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A simple neural network model of the hippocampus
suggesting its pathfinding role in episodic

memory retrieval
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The goal of this work is to extend the theoretical understanding of the relationship between hippocampal spatial and
memory functions to the level of neurophysiological mechanisms underlying spatial navigation and episodic memory
retrieval. The proposed unifying theory describes both phenomena within a unique framework, as based on one and
the same pathfinding function of the hippocampus. We propose a mechanism of reconstruction of the context of
experience involving a search for a nearly shortest path in the space of remembered contexts. To analyze this
concept in detail, we define a simple connectionist model consistent with available rodent and human
neurophysiological data. Numerical study of the model begins with the spatial domain as a simple analogy for more
complex phenomena. It is demonstrated how a nearly shortest path is quickly found in a familiar environment. We
prove numerically that associative learning during sharp waves can account for the necessary properties of
hippocampal place cells. Computational study of the model is extended to other cognitive paradigms, with the main
focus on episodic memory retrieval. We show that the ability to find a correct path may be vital for successful
retrieval. The model robustly exhibits the pathfinding capacity within a wide range of several factors, including its
memory load (up to 30,000 abstract contexts), the number of episodes that become associated with potential target
contexts, and the level of dynamical noise. We offer several testable critical predictions in both spatial and memory
domains to validate the theory. Our results suggest that (1) the pathfinding function of the hippocampus, in addition
to its associative and memory indexing functions, may be vital for retrieval of certain episodic memories, and (2) the

hippocampal spatial navigation function could be a precursor of its memory function.

The phenomenon of hippocampal spatial representations and
the hippocampal role in episodic memory retrieval remain two of
the most puzzling mysteries in cognitive neuroscience that intu-
itively seem to be connected to each other. Since the finding that
the hippocampus plays a pivotal role in long-term memory con-
solidation (Scoville and Milner 1957; Zola-Morgan and Squire
1986), many proposals have been made regarding its specific role
(Teyler and Discenna 1985; Squire 1987; O’Reilly and McClelland
1994; McClelland et al. 1995). A prominent view of the mecha-
nisms underlying consolidation of episodic memories involves
fast formation (e.g., via Hebbian mechanisms) of strong associa-
tions between hippocampal sparse patterns of activity and dis-
tributed neocortical representations. As a result, the former sub-
sequently serve as pointers to the latter. This memory-indexing
theory that goes back to Teyler and Discenna (1985, 1986) and
underlies several subsequent major theoretical contributions to
the field (Nadel and Moscovitch 1997, 2001; Wheeler et al. 1997;
Tulving 2002) assumes that a memory of an episode is retrieved
by reactivating a hippocampal pointer to it. Consistent with this
view, recent clinical and fMRI studies indicate that the hippo-
campus in humans is involved in and required for retrieval of all
autobiographical, but not semantic memories (Vargha-Khadem
et al. 1997; Ryan et al. 2001; Westmacot et al. 2001; Maguire and
Frith 2003).

At the same time, details of this picture remain unclear. In
order to retrieve (and make sense of) an episodic memory, it is
necessary to reconstruct contextual information that was present
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at the time of encoding. For some episodic memories, the vital
contextual information may not be explicitly encoded in
memory traces or their associations. Consider the following ex-
ample. An idea of driving under a building may never come to
your mind while planning a way home, because you know that
this is impossible. Your decision making is influenced by this
knowledge, while on the other hand, you are not aware of this
knowledge at the time of decision making, and therefore, you
will not remember it in association with the episode. This knowl-
edge, however, may not be in effect in the future when a tunnel
is built. From the future context point of view, your episodic
memory of driving home acquired before the construction began
may seem irrational, and therefore, hard to retrieve without re-
instating the context of the past. According to Moscovitch and
Melo (1997), episodic memory traces lack their historical context
(e.g., time stamps), but may include associative context (which
refers to the multimodal, e.g., spatial background that comprises
the event). Therefore, strategic retrieval (as opposed to cued re-
call) of an episodic memory may require reconstruction of the
original context of experience step by step via effortful, guided
memory search that is controlled by the prefrontal cortex (PFC)
(Moscovitch 1989, 1992; Moscovitch and Melo 1997; Fletcher
and Henson 2001). The role of PFC in this process amounts to cue
specification, strategic search, maintenance, monitoring, and
verification of retrieved information, while medial temporal lobe
cortices (MTL) and the hippocampus may play the role of pattern
completion and comparison (Simons and Spiers 2003). Experi-
mental data confirm the idea that the hippocampus is essentially
involved in the process of contextual reinstatement (e.g., Dob-
bins et al. 2003). Its particular functional role in this process is
currently hotly debated in computational modeling studies (e.g.,
Howard and Kahana 2002; Becker and Lim 2003).
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On the other hand, hippocampal memory function must be
reconciled with the spatial semantics of hippocampal activity
patterns, which have been intensively studied for more than
three decades. The rodent hippocampus is known to represent
spatial maps of environments. Hippocampal pyramidal cells,
called place cells in rodents, each selectively fire at a high rate
when the animal is located in a particular spatial domain, called
a place field of the place cell. This type of firing is observed
during active maze running (O’Keefe and Dostrovsky 1971), and
to some extent, during slow-wave sleep states (Wilson and Mc-
Naughton 1994; Jarosiewicz et al. 2002; Lee and Wilson 2002;
Jarosiewicz and Skaggs 2004). Equivalent or similar phenomena
were observed in primates (Rolls and O’Mara 1995; Robertson et
al. 1998), including humans (Ekstrom et al. 2003). The system of
place fields forms a cognitive map of an environment (O’Keefe
and Nadel 1978, 1979). Although hippocampal cognitive maps
have been implicated in navigation and in formation of episodic
memories (for review, see Redish 1999), many basic questions
about underlying mechanisms and place field semantics remain
unanswered. For example, what are the general principles of
place field formation? Why do they come in various shapes and
sizes and typically have broad tails? How can a cognitive map be
used for navigation if its activity during maze running only pro-
vides information about the current location? Alternatively,
what exactly do place fields encode? Several theoretical frame-
works have been proposed to answer these questions, including
local view models (e.g., Burgess and O’Keefe 1996), path integra-
tion models (McNaughton 1996; McNaughton et al. 1996; Redish
and Touretzky 1997), and trajectory learning models (e.g., Blum
and Abbott 1996). None of the proposed solutions seem to an-
swer all questions.

It has long been noticed that the combination of the two
apparently different functions in one brain structure poses a
great challenge in theoretical neuroscience. The metaphoric
analogy between linking remembered episodes by context and
linking nearby locations in an environment (e.g., Wallenstein et
al. 1998) characterizes the present level of understanding of this
issue, although several more specific proposals were put forward
(Levy 1996; Recce and Harris 1996; Gatfan 1998; Robertson et al.
1998; Burgess 2002). A common ground in these proposals is the
notion of a hippocampal pointer providing necessary associa-
tions. In the present study, we construct a model of episodic
memory retrieval, departing from a traditional assumption that
reactivating a hippocampal pointer is sufficient for retrieval of
the associated episodic memory. Our assumption is that an epi-
sodic memory trace may not be retrievable without reinstate-
ment of a missing contextual key—a key that is not associated
with the pointer. We propose a theory explaining how this key is
found by the hippocampus, why finding it may be impossible
without the hippocampus, and how this relates to spatial navi-
gation. Specifically, we show, using numerical simulations, that
one and the same mechanism can work for episodic memory
retrieval and for spatial navigation. We take this observation as
the basis for a conceptual unification of the two hippocampal
functions.

The central idea of the proposed approach can be unfolded
as follows. Because the context of the retrieval conditions may be
substantially different from the context of the remembered epi-
sode, the system must “prepare itself” for retrieval by reinstating
vital contextual information that is not referenced in the target
episode. This information needs to be acquired from a set of
other episodic memories that serve as a key for understanding
the target episode. This acquisition can be subserved by the sys-
tem taking a quick path through the key set, briefly reactivating
necessary memories one by one. Finding a correct path may be
crucial for a successful retrieval. How can one decide which path
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is “correct”? In this study, we say that there is a connection from
episodic memory A to episodic memory B, if, given an explicit
awareness and an understanding of A, the system is capable of
immediate retrieval and understanding of B without consult-
ing any additional episodic knowledge (in contrast, available se-
mantic knowledge may be used). Then, a rule that ensures the
retrieval of an episodic memory X, given an initial state of aware-
ness Y, is to follow a connected path from Y to X, i.e., a continu-
ous path composed of relevant remembered episodes and con-
nections among them.

One can think of a set of episodic memories and their con-
nections as an abstract graph. Most of the content of episodic
memories can be excluded from this model; nodes of the graph
can be considered as pointers that merely label the essential con-
text of remembered episodes. The connections of this graph may
involve acts of imagination or assumption, perspective shifting,
dropping or accepting various rules and conditions, etc. This in-
terpretation is consistent with the view that episodic memories
are reconstructed based on schemas rather than retrieved as im-
ages (e.g., Watkins and Gardner 1979; Parkin 1993; Moscovitch
and Melo 1997; Schacter 1999; Rusted et al. 2000). The general-
ized notion of a cognitive map (O’Keefe and Nadel 1978) viewed
as an abstract cognitive space, or a cognitive graph (Muller et al.
1996), or an internal cognitive model (Samsonovich and Mc-
Naughton 1997) can be understood as a set containing all previ-
ously explored contexts (no matter how abstract or specific they
are) along with connections among them (understood in the
above sense). Here, by an abstract context, we refer to a set of
rules and facts that apply to a class of possible situations (McCar-
thy and Buvac 1997). Therefore, a given abstract context may
specify a large set of episodic memories, yet it may be represented
by one node in the graph (and accordingly, by one hippocampal
pointer). Looking ahead, in our model, each CA1 unit will rep-
resent one such abstract context.

