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ABSTRACT

Despite recent efforts to develop automated pro-
tein structure determination protocols, structural
genomics projects are slow in generating fold
assignments for complete proteomes, and spatial
structures remain unknown for many protein families.
Alternative cheap and fast methods to assign folds
using prediction algorithms continue to provide
valuable structural information for many proteins.
The development of high-quality prediction methods
has been boosted in the last years by objective
community-wide assessment experiments. This
paper gives an overview of the currently available
practical approaches to protein structure prediction
capable of generating accurate fold assignment.
Recent advances in assessment of the prediction
quality are also discussed.

INTRODUCTION

Methodological advances in DNA sequencing resulted in an
outbreak of sequence information (1-3). Compared to about
3 million publicly available different protein sequences, the
number of experimentally determined spatial structures lags
two orders of magnitude behind. Despite the structural genom-
ics initiatives and biochemical efforts to characterize protein
families, the fastest way to gain information about the struc-
tural and functional properties of a protein is through com-
putational inference from an experimentally studied homolog
(4-9). Structure prediction, even in the absence of homology,
is an important first step in the sequence-to-structure-to-func-
tion paradigm (10) (Figure 1). Recognizing numerous pitfalls
in the naive application of this paradigm, we agree that know-
ledge of the spatial structure assists functional prediction,
because proteins function as 3D objects. Theoretically, it

should be possible to deduce structure from sequence by
accurate simulation of physical processes (11). We are very
far from achieving this goal, and the methods of practical
importance were traditionally based on the observation that
proteins with similar sequences are structurally similar as well
(12). Simple sequence similarity-based approaches, such as
BLAST, were potent in making structure—functional predic-
tions (13), since statistically significant sequence similarity
usually signifies homology, similar fold and related function.
However, standard sequence methods leave a prohibitively
large gap of more than 30% of the proteome while assigning
protein function (14), whereas at the fold prediction level the
effectiveness of these methods is even much worse. Frequent
examples of proteins with similar function and structure, but
undetectable sequence similarity have prompted development
of more sensitive structure prediction algorithms (15,16).

In the 1990s threading (inverse folding, fold recognition)
methods (17-20) emerged. These methods, matching a
sequence to a structure, gave a promise to extend the power
of sequence-to-sequence alignments. Initially, fold recognition
was developed with a hope to detect analogous proteins with no
evolutionary relationships, but with common fold. However, in
many cases the homology was confirmed later by new, more
sophisticated sequence comparison methods, such as PSI-
BLAST (21). The fold recognition research left a significant
impact on the protein classification field not only because of the
development of new sensitive prediction approaches but also
because it established the prediction accuracy assessment
standards (22-34). Since structure diverges slower than
sequence, fold similarity and structure-based alignments can
be used for benchmarking prediction success for both fold
recognition and distant sequence similarity detection methods.
This led to the direct competition of both types of methods and
inspired further development. Threading was routinely
weighed against PSI-BLAST, but with time evolved into
hybrid approaches, which in many aspects profited from the
fast and sensitive sequence alignment algorithms (horizontal
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Figure 1. Sequence-to-structure-to-function paradigm. The leftmost picture shows the structure of Bacteriocin AS-48 (1e68, left) from Enterococcus faecalis,
a 70 residues long cyclic bacterial lysin (100). This protein is structurally and functionally related to mammalian NK-lysin (101) (Inkl, right) despite undetectable
sequence similarity, as only 4% of residues are identical after structural superposition. The Bacteriocin sequence was a target T0102 in the CASP-4 experiment.
An excellent model (middle) was obtained by the Baker (59) group using the ab initio method Rosetta with an RMSD of 3.5 A over all 70 residues. No other method
was able to predict this fold with similar accuracy. A search of the protein structure database with this model yielded NK-lysin as the first structural match of
comparable length. This illustrates that the ab initio approach was able to predict the structure that could be used to predict the function of the protein.

software transfer). The secondary structure prediction compon-
ents were often based on PSI-BLAST profiles, and sequence
profile scoring was soon added to the fold recognition scoring
functions. At the time when pure threading was replaced by
hybrid approaches, gapped alignment of two sequence pro-
files provided an accuracy boost to methods, which com-
pletely ignore the structural information (35). Since the first
community-wide benchmarking of servers (27) in 1998, such
‘sequence-only’ algorithms have proven to be competitive in
structure prediction tests. Until today, the advantage of using the
structural information available for one partner in comparing
two protein families has not been clearly demonstrated in bench-
marks. Nevertheless, generation of structural models in the
course of prediction has proven to be very useful, i.e. when
clustering structural models in meta predictions.

In a meta prediction, the query sequence is subjected to
a variety of different prediction approaches, the results are
collectively analyzed for consistency to generate consensus
predictions and to estimate their reliability. With the appear-
ance of the first protein structure prediction, meta server (36)
developers obtained convenient access to many different
3D models produced with various prediction methods, but
standardized in terms of their format. It has become possible
to cluster a large set of models by structural comparison. Such
clusters could contain similar models based on evolutionary
diverse templates additionally supporting the putative struc-
tural predictions. This idea was soon exploited by experts (28)
and first automated meta predictors (37) that selected repres-
entatives of large clusters of models rather than models with
the highest score. This strategy turned out to be very successful
and soon after the first versions of meta predictors became
available, they took over individual methods as shown by
evaluation of blind predictions, including the community-
wide assessment of protein structure prediction [CASP-5
(26)]. Multiple tests confirm that consensus methods are
more powerful than individual prediction servers in sensitivity
and specificity even if some meta predictors use as little as
three component servers as sources of models.

The biannual CASP (Critical Assessment of techniques for
protein Structure Prediction) experiments objectively evaluate
the prediction protocols used by experts. It is increasingly
evident that good results are obtained by groups, which utilize
as many different sources of information as feasible given the
short time and available human resources. The most common
successful strategies include the initial analysis of many
models collected with meta servers and processed by various
meta predictors, which sometimes include ab initio compon-
ents, followed by manual selection and tuning of final models
supported by extensive literature analysis. To fully benefit
from the growing number of resources, it is important to
know the differences between available prediction methods
and how to come to correct consensus decisions and improve
structural model for a target of interest. This paper is aimed at
providing an overview of current techniques that have proven
to be most successful judging by the results of the CASP-5
experiment. We summarize the lessons from many years of
testing the structure prediction methods and suggest possible
applications for 3D protein models in biological research.

PROTEIN STRUCTURE PREDICTION METHODS

Although we are still far from the precise computational solu-
tion of the folding problem, a variety of different approaches
to protein structure prediction are available after more than
50 years of research. They range from those based solely on
physical principles to purely statistical methods and methods
that rely on utilization of evolutionary information. The
methods rooted in physics are still in their infancy and are
not yet capable of large-scale generation of meaningful protein
models. We focus on practical solutions that, despite the
absence of theoretical rigor in them, can be and are success-
fully used by biologists in their research. Figure 2 provides an
overview of different classes of algorithms described in
more detail below. Table 1 lists servers that offer structure
prediction service for the community of researches.
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Figure 2. Protein structure prediction methods. (a) Sequence—sequence, profile—sequence, sequence—profile comparison methods represent a traditional
evolutionary-based approach to predict structures of proteins. The simplest method (I) aligns the sequence of the target with the sequence of the template using
a substitution matrix. More sensitive methods (II) define scores for aligning different amino acids separately for each position of the target sequence (PSI-BLAST)
or the template sequence (RPS-BLAST). The scores are taken from the analysis of sequence variability in multiple alignments of the corresponding sequence
families. Such position-specific scores are also called profiles. They are similar in format to the representation of sequence families used by prediction methods based
on HMM:s. (b) Profile—profile comparison methods utilize the profiles generated by the above mentioned sequence alignment methods. Instead of a lookup of a
substitution score, they compare two vectors with each other when building the dynamic programming matrix used to draw the alignment. The comparison is usually
conducted by calculating a dot product of the two positional vectors (as shown in the figure) or by multiplying one vector times a substitution matrix time the other
vector. Depending on the choice of the comparison function the vectors are often rescaled before the operation. The sequence variability vectors are sometimes also
augmented with meta information, such as predicted secondary structure as indicated in the figure. (¢) Threading or hybrid methods utilize the structure of the
template protein in the comparison function. The position-specific alignment scores are computed for the template protein by replacing the side-chain of a residue
with side-chains of all possible amino acids and by calculating the resulting substitution scores using statistically derived contact potentials. In addition, factors such
as matching of predicted and observed secondary structure or burial preferences are also taken into account when aligning two positions. Most threading methods use
frozen approximation where the sequence is threaded through the template structure and contacts are calculated between the target side-chain and side-chains of the
residues of the template. In the much slower, defrosted threading template side-chains are replaced with side-chains of the target according to the alignment before
calculating the contact scores. (d) Ab initio methods represent a physical approach to predict the structure of the target protein. The methods are based on an energy
function, which estimates the conformational energy of the chain of the modeled protein. The energy can be calculated in a similar fashion as in the threading methods,
i.e. utilizing contact potentials. The advantage of ab initio is that the database of folds does not constrain the set of possible results and theoretically any conformation
can be generated and tested. Ab initio methods differ in employed energy functions and in the way conformational modifications are generated. Most common
methods employ fragment insertion techniques or constrain the move set by placing the molecule on a lattice. (e) Meta predictors represent statistical approaches to
improve the accuracy of protein structure predictions. Simple meta predictors collect models from prediction servers, compare the models and select the one, which is
most similar to other models. The consensus model corresponds to a model selected from the collected set and represents the final prediction. More advanced meta
predictors are able to modify the set of collected models either by filing missing parts with ab initio or loop modeling or by creating hybrid models from segments of
structures collected from prediction servers. Hybrid models have a higher chance to provide a more complete model but are sometimes unphysical in terms of chain
connectivity.
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Table 1. Publicly available fold recognition servers

Code

PDBb

FFAS
FFA3

ORFs
ORF2

mBAS
BasD
BasP

ST99

SFAM
SFPP

FRT1

ST02

3DPS

GETH
MGTH

FUG2
FUG3

RAPT

SPKS

PRO2

INBG

SHGU

PCO2
PCO3
PCO4
PCO5
PMOD
PMO3
PMO4
3DS3
3DS5

3JAa
3JBa
3]Ca
3JA1
3JB1
3JC1

Sequence-only methods (no structural information required)

PDB-BLAST is based on the PSI-BLAST (21) program. PSI-BLAST is iterated five times on the non-redundant protein sequence database clustered
at 70% identity and masked with low complexity filters. Before the fifth iteration, the sequence profile is saved and used as query against
sequences of proteins with known structures (from PDB). This server is a default reference most fold recognition servers are compared with.

