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Significance

A neurodegenerative disease of 
unknown cause on the island of 
Guam and the Kii peninsula of 
Japan has been widely studied, 
because patients can suffer from 
the combined symptoms of motor 
neuron disease, parkinsonism, 
and dementia. Abnormal 
filamentous inclusions made of 
tau protein characterize this 
amyotrophic lateral sclerosis/
parkinsonism-dementia complex 
(ALS/PDC) and their formation 
closely correlates with 
neurodegeneration. Here,  
we have used electron cryo-
microscopy to show that tau 
filaments from ALS/PDC are 
identical to those from chronic 
traumatic encephalopathy (CTE),  
a disease caused by repetitive 
head impacts or blast waves.  
CTE tau filaments are also  
found in subacute sclerosing 
panencephalitis, which is a rare 
consequence of measles infection. 
ALS/PDC may therefore also be 
caused by environmental factors.
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The amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) of the 
island of Guam and the Kii peninsula of Japan is a fatal neurodegenerative disease of 
unknown cause that is characterized by the presence of abundant filamentous tau inclu-
sions in brains and spinal cords. Here, we used electron cryo-microscopy to determine 
the structures of tau filaments from the cerebral cortex of three cases of ALS/PDC from 
Guam and eight cases from Kii, as well as from the spinal cord of two of the Guam 
cases. Tau filaments had the chronic traumatic encephalopathy (CTE) fold, with variable 
amounts of Type I and Type II filaments. Paired helical tau filaments were also found in 
three Kii cases and tau filaments with the corticobasal degeneration fold in one Kii case. 
We identified a new Type III CTE tau filament, where protofilaments pack against each 
other in an antiparallel fashion. ALS/PDC is the third known tauopathy with CTE-type 
filaments and abundant tau inclusions in cortical layers II/III, the others being CTE 
and subacute sclerosing panencephalitis. Because these tauopathies are believed to have 
environmental causes, our findings support the hypothesis that ALS/PDC is caused by 
exogenous factors.

neurodegenerative disease | amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS/PDC) |  
tau filament assembly | chronic traumatic encephalopathy tau fold

Amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC or lytico-bodig) 
is a fatal disease found in the Chamorro population of Guam (1–4), some families on 
the Kii peninsula of Japan (5, 6), and the Auyu and Jakai people of New Guinea (7). 
Abundant tau inclusions are present in nerve cells in brains and spinal cords (6, 8, 9) and 
are enriched in cortical layers II/III (10, 11). Tau inclusions are also found in some glial 
cells (12). They consist of amyloid filaments that are made of all six brain tau isoforms 
in a hyperphosphorylated state (8, 13). More variably, assembled Aβ, α-synuclein, and 
TDP-43 accumulate too (11, 14, 15).

The cause of ALS/PDC is unknown, but it is not a simple genetic disorder in an 
island-bound geographic isolate (16–18). Exogenous factors may play a role in disease 
aetiology and pathogenesis, supported by the finding that migrants from the Philippines 
can develop ALS/PDC after living on Guam for more than two decades (19). With 
increased Westernisation, the incidence of ALS/PDC is decreasing (20). High prevalence 
of a retinopathy, called linear retinal pigment epitheliopathy (LRPE), has been reported 
in Guam and Kii ALS/PDC (21, 22), similar to infestation by a migrating parasite larva. 
Both disorders have declined in parallel, suggesting a possible link between ALS/PDC 
and LRPE.

Tau filaments made of all six brain isoforms in a hyperphosphorylated state are also 
found in Alzheimer’s disease (AD) and in chronic traumatic encephalopathy (CTE)  
(23, 24). They are found predominantly in cortical layers V/VI in AD (25) and in layers 
II/III in CTE (26). The latter is caused by repetitive head impacts or exposure to blast 
waves (27). By cryo-EM, we have shown that tau filaments from AD and CTE each consist 
of two identical C-shaped protofilaments that comprise residues 306 to 378 (in the num­
bering of the 441 amino acid tau isoform) (28–30). They differ by the presence of a 
hydrophobic cavity in the CTE fold, which encloses a nonproteinaceous density of 
unknown identity that may be involved in giving rise to this fold. Besides AD, the 
Alzheimer tau fold also characterizes primary age-related tauopathy, familial British demen­
tia, familial Danish dementia, and some prion protein amyloidoses (31, 32). The CTE 
tau fold is also characteristic of subacute sclerosing panencephalitis (SSPE), which is a 
fatal disorder of the central nervous system that is a rare consequence of infection with 
measles virus and begins after a symptom-free period of several years (33, 34). Tau inclu­
sions in SSPE are also enriched in cortical layers II/III (35). Here, we report that the CTE 
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fold is typical of tau filaments extracted from brains and spinal 
cords of individuals with Guam and Kii ALS/PDC, suggesting 
that similar molecular mechanisms underlie these diseases.

