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Aims Prediction of adverse events in mid-term follow-up after transcatheter aortic valve implantation (TAVI) is challenging.
We sought to develop and validate a machine learning model for prediction of 1-year all-cause mortality in patients who
underwent TAVI and were discharged following the index procedure.
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Methods and
results

The model was developed on data of patients who underwent TAVI at a high-volume centre between January 2013
and March 2019. Machine learning by extreme gradient boosting was trained and tested with repeated 10-fold hold-out
testing using 34 pre- and 25 peri-procedural clinical variables. External validation was performed on unseen data from
two other independent high-volume TAVI centres. Six hundred four patients (43% men, 81 ± 5 years old, EuroSCORE
II 4.8 [3.0–6.3]%) in the derivation and 823 patients (46% men, 82 ± 5 years old, EuroSCORE II 4.7 [2.9–6.0]%) in
the validation cohort underwent TAVI and were discharged home following the index procedure. Over the 12 months
of follow-up, 68 (11%) and 95 (12%) subjects died in the derivation and validation cohorts, respectively. In external
validation, the machine learning model had an area under the receiver-operator curve of 0.82 (0.78–0.87) for prediction
of 1-year all-cause mortality following hospital discharge after TAVI, which was superior to pre- and peri-procedural
clinical variables including age 0.52 (0.46–0.59) and the EuroSCORE II 0.57 (0.51–0.64), P < 0.001 for a difference.
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Conclusion Machine learning based on readily available clinical data allows accurate prediction of 1-year all-cause mortality following
a successful TAVI.
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Introduction
Transcatheter aortic valve implantation (TAVI) has revolutionized the
management of severe, symptomatic aortic valve stenosis.1–4 While
according to recent nationwide registry data, TAVI outcomes are
improving over time across a range of important metrics, the 1-year
mortality following implantation remains substantial at 10–12% in
2020.5–7 This relatively high event rate can be largely attributed to
the advanced age, frailty, and competing cardiovascular as well as non-
cardiovascular risk, which all jointly affect TAVI recipients. The high
comorbidity burden of patients undergoing TAVI makes prediction of
outcome following a successful bioprosthesis implantation challeng-
ing. While several methods for prediction of TAVI outcomes have
been proposed, these efforts have largely focused on prediction of
in-hospital and/or 30-day mortality, and their performance remained
limited.8–11 Given the extensive diagnostic work-up that precedes
TAVI, it is plausible that the wealth of pre- and peri-procedural data
could be leveraged for robust risk stratification.
Artificial intelligence with machine learning has emerged as a pow-

erful tool for combining several weak predictors in a single model
for enhanced prediction of adverse outcomes.12,13 Recently, gradient
boosting algorithms have been shown to enhance risk stratification
across a wide range of diseases and clinical scenarios providing patient-
specific prediction beyond conventional risk scores.14–16 In this study,
we leveraged a state-of-the-art gradient boosting algorithm to de-
velop a prediction model for all-cause mortality in the year following
a successful TAVI procedure and validated its performance on external
datasets from independent sites.

Methods
Study design
The study population included three cohorts of consecutive TAVI re-
cipients from tertiary high-volume centres (each performing >100
procedures annually) who underwent valve implantation between Jan-
uary 2013 and March 2019. All patients underwent a comprehensive
baseline clinical assessment with evaluation of their cardiovascular risk
factor profile, including calculation of risk scores (European System for
Cardiac Operative Risk Evaluation—EuroSCORE II, the France II, and
OBSERVANT scores).8,9 Only subjects who underwent a successful TAVI
and were discharged home following the index procedure were included.
Data from the Institute of Cardiology, Warsaw served as the derivation
cohort for the machine learning model, which was then further tested on
unseen external datasets from the Medical University of Warsaw and the
Cardiovascular Institute, Hospital Clinico San Carlos, Madrid (validation
cohort) Figure (1). This paper was written according to recommendations
in the Strengthening the Reporting of Observational Studies in Epidemiol-
ogy (STROBE) statement.17 The study was conducted with the approval of
the local research ethics committee at the National Institute of Cardiology,

Warsaw, Poland (registration number IK.NPIA.0021.1.1954/22) and in
accordance with the Declaration of Helsinki.

