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Abstract: Computed tomography (CT) offers detailed insights into the internal anatomy of patients,
particularly for spinal vertebrae examination. However, CT scans are associated with higher radiation
exposure and cost compared to conventional X-ray imaging. In this study, we applied a Generative
Adversarial Network (GAN) framework to reconstruct 3D spinal vertebrae structures from synthetic
biplanar X-ray images, specifically focusing on anterior and lateral views. The synthetic X-ray images
were generated using the DRRGenerator module in 3D Slicer by incorporating segmentations of
spinal vertebrae in CT scans for the region of interest. This approach leverages a novel feature
fusion technique based on X2CT-GAN to combine information from both views and employs a
combination of mean squared error (MSE) loss and adversarial loss to train the generator, resulting
in high-quality synthetic 3D spinal vertebrae CTs. A total of n = 440 CT data were processed. We
evaluated the performance of our model using multiple metrics, including mean absolute error (MAE)
(for each slice of the 3D volume (MAE0) and for the entire 3D volume (MAE)), cosine similarity, peak
signal-to-noise ratio (PSNR), 3D peak signal-to-noise ratio (PSNR-3D), and structural similarity index
(SSIM). The average PSNR was 28.394 dB, PSNR-3D was 27.432, SSIM was 0.468, cosine similarity
was 0.484, MAE0 was 0.034, and MAE was 85.359. The results demonstrated the effectiveness of
this approach in reconstructing 3D spinal vertebrae structures from biplanar X-rays, although some
limitations in accurately capturing the fine bone structures and maintaining the precise morphology
of the vertebrae were present. This technique has the potential to enhance the diagnostic capabilities
of low-cost X-ray machines while reducing radiation exposure and cost associated with CT scans,
paving the way for future applications in spinal imaging and diagnosis.

Keywords: computed tomography; generative adversarial networks; deep learning; 3D reconstruction;
spinal imaging; spinal diagnosis; spine surgery; quantitative measurement; clinical application

1. Introduction

Computed tomography (CT) scans are widely used in medical imaging due to their
high-resolution and detailed insights into the internal anatomy of patients [1]. In the field
of spinal imaging, CT scans play a critical role in the diagnosis and management of various
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spinal disorders, providing accurate information on bone structure, alignment, and patho-
logical changes [2]. However, cumulative radiation exposure for patients, particularly in the
context of repeated diagnostic procedures, is a concern. The approximate effective radiation
dose for CT spine scans ranges from 2 to 11 mSv, with an average dose of 8.8 mSv [3–5]. Ad-
ditionally, the cost of CT scans can be prohibitive, limiting their accessibility for healthcare
providers and patients in resource-constrained settings [6].

Conventional X-ray imaging is associated with lower radiation exposure and cost
compared to CT scans, making it a more accessible imaging modality. The approximate
effective radiation dose for biplanar lumbar X-ray is between 0.8 to 1.8 mSv, with an average
dose of 1.4 mSv [3,5]. However, X-ray images are inherently two-dimensional (2D) and
may not provide the same level of anatomical detail as 3D CT scans, particularly when
it comes to evaluating spinal vertebrae structures [3]. Thus, there is a growing interest
in developing novel techniques that can leverage the advantages of X-ray imaging while
providing 3D information akin to CT scans [1].

In recent years, multimodal data techniques and 3D reconstruction have gained
significant attention in the field of medical imaging, particularly for their potential to
improve diagnosis, treatment planning, and patient outcomes [7,8]. The ability to generate
3D representations of anatomical structures from 2D images offers several benefits, some of
which are outlined below [9–11]:

(1) Enhanced visualization and interpretation: 3D reconstruction provides a more compre-
hensive view of complex anatomical structures compared to traditional 2D imaging.
This enhanced visualization enables healthcare professionals to better understand the
spatial relationships between different structures, leading to more accurate diagnoses
and improved decision-making.

(2) Improved surgical planning and navigation: In the context of spinal surgery, 3D
reconstructions can facilitate preoperative planning by allowing surgeons to assess
the extent of spinal deformities or pathological conditions, as well as the ideal surgical
approach. Additionally, 3D reconstructions can be used intraoperatively to guide
surgical navigation, thereby increasing the precision and safety of the procedure.

(3) Patient-specific modeling and simulation: 3D reconstructions can be employed to cre-
ate patient-specific models of spinal structures, which can be used for biomechanical
analyses, finite element simulations, or personalized implant design. These patient-
specific models may contribute to the development of more effective and personalized
treatment strategies, ultimately improving patient outcomes.

(4) Enhanced patient communication and education: 3D reconstructions can facilitate
communication between healthcare providers and patients by providing a more
intuitive understanding of the patient’s condition, the proposed treatment plan, and
the expected outcomes. This improved communication can lead to better patient
engagement, satisfaction, and adherence to treatment recommendations.