Results

Structural Characterization of Filaments from Guam ALS/PDC. 
We used cryo-EM to characterize filaments from the frontal 
cortex of three cases of Guam ALS/PDC and the spinal cord of 
cases 2 and 3 (Fig. 1 and SI Appendix, Figs. S1–S5 and Table S1). 
We used optimized extraction procedures (36) to deal with the 
limiting amounts of brain and spinal cord samples that were 
available for this study (0.03 to 0.4 g per case). Staining with 
antitau antibody AT8 showed abundant neurofibrillary tangles 
(intracellular and extracellular) in frontal cortex (SI  Appendix, 
Fig.  S6). As described (12), tau inclusions were also found in 
astrocytes and oligodendrocytes, with astrocytic inclusions mostly 
in subpial and perivascular areas.

Tau filaments with the CTE fold were present in all cases. The 
frontal cortex from case 1 contained a mixture of Type I and Type 
II filaments, whereas that from cases 2 and 3 had only Type I 
filaments. The spinal cord from case 2 had only Type II filaments, 
whereas that from case 3 contained a mixture of Type I and Type 
II filaments. In addition to tau filaments, we also observed singlets 
and doublets of transmembrane protein 106B (TMEM106B) 
filaments (fold I) in the frontal cortex from cases 1 and 2, and 
TMEM106B singlets (fold I) in the spinal cord from case 2 (Fig. 1 
and SI Appendix, Figs. S1 and S2). The frontal cortex from case 2 
also contained Type II Aβ42 filaments (Fig. 1 and SI Appendix, 

Figs. S1 and S2), like those that were described in brain extracts 
from cases of AD and other diseases (36). For several filament 
types, there were insufficient images for de novo three-dimensional 
reconstruction to high resolution. Their identification was based 
on 2D class averages (Fig. 1 and SI Appendix, Fig. S1).

High-resolution structure determination confirmed that the 
tau filament structures from Guam ALS/PDC are identical to 
those from CTE (Fig. 2A). The rmsd of Cα atoms in one rung of 
the filaments between Type I filaments from the spinal cord of 
Guam case 3 and those from CTE (PDB:6NWP) was 0.28 Å; the 
rmsd between Type II filaments from the frontal cortex of Guam 
case 1 and those from CTE (PDB:6NWQ) was 1.36 Å.

In the spinal cord of Guam case 3, we found a small proportion 
of filaments (less than 10%) with a previously unobserved struc­
ture, which we named CTE Type III tau filaments (Figs. 1 and 
2B and SI Appendix, Figs. S2 and S5). Like CTE Type I and Type 
II filaments, Type III filaments consist of two protofilaments with 
the CTE fold, spanning residues K274–R379 of three-repeat tau 
and S305–R379 of four-repeat tau, and harboring an additional 
density in the β-helix region. The mirror-like arrangement of pro­
tofilaments in the cross-section indicates that they adopt opposite 
polarities in the filaments, unlike Type I and Type II filaments. 
The protofilament interface consists of residues 323GSLGNIH329 
from both protofilaments, like in the CTE Type I filament inter­
face. However, they form a different, staggered parallel zipper, in 
which the side chains of S324 and N327 of both protofilaments 
intercalate and form hydrogen bonds with the main chain groups 
of opposite protofilaments (Fig. 2B). CTE Type III tau filaments 
were also found in a new, bigger cryo-EM dataset of filaments 
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Fig. 1. Cross-sections perpendicular to the helical axis of cryo-EM structures of filaments from the frontal cortex and spinal cord of three cases of Guam 
ALS/PDC, with a projected thickness of approximately one rung along the helical axis. For the filament types indicated with an asterisk, there were insufficient 
images for high-resolution reconstruction; identification of filament types was also based on 2D class averages. Filament types are indicated, as are structural 
resolutions and percentages for each type. (Scale bar, 10 nm.)
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from the temporal cortex of an individual with CTE (case 2 in 
ref. 30) (SI Appendix, Fig. S5), indicating that they are not 
restricted to Guam ALS/PDC. Their 2.7 Å resolution structure 
revealed two alternative conformations of the side chain of H329 
in one of the two protofilaments; in one conformation, its imida­
zole group comes into contact with the imidazole group of H329 
from the opposite protofilament (Fig. 2B and SI Appendix, 
Fig. S5B). The low abundance of CTE Type III tau filaments may 
explain why they were not observed in the smaller cryo-EM datasets 
of other samples from ALS/PDC.