With this setup, considerations of efficiency of an episodic
memory system inspire several conjectures. (1) It is reasonable to
memorize available connections, at least a sufficient subset of
them, in association with each remembered context or episode.
(2) The resultant graph must be highly interconnected, in the
sense that any shortest path in it has a limited, reasonably small
length (measured as the number of connections), despite the
huge size of the whole memory space (Alon 2003; Barabasi and
Bonabeau 2003). An abstract example demonstrating this possi-
bility is the space of 4.3-10'° states of Rubik’s cube, where any
shortest path involves no more than 20 moves, and each state
offers only 12 possible moves. (3) A selected path in the graph
must be among the shortest or nearly shortest paths. (4) Episodic
memory system must be able to quickly find a nearly shortest
path, given available connections, which makes its function
closely related to that of a spatial navigation device. Our model
assigns the pathfinding function to the hippocampus in addition
to its other, better-known cognitive map functions (including
multimodal associations, episodic memory indexing, and spatial
self-representation). Validation of this proposal involves (1)
analysis of experimental data supporting the mathematical
model; (2) formalization of the concept outlined above in terms
of the model; and (3) numerical application of the model to
spatial, problem-solving, and episodic memory-retrieval para-
digms selected to demonstrate the concept in action.

Connectivity in Cornu Ammonis

Cornu Ammonis (CA), or the hippocampus proper, consists of
areas CA1-CA3. The principal neurons in CA areas are known as
pyramidal cells (based on the shape of their somata), complex
spike cells (based on their activity pattern), or place cells (based
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on their behavioral correlates). There are ~3 X 10° pyramidal
cells in CA3 and 4 X 10° in CAl (Amaral et al. 1990). Multiunit
recordings in freely behaving rats (Wilson and McNaughton
1993) show the following essential details. (1) Relative anatomi-
cal location of place cells does not correlate with their spatial
preferences (Redish et al. 2001). (2) Approximately 0.1% of all
CA3 pyramidal cells and ~1% of all CA1 pyramidal cells are active
at any given location in an environment (McNaughton et al.
1996). Accordingly, place fields in CA1 are typically bigger than
in CA3. (3) Any given CA3 or CA1 pyramidal cell has a probabil-
ity of about 30% to exhibit activity within a given environment
(McNaughton et al. 1996). Typically, this activity is spatially se-
lective (compact place field); nevertheless, it can be spontane-

ously exhibited at any location in the environment (broad “tails”
and background noise). The other 70% of cells, however, may
remain silent for the whole recording session.

A typical CA3 pyramidal cell is innervated by ~12,000 other
CA3 pyramidal cells (Ishizuka et al. 1990; Amaral and Witter
1995) via wide-spread projections (the axonal field of each cell
covers ~1/3 of the hippocampus) (Miles et al. 1988). A typical
CA1 pyramidal cell is innervated by ~16,000 CA3 pyramidal cells
via Schaffer collaterals and commissural pathways (Bernard and
Wheal 1994). These diffuse projections distributed throughout
CA1 in a gradient fashion constitute the main input to CAl. In
addition, both CA3 and CA1 areas receive diffuse input from the
entorhinal cortex (which, in the case of CA3, is partially medi-
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Figure 1. Firing properties of place cells (see Supplemental online material at http://
www.krasnow.gmu.edu/ascoli/sa_lm05_som/ for a color version of this figure). (A-C) CA1 firing pat-
terns during a typical recording session of a rat running a maze (based on data from Kudrimoti et al.
1999, courtesy of B.L. McNaughton). The entire trajectory of the freely behaving rat (4) follows the
rectangular apparatus, which is approximately one meter long. (B, C) Scatter plot of vertically arranged
spikes (black pixels) of 28 simultaneously recorded cells from the same animal. The superimposed light
background waveform shows the EEG. Horizontal dashes mark seconds (total duration of the session
was 23 min, of which only two short intervals are shown). Narrow vertical columns of spikes marked
by light-gray arrows are the sharp waves. (D-E) Phase precession in rat CA1 pyramidal cell firing, based
on the data used and referenced in Samsonovich and McNaughton 1997, courtesy of B.L. McNaugh-
ton. (D, linear motion, E, random two-dimensional foraging) Grayscale-coded distribution of CA1 firing
rates on a chart (defined in Samsonovich and McNaughton 1997), separated by phases of the 6 rhythm
and averaged in rat egocentric coordinates over the whole trajectory of the rat. The dark shade color
corresponds to low, medium shade to medium, and light shade to high activity of CA1 place cells;
uniform gray background corresponds to data missing due to extremely low activity in that area. The
length of the arrow in each panel is 15 cm, its rear end is just behind the ears of the rat. Dials in top,
right corners show the selected phase of the 6 rhythm (the maximum of firing generally corresponds
to the trough of the EEG). (F) Schematic representation of a possible fine structure of the phenomenon.
Here, different shades of gray correspond to different 6 cycles; the direction may alternate at random
from one 6 cycle to another. (G) Raster plot of spikes of CA1 pyramidal cells simultaneously recorded
from one rat (modified from Harris et al. 2003, with permission). Shades of gray indicate different
recording sites, the waveform at the bottom is the EEG. As pointed out by Harris et al. (2003), different
groups of cells (cell assemblies) fire at different consecutive 6 cycles.

ated by the dentate gyrus, DG). The
main output of CAl consists of topo-
graphically organized projections to the
entorhinal cortex, both directly and
through the subicular complex. The en-
torhinal cortex, in turn, has distributed
two-way connections throughout the
neocortex. Associative plasticity in CA1
appears to be crucial for memory con-
solidation (Shimizu et al. 2000).

Sharp waves and associative

spatial learning

Sharp waves and ripples are high-
frequency oscillatory events (lasting on
average ~100 msec) of nearly synchro-
nous firing of many hippocampal place
cells, accompanied by a temporary de-
crease or disappearance of the 6 rhythm
(O’Keefe and Nadel 1978; Buzsaki 1986;
Sik et al. 1994). During typical behav-
ioral experiments, rats exploring a maze
do not run continuously (Fig. 1A).
Rather, they intermittently pause, with a
transient change in the hippocampal ac-
tivity from 6 mode to large-amplitude ir-
regular activity (LIA), during which
sharp waves and ripples are observed
(Fig. 1A-C).

During a typical recording session
of a freely behaving rat, sharp waves
may occur frequently and spontane-
ously at arbitrary locations in the envi-
ronment (Buzsaki 1986). Experimental
data suggest that time-compressed re-
play of the recent trajectory may occur
during sharp waves in sleep and wake
states (Nadasdy et al. 1999; Louie and
Wilson 2001; Lee and Wilson 2002;
Buzsaki et al. 2003). The following simi-
lar observations can be made from Fig-
ure 1, B and C. (1) Different sharp waves
are characterized by different firing pat-
terns. Only a fraction of cells that were
recently active fire in a sharp wave. (2)
Cells that were active a few seconds be-
fore a sharp wave are more likely to fire
in a sharp wave. (3) Cells that were not
active immediately during the last few
seconds before a sharp wave, but were
active recently during the maze running,
still can fire in the sharp wave. These
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observations are consistent with the findings of Csicsvari et al.
(2000) showing correlations between CA3 spikes and CA3-CA1
ripples. They underlie the choice of learning rules detailed in the
Materials and Methods.

Phase precession: Exploration of feasible actions?

The phenomenon called “phase precession” (PP) was discovered
by O’Keefe and Recce (1993) and subsequently studied by Skaggs
et al. (1996) and others. It consists of oscillations of the phase of
place-cell firing with respect to the 6 rhythm. According to a
common description of this phenomenon (Skaggs et al. 1996),
the firing phase of a place cell gradually changes from late to
early phases of the hippocampal 6 rhythm, as the rat traverses the
place field of the given cell. An alternative, equivalent descrip-
tion of the same phenomenon can be given in terms of a popu-
lation code (Samsonovich and McNaughton 1997). In short, one
can imagine positioning all hippocampal place cells in the envi-
ronment, each at the maximum of its own firing rate distribu-
tion. Over such an abstract construct (called a chart), the plot of
a momentary smooth distribution of place-cell activity would
result in a bell-shaped function (the activity packet) (Fig. 1 in
Samsonovich and McNaughton 1997), which oscillates with the
6 rhythm in the direction of the animal’s head (Fig. 1D,E). These
oscillations constitute PP.

Many theories have been recently proposed regarding the
mechanisms and the function of PP, including its role in learning
associations among sequentially visited places (Skaggs and Mc-
Naughton 1996) and its possible origin from the modulation of
the sensory input (Burgess et al. 1994; Mehta et al. 2002). Several
interesting features of PP have been established experimentally,
including the following (Skaggs et al. 1996). PP is not sensitive to
visual or other sensory input, e.g., it is observed in complete
darkness. PP is observed during linear one-dimensional unidirec-
tional motion as well as during random two-dimensional forag-
ing. In both cases, its direction is determined by the direction of
the head of the animal, but the spatial amplitude of one-
dimensional PP is approximately twice as large as that of two-
dimensional PP (Fig. 1D,E). In addition, while one-dimensional
PP is mostly focused in the direction of motion, two-dimensional
PP fans out at a wide angle with respect to the current head
direction (Fig. 1D,E). Because the latter fact is established by av-
eraging the spike data over an entire recording session (usually
lasting for 20 min or more), it may not characterize a typical
momentary snapshot of the phenomenon. One possible inter-
pretation of the fan-out average pattern (Fig. 1F) could be that
the direction of PP reflects current or future turns of the rat
(Muller et al. 1996; Lisman 1999); however, to the best of our
knowledge, this idea is so far not supported by any direct experi-
mental evidence.