Clinical follow-up
The primary endpoint of the study was 1-year all-cause mortality following
hospital discharge after a successful TAVI procedure. Outcome informa-
tion was obtained from local and national healthcare record systems.
Categorization of these outcomes was performed blinded to the clinical
patient data.

Machine learning
Machine learning was used to derive a joint probabilistic score that could
inform the physician on the risk of 1-year all-cause mortality after TAVI
and therefore facilitate planning post-discharge care and surveillance. We
have therefore excluded patients who died during the index hospitalization

Figure 1 Study design. Our machine learning model was developed
on 604 patients from the derivation cohort using 10-fold repeated
cross-testing. Subsequently, the model was validated on unseen data
from the validation cohort (n = 823).
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from the analysis. The score was based on 34 pre- and 25 peri-
procedural clinical variables: baseline characteristics, cardiovascular risk
factors (comorbidities), echocardiography- and blood-derived biomarkers,
as well as procedural aspects (access, radiation, and complications), and
pre-discharge echocardiography and blood tests (Supplementary material
online, Table 1).

Model building
XGBoost is a recent implementation of a gradient boosting algorithm,
which iteratively trains a set of weak predictors (simple decision trees)
using a given set of patient data, to build a combined strong classifier
to identify an outcome.14–16 For every patient, the XGBoost algorithm
computes an individualized probability of outcome, considering all in-
put variables. All variables utilized in the machine learning modelling are
presented in Supplementary material online, Table 1. For optimal model
performance, we have performed hypertuning of XGBoost parameters
(Supplementary material online, Methods). The model configuration pro-
viding the best prediction accuracy was selected.

Internal testing
To avoid biased results, limit overfitting, and ascertain generalizability
of our model using the derivation cohort, we tested the model using
repeated 10-fold cross-testing, which separates training and testing data.18

The dataset was randomly split into 10 folds with similar all-cause mortal-
ity rates in each fold (stratified 10 folds). Ten models were created each
from 90% of the data, and each tested in a held-out test sample (10% of the
data). These 10 held-out samples containing non-overlapping test results
were subsequently concatenated to evaluate the average performance of
XGBoost in unseen data.

External testing
To further validate the generalizability of this approach, we have built the
model from all the data used for the internal testing. Subsequently, we
have conducted external validation of this model on real-world data from
two independent high-volume TAVI centres (validation cohort) (Figure 1).

Feature importance
To elucidate the influence of each of the variables included in the machine
learning model, we provided machine learning feature importance scores.
Importance is the relative amount that each attribute improves the XG-
Boost performance measure (similar to information gain). The variable
importance was determined directly from the XGBoost model separately
in each fold and returned from the XGBoost model for each variable.19

Individualized explainability
Further in this study, we provide a description of individualized predic-
tions made by the algorithm.14,20 This internal XGBoost function allows
identification of important patient-specific features and the role of the
feature in the predicted score for the specific patient and may facilitate
the clinical acceptance of the artificial intelligence approach. The individual
explanation can be achieved by analysis of the specific path a subject takes
in the model as in each decision stump (or split) of the model, the individual
lands in one of two leaves. Each leaf is associated with a weight: one leaf
decreases the risk of the event happening, and the other one increases
the risk. Ultimately, this information can be graphically presented with
waterfall plots.

Statistical analysis
We assessed the distribution of data with the Shapiro–Wilk test.
Continuous parametric variables were expressed as mean ± stan-
dard deviation, and non-parametric data were presented as median
(interquartile interval). Fisher’s exact test or χ2 test was used for
the analysis of categorical variables. The performance of machine

learning models and single clinical characteristics in predicting all-cause
mortality was assessed using receiver-operator characteristic (ROC)
analysis, and the area under the curve (AUC) values were compared
with the DeLong test.21 To evaluate the accuracy of predictors, we
have also quantified the sensitivity, specificity, positive and negative
predictive values of each clinical variable. For continuous variables,
the Youden index was employed to define the optimal thresholds.
Statistical analysis was performed with SPSS version 24 (IBM SPSS
Statistics for Windows, Version 24.0, Armonk, NY: IBM Corp.) and
R studio and R software version 4.01 (R Foundation for Statistical
Computing, Vienna, Austria). A two-sided P < 0.05 was considered
statistically significant.