Structural Characterisation of Filaments from Kii ALS/PDC. We 
analyzed extracts from temporal cortex of eight cases of ALS/PDC 
from the Kii peninsula (Fig. 3 and SI Appendix, Figs. S1–S4 and 
Table S1). We used the standard tau filament extraction method 
(37) for all eight cases, and the optimised procedure (36) also for 
cases 6 to 8. Staining with AT8 showed the presence of abundant 
neurofibrillary tangles that were particularly abundant in cortical 
layers II/III (SI Appendix, Fig. S7). Tau-positive astrocytes and 
coiled bodies were also present. Case 8 has previously been 
shown to exhibit astrocytic plaque-like structures and threads, 
reminiscent of corticobasal degeneration (11).

Using the standard extraction method, all eight samples from 
the Kii peninsula contained tau filaments with the CTE fold. Case 
8 had only Type II filaments; all other cases had a mixture of Type 
I and Type II filaments. Cases 4 and 5 also contained tau-paired 
helical filaments (PHFs), like those from AD and other conditions 

(28, 29, 31, 32). We did not observe Aβ filaments in any of the 
Kii cases. High-resolution structure determination showed that 
the structures of tau filaments from Kii ALS/PDC are also iden­
tical to those from CTE (Fig. 3B). The rmsd between Type I fil­
aments from Kii case 2 and those from CTE (PDB:6NWP) was 
0.38 Å; the rmsd between Type II filaments from Kii case 2 and 
those from CTE (PDB:6NWQ) was 1.37 Å.

Using the optimized extraction procedures that were also used for 
the Guam cases (36), in addition to the filament types described above, 
we observed tau PHFs for case 7 and TMEM106B Fold III-s filaments 
for case 8. In agreement with ref. 11, we also observed filaments rem­
iniscent of α-synuclein filaments from Lewy bodies (38) for case 6 
(SI Appendix, Fig. S1). These filaments did not show an observable 
twist, and we were not able to determine their three-dimensional 
structure. We also observed Corticobasal degeneration (CBD) Type 
I and CBD Type II tau filaments for case 8 (Fig. 3), consistent with 
the presence of astrocytic plaque-like structures (11, 39, 40).

Discussion

Abundant filamentous amyloid inclusions that are made of all six 
brain tau isoforms are characteristic of ALS/PDC (8, 13). Immu­
noblotting of sarkosyl-insoluble tau from some of the Kii cases 
used here has been described previously (6, 13). We now show 
that tau filaments from Guam and Kii ALS/PDC adopt the CTE 
fold (30) in brain and spinal cord. We recently showed that tau 
filaments from SSPE also adopt the CTE fold (33).

The observation that specific tau filament folds characterise 
different diseases suggests that filament structure may provide a 
handle to study disease (41). For example, different cellular envi­
ronments may lead to the formation of distinct structures. The 
observation that filaments of ALS/PDC are identical to those from 
CTE and SSPE thus suggests that filaments may form under sim­
ilar circumstances in these diseases. It follows that the molecular 
mechanisms that cause tau assembly in ALS/PDC may be similar 
to those at work in CTE and SSPE. The latter two are probably 
caused by environmental factors, in the form of repetitive head 
injuries and measles infection, respectively. Neuroinflammation 
may be important in both diseases. Exogenous factors may also 
be causal in Guam and Kii ALS/PDC, with a possible role for 
parasitic infestation (21, 22).

As in CTE (26) and SSPE (35), more filamentous tau inclusions 
in ALS/PDC of Guam and Kii are found in layers II/III of the 
cerebral cortex than in layers V/VI (10, 11). This is unlike AD, 
where tau inclusions are more abundant in layers V/VI (25). The 
presence of Alzheimer and CTE tau folds correlates with these 
differences. It suggests that the CTE fold may also form in other 
diseases with a predominance of tau inclusions in cortical layers 
II/III that are believed to be caused by environmental factors, such 
as postencephalitic parkinsonism (42) and nodding syndrome (43).