In this work, we make an alternative assumption that PP
explores possible directions of motion (more generally, feasible
actions) in consecutive 6 cycles (see Materials and Methods for
details), thereby producing, on average, a fan-out pattern (Fig.
1F). This assumption is consistent with an observation by Harris
et al. (2003) that different groups of CA1 cells fire in consecutive
0-cycles (Fig. 1G). We assume spontaneous alternation of active
“cell assemblies” representing different directions of motion or
different feasible actions (this assumption can be tested directly;
see Discussion).

Materials and Methods

Model principles, organization, and dynamics

We start by defining a simple model of spatial learning and navi-
gation. Essentially the same model is used to describe episodic
memory retrieval. The central component of the model is the
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Figure 2. Architecture of the model. (A) General block-diagram of the
model applied to spatial navigation. Arrows show input-output relations
among the modules. Sensory module stimulates the CA3 unit S that
represents the current location (or the currently perceived context) on
the cognitive map. By assumption, the goal module can be “tuned” to a
CA1 unit G that represents the location of the current goal. If, in addition,
the goal module is modulated by the 6 rhythm, it may be able to detect
a moment of time of the strongest PP effect on G activity. In this case, the
control module may be able to detect the momentary PP direction in CA3
that produces the strongest effects on G. For example, the control mod-
ule may receive information from CA3 about spontaneous fluctuations of
the PP direction. Based on this combined information about the momen-
tary PP direction and the moment of G’s strongest response to 6, the
control module selects the next move and sends a command to motor
module, which controls the motion of the model animal in its environ-
ment. The control module, the goal module, the sensory module, and the
motor module were implemented algorithmically in the study of spatial
and problem-solving paradigms. (B) Architecture of the hippocampal
module. This module was implemented as a neural network with plastic
excitatory connections. CA3-to-CA1 connection weights W were modi-
fied via the associative learning scheme (equation 1). Horizontal CA3-to-
CA3 connections J, not present in spatial simulations, were essentially
involved in simulations of all memory retrieval paradigms. S: Units rep-
resenting the current location; G: units representing the goal location.
Shades of gray represent unit activity. (C) Possible mapping of the model
architecture onto brain structures. The hippocampal module maps onto
the hippocampus proper in all cases. The control module maps onto the
prefrontal cortex, PFC (e.g., dorsolateral PFC). When the model is applied
to episodic memory-retrieval paradigms, the role of the environment is
played by multimodal extrastriate sensory neocortices (the neocortical
component, NC). Other components of the architecture A map onto
MTL and/or PFC (cf. Fig. 5).
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hippocampal network (Fig. 2). This component can be thought
of as interacting with other functional modules to exchange,
interpret, and use relevant information (Fig. 2A). While these
other modules are only implemented algorithmically, the hippo-
campal network consists of CA3 and CA1 model units, each rep-
resenting groups of neurons (Fig. 2B). The input-output interac-
tion between the hippocampal network and other model com-
ponents can be approximately mapped to the hippocampus
proper and related brain areas (Fig. 2C). This modular architec-
ture and its mapping onto the brain are further explained in the
next subsection.

In the application of the model to spatial navigation, each
small neighborhood in the environment has a unique represen-
tation in the system being associated with a particular CA3 unit
and a particular CA1 unit. This is consistent with the (now widely
accepted) view of rodent hippocampal pyramidal cells as place
cells. Place cells have preferred locations in an environment char-
acterized by a high firing rate of the cell. Any of these locations
may happen to be a goal location under certain circumstances,
and as such, we refer to them as “potential goals.” However, we
do not assume that place cells specifically serve to represent
goals.

We interpret the gradient of a firing-rate distribution of each
place cell as encoded “driving directions” to the point of a maxi-
mal firing rate for this cell, which can be an arbitrarily selected
point of the environment. In order to find a way to a goal, the
system “listens” to the background activity of goal-related cells,
while exploring alternative feasible actions during sequential 6
cycles.

The model presupposes that, during exploration, the envi-
ronment is navigated randomly, but extensively. However, as
illustrated by Figure 3A, the system is not required to visit every
location during exploration, and the frequency of visits (occu-
pancy) during the exploration phase may not be evenly distrib-
uted among visited locations. Each visit to a particular location
results in a strong activation of the corresponding CA3 and CA1
model units (Fig. 2). At various arbitrary moments during explo-
ration, corresponding to the occurrence of sharp waves, the sys-
tem pauses, and the current location is taken as a potential future
goal. At this point, the activity mode changes from regular,
6-modulated place-cell firing to LIA with “sharp wave” reactiva-
tion of recently active CA3 place cells, with a firing rate propor-
tional to the recency of their last strong activation. In addition,
CA1 cells representing the current location are also reactivated
(Buzsaki 1989). As a result, CA3 place cells become associated
with the selected CA1 cell whose place field represents a potential
future goal. The strength of the associations in this model is
proportional to the recency of a place-cell firing during explora-
tion:

1
Wi = max{ wiye, tTt,} , Y]
where W is the efficacy (weight) of the synaptic connection
from CA3 unit j to CA1 unit i, t is the current moment of time,
and t; is the time stamp of the last visit to the location associated
with the unit j during the running session. The initial conditions
for W’s are arbitrary small values below 1/L .., where L., is the
maximal (allowed) trajectory length that can be associated with
the goal during the training session. The weights of reciprocal
connections are set to a constant (W;; = 2). Generally, the exact
functional dependence (equation 1) of W on t-t; is not essential
for the results of simulations, as long as the function remains
strictly monotonic and noticeably decreasing with the distance.

After the conclusion of an associative learning event, the
system resumes random exploration of the environment, until
another arbitrary potential goal is selected, and the associative
process (a sharp wave) repeats. Thus, if the exploration phase
continues until a preselected goal location is reached, the CA3
model units acquire potentiated, weighted connections to the
CA1 representation of the goal. At this point, the network of
place cells actually provides a capacity for finding a short path to
this goal location, starting from any given location within the
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Figure 3. Simulation results for two-dimensional navigation. (A) A
sample random trajectory during exploration of the maze. The CA1 unit
subsequently selected as a goal represents the top, right corner square
(black dot). Each square of the lattice corresponds to one CA3 unit of the
model network that is a discrete graph; however, the simulated motion is
continuous. The exploratory motion is controlled by equation 2 with
randomly fluctuating acceleration a. The trajectory does not cover the
maze uniformly; in fact, a large part of the maze remains unexplored (top,
left area). The running starts at the bottom of the maze and is continued
until the future goal location is reached. (B) A sample trajectory toward
the goal following the learning session shown in A. In this case, the
acceleration a in equation 2 is controlled by the model (Fig. 2) according
to the algorithm described in the text. The trajectory in B is reasonably
close by its length to a shortest path and is ~60 times shorter than a
typical random walk, e.g., the trajectory in A. (C) Histogram of goal-
search trajectory lengths for the learning scenario represented in A. The
units of length correspond to those of A and B.

Learning & Memory 197

www.learnmem.org



Samsonovich and Ascoli

environment. This is accomplished by a simple algorithm; at
each location, several randomly generated possible local moves
are explored via PP, and the move that produces the strongest
excitation of the place cell associated with the goal is selected and
performed. This process is repeated until the goal is reached. In
the case of two-dimensional spatial navigation, the PP direction
fluctuates within a standard set (“right,” “left,” etc.) In the
memory search paradigm (see below), PP explores those connec-
tions that are stored in the CA3-to-CA3 synaptic matrix. For the
sake of parsimony, CA3-to-CA3 synapses are only included in the
model of memory retrieval, and not in the model of spatial navi-
gation.

Model architecture and its mapping onto the brain

In addition to the hippocampal module described above (Fig.
2B), the implementation of the spatial navigation algorithm im-
plies the presence of an external “goal module” to interpret CA1
activity (Fig. 2A). The goal module is tuned to detect a maximal
response during PP in the CA1l unit associated with the goal
location. We assume that the goal module is also modulated by
the 6 frequency. In partial support of this assumption, is the
observation that any “voluntary” movement of a rat, e.g., press-
ing of the “gas” pedal while driving a toy car, is phase-locked to
the 6 thythm (Terrazas et al. 1997). The goal module is connected
to a control module, which detects the PP direction that maxi-
mally excites the CA1 goal-related cell and selects the corre-
sponding movement. A motor module connected to the control
module executes this selection. A sensory module delivers the
updated sensory and/or proprioceptive input translated into a
new perceived context directly to the hippocampal module.

This model architecture can be mapped onto brain struc-
tures (Fig. 2C; see also Samsonovich and McNaughton 1997).
Here, we emphasize one difference between the mapping of the
model applied to spatial navigation and the mapping of the
model applied to episodic memory retrieval. While the hippo-
campal module is mapped onto the hippocampus proper and
plays the same functional role in both cases, the role of the en-
vironment (Fig. 2A) in a spatial navigation case is delegated to
the extrastriate sensory neocortex (the neocortical component)
(Fig. 2C) in the case of episodic memory retrieval. In particular,
all episodic memory contents are assumed to be stored in this
neocortical component. In the model applied to episodic
memory retrieval, the control module maps onto PFC, while the
functions of the goal, motor, and sensory modules are mediated
by MTL and may also be partially attributed to PFC.