FFAS (45) is a profile—profile comparison method. Profiles are generated for protein families in a different way than in PSI-BLAST, but PSI-BLAST
is used to collect the sequences of the families. The old version FFAS is now obsolete and replaced with the new version FFAS-03, which uses
vector times matrix times vector multiplication when aligning two positions and improved transformation of raw alignment scores into Z-scores.
FFAS is one of the first profile—profile comparison servers.

ORFeus (51) is a meta-profile with meta-profile comparison method (meta profiles include sequence profiles and predicted secondary structure).
It uses vector times vector multiplication. The old version returns the raw alignment score, while the new version ORFeus-2 translates the score
into a Z-score.

Meta-BASIC (mBAS) (69) is a local meta predictor, which uses six different versions of meta-profile alignment methods, including two versions of
ORFeus. Distal-BASIC (BasD) uses two versions of low stringency meta profiles (five PSI-BLAST iterations) aligned with vector times vector
and vector times matrix times vector multiplication. Proximal-BASIC (BasP) uses high stringency meta profiles (only three PSI-BLAST
iterations). The strongest asset of these algorithms is their high specificity.

Sam-T99 (44) builds a multiple alignment (the SAM-T99 alignment) by iterated search using HMMs. It uses the alignment to predict secondary
structure (with various methods) and to build an HMM for searching PDB for similar proteins. Also, a library of HMMs built by similar methods
from PDB sequences is used to score the target sequence. This server has a long tradition and was one of the best servers in CAFASP-1.

SUPERFAMILY (102) is a library of HMMs based on SCOP. The server uses HMMs and the SAM methodology as does Sam-T99. SUPFAM_PP
is the next generation of SUPERFAMILY. Both servers are capable of generating hybrid models using partial alignments to various templates.
The top 10 generated models are sometimes quite redundant.

FORTE-1 (103) is a profile—profile comparison method. The correlation coefficient is used as similarity measure of two aligned profile positions.
The profiles are generated using PSI-BLAST.

Hybrid methods (use structural information of the template)

SAM-T2K (104) iterated search procedure is used to create a multiple alignment of homologs. Templates are aligned with three different target
HMMs (using different secondary structure predictions and also no secondary structure prediction at all) and the target is aligned with template
HMMs. Many alignments are made and the top five distinctly different ones are reported. This server has a higher accuracy than Sam-T99.

3D-PSSM (105) is based on a hybrid threading approach using 1D and 3D sequence profiles coupled with secondary structure prediction and
solvation potential. 3D-PSSM is one of the first fold recognition servers. It was rated as very sensitive in LiveBench-2.

GenTHREADER (GETH) (106) uses a combination of various methods, including sequence alignment with structure-based scoring functions as well
as a neural network-based jury system to calculate the final score for the alignment. mGenTHREADER (MGTH) is an enhanced version of
GenTHREADER. It takes as input a PSI-BLAST profile calculated for the target sequence. Both versions took part in the first CAFASP evaluation
and have a long history. mGenTHREADER was rated as very specific in LiveBench-2.

In FUGUE (107), environment-specific substitution tables were derived from the structure-based alignments in the HOMSTRAD database. Each
alignment in HOMSTRAD was converted into a scoring template (profile) using the environment-specific substitution tables with environment-
dependent gap penalties and enhanced by homologous sequences. FUGUE takes a sequence or sequence alignment and searches against the library
of profiles. FUGUE is a relatively new server.

RAPTOR (108) uses a threading technique for fold recognition. It minimizes an energy function consisting of mutation, singleton, pair-wise and
secondary structure terms. The method is formulated as a large-scale integer programming problem. Support Vector Machine technique is used to
assess the alignment reliability. RAPTOR is quite new and was very successful in CASP-5.

SPARKS (Sequence, secondary structure Profiles And Residue-level Knowledge-based Score for fold recognition) (109) uses single-body residue-
level knowledge-based energy score combined with sequence profile and secondary structure information for fold recognition.

PROSPECT (PROtein Structure Prediction and Evaluation Computer Toolkit) (110) is a threading-based protein structure prediction system. The
system uses the following terms: mutation energy (including position-specific score matrix derived from multiple sequence alignments), singleton
energy (including matching scores to the predicted secondary structures), pairwise contact potential (distance dependent or independent) and
alignment gap penalties.

INBGU (111) is a combination of five methods, which exploit sequence and structure information in different ways and produces one consensus
prediction of the five. It uses predicted versus observed secondary structure and sequence profiles for both the target and for the folds in the library.
The precursor of INBGU (frsvr) was one of the best performing servers in CAFASP-1.

ShotGun-INBGU (68) uses the ShotGun consensus layer to create alternative consensus models from the INBGU components. The server is much
more accurate than INBGU. It uses only in-house components, but it is almost as accurate as structure meta predictors.

Structure meta predictors (build consensus form other servers)

Pcons (37) comes in various versions and uses various sets of component servers to generate consensus predictions. The largest set includes
SUPFAM_PP, FFAS-03, FFAS, SAM-T2K, FUGUE-3, PROSPECT, mGenTHREADER, INBGU, 3D-PSSM, ORFeus, FORTE-1 and
PDB-BLAST. Pcons (PCO.. ... ) returns one of the models obtained from component servers while Pmodeller (PMO . ..) runs Modeller (65) using
the alignments collected from the servers. Pcons is the first automated structure meta predictor and receives very good scores since LiveBench-2.

ShotGun (68) is a consensus predictor which utilizes the results of FFAS-03, 3D-PSSM and INBGU (3DS3) and in the larger version also
FUGUE and mGenTHREADER (3DSS5). It compiles a hybrid model from the models produced by the component servers by combining
partial structures. The generated structures are sometimes unphysical but the server has very high sensitivity and specificity (reliability
estimation).

3D-Jury (64) is an interactive meta predictor. The user can select the set of servers used for consensus building. 3D-Jury can also include other meta
predictors making this server a ‘meta—meta predictor’ (the 3JB and 3JC version). It can operate in single model (one model per server, suffix ‘1) or
multiple model (suffix ‘a’) modes. The default 3JA1 version uses 8 component servers and the single model mode.
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Table 1. Continued

Code
Ab initio meta predictors (use meta predictors and ab initio modules)

RBTA Robetta (66) produces full chain models with the Rosetta de novo and comparative modeling methods. De novo models are built by fragment insertion
simulated annealing. Comparative models are built by detecting a parental PDB structure with PSI-BLAST or Pcons2, aligning the query to the
template with the K+SYNC alignment method, and modeling variable regions with a modified version of the de novo protocol. Robetta is one of
the best performing servers as evaluated in CASP-5.

PRCM PROTINFO-CM (67) uses 3D-Jury as initial alignment provider. Initial models are then built for each alignment and scored. Loops and side-chains

are built on the best scoring models using a frozen approximation. The relatively slow method (not available publicly at present) does a
sophisticated graph—theory search to mix and match between various main-chain and side-chain conformations. Good results have been obtained
in LiveBench-7 but due to limited computational resources it was withdrawn from LiveBench-8.

The table provides a short description of selected, publicly available servers that took part in LiveBench-7 or LiveBench-8 and gives a short description of the
underlying algorithm. The new ab initio meta predictors are quite slow and because of this not yet available for public use. Their additional weakness is the lack of a
confidence score. Sequence-only methods neglect by definition any information about the structure of the template and in contrast to hybrid methods can be used as
general homology inference methods between any protein families. Structure meta predictors offer currently the highest utility by producing accurate models with

reliable confidence assessment.

Sequence similarity-based methods

Sequence—sequence comparison. The most popular and simple
method to assign the fold of a protein is by finding a close
homolog with a known structure. Simple sequence—sequence
comparison methods, such a BLAST (13) or FASTA (38), can
assign the fold for ~30% genes in microbial genomes (39).
First versions of BLAST provided ungapped local alignment
and required only a substitution matrix, which defines a score
of aligning residues of two types. Currently, all common pro-
grams provide gapped alignment requiring parameters defin-
ing the penalty for allowing gaps, usually a gap initiation and a
gap extension penalty. Both alignment parameters and substi-
tution matrices have been extensively evaluated to obtain best
alignment and highest discriminative power between signific-
ant scores for homologs and expected random scores (40). The
main advantage of methods like BLAST is their extreme speed
achieved through tailored initial screening of sequences in the
database, which have a chance to obtain a sufficiently high
alignment score. The disadvantage of such methods is that
conserved and variable positions are treated with the same
weight and have the same effect on the final alignment
score. In contrast to newer approaches, the ability to detect
distant homologs with simple sequence alignment is limited.