The CTE tau fold differs from the Alzheimer fold by having a 
more open conformation of the β-helix region, which contains an 
internal density of unknown identity (30). In the presence of 
NaCl, recombinant tau comprising residues 297 to 391 assembled 
into filaments with the CTE fold, but in its absence, the Alzheimer 
tau fold formed (44). It remains to be seen how this difference 
relates to human brains.

Besides tau filaments with the CTE fold, we also observed tau PHFs 
in three cases from the Kii peninsula and tau filaments with the CBD 
fold in one case. Type II A β42 filaments were present in one case from 
Guam. Senile plaques have been described in around 60% of cases of 
Guam ALS/PDC (15) and assembly of Aβ is believed to be part of 
the disease process (45). Alternatively, these changes may be age-related. 
This was probably also the reason for the presence of TMEM106B 
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filaments (46, 47) in two cases from Guam and one case from the Kii 
peninsula. It is possible that Aβ and TMEM106B filaments were lost 
during the extraction method used for some of the Kii cases. In 

addition to tau, also Aβ, α-synuclein and TDP-43 inclusions have 
been implicated in the pathogenesis of ALS/PDC (11, 14, 15). We 
found filaments that were reminiscent of α-synuclein filaments in one 
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of the Kii cases. We did not observe TDP-43 filaments in any of the 
cases from Guam or the Kii peninsula. However, our results with 
two different extraction protocols for three of the Kii cases illus­
trate that it would be imprudent to conclude that certain filament 
types are not present in a brain if they are not observed with a 
given extraction method.

The greater heterogeneity of amyloid filaments, when compared 
to CTE and SSPE, probably reflects the fact that ALS/PDC is a 
multiple proteinopathy based on neuropathology, as suggested for 
cases from the Kii peninsula (11).

In conclusion, we demonstrate the presence of tau filaments 
with the CTE fold in cases of ALS/PDC from the island of Guam 
and the Kii peninsula. Type I and/or Type II CTE filaments were 
present in brains and spinal cords. We also describe the new CTE 
Type III tau filament, in which two protofilaments pack with 
opposite polarities. The presence of tau filaments with the CTE 
fold supports the hypothesis that ALS/PDC is caused by exoge­
nous factors.

Materials and Methods

Cases of ALS/PDC. Three cases of ALS/PDC from the island of Guam and eight 
cases from the Kii peninsula were investigated (SI Appendix, Table S1). The Guam 
cases have not been reported before; we used tissues from two Chamorro males 
and one ½ Chamorro, ½ Filippina female with long-standing dementia and 
Parkinson’s disease, in the absence of a family history of disease. They belonged 
to the PDC subtype, where some tau inclusions can be found in the spinal cord 
(48). They died aged 68 (case 1) and aged 73 (cases 2 and 3). The cases from the 
Kii peninsula have been published (11). Three individuals (cases 1, 2, and 5) 
belonged to the ALS subtype and five (cases 3, 4, and 6–8) to the PDC subtype. 
The ages at death were ALS subtype, 63, 76, and 77 y; PDC subtype, 60, 70, 71, 
74, and 74 y. The duration of illness varied between 1 and 14 y. There was no 
history of head injury or measles infection in either the Guam or the Kii cases of 
ALS/PDC. This study was approved by the Ethics Committees of the Universities 
of Shinshu (3233 and 5108), Niigata (2020–0019), and Mie (2592).

Immunohistochemistry. Brains were fixed in 20% buffered formalin, cut into 
coronal sections, and paraffin-embedded. Sections (4.5 µm) were incubated over-
night at room temperature with antibody AT8, which is specific for pS202 and 
pT205 tau (1:5,000, Innogenetics) (49). To reveal the signal, the Envision plus 
kit (Dako) was used, with diaminobenzidine tetrahydrochloride (Sigma-Aldrich) 
as chromogen. Some sections from Kii cases of ALS/PDC were also stained with 
Gallyas-Braak silver (50).

Filament Extraction. For the Guam ALS/PDC cases, we used an optimized extrac-
tion procedure, which allowed us to handle small amounts of brain samples (36). 
Sarkosyl-insoluble material was extracted from the frontal cortex (cases 1 to 3) 
and spinal cord (cases 2 and 3). The tissues (less than 400 mg) were homogenized 
in 3 mL buffer A (10 mM Tris-HCl, pH 7.5, 0.8 M NaCl, 10% sucrose, and 1 mM 
EGTA), brought to 2% sarkosyl, and incubated for 30 min at 37 °C. The samples 
were centrifuged at 7,000 g for 10 min, followed by spinning the supernatants 
at 100,000 g for 60 min. The pellets were resuspended in 100 μL/g of buffer B 
(20 mM Tris-HCl, pH 7.4, 100 mM NaCl) for cryo-EM analysis.