(5) Reduced radiation exposure: By generating 3D reconstructions from a limited number
of 2D X-ray images, the proposed technique has the potential to reduce the cumulative
radiation dose associated with traditional CT scans. This reduction in radiation
exposure is particularly important for patients who require repeated imaging over
time, such as those with progressive spinal disorders or those undergoing long-term
follow-up after surgical intervention.

(6) Cost-efficiency and availability: CT scanners frequently have a higher price tag
compared to X-ray machines, which can make them less accessible in resource-limited
settings or developing countries.

In summary, 3D reconstruction offers numerous benefits in the field of spinal imaging,
with the potential to improve diagnostic accuracy, facilitate surgical planning, enable
patient-specific modeling and simulation, enhance patient communication, reduce radiation
exposure, and improve cost-effectiveness and availability in resource-limited settings.

Generative adversarial networks (GANs) have emerged as powerful deep learning
tools capable of synthesizing realistic images from different modalities. Recent studies
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have demonstrated the potential of GANs for generating 3D images from chest 2D X-ray
projections, thus bridging the gap between conventional X-ray imaging and CT scans [11].
In this study, we applied the GAN-based framework for reconstructing 3D spinal vertebrae
structures from synthetic biplanar X-ray images as presented by Ying et al. (X2CT-GAN),
focusing specifically on anterior and lateral views of spinal vertebrae [11]. In contrast to
previous work [11,12] which applied X2CT-GAN for 3D reconstruction in medical settings,
we focussed on segmented vertebrae to specifically focus on the region of interest (spinal
vertebrae) while reducing unnecessary information and thus computational cost. This
approach leverages a novel feature fusion technique based on X2CT-GAN to combine
information from both views and employs a combination of mean squared error (MSE)
loss and adversarial loss to train the generator, resulting in high-quality synthetic 3D
spinal vertebrae CTs. By incorporating a focused view of the spinal vertebrae through
segmentation, this approach reduces unnecessary information which could affect the
synthetic generation of CTs. The general concept is illustrated in Figure 1.
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2. Materials and Methods
2.1. Dataset and Segmentation

In this study, we employed a COLONOG subset [13] of the CTSpine1K dataset [14],
which is a large and comprehensive collection of spine CT data with segmentation masks
and includes data of females and males > 50 years old. Given the focus of the original
trial on colorectal screening, the CT scans were not explicitly aimed at spinal pathology
diagnosis. Consequently, while the dataset does not contain explicit documentation of
spinal pathologies, it can be inferred that the included patients were not primarily diag-
nosed with spinal conditions. The data can be obtained upon request from the authors of
the CTSpine 1Kdataset (https://github.com/MIRACLE-Center/CTSpine1K; accessed on
15 August 2023). The prospective study to obtain the COLONOG subset was reviewed
and approved by each participating institution’s institutional review board, and subjects
gave their informed consent to participate and to have their private health information
accessed for the purposes of the study. All data were anonymized when accessed through
the database. A total of n = 440 CT data were processed. The data were acquired using
multidetector-row CT scanners with a minimum of 16 rows while patients were in supine
and prone positions. The CT images were obtained using the following specifications:
collimation of 0.5 to 1.0 mm, pitch ranging from 0.98 to 1.5, a 512 by 512 matrix, and a
field of view adjusted to fit the patient. The effective mAs was 50, and the peak voltage
was 120 kV. A standard reconstruction algorithm was utilized, and images of patients in
both prone and supine positions were reconstructed with slice thicknesses between 1.0 and
1.25 mm and a reconstruction interval of 0.8 mm [13].

As the benchmark, a fully supervised method was employed to train a deep network
for spinal vertebrae segmentation using the nnUnet model [14]. The nnUnet model has
outperformed other methods in various medical image segmentation tasks in recent years,
making it the acknowledged baseline for medical image segmentation [15]. Essentially a
U-Net, nnUnet features a specific network architecture and design parameters that self-
adapt to the dataset’s characteristics, along with robust data augmentation [14,15]. The
3D full-resolution U-net architecture was used to accommodate the large volume of high-
resolution 3D images in the dataset [14]. Further details about the nnUnet model can be
found in the original publication [14].

To facilitate the annotation process, the segmentation network was trained using the
public datasets from the VerSe’19 [16] and VerSe’20 Challenges [17], employing the nnUnet
algorithm. As most of the samples from the VerSe’ Challenge were cropped, cases that had
complete CT images and consistent image spacing between images and their corresponding
ground truth were selected. Next, the trained segmentation model was assigned to junior
annotators to predict segmentation masks and refine the labels based on the predictions.
These refined labels were subsequently reviewed by two senior annotators for further
improvement. In cases where the senior annotator encountered difficulties in determining
the annotations, input was sought from experienced spine surgeons [14]. To ensure the
final quality of the annotations, coordinators conducted a random double-check, and any
incorrect cases were corrected by the annotators. The human-corrected annotations and
corresponding images were added to the training data to develop a more powerful model.
To expedite the annotation process, the database and retrained the deep learning model
were updated after every 100 cases. This iterative process continued until the annotation
task was completed. The entire annotation process was performed using ITK-SNAP
software (version: 4.0.2), and segmentation masks were saved in NIfTI format [14].