Profile—sequence and sequence—profile comparison. The
assumption that the alignment of conserved motifs is more
important than the alignment of variable regions led to the
development of position-specific substitution matrices (41).
The generic 20 times 20 substitution matrix is replaced by
an N times 20 substitution matrix, called profile, which defines
the score for aligning any of the 20 amino acids to each of the
N residues of the protein for which the profile is built. Such
profiles are generated based on the variability of amino acids
found in multiple sequence alignment of the target with its
close homologs. Thus, the profile describes a family of homo-
logs rather than a single sequence. The calculation of the
profile requires an initial multiple alignment as input. This
calculation is the only additional computational requirement
relative to the simple sequence alignment tools described
earlier. The speed of aligning a profile to a sequence is approx-
imately the same as aligning two sequences, because the score
of aligning two positions is calculated through a lookup in a
profile or a matrix, respectively.

The most popular profile-sequence comparison method
is PSI-BLAST (21). It enables the iterative generation of mul-
tiple alignments and profiles for the query protein. Its popu-
larity is partially attributed to its high speed, which comes
from the same initial screening technique for potential high
scoring hits as implemented in BLAST. RPS-BLAST, a recent
addition to the BLAST-based tools, offers the possibility of
searching a database of profiles calculated, for example, for
conserved domains, with a query sequence (42). It enables a
much faster analysis of the query protein because no iterative
generation of multiple alignments and profiles for the target
protein is needed. Nevertheless, the search is limited to a relat-
ively small set of several thousands of protein families in
contrast to currently about 3 million non-redundant sequences
that can be aligned to the query profile with PSI-BLAST. The
database of profiles used by RPS-BLAST requires much more
space because at least 20 values must be stored for each res-
idue. This database has to be read from the disk each time a
new prediction is conducted if it exceeds the RAM limits of
the computer system.

Other closely related methods are based on the application
of hidden Markov models (HMMs) (43,44). The models
describe the sequence variability of the protein family and
contain the probability of occurrence of each of the 20
amino acids at each position of the query protein. This is
essentially identical to the information stored in position-
specific substitution matrices, but instead of gap penalties
HMMs operate with position-specific deletion and insertion
probabilities. The HMMs are also calculated based on multiple
alignment of the family of homologous proteins. However,
HMM search tools do not use any initial filtering of a database.
This greatly reduces the speed of the comparison but has a
positive effect on the sensitivity of the method. In most bench-
marks, HMMs outperform PSI-BLAST based procedures.

Profile-profile comparison. Using profile with sequence
(profile—sequence and sequence—profile) alignment methods,
it is possible to compare both query profile with template
protein and query sequence with template profile, which res-
ults in two potentially different alignments. The attempt to
make this comparison more symmetric resulted in the direct
alignment of two profiles (45-50). Instead of scoring an amino
acid in a sequence with a position of the profile, the direct



profile—profile alignment methods compare two profiles with
each other. There are many ways to convert two positional
vectors into one similarity score. The first and simple approach
is based on the calculation of a dot product, which equals to the
sum of products of all 20 pairs of amino acid substitution
scores. Scores equal to the first vector times a substitution
matrix times the second vector are also used, and the vectors
correspond to observed amino acid frequencies at a given
position. The main problem when developing such methods
was the definition of the alignment parameters that include the
gap initiation and gap extension penalties and a constant value,
which is subtracted from the vector comparison score. The
constant value ensures that the expected score of aligning two
positions remains below zero. Otherwise, the expected optimal
alignment would be global and will typically span the entire
sequences of both proteins.

The reason for developing profile—profile comparison meth-
ods was to obtain more sensitive tools applicable even if none
of the alignment partners has a known structure. It was shown
that such methods can detect similarity between two families,
undetectable when using profile with sequence comparison for
any member of the query or the template families (45). Recent
advance in profile comparison tools is based on the applica-
tion of meta profiles, which add predicted secondary structure
preferences as additional three values to the position-specific
substitution scores, as implemented in ORFeus (51). The sec-
ondary structure prediction is based solely on the sequence
profiles themselves, thus no additional source of information is
required. Nevertheless, this approach of presenting the infor-
mation to the alignment program seems to result in a more
sensitive detection of similarity between protein families.

Threading methods: sequence-to-structure scoring

Two observations inspired the development of threading
methods. First, proteins sharing similar structure while show-
ing negligible sequence similarity were discovered. This led to
the conclusion that sequence similarity is not necessary for
structural similarity, suggesting that convergent evolution can
drive completely unrelated proteins to adopt the same fold.
Second, the analysis of spatial arrangements of amino acids in
protein structures resulted in the identification of interaction
preferences and development of residue contact potentials. It is
easy to explain the observation that hydrophobic residues have
a higher chance to be in contact with other hydrophobic resi-
dues just owing to the fact that those residues are expected to
be packed in the interior of the protein forming the hydro-
phobic core. While these interactions played an undoubtedly
dominant role in the calculation of potential, the developers
claimed that the contact-based scoring matrices contain
information about other essential and specific interactions
shaping the native structures of proteins. The success of
this concept is partly owing to the simplicity of representing
the interactions between various amino acids in form of a
matrix, which has the format of a substitution matrix.

The threading methods take their name from the conceptual
threading of the sequence of the query protein through the
structure of the template. The structural environment around
a residue could be translated into substitution preferences by
summing the contact preferences of surrounding amino acids.
This means that, knowing the structure of a template, the
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preferences for 20 amino acids in each position can be cal-
culated and expressed in the form of a profile of N times
20 values. This profile has the same format as the position-
specific scoring profile used by sequence alignment methods,
such as PSI-BLAST, and can be used to evaluate the fitness of
a sequence to a structure. The fact that the sequence of the
protein is usually not the sequence with the highest fitness
score to this protein’s structure did not discourage developers.
This phenomenon can be easily explained by the concept that
native proteins may fold through a process of elimination of
other unfavorable conformations. Thus, the native sequence
adopts the native structure because the fitness score to the
native structure is much higher than that to other possible
conformations. Such an energy gap was not necessarily
observed for sequences designed artificially to optimize the
fitness score to one particular structure.

However, one problem remains unsolved. If threading
methods are designed to find similarity between evolutionary
distant or even unrelated proteins, which share much <30%
sequence identity, then the actual structural environments
should also change dramatically. On average, one could expect
that for each considered (defined as a central) residue <30% of
surrounding amino acids are identical in both structures. The
handling of this problem divides the threading methods in
those using the ‘frozen approximation’ and those using the
‘defrosted approximation’. In the first approach, while analyz-
ing the fitness of the query sequence to the template structure,
the surrounding structural environments for each residue of the
query are kept identical to those observed in the template struc-
ture. This procedure is as fast as aligning a profile with a
sequence but has important disadvantage that calculated in
such a way local environments have little in common with
those that might be observed in the native structure of the
query protein. Most of them are essentially wrong, as majority
of surrounding residues in template structure are replaced by
different amino acids in the query protein. In contrast, the
defrosted approach updates the surrounding amino acids of
the template with the aligned amino acids of the query protein
when calculating the fitness of the central residue (52). This
has a dramatic negative effect on the speed of the optimal
alignment, which now cannot be evaluated on a local basis
because the alignment score depends on the alignment of other
parts of the protein. Stochastic methods are used to update the
alignment, and the fitness of the sequence to the structure is
evaluated each time the alignment changes. The calculation of
the fitness of a sequence to a structure can take hours and
the scanning of databases of folds requires large computer
resources. Nevertheless, methods using the defrosted approach
are much more accurate in predicting the fold of a protein
than threading with frozen approximation. Fold recognition
in CASP-3 (24) in 1998 was dominated by such methods
(53). However, with the growing number of known structures,
the computational requirements become prohibitive. While
running a dozen of CASP targets is feasible, genome annota-
tions cannot be conducted without massive computer resources.

Hybrid methods: combining sequence similarity
with threading

The impractical speed of orthodox threading programs motiv-
ated the quest for other sensitive fold recognition methods,
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which could be applied on the rapidly increasing number of
targets resulting from genome sequencing projects. The fast
growth of the sequence databases contributed to a critical
review of the threading concept, which was based on the
assumption that the local structural environment has an effect
on the amino acid substitution pattern of each considered
residue. If this effect would be the main determinant of the
mutational behavior of a residue, it should manifest itself in the
mutations observed in homologous proteins. This reasoning
led to the conclusion that profiles generated with sequence
alignment methods, such as PSI-BLAST, already include the
mutation preferences imposed by the native conformation.
Threading algorithms would then be required only if insuffi-
cient information exists about the sequences of proteins
homologous to the template protein. However, the majority
of protein families with known structure do have sufficient
homologs to calculate local substitution preferences from
multiple alignments.

This observation gave rise to hybrid methods, which were
designed to utilize sequence information from multiple
sequence alignments if available, but also added terms such
as residue-based secondary structure preferences or prefer-
ences to be buried in the core of the protein. The hybrid
methods can use the frozen approximation when aligning a
query protein to a template structure, because the secondary
structure or the pattern of exposed and buried residues in
structurally similar protein shows smaller variation than
the amino acids and the local structural environments. The
dynamic programming matrix of scores between all residues
of two aligned proteins can be calculated using the employed
terms before the alignment is drawn. This alignment defines
the initial model of the structure of the query protein, which
in some cases is additionally evaluated with previously men-
tioned contact potentials. Such methods have been success-
fully applied in genome-wide structure prediction experiments
and claimed a higher fold assignment rate than that obtained
with PSI-BLAST, which is routinely used as performance
reference. However, direct comparison with profile—profile
alignment methods turned out to be surprisingly favorable
for the latter ones, which became serious competitors in
protein structure prediction. Presently, the advantage of
including the structural information in the fitness function
cannot be clearly proven in benchmarks.

