracellular Lactate Content

Intracellular lactate content was measured in each group of neuronal cells using the
Lactate-GloTM Assay (Promega, Madison, WI, USA), according to the manufacturer’s
specifications. After co-culturing in 24-well plates for 8 h, the cell supernatant from each
group was collected and diluted 55-fold. The diluted supernatant was transferred (50 µL)
to a 96-well plate, 50 µL of lactate detection reagent was added, and the plate was shaken
for 45 s and then incubated for 60 min at RT. The luminescence of each group of cells was
measured using the GloMax® Discover microplate detector (Promega).

4.17. Cell Viability

Cell counting kit-8 (CCK-8; Dojindo, Kumamoto, Japan) was used to detect the viability
of neurons in each group. Briefly, MELAS neurons were co-cultured with REC/MSC for
24 h. After incubating the collected group of neurons (Control-N, MELAS-N, MELAS-N
w/REC, and MELAS-N w/MSC) in 96-well plates (10,000 cells per well) for 1 week at 37 ◦C,
then the groups of cells were incubated with CCK-8 solution for 2 h at 37 ◦C. Absorbance
was measured at 450 nm using a GloMax® Discover microplate detector (Promega, Madison,
WI, USA).

4.18. Detection of Human Growth/Differentiation Factor 15 (GDF-15) Levels

Cell culture medium samples were prepared according to the manufacturer’s protocol,
and the levels of GDF-15 were measured using an enzyme-linked immunosorbent assay
(ELISA) kit (Invitrogen, Carlsbad, CA, USA). The optical density of the samples was
measured using a GloMax® Discover Microplate Reader (Promega, WI, USA) at 450 nm.

4.19. Statistical Analysis

Data were analyzed, and statistical analyses were performed using GraphPad Prism
9 (GraphPad Software, San Diego, CA, USA). Data points are expressed as mean ± SD
unless otherwise indicated. Statistical analyses were performed by one-way ANOVA with
a Bonferroni post hoc analysis for comparison of three or more groups. For comparisons
between groups, Student’s t-test was used. Results with * p < 0.05, ** p < 0.01, *** p < 0.001,
and **** p < 0.0001 were considered significant.
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5. Conclusions

These data suggest that REC-donated exogenous mitochondria may offer a potential
therapeutic strategy for treating neurological dysfunction in MELAS.
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