2.2. Data Preprocessing and Synthetic X-ray Generation

In the initial stage of data preprocessing, we cropped the original CT data based on
their respective segmentation masks (see Section 2.1). We implemented this procedure in
Python by first defining a function that took two input arguments: the CT image and its
corresponding segmentation mask. This function identified the non-zero elements in the
segmentation mask and subsequently determined the minimum and maximum indices

https://github.com/MIRACLE-Center/CTSpine1K
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along the z, y, and x-axes. The function then returned the cropped CT data with dimensions
ranging from the minimum to the maximum indices along each axis. We saved the cropped
CT data as a new NIfTI file in the output directory with the same affine transformation as
the original CT data.

Acquiring a sufficient number of original synchronized X-ray and CT images for
machine learning purposes poses significant practical and ethical challenges. One major
obstacle in training the X2CT-GAN model is the scarcity of paired X-ray and CT data from
patients. Obtaining such paired data from patients is not only costly but also raises ethical
concerns due to the additional radiation exposure involved. To address this issue, we have
opted to train our network using synthesized X-rays generated from the ground truth CT
dataset, as proposed before [11]. In this study, we employ a CT volume to simulate two
X-rays corresponding to the posterior-anterior and lateral views. This process is achieved
through the utilization of digitally reconstructed radiographs (DRR) technology [18]. By
leveraging this approach, we can effectively generate the required paired X-ray and CT data
for training the X2CT-GAN model without subjecting patients to unnecessary radiation
risks. Consequently, the method strikes a balance between the need for accurate and
diverse training data and the ethical concerns associated with obtaining such data from
human subjects. To generate synthetic X-ray images from the cropped CT data, we used a
custom-made Python script in the 3D Slicer software (version: 5.2.2.) (Python extension of
3D Slicer) [19]. For each subfolder containing the cropped CT data, the script modified the
3D viewer to display a black-white gradient and removed the bounding box and orientation
axes labels. It then loaded the CT volume in 3D Slicer and switched to the one-up 3D view
layout. The script defined a function which centered the 3D view and slice views to fill the
background. This function was applied before setting up the volume rendering display.
The volume rendering was set up by creating a default volume rendering display node and
making it visible. The script then applied a “CT-X-ray” volume rendering preset from the
DRRGenerator module [20] to the display node. To adjust the scalar opacity mapping, a
six-point transfer function was defined and set as the scalar opacity for the volume property
node. The function was called again to ensure that the view was centered. Next, the script
rotated the 3D view and captured screenshots of the synthetic X-ray images in different
orientations, such as the anterior and lateral views. The captured images were saved to
disk in the respective subfolders as PNG files with appropriate filenames indicating the
orientation. After processing each CT volume, the script cleared the 3D Slicer scene to
prepare for the next iteration. By following this procedure, we generated synthetic X-ray
images from the corresponding segmented CT data, which were then used for further
analysis and experimentation.

The generated images were then preprocessed using the following method. A function
was used to preprocess the synthetic X-ray images. This function takes an image as
input and applies a series of image processing operations to it, including converting the
image to grayscale, thresholding to keep only the brighter parts of the image, performing
morphological operations to remove small noise and fill small gaps, finding the largest
contour in the binary image, cropping the original image using the bounding box of the
largest contour, normalizing the cropped image, padding the image to make it square, and
resizing the padded image to the desired output size. The function was then applied to
each synthetic X-ray image to produce a preprocessed image for the anterior and lateral
view. Another function was implemented to load the CT images from NIfTI files. For
each folder in the input folder, the code read in the preprocessed anterior and lateral X-ray
images, as well as the CT image in NIfTI format. The preprocessed X-ray images and the
CT image were then combined into a single HDF5 file for the current folder. The HDF5
file contained three datasets: “ct”, “xray1”, and “xray2”, corresponding to the CT image,
synthetic anterior X-ray image, and synthetic lateral X-ray image, respectively. The data
were then randomly split into a train set (80%) and a test set (20%) for further analyses.
Figure 2 illustrates the image processing pipeline.
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Figure 2. Multimodal imaging process and outputs. The top row displays the original biplanar
X-ray images before preprocessing: anterior view and lateral view. The middle row shows the
corresponding preprocessed X-ray images: anterior view and lateral view. The bottom row presents
the raw CT image alongside the segmented CT reconstruction focusing on spinal vertebrae. These
images represent the data pipeline from raw acquisition to segmentation and synthetic X-ray genera-
tion, underpinning the data preprocessing and analysis as outlined in Section 2.2 of the Materials
and Methods.
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2.3. Model Training and Evaluation