Practical ab initio methods

According to various benchmarks, fold recognition methods
fail to select the correct fold from the database for ~50% of
the cases when no significant sequence similarity exists. Fold
recognition has also the limitation that no novel folds can be
proposed since all predictions are based on already known
structures. On the other hand, it is largely accepted that the
structure and function of the protein is determined by its
sequence (54). Ab initio methods are aimed at finding the
native structure of the protein by simulating the biological
process of protein folding. These methods perform iterative
conformational changes and estimate the corresponding
changes in energy. The main problems here are the inaccurate
energy functions and the vast number of possible confor-
mations a protein chain can adopt. The second problem is
approached by reduced representation of conformations and

coarse search strategies. The most successful approaches
include lattice-based simulations of simplified protein models
(55,56) and method building structures from fragments of
proteins (57,58). The recent progress in the field is mainly
attributed to the clustering of final conformations obtained
after a large number of simulations. Representatives of large
clusters are preferred as final models, which decrease the
emphasis on calculated energy values.

Ab initio methods demand substantial computational
resources. Nevertheless, they have been used successfully in
last two CASP experiments on targets where fold recognition
methods failed. The quality of the models remains quite low
and it is difficult to say, which parts of which model are
correct. Nevertheless, the course model can be used to query
structural similarity searches against the database of known
folds to detect distant functional similarity (59) (Figure 1).
Ab initio methods are increasingly applied in large-scale
annotation projects, including fold assignments for small gen-
omes. Ab initio methods are also the only methods that can be
used to design new proteins (60,61). However, only few sites
provide ab initio structure prediction service for the commun-
ity. Biologists have to rely on pre-calculated results available,
for example, for selected Pfam (62) families. The ab initio
methods are also quite difficult to use and expert knowledge is
needed to translate the results into biologically meaningful
predictions. Nevertheless, these methods are expected to
have a huge impact on the future of structural biology.

Meta predictors: consensus from multiple methods

One of the main lessons from the last CASP experiments is
that experts that utilize diverse sources of information are
more successful than groups relying on a single structure pre-
diction method. Hints influencing the selection of final models
may come, for example, from biological expertise or literature
searches (63). Such procedures are difficult to implement in
an automated and reproducible fashion. However, the large
diversity can also be obtained by utilizing the growing number
of diverse prediction algorithms. A framework to profit from
this diversity was created by Meta Servers (36) collecting and
analyzing models from many prediction services spread
around the globe.

The first successful attempt to benefit from the diversity of
models was based on the simple approach of selecting the most
abundant fold represented in the set of high scoring models,
a procedure reminiscent of clustering simulated structures by
ab initio prediction protocols. This procedure was easy to
automate and resulted in the first fully automated meta pre-
dictor, Pcons (37). Several others followed soon. All bench-
marking results obtained in the last 2 years indicate that meta
predictors are more accurate than the independent fold recog-
nition methods. Their strength is mainly attributed to the struc-
tural clustering of initial models. Even if many of them are
wrong, it can be expected that structures of incorrectly pre-
dicted fragments of the models have random conformations;
and only structures of fragments corresponding to preferred
conformations occur with higher than expected frequency.

The positive evaluation results boosted further development
of meta predictors. Currently available versions differ in the
way the initial models are compared and the final model is
generated, and in the use of the initial scores assigned to the



models by individual servers. Structural comparison of models
must be fast. If 10 servers each providing 10 models are used to
create a consensus prediction, almost 5000 structural com-
parison are required. Fast, sequence-dependent methods (see
below), such as MaxSub or LGscore, are used to accomplish
this task. When models do not exhibit high structural simil-
arity, the initial scores assigned to each model by the original
prediction method can be consulted to improve the selection
procedure. However, this is not simple, because different fold
libraries and scoring schemes were employed by different
prediction servers. Some meta predictors develop server-
specific neural networks to translate the initial values into
uniform scores (Pcons). Others ignore the scores altogether
and base their consensus evaluation only on the abundance of
folds or structural motifs [3D-Jury (64)]. The final consensus
model is either identical to one of the original models
(3D-Jury, Pcons) or additional modifications are performed.
Pmodeller runs the Modeller program (65) on the selected
initial model. The ShotGun server combines the final model
from fragments taken from several initial models. Servers such
as Robetta (66) or ProtInfo (67) conduct ab initio calculations
on parts of the models guided by the initial structures obtained
from other servers, usually other simpler meta predictors. This
procedure leads to the creation of meta—meta predictors the-
oretically unlimited in the complexity of combining various
components. Technical aspects, such as the delay in waiting
for the response of servers, limit the number of components to
be included. As a consequence, some meta predictors are
created from components available at a single site, such as
ShotGun-INBGU (68), which uses the ShotGun fragment
assembly technology in combination with the traditional local
components of the INBGU hybrid structure prediction method.

The main advantage of developing all components in-house
is that the scaling of scores and the libraries of templates can
be standardized. This concept is applied in Meta-BASIC
(Bilaterally Amplified Sequence Information Comparison)
(69), which uses two versions of algorithms conducting
gapped alignment of meta profiles, such as those used by
ORFeus (see above). The scores computed by Meta-BASIC
have a very high specificity, but the main advantage of this
approach is that it does not require any structural information
of the two aligned proteins. This makes Meta-BASIC (non-
structural meta predictor) applicable to comparison of any
sequence families, such as those from Pfam (62) or COG
(70) databases.

EVALUATION OF PREDICTION METHODS

With considerable growth of protein structure prediction
online services, an objective evaluation of available methods
became essential. The launch of the CASP program in 1994
represents a crucial milestone in the protein structure predic-
tion field. The first experiment started with the collection of
sequences of proteins from the crystallographic community,
for which the structure was about to be solved within the next
few months. The sequences were made publicly available and
the structure prediction community was challenged to respond
with predictions for the released set of targets. At the time of
the release, the native structure remained unknown to the
predictors, the organizers and the crystallographers. Several
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months after releasing the targets, the crystallographers were
asked to report on the progress of their structure determination
efforts. Solved structures obtained so far have been collected
and used to assess the predictions collected earlier. This pro-
cedure made a completely blind and relatively objective evalua-
tion of the different structure prediction approaches and is
being followed until today with ever-increasing interest and
response from the scientific community.

There are few minor shortcomings of the CASP experi-
ments. For example, evaluators (assessors) selected by the
CASP organizing committee establish the exact assessment
protocol after the release of the structural information by the
experimentalists. Another aspect of CASP makes it difficult
for biologists to use best-performing methods. The most accur-
ate CASP predictions represent the work of groups of experts
rather than the outcome of particular algorithms. The same
prediction program can show different results in the hands of
different experts owing to a different choice of parameters and
databases. As a response to this, the CAFASP (Critical Assess-
ment of Fully Automated Structure Prediction) experiment was
launched in 1998 after the CASP-3 session. The first CAFASP
experiment was conducted on the CASP-3 targets with a hand-
ful of automated programs. The goal was to provide assess-
ments of methods with which any user would obtain the same
results. The growth of the CASP community is accompanied
by a fast growth of the number of methods taking part in
the subsequent sessions of CAFASP. Almost 50 prediction
servers took part in the last CAFASP-3 round in 2002. The
experiments are now conducted in parallel with CASP in a
completely blind fashion. The assessment procedures are
essentially the same in all rounds and are published before
each experiment.

A shortcoming of the CASP and CAFASP experiments is
the relatively long delay between the development of a new
method, a process which has been substantially expedited in
the last years, and the availability of objective assessment of
accuracy. In addition, it takes about a year from the beginning
of the experiment to publication of the results. The LiveBench
program is a response to this problem. Launched in 1998, it has
followed a more instant assessment protocol. Protein struc-
tures released weekly in the PDB (Protein Data Bank) (71) are
immediately submitted to the prediction servers, with the hope
that the fold databases used by the prediction methods are
updated in a slower fashion. After some time, this assumption
was proven wrong but the procedure was modified to allow
only models built using templates, which are at least 1 month
older than the target. The main advantage of this program over
the blind prediction experiments is that the evaluation is avail-
able almost instantly after the release of the target and delayed
only by the time the servers need to compute the models. The
disadvantage is obviously that the predictions are not blind any
more and results obtained with the LiveBench program have to
be compared with the outcome of blind prediction tests. To
approach this problem other experiments, such as EVA or
PDB-CAFASP, use now sequences of ‘on-hold’ entries avail-
able from PDB. The structures of ‘on-hold’ entries are released
usually several months after releasing the sequences, but the
delay varies significantly between cases.

The two programs (EVA and PDB-CAFASP) have the same
problem with the delay of the evaluation as the traditional
experiments CASP and CAFASP. Despite the transparent
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Table 2. Selected evaluation measures used to assess the quality of 3D models

GDT TS (Global Distance Test) (112) measure performs sequence-independent superposition of the model and the native structure and calculates the number of
structurally equivalent pairs of C-alpha atoms that are within specified distance d. The GDT TS score is the average of four scores obtained withd=1,2,4 and § A
divided by the number of residues of the target. Despite being slow, GDT TS is the standard measure used in CASP, but it is not part of LiveBench evaluation.

LG-score (113) superimposes the model with the native structure to maximize the Levitt—Gerstein score (114), as in MaxSub (below). The final score is translated
into a P-value, which estimates the chance of obtaining this score given the length of the model. LG-score can operate in sequence-dependent and sequence-
independent modes. The second is much slower. Because of limited computational resources, it has been removed from standard LiveBench evaluations.

Mammoth (115) computes the optimal similarity of the local backbone chains to establish residue correspondences between residues in both structures in the first
step. In the second step, the largest subset of residues found within a given distance threshold is calculated with MaxSub (below). This sequence-independent
structural similarity is translated into P-values.