Results
In the derivation cohort, 604 patients (43% men, 81 ± 5.1 years old,
EuroSCORE II 4.8 [3.0–6.3]%) underwent TAVI and were discharged
home following the index procedure. Over 12 months following the
index procedure, 68 (11%) patients died. Baseline demographic, clin-
ical, echocardiographic, and procedural characteristics of the study
population are listed in Table1. Only a few clinical variables emerged as
predictors of 1-year all-cause mortality following hospital discharge af-
ter a successful TAVI. These included baseline kidney function, platelet
levels, the lowest post-procedural kidney function, left ventricular
ejection fraction, length of stay in the hospital after TAVI, and the
amount of packed red blood cells transfused (Table 2). The predictive
performance of these variables in isolation was, however, limited
with the highest AUC (95% confidence interval) of 0.67 (0.59–0.74)
for kidney function following TAVI and 0.64 (0.56–0.72) for the left
ventricular ejection fraction on post-procedural echocardiography.
Importantly, neither patient age nor the EuroSCORE II were signifi-
cant predictors of all-cause mortality: AUC 0.51 (0.44–0.57) and 0.56
(0.49–0.63), respectively (P = 0.83 and P = 0.08). The overall variable
importance for the classification of all-cause mortality is depicted
in Figure 2. While the number of packed red blood cell units trans-
fused, the hospital length of stay, and the lowest estimated glomerular
filtration rate were the top predictors, baseline blood biomarkers
(creatine and platelet levels), and echocardiographic findings (both
baseline and post-procedural) were also among the variables that had
the greatest contribution to the machine learning model (Figure 2).

Predictive performance
Our model was validated on a cohort of 823 consecutive patients
(46% men, 82 ± 5 years old, EuroSCORE II 4.7 [2.9–6.0]%) who
underwent TAVI between January 2014 and March 2019 (Table 1).
Over the 12 months of follow-up, 95 (12%) subjects died in the
validation cohort. Our model had an AUC of 0.82 (0.78–0.87) for
prediction of 12-month mortality, which was superior to the Eu-
roSCORE II 0.57 (0.51–0.64) and age 0.52 (0.46–0.59), P < 0.001
for a difference (Figure 3). Our model also outperformed the France
II and OBSERVANT risk scores AUC of 0.58 (0.53–0.63) and 0.59
(0.54–65), respectively, P < 0.001 for a difference (Supplementary
material online, Figure 1). To generate distinct clinical risk groups, we
dichotomized the population according to their machine learning risk
score, with the optimal cutoff for event prediction derived using the
Youden index. A threshold of 15% achieved a sensitivity, specificity,
and negative predictive value of 80 (72–88%), 73 (69–77%), and 96
(95–98%), respectively, for the primary endpoint. The performance
of the model is also depicted on the calibration plot (Figure 4), which
allows the evaluation of the agreement between machine learning
scores and the actual distribution of the observed events. In the
external validation, 77 (91%) events occurred in patients with the
machine learning score within the top two deciles. We have also
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Table 1 Baseline characteristics of study participants

Validation cohort (n = 823)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Derivation
cohort

(n = 604)

Medical
University
of Warsaw

Hospital
Clinico San

Carlos P-value
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Age, years 82 [77–86] 81 [76–84] 83 [79–83] 0.37
Females, n 345 (57%) 108 (52%) 337 (55%) 0.24
Weight, kg 73.5 ± 16 75 ± 15 71 ± 15 0.27
Body mass index 27.1 ± 5.3 27.2 ± 4.5 27.9 ± 5.2 0.41
Bicuspid aortic valve 53 (9%) 17 (8%) 43 (7%) 0.50
EuroScore II 4.8 [3.0–6.3] 5.1 [3.3–7.4] 4.5 [2.9–7.3] 0.29
Comorbidities and past medical history