In this study, we applied the X2CT-GAN model to fuse X-ray and CT images using a
deep learning approach. The model was trained using a multiview network architecture
consisting of a dense UNet fused with transposed convolutions as the generator and a basic
3D discriminator with instance normalization (Figure 3). The GAN loss was computed
using least squares. The generator network employed ReLU activation functions and
a conditional discriminator with no dropout layers. The model’s training parameters
included a learning rate of 0.0002 (lr: 0.0002), Adam optimizer with beta1 set to 0.5,
and beta2 set to 0.99. The training process employed a batch size of 1 due to limited
computational resources (NVIDIA GTX 3090; 24 GB) and did not utilize weight decay. Data
augmentation was applied to the images, with a fine size of 128 × 128, and images were
resized to 150 × 150. The CT and X-ray images were normalized using the provided mean
and standard deviation values. In the 3D reconstruction of spinal vertebrae from biplanar X-
rays, the output dimensions of the reconstructed 3D CT models were 128 × 128 × 128 voxels
with an output voxel size of 1 mm × 1 mm × 1 mm, ensuring a detailed representation
of the anatomy with manageable data volumes for processing. Various loss functions
and weighting parameters were used to optimize the model, such as identity loss, feature
matching loss, map projection, and GAN. A detailed list of parameters, configurations, and
functions used can be found in the code provided in the data availability section. During
the training process, the discriminator and generator were optimized using the specified
configuration parameters. The loss and metrics were logged, and the model was saved at
specified intervals. The learning rate was updated at the end of each epoch.
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Figure 3. Illustration of the X2CT-GAN as proposed by Ying et al. [11]. In contrast to Ying et al. [11]
who used unsegmented chest X-rays, we employed segmented biplanar X-ray inputs, resized to
128 × 128 pixels, and constructed 3D models with a focus specifically on the spinal vertebrae. The
output dimensions of the reconstructed 3D CT models were 128 × 128 × 128 voxels with a voxel
resolution of 1 mm × 1 mm × 1 mm. The generator network utilizes Basic2d convolution blocks to
match channel dimensions and form pseudo-3D feature maps, which are then processed via Basic3d
convolution blocks to encode the features into the 3D space of the decoder network.
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For validation, the model was evaluated using a separate dataset, and the performance
metrics were computed and logged. We used multiple metrics for evaluation to provide
a sophisticated evaluation of the approach: (1) mean absolute error (MAE); (2) cosine
similarity; (3) peak signal-to-noise ratio (PSNR); (4) structural similarity index measure
(SSIM); (5) 3D peak signal-to-noise ratio (PSNR-3D).

First, the model and datasets were initialized, setting them to the evaluation mode in
the X2CT-GAN model. We then iterated through the dataset, using the model to generate
CT images. For each generated CT image, the metrics were calculated by comparing the
generated CT image with the corresponding ground truth CT image. The metrics are
as follows:

− Mean absolute error (MAE): MAE calculates the average absolute difference between
the predicted and the ground truth CT images. It gives an idea of the magnitude of the
errors without considering their direction. MAE was calculated for each slice (MAE0)
and for the entire 3D volume (MAE).

− Cosine similarity: Cosine similarity measures the cosine of the angle between the
predicted and the ground truth CT images, providing a similarity score between −1
and 1.

− Peak signal-to-noise ratio (PSNR): PSNR measures the ratio between the maximum
possible power of a signal and the power of the noise.

− Structural similarity index measure (SSIM): SSIM measures the structural similarity
between the predicted and the ground truth CT images.

− 3D peak signal-to-noise ratio (PSNR-3D): PSNR-3D is an extension of the PSNR metric
for 3D images and measures the 3D image quality.

After calculating the metrics for each image, we computed the average value for each
metric across the entire dataset. These average values represent the overall performance
of the model using the specified evaluation metrics. Visualization was performed by
importing the ground truth and synthetic CT data in 3D Slicer and using the CT-bone
preset for visualization. Further, we implemented a comprehensive approach to evaluate
the performance of the X2CT-GAN model under various imaging conditions. This included
an analysis of the model’s sensitivity to changes in the angle between the anteroposterior
and lateral biplanar X-ray images. Typically, biplanar X-rays are captured at a 90-degree
orientation to each other, providing orthogonal views. To assess the robustness of the
model against deviations from this standard setup, we conducted a series of analyses
where the angle of the lateral X-ray image was adjusted relative to the anteroposterior
image. Specifically, we analyzed the model’s performance with the lateral X-ray positioned
at angles of 90 degrees (standard orthogonal), 85 degrees, 80 degrees, and 75 degrees in
relation to the anteroposterior X-ray. We also incorporated a validation process to ascertain
the fidelity of our synthetic X-ray generation and subsequent synthetic CT reconstruction.
An original case with both biplanar X-ray and corresponding CT data was selected for this
purpose. Synthetic X-rays were generated from the original CT data using 3D Slicer and
our preprocessing pipeline, enabling a visual comparison with the actual biplanar X-rays to
validate the synthetic image quality. Additionally, a synthetic CT was reconstructed from
the original biplanar X-rays, employing the model trained on synthetic biplanar X-rays, to
facilitate a comparison with the original CT data. This approach allowed us to critically
evaluate the quality of both synthetic X-rays and CT reconstructions, providing insights
into the training and performance limitations of the model. All analyses were performed
using Python. The code for the custom Python scripts for 3D Slicer, the preprocessing
scripts, and the configuration file is available from the data availability section. The original
code of the X2CT-GAN is available from the repository provided by Ying et al. [11] and the
modified code used for the present study is available from the data availability section.
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3. Results
3.1. Quantitative Results