MaxSub (116) identifies the largest subset of C-alpha atoms of a model that superlmpose well (below 3.5 A) over the experimental structure. MaxSub calculates a
variant of the Levitt-Gerstein score (114), which equalsto Y {1/[1 + (d/3.5 A)? 1}, summed over all superimposed pairs of C-alpha atoms and divides it by the
number of residues in the target. MaxSub is the off1c1a1 CAFASP evaluation method.

3D-score (32) optimizes the sum of exp[—In(2)*(d/3 A) 1, where d is the distance between the superimposed C-alpha atoms. This sum behaves very similar to the
score used in MaxSub or LGscore, but it has no cutoff value and it decays faster with higher distance. The final score is not divided by the length of the target.

CA-atoms<3 A (32) returns the maximum number of atoms within 3 A after superposition generated by optimization of the 3D-score. This very simple measure
shows good performance in distinguishing biologically relevant predictions and is very intuitive and easy to understand.

Q(CA-atoms<3 A) is aimed at evaluating the specificity of the alignment and penalizes wrong sections of the models. It is equal to the square of (CA-atoms<3 A)
divided by the number of residues in the model. This is the only measure used in LiveBench, which penalizes overpredictions (too long alignments). Servers that
return coordinates always for all residues of the target perform worse than if evaluated with other measures.

Contact(A&B) (32) calculate the distance map overlap between the model and the native structure. The calculation is performed in sequence dependent manner and
no rigid body superposition is required. Two ways to normalize the overlap are used resulting in two scores Contact(A) and Contact(B). These two are the only
contact measures used in LiveBench.

Methods performing sequence-independent superposition (first three) are relatively slow and are not used in current LiveBench experiments. Only one measure
[Q(CA-atoms<3 A)] penalizes for wrong parts of models. All methods, except the contact measure [Contact (A&B)], conduct rigid body superposition. The contact
measure can handle the evaluation of multiple domains. GDT TS and MaxSub divide the score by the size of the target. Mammoth and LG-score estimate the

probability of non-random structural similarity expressed as E-value. The scores of the others are proportional to the size of the model.

character of targets, LiveBench is a good approximation of
accuracy of prediction methods; it requires much less
maintenance and can operate on a much larger set of targets
than CASP or CAFASP (both use the same targets). In addi-
tion, a permission from the authors to use each target structure
is not required as it is in CASP/CAFASP. The number of
targets released each week is limited mostly by the throughput
of participating prediction servers or by the number of avail-
able new structures without close homologs of known struc-
ture if only predictions for non-trivial targets are evaluated.
Currently, approximately five new non-trivial targets enter the
LiveBench process each week.

Assessment of 3D models

The concept of using different methods in fold recognition to
confirm the predictions can be applied also to the evaluation
process. There is a large set of available programs that can be
used to compare a model with the native structure. Table 2
provides a short description of frequently used model assess-
ment methods. Most of the methods use rigid body superposi-
tion algorithms to find the best structural alignment, dependent
or independent of the assignment of residue identities in the
model. The so-called sequence-independent methods ignore
the identities of the residues in the model, thus ignoring
possible alignment errors and focusing only on the general
shape of the model. This is somewhat equivalent to verifying if
the target and the template used to build the model have a
similar architecture, topology and fold. Sequence-independent
methods are computationally intensive. It is much faster to
require correct alignment and to evaluate the spatial proximity
of equivalent residues in the model and native structure in
sequence-dependent superposition as most methods do.
Alternative to rigid body superposition, local contacts or
distances between corresponding residue pairs in two struc-
tures can be compared. This procedure is also very fast if con-
ducted in sequence-dependent fashion. Sequence-independent

procedures require finding the best superposition of contact
or distance maps, which is very time-consuming. Such
methods have not found application in the evaluation of
fold recognition results. In contrast, sequence-dependent
contact or distance scores are used and offer the advantage
of much higher tolerance to relative movements between
domains in multi-domain models. If there are differences
in relative domain placement between the model and the
structure, rigid body superposition methods can properly
evaluate only one domain. Thus, the models are frequently
divided into regions corresponding to domains and
assessed independently. This is the case in CASP where the
evaluation is conduced under strong human supervision.
Fully automated evaluation programs, such as LiveBench,
would require robust automated domain detection
methods. Additionally, most prediction servers return as the
first model the structure of the domain, which is easiest to
predict, unless a suitable multi-domain template is found. For
these two reasons, division of targets into domains is not used
in LiveBench.

The differences between model assessment methods con-
tribute to variations in the ranking of servers produced by
different assessment procedures. Obviously, all model evalu-
ation methods give higher scores to models that are closer to
the native structure. However, different assessment methods
use different criteria of closeness to the native structure. For
example, a hypothetical model built using the native structure
but with substantial alignment errors will be preferred by
sequence-independent methods over a model with completely
correct alignment built using a slightly distorted template.
The opposite ranking of these two models will be given by
sequence-dependent methods.

The structure prediction community has failed so far to
define a standard model assessment algorithm. The main
reason for this is the lack of an exact definition of similarity
between the native structures of two proteins. Different



structural classifications of proteins, such as SCOP (72),
CATH (73) or FFSP (74), disagree in many cases when assess-
ing a weak similarity between two native structures, which is
at the level of similarity between models for difficult to pre-
dict targets and the correct structure. Evolutionary relations
between proteins cannot be used to replace the structural clas-
sification as they often remain hypothetical. As a result of
the ambiguity of structural classification, the annotation of
a model as ‘correct fold’ or ‘incorrect fold’ remains rather
arbitrary. As a consequence, a single ranking of prediction
methods should be viewed with the necessary caution.
Consulting various rankings is always recommended, as is
the application of various prediction methods in structural
annotation projects.

Evaluation protocols

There is a number of ways the performance of a prediction
server on a set of test targets can be presented, even if using
just one model assessment program. Prediction servers can be
tuned to obtain the highest alignment score for selecting the
best template or to generate the most accurate alignment ignor-
ing the score. Both optimizations result in different sets of
alignment parameters. Traditionally this has been addressed
in most evaluation experiments by dividing the targets into
several categories depending on the level of difficulty of
finding the correct fold. CASP and CAFASP divide targets
in ‘homology modeling’, ‘fold recognition’ and ‘novel folds’
subdividing the categories further in easy and difficult cases.
LiveBench ignores the easy ‘homology modeling’ targets
referring to them as ‘trivial targets’ and divides the remain-
ing targets into ‘easy’ and ‘hard’. The boundaries between
categories are defined rather arbitrary. In LiveBench, fold
assignment for trivial targets must be possible with BLAST
and for easy targets with five iterations of PSI-BLAST, in both
cases using the 0.001 E-value as confidence threshold. The
relative performance of servers is not constant across differ-
ent target difficulty categories. Because of this, moving the
barriers of the categories has an effect on the ranking. The
definition of boundaries based on PSI-BLAST has also the
effect that methods, which are similar to PSI-BLAST, may
have improved performance on easy targets and reduced
performance on difficult targets.

The easiest way to compare prediction methods in each
category is by counting the number of correct predictions
that were generated. This requires to set cutoffs for correct
and false models. This has been performed, although rather
arbitrary, for various assessment methods. At a first glance, it
seems pointless to count the number of correct hits in the
trivial or easy target category because servers are expected
to do much better than BLAST or PSI-BLAST and should
obtain the maximum score there. Practice shows that this is not
the case. In LiveBench, for some targets PSI-BLAST hits with
E-value below 0.001 are false positives (do not find a correct
template) and those targets contaminate the ‘easy’ category.
The LiveBench community has decided to leave such targets
in the set because correctness of a model depends on the model
assessment program. Despite the problem of apparently mis-
classified targets, there is a variation between the number of
correct models generated by different prediction methods.
ADb initio methods can produce incorrect folds for any target,
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if information about the structure of homologous proteins is
disregarded. Fold recognition methods can miss a trivial pre-
diction if the template is missing in their fold libraries. This
problem is easy to detect if the generated prediction turns out
to be wrong. However, the less severe problem of not having
the best possible template, which results in building the model
using less suitable template, is almost undetectable owing to
complete lack of synchronization between the fold libraries.
As a consequence, the number of correct models generates
a ranking of servers in the easy categories, which reflects
mainly technical aspects of the implementation of the predic-
tion servers. Unfortunately, the much finer evaluation, which
takes into account the quality of each model, is strongly affec-
ted by these technical problems. This problem is not easy to
solve for an independent server, because a robust routine to
update the fold databases represents a rather unscientific (or at
least biologically not attractive) and non-trivial task. On the
other hand, this problem is negligible for meta predictors,
which can assume that an easy hit will be missed only by a
minority of servers and the consensus procedure will not be
severely affected.

Finer procedures to assess the performance of servers usu-
ally add the scores obtained for each model as assigned by the
chosen model assessment method. Depending on the procedure
of assessing models, the evaluation can weight each target
equally, or dependent on its length. Manual homology model-
ing requires an effort, which is proportional to the size of the
protein, i.e. the number of loops or segments that have to be
corrected increases with the size of the protein. Accordingly,
most methods used in LiveBench score the quality of the
model proportional to the number of correctly placed residues.
In contrast to this, the MaxSub program used in CAFASP or the
transformation of the score into a Z-score as performed often in
CASP result in assigning a length-independent weight to each
target. The main difference between CASP and both Live-
Bench and CAFASP is that in CASP all models contribute
to the evaluation to some extent, independent of their correct-
ness. In LiveBench and CAFASP models, which are assessed
as false do not contribute to the sum. As a result, the ranking in
the ‘fold recognition’ category in CASP (equivalent to the hard
category in LiveBench) is affected stronger by the ability to
create models de novo by ab initio methods, since for the many
of these difficult targets fold recognition servers give wrong
answers. Having an assessment score for a set of models allows
the application of statistical methods, which can measure the
significance of the difference between two servers. This is often
conducted in CASP, despite the fact that only few participants
return models for all targets. The experience of LiveBench
shows that the completeness of the fold library and the ability
to select correct templates has a much stronger effect on the
performance than the fine differences in alignments and mod-
els. Because of this, a simple table is provided showing the
number of times each method has generated predictions which
were missed by other methods (‘added value plots’).