Diabetes 226 (37%) 72 (35%) 208 (34%) 0.53
Atrial fibrillation 206 (34%) 79 (38%) 248 (40%) 0.31
History of ACS 130 (21.5%) 35 (17%) 97 (16%) 0.25
History of PCI 175 (29%) 74 (36%) 149 (24%) 0.19
History of CABG 77 (13%) 22 (11%) 63 (10%) 0.22
History of valve surgery 24 (4%) 10 (5%) 31 (5%) 0.28
History of pacemaker implantation 86 (14%) 36 (17%) 82 (13%) 0.33
History of a cerebrovascular accident 77 (13%) 21 (10%) 57 (9%) 0.23

Baseline biomarkers
Creatinine, mg/dL 1.1 [0.9–1.4] 1.1 [0.8–1.5] 1.0 [0.8–1.3] 0.51
eGFR, mL/m2 55 [42–70] 54 [36–79] 59 [44–74] 0.38
Haemoglobin, g/dL 12.4 [11.2–13.3] 11.4 [10.3–12.8] 12.3 [11.0–13.3] 0.43
Platelets, n/dL 174 [138–219] 193 [150–231] 187 [156–230] 0.32

Baseline echocardiography
Left ventricular ejection fraction, % 55 [50–65] 58 [46–64] 55 [50–65] 0.26
Effective orifice area, cm2 0.6 [0.5–0.8] 0.7 [0.5–0.9] 0.6 [0.5–0.8] 0.36
Peak transvalvular pressure gradient, mmHg 86 [70–104] 77 [61–96] 76 [61–90] 0.29
Mean transvalvular pressure gradient, mmHg 49 [39–62] 43 [34–51] 44 [38–55] 0.27

Procedure—valve implantation
Contrast media volume, mL 190 [150–200] 200 [150–250] 164 [137–200] 0.38
Fluoroscopy time, min 24 [20–35] 31 [21–45] 25 [18–31] 0.23
Radiation dose, mGy 1051 [608–

1737]
1251

[810–2004]
1134

[682–1680]
0.28

Peri- and post-procedural outcomes
Major vascular complication 30 (5%) 12 (6%) 25 (4%) 0.27
Minor vascular complication 57 (9%) 10 (5%) 69 (11%) 0.034
Life threatening bleeding 24 (4%) 10 (5%) 22 (4%) 0.31
Major bleeding 80 (13%) 21 (10%) 27 (4%) 0.001
Minor bleeding 86 (14%) 19 (9%) 95 (15%) 0.11
Total RBC concentrate transfused, units 0 [0–1] 0 [0–1] 0 [0–1] 0.38
Peri-procedural myocardial infarction 4 (1%) 3 (1%) 8 (1%) 0.12
Peri-procedural stroke 11 (2%) 3 (1%) 9 (1%) 0.38
Coronary occlusion 4 (1%) 2 (1%) 4 (1%) 0.24
Annulus rupture 3 (1%) 0 1 (0%) 0.30
Pacemaker implantation 92 (15%) 38 (18%) 96 (16%) 0.41

Post-procedural biomarkers
Minimum haemoglobin, g/dL 10.2 [9.3–11.1] 10.7 [9.7–12.0] 10.1 [8.9–11.0] 0.36
Minimum platelets, n/dL 105 [81–137] 124 [96–162] 116 [93–147] 0.29
Minimum eGFR, mL/m2 58 [42–84] 52 [38–81] 54 [37–70] 0.34

Post-procedural echocardiography
Left ventricular ejection fraction, % 60 [50–65] 58 [48–65] 60 [54–67] 0.42
Peak transvalvular pressure gradient, mmHg 16 [12–23] 14 [9–17] 17 [12–23] 0.26
Mean transvalvular pressure gradient, mmHg 7 [3–11] 8 [6–11] 8 [6–12] 0.61
Aortic insufficiency ≥ moderate 85 (14%) 18 (9%) 82 (13%) 0.16
Hospitalization length (days) 9 [7–15] 8 [6–14] 6 [5–9] 0.07

Statistics presented: median [quartile 1–quartile 3], n (%). Abbreviations: ACS, acute coronary syndrome; PCI, percutaneous coronary intervention; CABG, coronary artery
bypass grafting; and eGFR, estimated glomerular filtration rate.
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developed a machine learning model based only on pre-procedural
data; however, its performance was limited—AUC 0.64 (0.59–0.69).