The evaluation of the X2CT-GAN model for generating synthetic CT scans based on
biplanar X-ray inputs yielded promising results across various performance metrics. MAE
and MSE were employed to assess the model’s accuracy. For the MAE per slice (MAE0),
an average of 0.034 was recorded, while the MSE per slice (MSE0) obtained an average
value of 0.005. The overall MAE and MSE were 85.359 and 31,439.027, respectively. Cosine
similarity, which measures the angular distance between the generated synthetic CT scans
and the ground truth, resulted in an average score of 0.484, indicating a reasonably good
level of agreement between the two sets of data. PSNR is a metric that helps quantify the
quality of the reconstructed image by comparing it to the original image. The average
PSNR for the 3D reconstructed images (PSNR-3D) was 27.432. Furthermore, the PSNR
values for individual channels, which can be interpreted as comparisons between the real
and generated CT images in three different orientations or planes, were 28.817 (PSNR-1),
28.764 (PSNR-2), and 27.599 (PSNR-3), resulting in an average PSNR (PSNR-avg) of 28.394.
Notably, PSNR-avg is the average of the PSNR calculated for each of the three separate
views or planes (PSNR-1, PSNR-2, and PSNR-3). This means that the PSNR is calculated
independently for each view and then averaged to obtain a single value that represents
the overall PSNR across all the views. PSNR-3D, in contrast, computes the PSNR for the
entire 3D volumetric data as a whole. It directly compares the entire 3D real CT data to
the generated 3D CT data and calculates the PSNR in one go without separating the data
into individual views or planes. SSIM was also employed to evaluate the model, which
quantifies the perceived visual quality of the generated synthetic CT scans. The SSIM was
0.468. The results are presented in Table 1.

Table 1. Evaluation metrics (validation dataset; n = 88) for the proposed X2CT-GAN approach to
generate synthetic 3D models of the spinal vertebrae from biplanar X-ray inputs.

Metrics Value

MAE0 0.0342
MSE0 0.005
MAE 85.359
MSE 31,439.027

Cosine Similarity 0.4840
PSNR-3D 27.432
PSNR-1 28.812
PSNR-2 28.764
PSNR-3 27.599

PSNR-avg 28.394
SSIM 0.468

In order to assess the robustness of the X2CT-GAN model under varying imaging
conditions, we conducted an analysis to explore how the model’s performance is affected by
deviations from the standard 90-degree orientation between the anteroposterior and lateral
X-ray images. This investigation is crucial for understanding the model’s applicability in
real-world clinical settings, where ideal imaging angles may not always be achievable. Ta-
ble 2 presents the results of this sensitivity analysis. The evaluation metrics were compared
across different angles: the standard 90 degrees, and hypothetical deviations to 85, 80, and
75 degrees. The trends observed in the table indicate a gradual decrease in model perfor-
mance as the angle between the X-ray planes deviates from the orthogonal setup. This
can be attributed to the reduction in the combined informative content of the X-rays as the
angle diminishes. When the X-rays are orthogonal, they provide the most comprehensive
and distinct information about the anatomy from two different perspectives. As the angle
decreases, the overlap in visual information increases, leading to less distinct data for the
model to utilize, which likely contributes to the observed decrease in performance metrics.
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These findings suggest that while the model demonstrates robustness to slight deviations
from the 90-degree standard, its performance is significantly impacted as these deviations
increase, underlining the importance of maintaining as close to an orthogonal orientation
as possible for this model.

Table 2. Evaluation metrics for the proposed X2CT-GAN approach to generating synthetic 3D models
of the spinal vertebrae from biplanar X-ray inputs, showing the impact of varying the angle between
anteroposterior and lateral X-rays. The table compares the model’s performance on the validation
dataset (n = 88) at standard 90-degree orientation with hypothetical performance at 85, 80, and
75 degrees, illustrating the sensitivity of the model to deviations from orthogonal biplanar imaging.