Other options to generate ranking of servers include: giving
points only to the methods, which provided the best model for
each target or running the evaluation using the best out of 5 or
10 top models instead of looking only at the first one. Each of
the evaluation schemes can be used to answer a different
question. Number of correct predictions reflects the complete-
ness of the fold library in the easy target category and the
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ability to detect the correct fold for more difficult targets.
The alignment quality can be assessed using the sum of
model scores, however, keeping in mind that servers, which
can recognize the folds of more targets will have an advantage
in this evaluation scheme as well. This is also true in the
ranking based on the number of best models with the addition
that in this category weaker performing servers can demon-
strate their contribution to the community of servers, if obtain-
ing a count higher than zero. The ranking using the best of the
top models reflects the potential to improve the performance
of a server by reshuffling the top scoring predictions using
additional selection criteria.

However, one very important question remains unanswered,
namely when can the user trust the model. With the exception
of some servers, which rely heavily on ab initio components,
most servers assign a confidence score to each model, with the
goal to provide a way to distinguish probably correct models
from likely wrong results. The quality of this score is irrelevant
in CASP, which stopped to assess it, but is very important for
biologists when conducting large-scale structural annotation
projects. Only this score enables a user to define a set of targets,
e.g. genes in a genome, for which a fold can be assigned using
computational approaches. Because of this, some developers
tune their methods to obtain highest correlation between the
confidence score and the quality of returned models. This often
results in a different choice of parameters than those obtained
in optimization for the best alignment or the highest number of
correct fold assignments. The evaluation of the specificity of
the score is usually provided using the receiver operator char-
acteristic curve (75). The curve represents a plot of correct
predictions on the y-axis versus false predictions on the x-axis.
The higher the area below the curve, the more correct predic-
tions are obtained before making an error. In LiveBench, the
specificity score is proportional to the area under the curve, but
the curve is followed only until 10 errors are made. This
corresponds to a reasonable cutoff below a 20% error rate.
Models for all targets are taken into account in this calculation.
The results of LiveBench-7 and LiveBench-8 are summarized
in Tables 3 and 4.

Results of evaluation experiments

Years of experience with benchmarking prediction methods
taught the community to treat the results with appropriate
caution. The tests are affected by many technical problems,
which distort the evaluation of the method performance. The
most severe problem is missing predictions. In CASP, which
evaluates groups of experts, it is quite common that some
participants send only models for selected targets, e.g.
when they feel confident in a prediction or have special expert-
ise. Such groups have a chance to obtain a higher average
model accuracy than groups or methods, which predicted
all models, but the sum of scores will be probably higher in
the later case. The time factor is also very important in CASP.
Currently, CASP offers on average one target domain per
working day in the prediction period of ~3 months. Models
can be improved, if more time can be spent on their prepara-
tion, but the time limits are very strict and the groups have to
run a well-planned schedule to obey the deadlines. CAFASP
has allowed the servers only a 2 days delay between releasing
the target and collecting the results. A server, which is down

over this period, will not be able to respond in time. If the
target is trivial, missing it means almost automatically that the
server has lost the chance to rank number 1 in the most com-
mon classification based on the sum of scores. In LiveBench,
these deadlines are flexible and servers are allowed to file late
predictions or even replace predictions, if severe technical
errors were found. However, this causes additional problems
in the assessment of results. The later a prediction is computed,
the easier on average is the fold recognition problem. This is
owing to the constant growth of the number of determined
protein structures resulting in larger fold libraries and better
coverage of the sequence space with homologs with known
structure. It is also owing to the growth of sequence databases
providing more information about sequence variations in pro-
tein families. This improves the quality of profiles used in fold
recognition. LiveBench tolerates these distortions to avoid the
more severe problem of missing predictions.

The evaluation of the reliability of the confidence score
assigned to models, which is very important to the users,
has a few shortcomings as well. The problem of significant
similarity in short segments of proteins is most profound. Such
short segments can harbor important functional features and
are biologically clearly related. Nevertheless, the small size of
the segments makes it impossible for the model assessment
methods to detect significant structural similarity and such
models are deemed to be false. In LiveBench, models that
are shorter than 50 residues are ignored. On the other hand,
CASP defines sometimes targets that are below 50 residues.
One of the assessment methods used in LiveBench requires
that at least 40 residues are correctly positioned in space to
assess the model as correct. For short targets, such models are
sometimes difficult to obtain even if the prediction is highly
confident. High scoring wrong predictions have obviously a
dramatic effect on the evaluation of specificity. Such errors are
partially owing to short motifs, but surprisingly may be owing
to errors in the experimental protein structures used as the
standard of truth. In LiveBench-4, several targets were
removed after the predictors realized that confident consistent
predictions produced by fold recognition servers are clearly
different than the ‘native’ structures deposited in PDB. In one
case, the target structure was affected (76), while in another
case, the closest homolog in the template database (1fznD)
was incompatible with the target (77). Authors of the protein
structures confirmed afterwards the concerns and removed or
replaced the structures in PDB. This problem is detectable, if
the errors in protein structures are substantial. Relative minor
errors, such as tracing shifts in small segments of proteins, are
more frequent (78,79), but essentially undetectable with cur-
rent methods. This is one of the reasons why details of models,
such as side-chain placement, are neglected in LiveBench,
despite clear biochemical relevance.

Because of many various factors providing distortion to the
ranking of methods, a single ranking produced in one experi-
ment is not very meaningful. The size of the test set should be
increased from the current number of ~100 targets evaluated
in each round to at least 1000, but this is currently not feasible.
This would require a very long data collection period and
would surpass the upgrade and improvement cycles of meth-
ods, which according to our experience takes ~6 months, the
period of a LiveBench round. Despite these difficulties,
practical conclusions for automated and manual structure
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Table 3. Comparison of selected servers participating in LiveBench-8

LiveBench-7 (115 targets) LiveBench-8 (172 targets)
Code Sum FR  Code ROC%  All  Score 3 Code Sum FR  Code ROC%  All Score 3 Lost

-
=}
@
-

3JCa 2300 32 3DSS 55.7 70 5658 62 0 3JCa 2920 39  3JAl 59.6 110 45.33 100 0
3DS5 2133 29 PMOD 543 69 1511 64 2 3DS3 2757 38  3lCa 58.8 107 16.76 100 0
3JC1 2042 30 FFA3 54.2 66 -93 62 0 3JA1 2749 42 3ICl 57.9 108 63.45 100 0
3JAa 1927 30  PCO2 53.8 66 1.12 62 0 3JCl 2720 39  3DS3 56.0 106 51.81 93 0
3DS3 1908 27  3DS3 53.7 67 31.41 62 0 PMO4 2639 38  BasD 535 101 14.11 91 0
PMO3 1830 27  3JAl 532 67 40.56 61 O 3JAa 2622 37  ORFs 533 100 7.55 93 1
PMOD 1793 28  3JCI 52.5 71 62.62 61 O PCOS5 2585 37  PCOS 53.1 104 1.688 91 3
3JAL 1786 27  PMO3 522 66 1.76 60 1 3DS5 2531 36 PMO4  53.0 106 1.847 90 2
SHGU 1708 24  PMO4 519 66 1.546 60 2 RBTA 2407 33  3JAa 52.7 105 15.13 88 0
PCO2 1688 26  PCO4 51.1 64 1.173 60 2 PCO4 2336 35 mBAS 524 102 16.38 91 3
FFA3 1687 26  FUG3 49.9 60 4.8 56 0 mBAS 2306 34 PCO4 51.7 103 1.489 87 2
PMO4 1679 26  PCO3 49.7 64 1.858 53 1 BasD 2261 33  BasP 50.9 98 13.36 86 0
PCO3 1655 26  FUG2 49.7 61 4.54 58 0 SHGU 2241 31 ORF2 50.6 98 27.47 87 2
PCO4 1614 26  3JCa 49.0 73 27.54 54 0 ORFs 2196 32 SEST 49.5 97  6E-06 83 5
RBTA 1597 24  SHGU 488 62 38.33 52 0 BasP 2157 31 FUG3 48.8 93 6.59 84 0
RAPT 1496 24 3JAa 48.2 70 12.32 55 0 ORF2 2124 31 SHGU 4838 98 25.19 85 0
ORFs 1455 23 3DPS 46.8 64 0242 53 0 FFA3 2118 31  FFA3 48.6 98 —14.38 83 0
3DPS 1426 23 PRO2 46.4 59 4545 49 2 SEST 1943 29 STMP  47.7 96  1E-05 79 5
FUG2 1415 22 INBG 44.9 59 21.1 51 0 STMP 1860 28  FUG2 47.6 90 6.26 81 0
INBG 1397 22 RAPT 443 61 8.08 49 0 INBG 1792 25  3DS5 47.4 103 7.242 65 1
FUG3 1332 22 ORFs 443 60 9.3 48 0 FUG3 1756 27  INBG 45.6 91 20.6 75 0
PRO2 1318 20 MGTH 432 57 0564 53 0 MGTH 1743 26  SPKS 45.6 88 —2.75 79 0
MGTH 1307 22 SFAM 417 51 0.009 48 0 FUG2 1703 25 PRO2 435 86 4.091 72 3
FRTI 1121 19  ST99 41.0 55 13.09 52 6 PRO2 1700 26~ SFAM 435 84  SE-11 64 0
SFPP 1107 17  FRTI1 40.3 56 12.07 44 0 3DPS 1685 25 RAPT 422 81 6.66 74 0
SFAM 1067 16  SFPP 39.9 52 1E-12 44 0 SPKS 1646 23 ST99 41.8 82 22.73 66 16
ST99 1020 17  PDBb 36.3 46 0.009 42 1 RAPT 1573 24 SFPP 413 85 3E-24 67 0
GETH 980 16 GETH 34.6 48 059 38 0 SFPP 1534 23  PDBb 383 73 2E-04 64 8
FFAS 414 7  FFAS 23.3 34 7.63 27 0 FRTI 1294 20 MGTH 37.8 91 0.678 51 0
PDBb 344 6 SFAM 1163 18  3DPS 36.4 91 0.06 62 0