Computational implementation details

In order to apply the above general scheme (equation 1 and Fig.
2) to model a rat running in a typical experimental environment
(e.g., Fig. 3A), a few more details need to be specified as follows:
(1) the rat coordinates change continuously, (2) the animal pos-
sesses inertia, e.g., it cannot instantly stop or turn at a sharp
angle, and (3) it is the acceleration rather than the location in
space that the nervous system can control immediately. These
features are captured by the following simplified equations of
motion written in the discrete time t:

t+1
vl = avi+al, — 5 5
a=0, a“=¢ 2
{x lox +v'+1 ’ ’ )

where X is the two-dimensional location of the rat, v is its veloc-
ity, and the Gaussian random variable a is its acceleration, which
has a zero mean and a standard deviation o. During initial ex-
ploration, any randomly generated value is accepted. During
goal-directed search, the “voluntary control” is introduced algo-
rithmically as the selection (by the control module) of one
among several (10) randomly generated values of a with the
strongest PP effect on the goal unit (therefore, not all possible
values of a, which constitute a continuum, are explored). The
motion is dissipative; the model rat velocity decays over time
with the exponent log o. The CA3 and CA1 units to be activated
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are selected at each discrete time step via rounding of x toward
the nearest integer vector.

The values of parameters used in the simulations of Figure 3
were a = 0.875, o2 = 0.5. In addition, v was reset to zero at each
bump into a wall. The numerical values of « and o determine the
average speed of motion and were adjusted to yield realistic rat-
like trajectories. Primarily, however, the realism of the trajecto-
ries achieved by the model is due to the choice of equations of
motion (equation 2) that describe the control of acceleration
rather than position. Within the range of values for the param-
eters of equation 2 that provided realistic trajectories, the quali-
tative simulation results were robust and not sensitive to particu-
lar parameter combinations.

Nonspatial paradigms

In the case of the space of states of the three-disc Tower of Hanoi
problem, only discrete transitions between neighboring nodes of
the graph (Fig. 4A) constitute possible movements. Therefore,
equations of motion (equation 2) were not used in this case.
Instead, 10 randomly generated (possibly repeating) moves were
probed at each node before selecting the best of them based on
the associated weights, as described above. All other implemen-
tation details were the same as in the previous case.

To simulate an example of episodic memory retrieval event
(Fig. 5), we use essentially the same model architecture (Fig. 2A)
and dynamical rules as in the previous case, implementing only
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Figure 4. Tower of Hanoi Paradigm. (A) The discrete space of states of
the classic Tower of Hanoi Puzzle with three discs. Gray triangles repre-
sent states of the puzzle that are depicted next to them. Lines connecting
triangles show all possible moves (small disk, solid line; middle disk,
dashed line; large disk, dotted line). (B) The time used by the system to
solve the Tower of Hanoi puzzle vs. the time allowed for random explo-
ration of the puzzle before disclosing the goal. A unit of time is one move.
Each box represents results of 10 independent trials (all with random
starting configuration) and has lines at the lower quartile, median, and
upper quartile values. Whiskers represent the rest of the data range. A
sharp transition can be seen at ~100 exploratory moves.
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the following modifications. CA3 layer in the hippocampal mod-
ule has now internal synapses (Fig. 2B; horizontal links), which
store connections of the cognitive graph. Environment is re-
placed with a separate neural network representing the neocor-
tical component. The implementational details of this compo-
nent are described in the next subsection. The stable patterns in
this neocortical network are attractors taken to represent “epi-
sodic memories.” Each of these patterns is assumed to be previ-
ously explored and associated with the hippocampal module
units, thus binding together the dynamics of the two compo-
nents. During the random memory exploration phase, the
weights W are adjusted according to equation 1, and local CA3-
to-CA3 connections are created corresponding to the transitions
among attractors in the neocortical component. The memory-
search phase proceeds exactly as the goal-search phase in the
Hanoi Tower simulations, except that, now, two neural net-
works, hippocampal and neocortical, are working in parallel.

Attractor model of the neocortical component

A simple model of the neocortical component was simulated
explicitly to illustrate the role of the hippocampus in an example
of memory retrieval (Figs. 5, 6, 7). The neocortical component was
implemented as an attractor network of neuronal units charac-
terized by their activity rates v; (equation 3) :

d I, —r, |2
v,»=S(Ew,-ivi+IeXp—% . 3)
i 205

Here, r; are abstract, randomly generated two-dimensional coor-
dinates assigned to each model unit (Fig. 6), I is the strength of

the external input to the network from a hippocampal pointer
(via MTL), the parameter o, and the “location” r, € {a, b, ¢, d, e}
determine the input pattern. The state of the neocortical com-
ponent at any moment of time is regarded as nearly stationary
(i.e., variables v; are considered fast) at the scale of the hippo-
campal module dynamics. The (asymmetric) synaptic weights w
are randomly generated according to the formula

e, 2
Wij=w; €Xpl ——_—— |-, 4
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where o; are independent random numbers uniformly distrib-
uted in the interval (0,1), v is a constant inhibitory parameter
(which stabilizes connectivity), and § is a standard logistic sig-
moid function:

S(x) = ©®)

1+exp(d—x)
The firing rate in equation 3 was solved iteratively with values of
model parameters n =300, I =3, 0 =0.15, 0,=0.2, v=0.1, 6 = 3.
Given a specific realization of random numbers (produced by
Matlab code included in Supplemental online material at http://
www.krasnow.gmu.edu/ascoli/sa_lm0S_som/), this network has
six attractor states. Five of these are characterized by focused
activity patterns represented in Figure 5, A-E. The sixth state
has a near-zero, almost uniform distribution of activity
(v=10.032 + 0.005) and it can only be reached after a “cold” start.
The implementation of this model corresponds to a fair-

ly standard artificial neural network, with Gaussian input
and Gaussian distribution of synaptic weights. The goal of this
neocortical component simulation is

not to embody a biologically plausible

Activate schemas

representation of the neocortex, nor to
offer a mechanistic insight into its func-
tion. Instead, this model is one of the
simplest network implementations
yielding nontrivial dynamics among
stable activity patterns. We take the
transitions among these activity pat-

Tune to specific
features of the
target context

FrC lated to th t “Why would | have ordered
r:a?i;-.t fgm;:;oosf orange juice at the NIH
5 o
the last Monday cafeteria last Monday?
Seminars Morning
MTL at NIH hurricanes

Current experience:

NC Pattem A

NC

Arriving to NIH in
a strong hurricane
NC Pattern B

In the NIH lab:
seminar canceled
NC Pattern C

talkingtoafiend |1 NC SN w2 /I Ve
In the NIH cafeteria: ordering

orange juice, as it is the only
available drink: NC Pattern E

Power and water
outage in all NIH
NC Pattern D

terns to illustrate sequential episodes in
the space of memories. Thus, this neo-
cortical network was only used to ana-
lyze the role of the hippocampal module
in a simple memory retrieval paradigm.
Other network models with dynamical
activity patterns that could represent
episodic memories could serve the same
purpose.

Last Monday

Simulation of the hippocampal
module as a large two-layer

neural network

In order to address the biological plausi-

bility of the hippocampal model for epi-

Figure 5. Modeling an example case of episodic memory retrieval. According to the proposed
model, if the target episode (E) happened under unusual circumstances, then reactivating its hippo-
campal pointer immediately may not result in retrieval. Instead, the system must retrieve the key
episodes (B, D) first in order to make the necessary contextual information available for the working
memory. In the represented example, this is achieved by sequential activation of the pointers A, B, D,
and E in the hippocampal module (HM) (cf. Fig. 2), as described in the text. (PFC) Prefrontal cortex
performing the control and monitoring functions during strategic search; (MTL) medial temporal lobe
cortices, the semantic memory storage; (NC) extrastriate sensory neocortex, where the memory con-
tent is presumably stored. The chain of thin black arrows outside of the hippocampal module shows
the sequence of original experiences. Fat gray arrows inside of the hippocampal module show the path
of retrieval. Other fat gray arrows show critical interactions among modules at the beginning of
retrieval. Dotted arrows show hippocampal-to-neocortical associations (that are actually mediated by
MTL; this detail is not shown). Thin black arrows inside of the hippocampal module show potential
connections between A, B, C, D, and E. As explained in the text, these connections reflect logical and
informational interdependence of remembered episodes (e.g., power outage in NIH makes sense in the
context of a strong hurricane). Accordingly, these thin solid arrows agree one-to-one with all possible
transitions in the simulated model the neocortical component (Fig. 6).

sodic memory retrieval under realistic
conditions (e.g., in terms of the size of
memory space, number of visited epi-
sodes during memory exploration, num-
ber of episodes necessary to reach an ar-
bitrary target during retrieval, etc.), we
implemented a larger scale hippocampal
module model. The network was com-
posed of N CA3 plus N CAl1 model neu-
ronal units (N = 11, 20, 30, 50, 100, 200,
300, 500, 1000, 2000, 3000, 5000,
10,000, 20,000, 30,000). Each unit was
considered as a group of principal hip-
pocampal cells representing a unique,
previously explored abstract context,
with one-to-one correspondence be-
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Figure 6. Simulation results for the model neocortical network. (A-E)
Five stationary attractor states of the model neocortical component de-
fined by equations 3 and 4, and by the realization of random numbers
(see Materials and Methods and Supplemental online material at http://
www.krasnow.gmu.edu/ascoli/sa_Im05_som/). Shades of gray represent
unit activity. The “centers of mass” of activity in these five states are
labeled a, b, ¢, d, and e, respectively. (A7) The network initially brought
to the attractor state A is stimulated by the “pointer” E (a Gaussian dis-
tribution of inputs centered at the label “e”). The represented configu-
ration is stationary under given conditions; the stimulus-induced transi-
tion from state A to state £ does not occur. All possible stimulus-induced
transitions in this model network are shown by thin black arrows inside of
the hippocampal module circle in Figure 5. The reader can verify this fact,
using the demo included in Supplemental online material at (http://
www.krasnow.gmu.edu/ascoli/sa_lm05_som/).

tween CA3 and CA1 units. Selected random connections be-
tween abstract contexts were stored in the CA3-to-CA3 synapses
(matrix /). Each CA3 unit was associated with 10 other randomly
selected CA3 units (with the uniform probability, but avoiding
repetitions). An interpretation of these stored connections is that
they result from associative learning during initial experience
and during subsequent off-line replays. One epoch of memory
exploration was simulated for each afferent connection of each
CA3 unit. Each epoch included M steps connecting M + 1 units
(M ranging from 1 to 100 in different simulations). Technically,
these exploratory epochs were simulated by sequentially activat-
ing the stored connections J backward. All CA3 units that were
active during a given epoch were associated with the CA1 unit
that was active at the end of the epoch, with the weight given by
equation 1, where £ is the time of the last reactivation of unit j
during the epoch. Associations across different epochs were not
created.