Metrics 90 Degree 85 Degree 80 Degree 75 Degree

MAE0 0.0342 0.0353 0.0376 0.041
MSE0 0.005 0.005 0.006 0.008
MAE 85.359 86.508 88.177 90.284
MSE 31,439.027 32,155.013 32,311.141 33,409.422

Cosine Similarity 0.4840 0.475 0.465 0.450
PSNR-3D 27.432 27.294 26.924 26.559
PSNR-1 28.812 28.749 28.614 28.484
PSNR-2 28.764 28.652 28.554 28.356
PSNR-3 27.599 27.424 27.268 27.023

PSNR-avg 28.394 28.251 28.194 27.996
SSIM 0.468 0.461 0.453 0.446

3.2. Qualitative Results

An example of the synthetic CT generated from a biplanar X-ray input is shown in
Figure 4. The results were rated qualitatively by importing the real CT and synthetic CT
into 3D Slicer. Although the synthetic CT provided an impressive 3D model of the spinal
vertebrae based on only 2D inputs, there were structural differences in the form of the
vertebrae and artificial-looking surfaces of the bone. Especially, fine structures of the bone
were not appropriately reflected. Furthermore, in 14 cases, the model faced significant
challenges in fully capturing the macroscopic bone structure (Figure 5). This suggests an
opportunity for enhancing the model’s performance by expanding the input dataset to
encompass a wider variety of input datasets commonly encountered in clinical practice.

The quantitative evaluation metrics also provide useful insights into the qualitative
differences between the ground truth and synthetic CT volumes. The MAE between the
synthetic and ground truth CTs was found to be 85.359, indicating that there are noticeable
deviations in the intensities of the voxels. The MSE value of 31,439.027 further supports
this observation, suggesting that the errors are not only localized but also significant in
some areas. The PSNR values obtained for the individual channels (PSNR-1, PSNR-2, and
PSNR-3) were 28.817, 28.764, and 27.599, respectively, with an average PSNR (PSNR-avg)
of 28.394. These values signify that the overall contrast and dynamic range of the synthetic
CT are relatively close to the ground truth. However, the lower PSNR value for the third
channel indicates that some parts of the synthetic CT may have less accurate contrast
and intensity representation compared to the original CT. This could be attributed to the
insufficient capture of fine bone structures, leading to the artificial appearance of bone
surfaces. The SSIM was 0.468. This value implies that the structural similarity between the
synthetic and ground truth CTs is only moderate, reflecting the differences in the form of
the vertebrae and the artificial-looking surfaces of the bone. The moderate cosine similarity
value of 0.484 also suggests that the overall orientation and shape of the fine structures
within the synthetic CT might not be accurately represented.

In summary, while the synthetic CT generated by the X2CT-GAN demonstrates a
remarkable capability to create 3D spinal vertebrae models from synthetic 2D biplanar
X-ray inputs, there are still some limitations in accurately capturing the fine bone structures
and maintaining the precise morphology of the vertebrae. The artificial appearance of
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the bone surfaces and the differences in contrast and intensity representation in some
areas indicate that further improvements to the X2CT-GAN model are necessary to achieve
a more accurate and consistent performance in generating synthetic CTs from biplanar
X-ray inputs.
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(Panel A) against the ground truth CT (Panel B). Both panels present the 3D model and corresponding
planar slices. The 3D reconstructions were generated using the CT bone preset in 3D Slicer upon
importing the volumetric data. The crosshair indicates the position across different planes.
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The validation efforts revealed that the synthetic X-rays generated from the original
CT data closely resembled the actual biplanar X-rays (Figure 6), confirming the efficacy of
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the preprocessing and synthetic image generation methods. However, the synthetic CT
constructed from the original biplanar X-rays did not achieve the same level of quality,
appearing suboptimal when compared to the original CT. This discrepancy in quality is
likely attributable to the model being trained exclusively on synthetic X-rays, suggesting
a need for further data augmentation with cases that have CT and original X-ray data to
enhance the model’s ability to reconstruct CTs with higher fidelity.
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Figure 6. Illustration of a case with original biplanar X-ray and CT. The figure allows for a visual
comparison of original and synthetic imaging data. The top row displays the original anteroposterior
and lateral X-ray images alongside the original 3D CT reconstruction. The bottom row presents
synthetic anteroposterior and lateral X-ray images generated from the original CT data, and a synthetic
3D CT reconstruction generated from the original biplanar X-rays. This comparison illustrates the
high quality of the synthetic X-ray images relative to the originals and highlights the areas for
improvement in the synthetic CT reconstruction.
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4. Discussion

In this study, we applied a GAN framework to reconstruct 3D spinal vertebrae struc-
tures from synthetic biplanar X-ray images, specifically focusing on anterior and lateral
views. The results demonstrated the effectiveness of the approach in reconstructing 3D
spinal vertebrae structures from biplanar X-rays, although some limitations in accurately
capturing the fine bone structures and maintaining the precise morphology of the vertebrae
were present.