GETH 1140 17 GETH 319 78 0.619 50 0

ST99 1081 18  FRTI 30.1 82 22.72 30 0

PDBb 386 7  FFAS 16.5 49 12.17 22 0

FFAS 130 3

Only publicly available servers that provide a description of the underlying algorithm are listed. Results obtained in LiveBench-7 are also displayed if available.
Results for the PROTINFO-CM server are not presented because of late predictions. Servers are colored blue (sequence only methods), red (hybrid methods) and black
(structure meta predictors). The ‘Code’ column shows the code of the method as provided in Table 1. Results obtained using the 3D-score assessment measure are
shown (see Table 2). The ‘Sum’ column prints the sum of scores obtained for correct models of difficult targets (no PSI-BLAST assignment with E-value below 0.001).
The ‘FR’ column shows the number of correct models generated for difficult targets. The ‘All” column shows the number of correct models generated for all targets
including the easy ones. The ‘ROC’ (Receiver Operator Characteristic) value describes the specificity of the confidence scores reported by the methods. It corresponds
to the average number of correct models that have a higher confidence score than the first, second ... tenth false prediction. The ‘ROC%’ column prints the ‘ROC’
value divided by the total number of targets and multiplied by 100. Robetta is not listed here since it does not provide confidence scores. The ‘Score’ column reports the
score of the third false positive prediction and the ‘3’ column presents the number of correct predictions with higher score than the third false one. The score can be used
as an approximate value for the confidence threshold, below which false positive predictions become frequent. The ‘Lost’ column shows the number of missing
predictions for each server. Servers that have more than a few missing predictions cannot be properly evaluated. Some servers that entered LiveBench in the eighth
round have missing scores in LiveBench-7. The new sequence-only methods exhibit high specificity and can compete with structure meta predictors in this ranking.
The structure meta predictors rank much higher in the sensitivity (FR) and model quality (Sum) based evaluation. In LiveBench-8 the meta—meta predictors, such as
3JC1 and 3JCa, which use results of other meta predictors, profit greatly from its parasitic nature. Servers, which are not maintained over long period of time become
obsolete due to outdated fold libraries. As an example, FFAS now seems to perform similarly to PDBb, while it used to perform much better in first rounds of
LiveBench. High-quality servers are able to generate ~50% more correct models than PDBb (‘All’ column).

prediction projects can be drown from the experiments and have also been obtained in last CASP-5 and CAFASP-3
include: rounds. In sensitivity, meta predictors using structural
information of the models for building the consensus pre-

(1) Individual threading methods and hybrid methods, utiliz- dictions are leading the field. The top ranks in the speci-
ing structural information in the scoring function, are prob- ficity evaluation are also occupied by meta predictors

ably not more accurate than well-tuned sequence profile disregarding any 3D structural information, such as Meta-
comparison methods. In fact, the latter methods seem to BASIC. Meta-BASIC uses predicted secondary structure

lead the sensitivity and specificity rankings of the latest to compliment sequence profiles. We conclude that struc-
LiveBench rounds. This has to be confirmed in blind tests tural meta predictors build superior models, while the cal-

in future CAFASP experiments. culated score of the models is not yet estimated that well.

(2) Meta predictors are clearly superior to simple individual (3) Incontrasttocommon sequence alignment methods, struc-
methods. For quite some time, meta predictors are heading ture prediction servers are generally not prepared to deal

the rankings in sensitivity and specificity. These results with multi-domain targets. Division of a sequence into
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Table 4. Comparison of rankings obtained using different evaluation measures

LiveBench-7 (115 targets)

LiveBench-8 (172 targets)

Code 3D MS CA Q CA CB Avg Code 3D MS CA Q CA CB Avg
3]C1 3 3 3 2 2 2 2.5 3JC1 4 1 3 3 1 1 22
3JCa 1 2 1 1 1 9 2.5 3JCa 1 2 1 2 3 8 2.8
3JAa 4 8 4 4 4 5 4.8 3JAL 3 5 4 7 4 2 42
PMO3 6 4 7 7 3 4 52 PMO4 5 6 5 5 2 5 4.7
3DS5 2 1 2 3 8 17 5.5 PCO5 7 7 6 1 5 3 4.8
3JAL 8 7 6 6 5 3 5.8 3JAa 6 10 7 4 6 4 6.2
FFA3 11 12 8 5 10 6 8.7 PCO4 10 9 9 8 7 7 8.3
PMO4 12 11 12 8 6 7 9.3 3DS3 2 3 2 11 12 22 8.7
3DS3 5 5 5 10 13 19 9.5 3DS5 8 4 8 17 8 15 10.0
PMOD 7 10 9 13 9 10 9.7 RBTA 9 8 10 19 9 6 10.2
RBTA 15 6 14 23 7 1 11.0 mBAS 11 12 12 10 11 11 11.2
PCO2 10 14 13 9 12 12 11.7 BasD 12 11 11 12 13 9 11.3
PCO3 13 9 10 14 17 15 13.0 ORFs 14 19 13 13 10 10 13.2
PCO4 14 17 15 12 11 13 13.7 BasP 15 13 16 14 14 14 14.3
ORFs 17 16 17 11 15 8 14.0 FFA3 17 17 15 16 15 13 15.5
SHGU 9 13 11 15 16 22 14.3 ORF2 16 18 17 15 16 12 15.7
RAPT 16 15 16 16 14 11 14.7 SEST 18 15 18 6 18 19 15.7
INBG 20 19 18 17 18 16 18.0 STMP 19 16 19 9 20 21 17.3
3DPS 18 21 20 24 19 14 19.3 SHGU 13 14 14 20 17 27 17.5
FUG2 19 20 19 20 22 20 20.0 INBG 20 24 20 18 19 18 19.8
PRO2 22 22 21 22 20 18 20.8 PRO2 24 21 23 24 22 17 21.8
FUG3 21 18 22 25 21 21 213 FUG3 21 22 21 21 28 26 232
MGTH 23 24 23 26 24 23 23.8 MGTH 22 23 22 25 24 23 232
SFAM 26 27 26 19 23 25 243 3DPS 25 25 25 26 23 20 24.0
FRT1 24 23 24 27 27 24 24.8 RAPT 27 27 28 28 21 16 245
SFPP 25 26 25 21 25 27 24.8 FUG2 23 26 24 23 26 28 25.0
ST99 27 25 27 18 26 26 24.8 SPKS 26 20 26 29 25 24 25.0
GETH 28 28 28 28 28 28 28.0 SFPP 28 28 27 22 27 25 26.2
PDBb 30 29 29 29 30 29 29.3 FRTI 29 29 29 31 29 29 29.3
FFAS 29 30 30 30 29 30 29.7 SFAM 30 32 31 30 30 30 30.5

ST99 32 30 32 27 31 31 30.5

GETH 31 31 30 32 32 32 313

PDBb 33 33 33 33 33 33 33.0

FFAS 34 34 34 34 34 34 34.0

Only publicly available servers participating in LiveBench-8 that provide a description of the underlying algorithm are listed. Results obtained in LiveBench-7 are also
displayed if available. Servers are colored blue (sequence only methods), red (hybrid methods) and black (structure meta predictors). The ‘Code’ column shows the
code of the methgd as provided in Table 1. Rankings of servers obtained using five different assessment measures (see Table 2): 3D-score, MaxSub, CA-atoms<3 A,
Q(CA-atoms<3 A), Contact(A) and Contact(B) are shown in columns ‘3D’, ‘MS’, ‘CA’, ‘Q’, ‘CA’ and ‘CB’, respectively. The ‘Avg’ column prints the average
ranking of the server.

“

&)

domains and iterative submission of corresponding
domain sequences to prediction servers is strongly
advised. This is especially important for eukaryotic
proteins, since many of them contain several structured
domains and additionally possess a few disordered
regions. The disordered regions in proteins can be pre-
dicted with specially tailored methods, such as GlobPlot
(80) or PONDR (81). Despite high biological importance
of unstructured regions (82), attempts to predict their struc-
ture as globular are destined to fail. Disordered regions are
abundant in eukaryotic proteins making clear that not all
protein segments have to fold into a single low-energy
native conformation in order to perform a function.

The score for hits reported by some meta predictors
(e.g. 3D-Jury) is sometimes artificially increased, if one
of the component servers generate many alignments
to very similar proteins. Thus, a high score is only signifi-
cant, if several independent servers confirm the fold
assignment.

For the majority of difficult cases, such as the targets in the
‘fold recognition’ category in CASP, the confidence
scores reported by the servers are below the reliability

(6)

threshold and the correct models are not always the top
ranking ones. Expert users are sometimes able to select the
correct predictions using additional knowledge, such as
the similarity of function between the target and the tem-
plate or conservation of essential amino acids or short
sequence patterns. In many cases, the experts have to
conduct extensive literature analysis and sequence
searches to guess the right fold. This time-consuming
but frequently very fruitful exercise is advised to all pre-
dictors, provided that there is enough time to analyze the
target of interest.