During retrieval, the activity in CA3 was centered on one
unit and distributed with the weight 0.2 among all 10 efferent
neighbors of the central unit. The resultant profile of the CA3
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activity packet is represented in Figure 8A. The corresponding
distribution of activity in CA1 (Fig. 8B) was calculated as the
distribution of activity in CA3 multiplied by the matrix W. When
stated explicitly, a Gaussian, uncorrelated noise was added to the
resulting CA1 activity. The standard deviation of noise ranged
from O to 0.0015, i.e., 2.5% of the peak CA1 activity value (this
level of noise is attributed to individual model units, each of
which may be related to a large population of neurons). In addi-
tion, both CA3 and CA1 activity packets performed PP oscilla-
tions in synchrony with each other. The direction of PP was
alternated, so that all 10 stored efferent connections were ex-
plored at each visited location. As before, a PP oscillation that
produced the strongest effect on the goal-related CA1 cell was
selected as the next step. If there was no effect, a random efferent
connection of the current CA3 unit was selected as the next step.
The process of retrieval was terminated when the goal-related
CA1 cell became the center of the CA1 activity packet. In each
retrieval simulation session, both the starting and the target units
were randomly selected anew. The Matlab code used in all simu-
lations is included in Supplemental online material at http://
www.krasnow.gmu.edu/ascoli/sa_lm0S_som/.

Results

Simulated navigation in a continuous

two-dimensional space

We start by describing simulation results for a two-dimensional
maze shown in Figure 3. After random exploration of the envi-
ronment (that starts at the bottom and ends in the upper right
corner; Fig. 3A), the model rat is given the task to reach a prese-
lected goal. The typical resulting trajectory steers clear of dead

CA1

CA3

Figure 7. Architecture of the hippocampal module after the explora-
tion phase in the example of episodic memory retrieval. These numerical
results of learning in the hippocampal module were achieved in a typical
memory-exploring sequence of 10 moves (Supplemental online material
at http://www.krasnow.gmu.edu/ascoli/sa_lm05_som/: the movie “ex-
ploration”). Labels A-E within the circles correspond to the hippocampal
pointers in Figure 5 and the related stable neocortical patterns in Figure
6. Solid CA3-to-CA3 arrows (bottom) show explored (and stored in the
hippocampal module) transitions among memories in the neocortical
component. Dashed CA3-to-CA3 arrows show available, yet unexplored
transitions. Despite the unexplored part of connections, all-to-all off-
diagonal synaptic weights W (vertical oblique arrows of variable thick-
ness) were modified by learning according to equation 1 in this simula-
tion. The thickness of each arrow is proportional to the corresponding
computed synaptic weight W, which varies from 0.2 to 1.0. Straight
vertical CA3-to-CA1 dotted lines that represent diagonal matrix elements
had the maximal weight W, = 2.
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ends and does not includes loops (Fig. 3B). Most importantly,
when starting from any of the previously explored locations, the
model reaches the goal following a path with length of the same
order of that of the shortest possible path.

Figure 3C shows a histogram of 50 trajectory lengths for the
learning session represented in Figure 3A, when the starting lo-
cation is selected at random for each trajectory, and the goal
location is fixed. The long tail on the right side is due to the
selection of starting locations within the unexplored area (the
upper left part in Fig. 3A). In this case, the model rat proceeds
randomly until it reaches a previously explored location. The
average ratio of the length of the trajectory leading to the goal
before and after learning was 60:1.

Simulated solution of the Tower of Hanoi problem

The qualitative results obtained with this model in simulated
mazes are not contingent on the geometrical and topological
properties of the search space (such as continuity and planarity
of the environment, symmetry of connections, etc.) and can be
reproduced in nonspatial problem solving. The classic Tower of
Hanoi puzzle (analyzed, e.g., in Russell and Norvig 1995) is an
example of a nonspatial problem that can be solved by the same
algorithm used above for two-dimensional navigation. Figure 4A
represents the entire space of states of the three-disc Tower of
Hanoi problem.

One hundred independent sessions of the exploration-and-
solving paradigm were run. The system had no a priori knowl-
edge of the goal during the exploration phase, in which associa-
tions were learned according to equation 1. The exploration time
was doubled every 10 cycles. During each of the exploratory ep-
ochs (all started with a randomly generated configuration) the
goal could be reached 0O, 1, or several times. The resulting distri-
bution of the solving time vs. exploration time is presented in
Figure 4B. Instead of a gradual decrease in the average solving
time, a sharp transition is observed at ~100 exploratory moves,
when the probability that the goal is not reached during the
exploration phase becomes negligible. The system always (and
immediately) finds a nearly optimal path in the discrete search
space, provided that every location is previously explored.

Episodic retrieval involving navigation of memory

Here, we present a simple model description of a realistic ex-
ample of episodic memory retrieval. A critical element of this
example is that the episode to be retrieved requires other episodic
knowledge for its understanding. This case is crucially distinct
from retrieval of typical episodes. In the retrieval of a typical
episode (“What did you have for breakfast last Monday?”), PFC
can be used to immediately access facts from semantic memory
in MTL that are highly accessible insofar as they have been
stamped in by multiple experiences as follows: “What do I nor-
mally do on Mondays? I go to the National Institute of Health
(NIH). What do I normally have for breakfast? Orange juice.
Where do I normally eat breakfast? At a cafeteria.” As a result of
this process, the system may produce a rather trivial answer; “I
had an orange juice at the NIH cafeteria.” This account, however,
may not apply to memories of unique, unusual episodes. Imagine
that the above answers are not characteristic of you at all. You do
not go to NIH regularly. You eat breakfast at home, and you
never drink orange juice in the morning. Yet someone tells you
the following: “I saw you last Monday morning at the NIH caf-
eteria with orange juice!” In order to be able to retrieve and to
understand a memory of this episode (assuming that it did take
place), you may need to retrieve several related episodes first that
contain key episodic (rather than semantic) memory data. Those
related key episodes may be involved with completely different

semantic features, and in this case, PFC may not be able to find
them without the help of the hippocampus (Fig. 5). Our model
allows for the following account of this case.

1. At the beginning, PFC tunes to receiving signals from MTL
related to specific semantic features of the target episode,
namely, “orange juice,” “NIH cafeteria,” and the notion of last
Monday. Suppose that pointer E (Fig. 5) is the only perfect
match for these features, and it is associated with the right
memory. Nevertheless, activating this pointer immediately
may not help in retrieval of the episode.
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Figure 8. Simulation results for the random hippocampal network. (A)
Shape of CA3 activity packet in the model. (B) Activity packet shape in
CAT1 analytically calculated from the CA3 shape (A) in the limit of a large
number of units N. The distance from the center is measured along stored
efferent connections. The distribution is truncated at the distance M = 5.
The uniform background activity level, which did not affect any model
dynamics, was set to zero. The sum of activity over the layer is normalized
to 1. The central peak value is 0.06; the standard deviation of the distri-
bution is 1.0. (C) Histogram of retrieval trajectory lengths calculated over
10,000 retrieval sessions with a randomly generated network of 10,000
units. The plot represents 99.6% of all trajectories (see text). (D) Depen-
dence of the retrieval path length on the number of episodes in each
sequence (epoch) used in associative learning and on the level of noise.
Epochs of spontaneous, random, off-line replay of memory episodes
(propagating along stored connections) were simulated to create asso-
ciations between CA3 and CA1 units (matrix W) according to equation 1.
One trajectory per afferent connection was associated with each unit
(totalling, on average, 10 trajectories per unit, each of the length M). In
subsequent retrieval sessions (10* sessions per data point), the average
length of a retrieval path was a decreasing function of the number of
episodes in the sequences, as the plot shows. (Solid lines) No noise added
to CA1 unit activity; (dashed lines) a white Gaussian noise (2.5% of the
peak CA1 activity) was added to all active CA1 units. Middle lines repre-
sent the mean value; bars show the standard deviation. The three dotted
horizontal straight lines show the mean plus-minus of the standard de-
viation of the shortest path lengths in 10* runs. (£) Dependence of the
retrieval path length (solid lines) on the memory load (the number of
units) N. The triplet of dotted straight lines shows the dependence of the
shortest path length on N (computed with the same data set, the mean
+ the standard deviation). The vertical dotted line shows the approxi-
mate real number of recurrent synapses per pyramidal cell in CA3, which
may determine the upper limit on the episodic memory load, i.e., the
number of patterns stored in CA3 (in the model, this limit is given by the
number N of model CA3 units).
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2. Next, PFC attempts to activate any semantic features (sche-
mas) associated with connections from the current context (at
the beginning, this is the context of talking to a friend) to
other contexts, while “listening” to the background activity in
E via the two selected features. Suppose that the strongest
response in E at the first step of retrieval is associated with
simultaneous activation of two schemas, “morning hurri-
canes” and “seminars at NIH” (Fig. 5).