GANs, first introduced by Goodfellow et al. in 2014 [21], have revolutionized the field
of deep learning by offering a novel approach to unsupervised learning. GANs consist of
two neural networks, a generator, and a discriminator, which compete against each other in
a game-theoretic framework. The generator learns to create realistic synthetic data samples,
while the discriminator learns to distinguish between real and generated samples. Through
this adversarial process, the generator progressively improves its ability to generate more
convincing data [22]. This study applied the X2CT-GAN architecture as introduced by
Ying et al. [11] with a novel approach of focussing on segmented regions of interest for syn-
thetic 3D reconstruction. In comparison to previous GAN-based methods, the X2CT-GAN
offers significant improvements. One key enhancement is the incorporation of a feature
fusion technique that effectively combines information from multiple X-ray views, enabling
a more accurate 3D reconstruction. Additionally, the architecture optimizes the generator
network using a combination of MSE loss and adversarial loss, resulting in higher-quality
synthetic 3D images with better structural consistency and finer anatomical details. In
the medical imaging domain, GANs have shown promise in a variety of applications,
including data augmentation, image synthesis, and image-to-image translation [23]. The
ability of GANs to generate high-quality synthetic images has been particularly valuable
in addressing challenges related to the limited availability of labeled data, data privacy
concerns, and the need for multi-modal image synthesis [24]. Recent advancements in
GAN architectures, such as conditional GANs [25], have further expanded the scope of
applications in medical imaging. By incorporating additional information as input, condi-
tional GANs can be trained to generate images with specific desired characteristics, making
them well-suited for tasks such as 3D image reconstruction from 2D projections. Studies
exploring the use of GANs for 3D image generation from chest 2D X-ray projections have
demonstrated their potential in bridging the gap between conventional X-ray imaging and
CT scans [11]. In this context, the application of GANs for 3D spinal vertebrae reconstruc-
tion from biplanar X-rays represents a promising direction in leveraging the power of deep
learning to enhance diagnostic capabilities while reducing the cost and radiation exposure
associated with traditional CT scans.

In comparison to previous work, such as the study by Humbert et al. [26], which
focused on 3D reconstruction of the spine from biplanar X-rays using parametric models,
our approach leverages the X2CT-GAN model for a similar purpose but with distinct
methodological advancements and evaluation metrics. Humbert et al.’s study reported a
mean shape accuracy of 1.3 mm and 1.0 mm for their two levels of reconstruction, respec-
tively, which is comparable to the performance metrics observed in our study (e.g., an MAE
of 0.034 per slice, and an overall PSNR of 28.394). However, our study extends the scope
by utilizing a deep learning approach, which allows for more automated and potentially
scalable solutions for spinal imaging. Furthermore, while Humbert et al.’s method required
manual adjustments for higher accuracy, our X2CT-GAN model automates the generation
of 3D spinal reconstructions, potentially reducing the time and expertise required for analy-
sis. This contrast highlights the evolution of 3D spinal imaging techniques, moving from
semi-automated parametric models to fully automated deep learning systems. Neverthe-
less, the slightly higher MAE and lower PSNR in our study compared to the high accuracy
of Humbert et al.’s second level of reconstruction (mean shape accuracy of 1.0 mm) suggest
that while our model offers advantages in terms of automation and efficiency, there is
still room for improvement in achieving the utmost precision, especially in capturing fine
bone structures and maintaining accurate morphology. Our study’s use of a GAN-based
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method for 3D reconstruction of spinal structures from bi-planar X-rays offers insights that
complement and contrast with similar recent works, such as the study by Yang et al. Yang
et al. focused on improving the structural accuracy of their reconstructions, as evidenced by
their use of metrics such as the Dice similarity coefficient and the structural similarity index.
They reported high values in these metrics, indicating a strong structural resemblance to the
ground truth. This contrasts with our study, which prioritized intensity accuracy and noise
performance, reflected in our selection of metrics such as MAE, MSE, and PSNR. While both
studies highlight the potential of GAN-based methods in medical imaging, they each offer
a unique perspective on model performance. Our approach, by focusing on metrics such
as MAE and PSNR, emphasizes the fidelity of voxel intensities and noise characteristics,
which are crucial in certain clinical scenarios where precise intensity values are key to
diagnosis and treatment planning. The divergence in the methodological and evaluative
choices underlines the multifaceted nature of 3D reconstruction research. It demonstrates
that various aspects of model performance are prioritized differently depending on the
specific clinical or research question being addressed. This variation in focus is not just a
reflection of the diverse capabilities of GAN-based approaches, but also an indication of
the broad range of clinical needs and research objectives within medical imaging.

Recent advancements in the field, as exemplified by studies such as the “BX2S-
Net” [27] and PerX2CT’ [28], provide further context for our work’s positioning within
the evolving landscape of 3D medical imaging. Notably, our study was completed before
the introduction of these developments, limiting the possibility of sophisticated compar-
isons. The “BX2S-Net” framework, with its dimensionally consistent architecture and
feature-guided decoding, and “PerX2CT”, with its focus on perspective projection and
computational efficiency, have built upon and extended the principles we explored. Our
work primarily focused on intensity accuracy and noise performance, providing a critical
stepping stone for future studies. The different emphases of BX2S-Net on edge region
quality and multi-view fusion, and PerX2CT on computational speed, highlight the con-
tinuous innovation in this field. These recent studies underline the dynamic nature of
3D reconstruction technology and emphasize the importance of evolving model accuracy
alongside computational efficiency. X2CT-GAN, in establishing the potential and laying
the groundwork for GAN-based spinal reconstruction from 2D X-rays, might been instru-
mental in guiding future comparisons and innovations. In conclusion, our study not only
showcased the capabilities of GAN-based methods in medical imaging but also set the stage
for the rapid advancements that will follow. This ongoing evolution in 3D reconstruction
technologies both validates and extends the value of our work. As the field continues
to progress, our study serves as a significant reference point, highlighting foundational
concepts that might inform and inspire new directions in research and development in
this field.