For all eight ALS/PDC cases from the Kii peninsula, filaments were extracted 
using the standard tau extraction method (37), with minor modifications. After 
incubation in 2% sarkosyl, the samples were sonicated (TAITEC ultrasonic homog-
eniser VP-55, level 7) for 15 s and, following a 10 min centrifugation at 27,000 
g, supernatants were centrifuged at 257,400 g for 30 min at 25 °C. The pellets 
were then resuspended in 900 μL/g buffer A with 1% sarkosyl and centrifuged at 
166,000 g for 20 min at 25 °C. For cases 6, 7, and 8 from the Kii peninsula, fila-
ments were also extracted using the optimized procedure used for the Guam cases 
(36). Filaments from the CTE brain (case 2 in ref. 30) were extracted using a proce-
dure that was developed for the extraction of TDP-43 filaments, as described (51).

Electron Cryo-Microscopy. Three microliters of the sarkosyl-insoluble frac-
tions were applied to glow-discharged (Edwards S150B) holey carbon grids 

(Quantifoil Au R1.2/1.3, 300 mesh) that were plunge-frozen in liquid ethane 
using a Vitrobot Mark IV (Thermo Fisher Scientific) at 100% humidity and 4 °C. 
Cryo-EM images were collected on a Titan Krios electron microscope operated 
at 300 kV and equipped with a Falcon-4 or a K3 direct electron detector. Images 
were recorded in electron event representation (EER) format (52) for Falcon-4 (6 s) 
and Tif format for K3 (1 s), with a total dose of 40 e/Å2 and a pixel size of 0.824 
Å (Falcon-4) or 0.826 Å (K3).

Helical Reconstruction. Datasets were processed in RELION using standard 
helical reconstruction (53). Movie frames were gain-corrected, aligned, and dose-
weighted using RELION’s own motion correction program (54). Contrast transfer 
function (CTF) parameters were estimated using CTFFIND4-1 (55). Filaments 
were picked manually. For the analysis of filament types and the generation of 
initial three-dimensional models, segments were extracted with a box size of 
1,024 pixels and down-scaled to 256 pixels. Reference-free 2D classification was 
performed to discard suboptimal images and measure cross-over distances for 
initial model calculation using relion_helix_inimodel2d (56). For high-resolution 
refinement, selected segments were extracted with a box size of 400 pixels, with 
the original pixel size. 3D auto-refinements were performed with optimization of 
the helical twist and rise parameters once resolutions extended beyond 4.7 Å. To 
improve the resolution, Bayesian polishing and CTF refinement were performed 
(57). Final maps were sharpened using standard postprocessing procedures in 
RELION and resolution estimates were calculated based on the Fourier shell 
correlation (FSC) between two independently refined half-maps at 0.143 (58).

Model Building and Refinement. For maps with resolutions beyond 4 Å, atomic 
models were built manually in Coot (59), based on published structures [CTE 
type I, PDB:6NWP; CTE type II, PDB:6NWQ; TMEM106B fold I-s, PDB:7QVC; 
TMEM106B fold I-d, PDB:7QVF; Type II Aβ42, PDB:7Q4M (30, 36, 41)]. Model 
refinements were performed using Servalcat (60) and REFMAC5 (61, 62). Models 
were validated with MolProbity (63). Figures were prepared with ChimeraX (64) 
and Pymol (Schrödinger, LLC.). See SI Appendix, Tables  S2 and S3 for further 
details.

Data, Materials, and Software Availability. Cryo-EM maps have been depos-
ited in the Electron Microscopy Data Bank (EMDB) with the following accession 
numbers: EMD-17171 (65), EMD-17173 (66), EMD-17174 (67), EMD-17175 
(68), EMD-17176 (69), EMD-17177 (70), EMD-17178 (71), EMD-17179 (72), 
EMD-17180 (73), and EMD-17181 (74). Corresponding refined atomic mod-
els have been deposited in the Protein Data Bank (PDB) under the following 
accession numbers: 8OT6 (75), 8OTC (76), 8OT9 (77), 8OTD (78), 8OTE (79), 8OTF 
(80), 8OTG (81), 8OTH (82), 8OTI (83), and 8OTJ (84). Please address requests for 
materials to the corresponding authors.
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