3. Therefore, the system activates these features in MTL, thereby
causing a transition along the connection from A to B in the
hippocampal module. The corresponding alteration of the ac-
tivity pattern in the neocortical component is induced (Fig. 6);
as the pointer B becomes active, the episode B is retrieved in
the neocortical component, corresponding to the arrival to
NIH for a morning seminar, when a strong hurricane is be-
ginning.

4. The pattern of action (2 and 3) is repeated (e.g., the next
retrieved key episode would be the moment of power and
water outage at NIH), until the system reaches the target
pointer E in the hippocampal module and the associated tar-
get episode E in the neocortical component. This is the mo-
ment of ordering orange juice at the NIH cafeteria, because no
other drink is available. The resultant path (fat gray lines in-
side the hippocampal module, Fig. 5) is shorter than the origi-
nal sequence of experience (the chain of thin black arrows
outside of the hippocampal module, Fig. 5).

In order to illustrate the possible role of the hippocampus in the
above process, we apply another instance of the the hippocampal
module network (Fig. 2) to this problem. The role of the envi-
ronment in this case is played by the attractor network model of
the neocortical component. In this model, neuronal units are
randomly allocated on a plane, with potentially all-to-all con-
nections limited by a Gaussian function of the distance (see Ma-
terials and Methods section above). In the particular realization
of the network we used, five attractor states are compact patterns
of activity (Fig. 6), which can be taken to correspond to episodes
A-FE in Figure 5. The model neocortical network was simulated in
parallel with the original hippocampus model (Fig. 2B), described
by equation 1, and taken in the form of the graph represented in
Figure 5 (hippocampal module). The output from an active hip-
pocampal module unit was distributed among inputs of the neo-
cortical component units using a Gaussian function centered at a
location (a, b, ¢, d, or e) associated with the the hippocampal
module unit. During an interval between stimulations, the neo-
cortical component relaxed to an attractor state. Thus, possible
control actions over the neocortical component were limited to
activation of one (or none) of the “pointers” that project to
neighborhoods a, b, ¢, d, and e in Figure 6, while the role of the
hippocampal module and related structures (Fig. 2) was to find
the right sequence of activation of the neocortical component.
The neocortical network’s dynamics were not governed by
geometrical distances between attractor centers. Transitions be-
tween well-separated, distant patterns (e.g., from E to C) were
readily induced by the stimulus. At the same time, some transi-
tions between nearby overlapping patterns did not occur. For
example, when the network was in state A, and the stimulus was
applied at the label e, attractor state A was slightly distorted (Fig.
6A1), but it did not jump to the pattern E. All connections in the
model network (i.e., transitions that can be caused by a stimulus
applied at a, b, ¢, d, or e) are represented by thin black arrows
connecting pointers A-E inside of the hippocampal component
in Figure 5. In particular, the network can be led to E from A via
B and D, but not directly from A to E. This result illustrates the
idea that in some neuronal networks, contrary to the traditional
theory going back to Teyler and Discenna (1985, 1986), a prema-
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ture reactivation of a hippocampal pointer associated with the
target episode may not cause retrieval of the episodic memory,
while at the same time reactivation of a connected path success-
fully results in retrieval.

During one selected typical training session in simulations
of this example (captured in the movie “exploration” included in
Supplemental online material at http://www.krasnow.gmu.edu/
ascoli/sa_lm05_som/), the system randomly explored possible
transitions between pointers in the hippocampal module. The
system followed (and stored in CA3-to-CA3 synapses J) only
those transitions that successfully induced the correspondent
pattern switching in the neocortical component. In parallel, the
matrix W was modified according to equation 1. This memory
exploration phase lasted for 10 steps. The resultant matrices J and
W are represented in Figure 7 by the thickness and the style of
lines (see Fig. 7 caption). The reader can easily reconstruct the
path from A to E that was selected by the model in the retrieval
phase, when the pointer E was given as a goal (see the movie
“retrieval” included in Supplemental online material at http://
www.krasnow.gmu.edu/ascoli/sa_lm05_som/). To reconstruct
the path, the reader may follow at each step a solid CA3-to-CA3
arrow leading to a CA3 node with the strongest connection to
CA1 node E (this pathis A - B - D — E).

The function of this rather simple example simulation is to
illustrate the possible involvement of the hippocampal network
in the retrieval of an unusual episodic memory, as in the example
presented in Figure 5. In particular, the attractor network model
of the neocortical component allows the implementation of epi-
sodic memory dynamics in parallel with the hippocampal net-
work. The particular choice of the neocortical component model
does not affect the plausibility of the hippocampal module. Nev-
ertheless, several critical questions remain open regarding the
applicability of the hippocampal network model in conditions
closer to real episodic memory retrieval. How does the model
perform in the case of a large, realistic memory load? How many
sequential episodes in this case should be associated with a CA1
unit in a sharp wave for the model to succeed in retrieval? Can
the model remain efficient, if more realistically spread distribu-
tions of activity are used in CA3 and in CA1 instead of a single
winner-take-all unit? Finally, how robust is the model perfor-
mance with respect to the intrinsic noise that is due to the ran-
dom and discrete nature of neuronal spikes?

Episodic memory retrieval with a substantially large

memory load
In order to address the above questions, we increased the size of
the hippocampal module network up to 30,000 units represent-
ing abstract contexts. To the best of our knowledge, the number
of distinct contexts remembered by a typical, normal adult hu-
man has not yet been reliably estimated. At the same time, as-
suming that the pointers to those contexts are stored in the hip-
pocampus, one may come up with an estimate based on the
anatomical data (see Connectivity in Cornu Ammonis). CA3 net-
work is frequently considered as an autoassociative attractor net-
work. In many theoretical models of autoassociative attractor
neural networks (Amit 1989; Hertz et al. 1991) the decimal order
of the maximal number of stored patterns can be roughly esti-
mated as the decimal order of the number of synapses per neu-
ron. Based on this logic, we take the number 10* as a “realistic”
estimate of a typical episodic memory load. While this number
intuitively appears low, most long-term memories may be of se-
mantic nature, and therefore, their retrieval may not primarily
depend on the hippocampus.

In this simulation, we implemented the hippocampal mod-
ule as a large, randomly generated two-layer network with the
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total number of neuronal units up to 6 X 10* and the total num-
ber of modified synapses up to 3 X 10° (the corresponding maxi-
mal total number of synapses was of the order of 10°). The neo-
cortical component was not explicitly simulated in this case. In-
stead, random connections were generated (and stored in J)
during training sessions. We used a more realistic model activity
distribution in CA3 (Fig. 8A), which resulted in a more realistic
activity packet shape in CA1 (Fig. 8B). For each randomly gener-
ated and explored network, 10* retrieval sessions were run, with
a random selection of both the starting and the goal locations in
each session. Among the varied parameters of the model were the
number of episodes (or abstract concepts) associated with CA1l
units in sharp waves, and the level of dynamical noise in CA1l.
Results are presented in Figure 8. The main finding is the robust
ability of this model system to find a nearly optimal path toward
a given target.

For example, consider the memory load N = 10*, with n = 10
efferent connections per hippocampal module unit, with M =5
exploration steps of sequential episodes to be associated with a
CA1 unit, in the absence of noise. In these realistic conditions,
the retrieval path length between two randomly selected units
(calculated over 10* retrieval sessions, each with random start
and goal selection) is 6.75 = 3.10sd, while the shortest path
length (calculated in parallel for the same set of cases) is
4.22 + 0.68. The ratio of the mean values is 1.6, and the second
interval is almost entirely contained within the first. The histo-
gram of retrieval path lengths at these values of parameters is
compact (Fig. 8C), with all of the 10* trajectories shorter than 60
steps, and 99.5% of them shorter than 20 steps. To compare, a
typical random trajectory connecting two randomly selected
units in this model network consists of the order of 7000 steps.
This estimate also holds for the case when the two selected units
coincide, meaning that a random traveler in this huge space
would be lost practically forever after the very first step. Never-
theless, our hippocampal network model was never lost.

This result is robust with respect to alteration of many
model parameters within and beyond their realistic range (Fig. 8).
For example, introducing Gaussian dynamic noise at the level of
2.5% of the peak CA1 activity only increases the mean retrieval
path length by 9%. Doubling the number of units N increases
the mean retrieval path length by 30% (while at the same time,
the mean shortest path length increases by 7%). Shortening the
number of associated episodes M from five to two increases
the mean retrieval path length by 11% (Fig. 7D). Therefore, un-
like the case of spatial navigation of large two-dimensional en-
vironments, this paradigm of memory retrieval does not require
long exploration epochs to be associated with potential target
units. On the contrary, association of very short epochs may
suffice for a reasonably good performance. At the same time,
increasing M up to 100 and beyond does not significantly im-
prove the performance of the model.

Discussion

The last simulation constitutes a proof-by-example of the viabil-
ity of the proposed concept in the case of an abstract model
system with a realistically large memory load. Can the same phe-
nomenon be demonstrated in a network with more realistic ar-
chitecture and dynamics? One way to improve the model is by
using a more precise description of the distribution of activity in
CA3 and in CA1. For example, extending the rapidly descending
tails of the activity packet in CA3 (Fig. 7B) up to the next-to-
nearest neighbors of the central unit should improve the perfor-
mance of the system, in particular, in the case of a very large
network (10° units and above). This idea is consistent with the
broad spatial tuning of place cells in CA3 (in addition to CAl).