Notably, the objective of this work is not to supplant CT scans with biplanar X-rays.
Although our proposed method can reconstruct the overall structure of spinal vertebrae,
finer anatomical details may still exhibit some artifacts, as seen in our results. Nevertheless,
the developed approach has the potential to find specialized applications in clinical prac-
tice, especially when trained with larger datasets and more advanced techniques such as
cross-modality transfer learning. For instance, the approach could be employed to mea-
sure the dimensions of spinal vertebrae, assess vertebral alignment, or detect anatomical
abnormalities in the reconstructed 3D volume on a macroscopical scale. Moreover, the
method may be utilized for treatment planning in radiation therapy, preoperative planning,
and intra-operative guidance during minimally invasive spinal procedures. Further, this
technique can be used for educational purposes for students and residents when only
biplanar X-rays of patients are available. As a valuable addition to low-cost X-ray machines,
this technique can provide healthcare professionals with an artificial CT-like 3D volume of
spinal vertebrae, offering clinical insights with reduced cost and radiation exposure.

An important aspect of future work revolves around the model’s training with real
patient data, specifically incorporating both CT images and corresponding biplanar X-rays.
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The current limitations observed in accurately capturing fine bone structures and maintain-
ing precise morphology could be significantly mitigated by training the GAN model on
a more diverse dataset that includes actual patient images. Such a dataset would ideally
encompass a wide array of patient X-rays taken under various conditions, reflecting the
real-world variability in angles and orientations. Additionally, our study’s reliance on
the COLONOG subset of the CTSpine1K dataset, primarily representing non-pathological
spinal states, highlights the necessity for a more inclusive dataset in future research. The
inclusion of cases with various spinal pathologies would be invaluable. This expansion
would not only allow for a more comprehensive assessment across different spinal con-
ditions but also enhance the model’s diagnostic applicability in detecting and analyzing
spinal anomalies or pathologies. While the current dataset provided a solid foundation for
initial model training and validation, the integration of a broader spectrum of spinal health
states—ranging from normal to various pathological conditions—is crucial for the model’s
evolution and relevance in clinical diagnostics. This development would be a substantial
step forward in the application of deep learning techniques in medical imaging, particularly
in environments with limited access to advanced imaging technologies. The robustness
and accuracy of the model, when trained on such diverse and clinically representative data,
would significantly elevate its potential in practical medical applications.

Additionally, we need to address the resolution of the output images produced by
our model. The chosen resolution of 128 × 128 × 128 voxels with an output voxel size of
1 mm x 1 mm x 1 mm was selected to strike a balance between image detail and compu-
tational demands. This resolution, while on the coarser end, remains within the clinical
range and is particularly suitable for macroscopic analyses where a higher level of detail
may not substantively change clinical outcomes. However, we acknowledge that certain
clinical applications may benefit from higher-resolution imaging. To approximate the
standard clinical resolution of approximately 0.625 mm, a significant increase in computa-
tional resources would be required [29,30]. Doubling the resolution in each dimension to
achieve this finer scale would result in an eightfold increase in the total number of voxels,
necessitating advanced computational hardware with increased memory capacity and
processing power. Such an upgrade would allow for processing larger volumes of data and
maintaining efficient reconstruction times, yet it must be justified against the clinical value
gained versus the additional computational expense incurred. As we look to the future, the
evolution of hardware capabilities and the optimization of deep learning algorithms are
likely to provide opportunities for achieving higher resolutions. The burgeoning field of
cloud computing and specialized AI processing units also presents a promising avenue for
decentralizing and thus democratizing access to the computational power necessary for
high-resolution 3D reconstruction.

5. Conclusions

In summary, while the synthetic CT generated by the X2CT-GAN demonstrates a
remarkable capability to create 3D spinal vertebrae models from synthetic 2D biplanar
X-ray inputs for use in many areas, there are still some limitations in accurately capturing
the fine bone structures and maintaining the precise morphology of the vertebrae. The
artificial appearance of the bone surfaces and the differences in contrast and intensity
representation in some areas indicate that further improvements to the model are necessary
in order to achieve a more accurate and consistent performance in generating synthetic CTs
from biplanar X-ray inputs. Future work could focus on refining the model architecture,
applying cross-modality learning, and utilizing novel loss functions to enhance the overall
quality of the synthetic CT volumes.
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