Individualized explainability of the
prediction
To further clarify and explain the machine learning predictions, we
also provide waterfall plots that highlight the contribution of the
predictors for individual patients. As demonstrated in Figure 5 and
Supplementary material online, Figure 1, the machine learning model
can accurately predict events in elderly patients who present with a
high EuroSCORE II as well as relatively younger individuals who are at
a low risk according to the surgical risk scores.

Discussion
In this multicentre machine learning study, we have demonstrated that
by leveraging state-of-the-art artificial intelligence and readily available
clinical data, it is feasible to predict 1-year all-cause mortality in pa-
tients who have undergone successful TAVI and were discharged from
the hospital following the procedure. Our approach outperformed
individual clinical metrics, as well as the EuroSCORE II risk score,
which despite having been developed to predict short-term adverse
events following surgical valve replacement and because of the lack of
bespoke risk stratification tools for TAVI, is frequently used in patients,
managed percutaneously. The observed efficacy of our model suggests
that machine learning could play an important clinical role in evaluating
prognostic risk in patients after TAVI. By stratifying TAVI recipients
according to the risk of adverse events, it could facilitate offering
a more intense follow-up regimen to those at the highest risk of
adverse outcomes after the index procedure. Ultimately, it can enable
cost-effective allocation of medical resources and might contribute to
improving outcomes following TAVI.
In view of the complexity of patients undergoing TAVI, artificial

intelligence with machine learning emerges as an ideal tool for com-
bining the information provided by a large set of weak predictors
for robust risk stratification. The XGBoost algorithm has been suc-
cessfully implemented for risk prediction in a wide range of clinical
scenarios.14,15 It enables the incorporation of numerous predictors
into the model even when these variables are correlated—a ma-
jor limitation with conventional regression analyses. Our model was
developed using conservative internal 10-fold repeated validation,
which limits overfitting and ascertains generalizability. Importantly,
the model attained high accuracy in external validation (combined
data from two independent tertiary clinical centres) by objectively
integrating pre- and peri-procedural data—a task that is challenging
to accomplish at the point of care.
While surgical risk scores have been widely used to stratify differ-

ent groups of patients for comparative clinical trials between SAVR
and TAVI, they were developed and validated on series of patients
undergoing SAVR and therefore do not necessarily encompass the
diverse co-morbidities that have an adverse impact on outcomes in
TAVI recipients. Only a few studies have aimed to develop methods
for risk stratification beyond 30 days after TAVI and less than a hand-
ful included peri-procedural data in the models.8–12 Moreover, their
performance was limited, or the target population was only extreme-
risk and high-risk patients.22–26 Our model addresses this important
clinical gap. By providing patient-specific risk estimates, it has the
potential to enable tailored post-discharge patient surveillance after
TAVI, ultimately providing an opportunity for a more cost-effective
allocation of resources.
Prediction of TAVI outcomes is challenging due to the competing

cardiovascular and non-cardiovascular risks, as well as the fact that
patients are typically fairly homogeneous in terms of conventional
metrics that act as robust predictors in different clinical settings
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Figure 2 Feature importance for the machine learning model predicting all-cause mortality in TAVI recipients. The solid bars and error bars
represent the mean gain and standard deviation derived from the distribution of the importance within 10 folds of the cross-testing for each
variable. Abbreviations: eGFR, estimated glomerular filtration rate; LVEF, left ventricular ejection fraction; PPG, peak pressure gradient; and RBC,
red blood cell.