Another interesting possible modification of the model concerns
the architecture of the random network. Here, we assumed that
the probability of connection is uniformly distributed among
units (with the only constraint that there are 10 efferent connec-
tions for each unit). Instead, a subset of units that are connected
to the same parent could have a higher probability to be con-
nected to each other than to any randomly selected unit. This
bias, if present, would result in a certain degree of clustering in
the network, consistent with the idea of cell assemblies (Harris et
al. 2003), as well as with the hierarchical organization of remem-
bered contexts.

Understanding hippocampal function in episodic

memory retrieval

According to the view of the hippocampus as a context-indexing
device (e.g., Wheeler et al. 1997), all real or imagined general
contexts of experiences (rather than experiences per se) are rep-
resented by distinct hippocampal activity states. Neural activity
in each of these states is focused on a relatively small, uniquely
selected subpopulation of principal cells. Each state of this sort
could possess certain (meta-) stability typical of a latent attractor
state (Samsonovich and McNaughton 1997; Doboli et al. 2000).
The most commonly held account of the neural basis of contex-
tual reinstatement is that PFC is used to access information in
semantic memory (Shimamura 1995; Moscovitch 1992; Dobbins
et al. 2002) that is stored in MTL, and not in the hippocampus
(Vargha-Khadem et al. 1997) nor in PFC (e.g., Sylvester and Shi-
mamura 2002). PFC then maintains this information in working
memory and uses it to cue the hippocampus. The goal of the
contextual reinstatement process would be to provide enough
details that match the hippocampal memory trace, so that it is
triggered. Specific information retrieved from the hippocampus
can be used to further refine the retrieval cue (e.g., Howard and
Kahana 2002). Finally, according to this view, when the correct
hippocampal pointer is reactivated, the entire episodic memory
content, distributed across modalities in the neocortical compo-
nent, is retrieved. This traditional view makes two essential (if
implicit) assumptions, that we choose to drop.

1. All contextual information necessary for understanding an
episode is associated with the memory trace of experience
(possibly, via the hippocampal pointer).

2. Once the hippocampal pointer associated with an episodic
memory trace is activated, the entire trace is automatically
reactivated.

Departing from these assumptions, the present work hypoth-
esized that the goal of gradual contextual reinstatement is not to
find the hippocampal pointer (which might be known to PFC
even at the beginning of the process), but to prepare the neocor-
tical component for the retrieval of the target memory trace. This
is done by reinstating into the neocortical component, step by
step, the necessary contextual information that is missing in its
memory traces. In our model, this goal is achieved by “driving”
the neocortical component through a sequence of its dynamical
states. In other words, the necessary context is made available by
a recent history of activity of the system, i.e., by a path in the
memory space. This path must be found every time the memory
is accessed, and it must consist of available connections only.
Thus, the proposed model can be roughly summarized as the
following: The key for episodic retrieval is the missing context,
the key for this context reconstruction is a path in memory space
found by the hippocampus, and the key for pathfinding is the
mechanism involving exploration of available connections while
“listening” to a goal-related cell. This picture can be considered
complementary rather than alternative to the traditional view of
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the hippocampus as a memory index, or a cognitive map, or a
multimodal associator.

Six testable predictions of the theory

(1) A testable prediction of our model in the domain of episodic
memory studies is that hippocampal or prefrontal damage may
severely impair the ability to recall by a cue those episodes that
require other unique episodic knowledge for their understand-
ing. Present experimental data demonstrate that frontal lesions
result in impairment of strategic recall, not cued recall of “epi-
sodic memories” in paired-word list learning paradigms. More-
over, when a recall strategy is supplied, frontal lesion subjects
perform as well as normal controls (Dellarocchetta and Milner
1993). To the best of our knowledge, the differential quality of
cued recall of unique and unusual vs. typical episodes in hippo-
campal or prefrontal lesion cases was not assessed experimen-
tally. Our prediction is consistent with other available experi-
mental data (e.g., Westmacot et al. 2001).

(2) Another prediction of our model in the domain of epi-
sodic memory studies relates to scopolamine-induced (Potter et
al. 2000) or stress-induced (Yovell et al. 2003) hippocampal am-
nesia. We consider a conceivable case, when episodic memory
failure may result from disconnection of a cluster of hippocam-
pal pointers from the rest of the cognitive graph, rather than
from the absence of these pointers. Obliteration of a key episode
associated with essential contextual information may render all
subsequent cluster of events inaccessible by free or cued recall. In
this case, our model predicts that each episode of the cluster may
still be recognizable given enough details, and that successful
retrieval of any of these episodes should make the rest of the
cluster immediately available for free recall.

(3) Spatial navigation was used here as a “proving ground”
to illustrate the more general model of memory retrieval. The
proposed model of spatial navigation is based on a novel assump-
tion about the semantics of place-cell firing, namely, that the
gradient of the firing rate distribution encodes “common sense
directions,” i.e., it points to the first step along a reasonably short
path leading to the place field center, rather than the direction of
the radius vector to that location. Thus, a nontrivial prediction of
the model regarding the place-cell phenomenon is that the firing
rate distribution should be more strongly correlated with the
shortest explored path distance than with the Euclidean distance
to the center of the place field. In particular, we expect place
fields to be discontinuous at a thin barrier partitioning the envi-
ronment, as seen in results of previous studies with a simpler
version of this model (Samsonovich and Ascoli 2001). This pre-
diction diverges from the hypothesis of a prewired, continuous
two-dimensional map with near-Euclidean metrics (McNaugh-
ton et al. 1996), which is supported by the data of Wilson and
McNaughton (1993). Other available experimental observations
favor our view. For example, Skaggs and McNaughton (1998)
found significant discontinuity of place fields at a very thin par-
tition separating two identical boxes, regardless of whether the
hippocampal representations of these two boxes were very simi-
lar or very different from each other (see also Lever et al. 1999,
and the discussion of their result in Hartley et al. 2000). These
observations, however, could also be interpreted in terms of two
different hippocampal maps (Samsonovich and McNaughton
1997) associated with the two sides of the barrier. Therefore, a
more conclusive test is desirable, including an assessment of “re-
mapping” (typically detected as a simultaneous, substantial al-
teration of all place-cell firing rates). For those cases when remap-
ping can be excluded, we predict that one can nevertheless ob-
serve a strong discontinuity in one or more place-cell firing rate
distributions across a thin barrier.
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(4) Place-cell firing in our model is not sensitive to the di-
rection of motion or the orientation of the head, as well as the
past and future trajectory parts, and depends on the current ani-
mal'’s location only. The experimentally observed directionality
of place fields on linear tracks (Gothard et al. 1996) and the
so-called phenomena of “prospective” and “retrospective” cod-
ing (Ferbinteanu and Shapiro 2003; Battaglia et al. 2004) may
have different origin, again related to “remapping.” Usually, in
the case of one-dimensional motion, the hippocampus develops
separate maps for each direction (Gothard et al. 1996) and typi-
cally for each behavioral paradigm as well (e.g., Markus et al.
1995); however, some cells show activity on two maps with iden-
tical or close positions of the place-field maxima. Our model
predicts that these place fields will develop tails in opposite di-
rections and eventually become adjacent to each other, with a
small overlap (tiling). According to our model, the point of over-
lap, which is also initially the point of maximal firing rate of the
cell on both maps, is likely to be a place where the rat stops. All
of these features can be actually observed in the data of Markus
et al. (1999), their Figure 10, G and H, and Battaglia et al. (2004);
however, more observations are necessary for a definitive con-
clusion.

(5) Also supporting the above predictions are observations
of the skewness of rodent hippocampal place fields on a linear
track that gradually develops over time, if the animal runs in one
direction only (Mehta et al. 2000). In our model, the shape of
CA3 place fields during circular one-dimensional motion at con-
stant speed is qualitatively given by equation 1, where W roughly
represents the amplitude of the background place-cell activity
(the main peak is assumed to be well focused), and t-t; can be
replaced by an angle (ranging from O to 360° in the direction
opposite to the direction of motion) from the location of the
selected CA1 place-cell peak activity. Since all laps are identical
(the speed is assumed constant), the first argument of the max in
equation 1 may be ignored, and the place-cell distribution can be
visualized as having a sharp peak at the maximum of the CA1l
place-cell firing, and a long tail that extends to one side only (cf.
Mehta et al. 1997). Moreover, the related phenomenon of place-
field smearing (Mehta et al. 1997, 2000) also naturally results
from the model learning rules (equation 1). In the above example
of multiple laps around a circle, if the speed is random instead of
constant, the amplitude W at each location distant from the
place-field maximum should be calculated based on the best tim-
ing among all laps, according to equation 1. Therefore, W will
generally increase with time upon continual motion, as reported
by Mehta et al. (1997, 2000).

(6) The fine structure of the fan-out PP pattern (Fig. 1F)
assumed by our model could be observed experimentally, and
leads to specific quantitative predictions. Each spike of a place
cell can be characterized by a 2-D unit vector in the current
egocentric coordinates of the rat, pointing toward the place-field
maximum of the spiking cell. According to the model, the hip-
pocampus spontaneously “explores” alternative directions of
motion in sequential 6§ cycles. If this is the case, egocentric direc-
tion vectors of two spiking cells should be more strongly corre-
lated when the two spikes belong to the same 6 cycle than when
they belong to different (e.g., consecutive) 6 cycles. Moreover,
the pattern (Fig. 1F) suggests that the effect should be stronger for
two spikes occurring at late (rather than early) 6 phases.