In very difficult cases, results of ab initio methods or
servers using ab initio components can be consulted.
Difficult targets can be distinguished from others based
on low scores of meta predictions. In general, such models
have very low quality independent of their source, but
some biological hints can be gained. Nevertheless, ab
initio methods improved significantly over the past
years. The ultimate goal of the community is to be able
to predict the structure of the protein independent of struc-
tural information available for its homologs. Significant
efforts are devoted to this goal. A solution to the folding



problem would obviously have an immense impact on
structural biology. Thus, one should keep an eye on the
progress in this field.

(7) Models can be improved manually by experts, as shown in
the CASP experiments. Detailed analysis of the target and
the template families, including extensive literature
searches, is mandatory in such cases. This helps to identify
functionally crucial residues often misaligned by servers,
if both families exhibit very week similarity. A model can
be improved significantly, if the expert detects a substan-
tial error in the alignment resulting, for example, from the
insertion of an entire domain. In many cases, expert
improvements, however, remain marginal.

(8) It is possible to estimate, which parts of the models are
likely to be correct and which parts are more or less ran-
dom. The most reliable approach (consensus approach) is
by evaluating the set of alignments obtained from different
servers and searching for structurally well-conserved
regions, i.e. where the alignments by different servers
are consistently the same or very similar. Regions
where different methods report different alignment to
similar templates are more likely to be misaligned, or
structurally diverged. The quality of models can also be
evaluated with programs, such as Verify3D (83). Unfortu-
nately, the quality of difficult fold recognition models is
below the standards of the benchmarks used to tune the
majority of quality assessment methods, making applica-
tion of such methods problematic in difficult cases.

(9) Most online protein structure meta predictors are too slow
to be used in high-throughput annotation projects. For such
purpose, it is better to construct in-house meta predictors
using several simple, but diverse and independent com-
ponents. A simple function, which tells by how many
components the prediction was confirmed, can be used
as reliability score. This is a general suggestion not only
for structural annotation but also for sequence homology
annotation, which is routinely conducted with only one
method, PSI-BLAST, e.g. when annotating genomes. An
alternative to designing an in-house meta predictor is to use
fast online meta predictors, such as Meta-BASIC, which
do not utilize 3D structural information.

UTILITY OF PROTEIN STRUCTURE PREDICTIONS

Drug design is the one of the major financial driving forces
behind biomedical research. Unfortunately, the protein struc-
ture prediction field is currently unsuccessful in keeping its
promise of making the drug development process much
more efficient. Predicted protein structures can be used if
very close homologs with known structure are available,
but in most cases rational drug design requires iterative
co-crystallization of the protein-ligand complexes. In the
majority of cases, predicted models are of insufficient quality
to offer the atomic details necessary for lead optimization.
Currently available structure prediction methods do not
allow for high-quality predictions of the quaternary structure
of protein complexes and for the prediction of interactions
between proteins. Current benchmarks indicate that methods
predicting interactions can be successful mainly in cases when
structures exhibit minimal conformation changes upon
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complex formation. Substantial errors observed in predicted
models go beyond the limits tolerated by such methods (84).
Nevertheless, low-resolution models obtained using struc-
ture predictions methods can find other applications. It is much
easier to handle a protein in experiments if at least a crude
model of its structure is available. An example from our work
is the beta-ketoacyl synthase domain of mycocerosic acid
synthase from Mycobacterium bovis BCG. According to
Fernandes and Kolattukudy (85), the domain spanning
amino acids 1-341 exhibits selectivity for methylmalonyl-
CoA over malonyl-CoA. However, results of structural mod-
eling of the domain show that this construct lacks large section
of the core and parts of the catalytic pocket, which should be
essential for the protein to perform its function. According to
the model, the correct boundaries of the domain span residues
1-437. Surprisingly, experimental results revealed that both
versions of the domain provide the ability to incorporate
methylmalonyl-CoA into fatty acids in vivo. Nevertheless,
the incomplete domain is probably not folded quite right or
distorted and has biochemical properties, which make a crys-
tallization of the protein impossible. A simple modeling step
enabled to find proper domain boundaries and resulted in a
better-characterized protein for future experimental work.
Another application of low-resolution models can be the
analysis of active sites in proteins and detection of compens-
ating mutations. As an example, models of a PD-(D/E)XK-like
domain enabled us to reveal a novel configuration of the endo-
nuclease active site in the methyl-directed restriction enzyme
Mirr and its homologs (86). These proteins have an essential
glutamate three residues away from its equivalent position in
other related enzymes. Despite the shift in sequence, the main-
chain alpha carbon atom is only one ¢-helical turn away and
the side-chain of glutamate points to the same direction as in
the canonical configuration. Such active site residue compens-
atory replacements may be difficult to detect if only a sequence
multiple alignment is available, which can only suggest a lack
of conservation of crucial catalytic residues. Structural ana-
lysis can help to rationalize the mutations and confirm the
general enzymatic classification of the protein.
Low-resolution models can be used to guess the function
through a sequence-to-structure-to-function paradigm. Signi-
ficant success of this approach has been reported by the group
of David Baker (87). The ab initio method Rosetta was used to
predict the fold of 130 proteins. For each family, five models
were generated and each model was classified by structural
comparison with a fold library. In 35% of the cases, one of the
five models could be used successfully to identify the correct
fold (SCOP superfamily) of the native protein. This procedure
has been applied to annotate 510 protein families collected
from Pfam database. Only families with no links to proteins
with known structure and average length of the protein
below 150 residues were selected. Many interesting assign-
ments have been generated, of which some were confirmed by
functional similarity between the target family and the families
with the same fold as the predicted one. This procedure is
unable to assign novel function to a protein family, but the
ability to guess the general function in a sizable fraction of the
targets can be regarded as a success. Such functional hints may
be valuable for future biochemical characterization. This
example also shows that fold recognition results can be val-
idated using independent observations, such as the similarity
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of function. Fold predictions can also support function predic-
tions obtained with non-homology-based methods, such as
gene fusion (88,89), gene neighborhood (90,91) or phylo-
genetic profiles (92,93).

A much simpler approach to follow the sequence-
to-structure-to-function paradigm is by confirming weak
sequence similarity by fold recognition. In many cases, homo-
logous proteins divert beyond the level of detectable sequence
similarity while keeping the general fold unchanged. Methods
decoding and amplifying the structural preferences buried in
sequence can help us to bridge diverged families. Threading
was designed to solve this problem but is now increasingly
replaced by hybrid or profile—profile comparison methods.
Benchmarks indicate that fold recognition methods can gen-
erate ~50% more assignments than PSI-BLAST in cases of
non-trivial sequence similarity, undetectable with simple
BLAST. Confirmation of weak sequence similarity by fold
recognition methods is probably the most common application
of structure prediction servers, conducted sometimes in gen-
ome scale or routinely during screening of structural genomics
targets. On the other hand, confirmation of very weak simil-
arities with below threshold fold assignments can be attempted
with ab initio methods, such as Rosetta as described previously
(94).

Low-resolution models can also be used to aid the experi-
mental structure determination process. The previously men-
tioned example of detection of errors in the PDB by the
LiveBench program demonstrates the power of fold recogni-
tion methods in this respect. Crystal structures obtained with
a resolution of ~3 A are susceptible to tracing shifts that
misassign some side-chains along the backbone. Such errors
can be detected if a sufficient evolutionary signal exists and
reliable alignment to other more confident structures can be
used as evidence supporting the hypothesis of a shift. Structure
factors collected during the X-ray experiment can then be used
to validate the proposed improved model. A related applica-
tion represents the determination of protein structures using
molecular replacement. In this technique, an initial model,
which shows sufficient structural similarity to the native struc-
ture, is used to solve the phasing problem. With increasing
quality of the models generated by fold recognition methods,
more distant homologs can be used to produce suitable initial
models (95).

An alternative approach to protein structure determination is
represented by NMR experiments, generating a large number
of distance restrains used later to build the model of the native
protein. In some cases, the information obtained from NMR
experiments is too scant to enable direct reconstruction of the
structure. Structure prediction methods have been used suc-
cessfully in combination with sparse restrains obtained from
nuclear Overhauser effects, residual dipolar couplings or back-
bone chemical shifts (96-98). Limited experimental informa-
tion can greatly reduce the fold space, which is explored by
structure prediction program. This has a positive effect on the
speed of the calculation and on the final accuracy of the model.
In most of the reported cases, the combined methods were able
to deliver low-resolution models with essentially correct folds,
although some errors were observed for proteins with internal
symmetries. However, increasing the number of restrains also
resulted in increased quality of the model. Sparse NMR data
are relatively easy to obtain and the appearance of public

repositories of NMR parameters, such as BioMagResBank
(99), is likely to boost the development of methods, which
use limited experimental information.

CONCLUSIONS

The goal of structural genomics initiatives is to provide tem-
plate structures for most protein families. Structure prediction
approaches are destined to become limited to comparative
modeling, since a close homolog of known structure would
be available for most targets. However, the limited success of
the structure genomics programs contributes to the booming
interest in structure prediction methods as measured by the
growing number of servers and groups taking part in
community-wide prediction quality assessment experiments.
It is clear that prediction methods are not expected to replace
experimental determination of protein structures in the nearest
future, but are likely to complement such efforts and mean-
while fill the growing gap between the number of sequences
and structures. Confident fold prediction models can be
viewed as low-resolution structures and will be used by bio-
logists to guide experimental design. The growing number of
user-friendly prediction servers will hopefully result in
increased awareness of the benefits of a low-resolution 3D
protein model for biologists.
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