(i.e. age).27 While these are not adequately accounted for by the
EuroSCORE II, machine learning has the potential to overcome this
issue and risk-stratify the challenging cohort of TAVI patients. In our
study, none of the single metrics acted as a strong predictor of
all-cause mortality on receiver-operator curve characteristic analysis
(AUC < 0.70, Table 2). As shown previously, the lack of association
between age and survival in our study population may be caused by a
ceiling effect in the overall intermediate-risk cohort.27

Importantly, the machine learning model also provides insights into
the top predictors by ranking the relative contribution from each vari-
able for a unique patient. This has the potential to improve physicians’

confidence in the machine learning results and may potentially help
to overcome the perception of artificial intelligence as a ‘black box’.28

Our model represents a substantial improvement in risk stratification.
While multiple variables have been shown to act as independent
predictors of adverse outcomes following TAVI, prior studies did not
separate data for deriving independent predictors and testing their
clinical utility, and therefore the predictive value of such parameters
may be overestimated and not applicable to TAVI recipients globally.
In contrast, in our study we employed rigorous external validation,
establishing the generalizability of our model on unseen data from
two independent centres.
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Figure 3 Prediction of 1-year all-cause mortality on external testing. Receiver-operating characteristic curves for prediction of 1-year all-cause
mortality following hospital discharge after successful transcatheter aortic valve implantation. The machine learning XGBoost model had a significantly
higher area under the curve for all-cause mortality prediction than an established risk score (EuroSCORE II) and conventional predictors of outcomes
(including age), P < 0.001.

Figure 4 Calibration plot for machine learning XGBoost model. The calibration plot shows the relationship between the observed and predicted
proportion of events, grouped by decile of risk. The XGBoost model showed good calibration with the observed 1-year risk of all-cause mortality.

Limitations
Our study has notable strengths and weaknesses. Our model was
trained and tested on data from tertiary TAVI centres that reflect
everyday clinical practice (a real-world setting). It is based on readily

available data, and therefore the proposed approach could easily
benefit patients without the need for additional testing or tedious
data crunching. Indeed, our machine learning approach could be easily
incorporated into clinical practice. At the time of discharge from the
hospital after a successful TAVI, it could inform the physician on the
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Figure 5 Individual prediction of all-cause mortality with explainable artificial intelligence. Explanations of individual prediction with subject-specific
feature importance for an 83-year-old man who survived over a year following TAVI and an 86-year-old man who died 53 days after TAVI. The
x-axis corresponds to the machine learning risk score. The arrows represent the influence of each covariate on the overall prediction; blue and red
arrows indicate whether the associated parameters decrease (blue) or increase (red) the risk of future events. The combination of all covariates’
influence provides the final machine learning risk score. The red and blue colours provide the separation between low and high machine learning
risk scores. Abbreviations: eGFR, estimated glomerular filtration rate; LVEF, left ventricular ejection fraction; and RBC, red blood cell.

risk of all-cause mortality during the first year following the proce-
dure, enabling patient-specific post-discharge care planning. While our
databases lack STS-PROM scores, we have provided the EuroSCORE
II, which was shown to have comparable discrimination and calibration
to STS-PROM in patients receiving aortic valve replacement.29,30 In
the derivation cohort, we included patients who underwent TAVI in
2013–19, ascertaining a large population for establishing our model
but inevitably also including a relatively large proportion of high-risk
patients who currently represent a minority of TAVI recipients. Our
model did not include scores that characterize patients’ frailty, con-
comitant coronary artery disease, or the perception of their health
status. Additionally, due to the observational nature of our study, we
acknowledge the inherent risk for selection bias and residual con-
founding, which is, however, limited given the multicentre character
of the current study. Finally, while prediction of outcomes follow-
ing hospital discharge is valuable, our study does not address the
need for a pre-procedural tool for prediction of adverse outcomes
that could facilitate selection of patients for TAVI. Given the limited
performance of models based exclusively on pre-procedural clinical
data, it appears that inclusion of advanced cardiac imaging data might
be necessary.31,32 Ultimately, robust models based on clinical and
imaging pre-procedural data could have a significant impact on clinical
practice.

Conclusions
In conclusion, machine learning based on readily available clinical
data allows accurate prediction of 1-year all-cause mortality following
TAVI. The machine learning model could potentially be used to guide
the intensity of patients’ follow-up and post-discharge care after TAVI.

Supplementary material
Supplementary material is available at European Heart Journal—
Quality of Care and Clinical Outcomes online.
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