Related works

The unifying theory of hippocampal memory and spatial func-
tion presented here is consistent with currently available experi-
mental data on rodent place cells and human episodic memory.
Although the two experimental domains are species separated,
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recent studies indicate consistency of general results across spe-
cies (Ekstrom et al. 2003; Eacott and Norman 2004). In spite of
many general discussions of conceptual unification of the hip-
pocampal spatial and mnemonic functions (e.g., McNaughton et
al. 1996; Redish and Touretzky 1997; Wallenstein et al. 1998),
few proposals were specific at the level of underlying mecha-
nisms. Burgess (2002) supposes that retrieval of spatial informa-
tion from long-term storage requires the imposition of a particu-
lar viewpoint. The model is supported by hemispatial neglect
data. Related ideas were described in a human case study by Luria
(1968). In contrast with a local-view approach, an idea that the
hippocampus is involved in movement control is central in the
unification attempt by Gaffan (1998). Another proposal is the
concept of attractor-map-based internal cognitive model (Sam-
sonovich and McNaughton 1997). The present work introduces
the first computational model describing plausible mechanisms
of memory retrieval by navigation in an abstract cognitive space,
showing that the same mechanisms can work in the case of or-
dinary spatial navigation. Many aspects of our ideas have been
discussed and reviewed in previous works (e.g., Redish 1999; Ei-
chenbaum 2004), but never integrated and directly implemented
in a computational model. A number of previous models account
for the hippocampal role in spatial navigation only, some of
which have elements of similarity with the present work.

Gerstner and Abbott (1997) proposed a model of hippocam-
pal map formation based on temporally asymmetric associative
learning, in which place cell activity may be entrained to indicate
the direction to a fixed target from any location, avoiding walls
and other obstacles. In their model, however, directions to dif-
ferent goals can only be stored on different hippocampal maps.
In contrast, in the available experimental literature, typically
only one or (more rarely) two hippocampal maps are reported for
an individual rat in a given environment. Therefore, based on the
model of Gerstner and Abbott, rats should not be able to find an
optimal path toward arbitrary locations in a familiar environ-
ment.

Trullier and Meyer (2000) introduced a network that learns
temporal sequences of visited places, and exploits the resulting
topological representation of the environment for navigation
and path retrieval. Similar to the model described in the present
study, this network learns to find paths during exploration with-
out the need of any reinforcement. Trullier and Meyer’s model
learns the topology of the environment and sequences of moves,
calling upon head-direction cells and a series of goal and subgoal
cells to navigate the environment. However, it does not use in-
dividual CA1 place fields for directly encoding directional in-
structions to reach the center of the field. In contrast with theirs,
our model of spatial navigation does not depend on stored se-
quences of moves, nor topological connections between neigh-
boring locations, yet it is similarly capable of finding an optimal
sequence of moves to reach an arbitrary target given a posteriori.

In the study of spatial navigation, we used learning mecha-
nisms corresponding to the long-term potentiation (LTP) of CA3-
to-CA1 excitatory synapses only. In the model of episodic
memory retrieval, however, we took into account the formation
of autoassociations within CA3 based on LTP in recurrent con-
nections between recently active CA3 units. Indeed, many events
in CA3-to-CA3 connections during sharp waves are analogous to
those in CA3-to-CA1 connections. The introduction of this detail
into the model appears to be necessary for efficient retrieval in a
large network (Fig. 8). It is interesting to speculate how vital (if
helpful) these effects might be for spatial learning and naviga-
tion. Recent studies (Nakazawa et al. 2003) show that N-methyl-
D-aspartate (NMDA) receptors (traditionally implicated in asso-
ciative LTP) in CA3 are necessary for normal place-field develop-
ment and spatial learning in adult rat. These possibilities could

be explored with the second version of our model applied to
spatial navigation. Similar choice is made in several related mod-
els, including that of Trullier and Meyer (2000) discussed above,
and models developed by Schmajuk and colleagues (e.g,
Schmajuk and Thieme 1992; Voicu and Schmajuk 2001). Impor-
tant differences between these works and the model presented
here are the assumed (or predicted) firing properties of CA3 and
CA1 place cells. In the above models, activity in CA3 during the
6 mode propagates on a currently active map, dubiously covering
up to half or more of the environment, to include the goal loca-
tion. In contrast, and in closer agreement with the experimental
data, in our model, the activity packet is always centered at the
current location of the rat and covers a small fraction of the
entire available area, a fraction that remains stable over time for
as long as the rat is running (this fraction is ~10%, based on
available experimental data; McNaughton et al. 1996; Samsonov-
ich and McNaughton 1997).

Of course, the fact that a model can solve a spatial naviga-
tion problem efficiently does not in itself guarantee that this is
how the brain solves the same task. In fact, the cognitive map
version of spatial navigation suggests that a “plan” may be
formed when a decision is made to go from a site to another.
“Prospective coding” in the hippocampus and entorhinal cortex
(Muller and Kubie 1989; Ferbinteanu and Shapiro 2003; Battaglia
et al. 2004), indicating the future turns and positions of the rat,
is as compatible with the plan hypothesis as with the search
mechanism postulated in this work. Indeed, the “prospective
shift” found by Battaglia et al. (2004) could be just another in-
stance of the “place-field tiling” phenomenon discussed above,
which is predicted by our model. Other observations, however,
are consistent with the idea that an imaginary self-motion can be
represented in the hippocampus (Harris et al. 2002).

From the point of view of artificial intelligence, learning
rules used in the present model are not new; they are known in
theory of reinforcement learning and Markov decision processes
as Q-learning, or TD-update (e.g., Russel and Norvig 1995; Sutton
and Barto 1998). However, our model does not formally fall into
the category of reinforcement learning models, because at each
learning cycle the “potential goal” is selected arbitrarily a poste-
riori, rather than being given externally a priori; therefore, there
is no reward-related reinforcement during learning. It is none-
theless noteworthy that one and the same biologically plausible
model can solve spatial and nonspatial tasks, as exemplified by
the Tower of Hanoi Puzzle and episodic memory retrieval. More
generally, this algorithm (and its connectionist implementation)
can be successfully applied to any class of tasks reducible to state-
space problems, including, for example, the “sixteen” puzzle and
Rubik’s cube (in the latter case, with the aid of a paradigm to
limit the state space; Samsonovich and Ascoli 2001).

Finally, in the domain of human episodic memory studies,
many theoretical models have been proposed to account for the
specific hippocampal role in contextual reinstatement (e.g.,
Howard and Kahana 2002; for review, see Simons and Spiers
2003). None of them, however, assigns a specific pathfinding
function to the hippocampus. It is known that implicit proce-
dural and explicit semantic knowledge sufficient for successful
problem solving (e.g., path retrieval in a maze or solving the
Tower of Hanoi) may reside outside of the hippocampus (West-
macot et al. 2001; Winter et al. 2001; Xu and Corkin 2001). At
the same time, hippocampal activity would still be required for
developing an explicit episodic memory of the solution. Note-
worthy in this context is the general consensus that the imme-
diate neural correlate of explicit awareness is associated with the
neocortex rather than with the hippocampus. Why, then, is the
hippocampus required for explicit memory formation? Our ac-
count of this complex of observations is essentially based on the
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concept of metacognition, i.e, awareness and monitoring of the
subject’s own mental states (Ashcraft 1994). Metacognition is
sometimes referred to as “higher-order thoughts” (Rosenthal
2000), implying that entire mental states and paradigms of cog-
nition of a subject are referenced as elements upon which higher-
order thoughts operate. These elements can be viewed as abstract
locations in the cognitive space that are together associated with
the current instance of the subject, the self. A higher-order rep-
resentation of this instance of the subject may simply consist of
a hippocampal pointer to the current episode. Therefore, by
memorizing this pointer and its associations, the hippocampus
makes the current state of explicit awareness available for subse-
quent retrieval as a memory of experience attributed to a past
instance of the self, in other words, as an explicit memory (see
also Samsonovich and Nadel 2005).

Conclusions

The two best known functions of the mammalian hippocampus
are as follows: (i) the ability to represent the current self-location
in spatial (O’Keefe and Dostrovsky 1971; Ekstrom et al. 2003) and
other cognitive dimensions of the current general context (Mc-
Naughton et al. 1996), and (ii) the involvement in the storage
and retrieval of autobiographical episodic memories (Scoville
and Milner 1957, 2000; Zola-Morgan et al. 1986; Tulving et al.
1988; Cohen and Eichenbaum 1993; Rosenbaum et al. 2000). The
idea that these two functions are directly connected was ad-
dressed by a substantial fraction of theoretical and experimental
hippocampal research. The majority of these studies were con-
cerned with the phenomenology and semantics of hippocampal
neuronal activity that could support (or rule out) a straightfor-
ward notion that representations of type (i) are used to instanti-
ate the function (ii) (e.g., Qin et al. 1997; Brown and Skaggs 2002;
Lever et al. 2002). In the present work, we proposed a unique
mechanism defined at the cellular level that possibly underlies
both spatial navigation and episodic memory retrieval.

The hippocampus is not always needed for navigation in
space, as demonstrated in recent rodent experiments (Alyan and
McNaughton 1999), as well as in clinical human studies (the case
of K.C.) (Tulving et al. 1988; Rosenbaum et al. 2000). In this
respect, one could speculate that the primary role of the hippo-
campal spatial function is an epigenetic one, in that it helps a
young animal develop a hippocampal “navigation-in-memory”
function. Thus, the hippocampal spatial navigation function
could be a simplified version and a precursor of its memory func-
tion.

In summary, our results provide a substantial ground for a
theoretical unification of the two best known hippocampal func-
tions, suggesting that (1) the pathfinding function of the hippo-
campus, in addition to its associative and memory indexing
functions, may be vital for retrieval of certain episodic memories,
and (2) the hippocampal spatial navigation function could be a
precursor of its memory function.
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